
Proceedings of Selected Areas in Cryptography ’98 (August 17–18, 1998, Kingston, Ontario, Canada)
S. Tavares and H. Meijer Eds. Springer-Verlag, LNCS 1556, pages 72–80.

Computational Alternatives

to Random Number Generators

David M’Räıhi1, David Naccache2, David Pointcheval3, and Serge Vaudenay3

1 Gemplus Corporation, 3 Lagoon Drive, Suite 300, Redwood City, CA 94065, USA
2 Gemplus Card International, 34 rue Guynemer, 92447 Issy-les-Moulineaux, France

3 LIENS – CNRS, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris, France.
E-mail: {david.pointcheval,serge.vaudenay}@ens.fr.
URL: http://www.dmi.ens.fr/˜{pointche, vaudenay}

Abstract. In this paper, we present a simple method for generating random-based sig-
natures when random number generators are either unavailable or of suspected quality
(malicious or accidental).
By opposition to all past state-machine models, we assume that the signer is a memo-
ryless automaton that starts from some internal state, receives a message, outputs its
signature and returns precisely to the same initial state; therefore, the new technique
formally converts randomized signatures into deterministic ones.
Finally, we show how to translate the random oracle concept required in security proofs
into a realistic set of tamper-resistance assumptions.

1 Introduction

Most digital signature algorithms rely on random sources which stability and
quality crucially influence security: a typical example is El-Gamal’s scheme [9]
where the secret key is protected by the collision-freedom of the source.

Although biasing tamper-resistant generators is difficult1, discrete compo-
nents can be easily short-circuited or replaced by fraudulent emulators.

Unfortunately, for pure technological reasons, combining a micro-controller
and a noise generator on the same die is not a trivial engineering exercise and
most of today’s smart-cards do not have real random number generators (tra-
ditional substitutes to random sources are keyed state-machines that receive a
query, output a pseudo-random number, update their internal state and halt
until the next query: a typical example is the BBS generator presented in [4]).

In this paper, we present an alternative approach that converts randomized
signature schemes into deterministic ones: in our construction, the signer is a
memoryless automaton that starts from some internal state, receives a message,
outputs its signature and returns precisely to the same initial state.

Being very broad, we will illustrate our approach with Schnorr’s signature
scheme [22] before extending the idea to other randomized cryptosystems.

2 Digital signatures

In eurocrypt’96, Pointcheval and Stern [20] proved the security of an El-Gamal
variant where the hash-function has been replaced by a random oracle. However,

1 such designs are usually buried in the lowest silicon layers and protected by a continuous scanning for
sudden statistical defects, extreme temperatures, unusual voltage levels, clock bursts and physical
exposure.

c© Springer-Verlag 1998.

2

since hash functions are fully specified (non-random) objects, the factual signifi-
cance of this result was somewhat unclear. The following sections will show how
to put this concept to work in practice.

In short, we follow Pointcheval and Stern’s idea of using random oracles2

but distinguish two fundamental implementations of such oracles (private and
public), depending on their use.

Recall, pro memoria, that a digital signature scheme is defined by a distri-
bution generate over a key-space, a (possibly probabilistic) signature algorithm
sign depending on a secret key and a verification algorithm verify depending on
the public key (see Goldwasser et al. [11]).

We also assume that sign has access to a private oracle f (which is a part
of its private key) while verify has access to the public oracle h that commonly
formalizes the hash function transforming the signed message into a digest.

Definition 1. Let Σh = (generate, signh, verifyh) denote a signature scheme de-
pending on a uniformly-distributed random oracle h. Σ is (n, t, ε)-secure against
existential-forgery adaptive-attacks if no probabilistic Turing machine, allowed
to make up to n queries to h and sign can forge, with probability greater than ε
and within t state-transitions (time), a pair {m, σ}, accepted by verify.

More formally, for any (n, t)-limited probabilistic Turing machine A that
outputs valid signatures or fails, we have:

Pr
ω,h

[

Ah,sign(ω) succeeds
]

≤ ε

where ω is the random tape.
Figure 1 presents such a bi-oracle variant of Schnorr’s scheme: h is a public

(common) oracle while f is a secret oracle (looked upon as a part of the signer’s
private key); note that this variant’s verify is strictly identical to Schnorr’s orig-
inal one.

Definition 2. Let H = (hK)K∈K
: A → B be a family of hash-functions,

from a finite set A to a finite set B, where the key K follows a distribution K.
H is an (n, ε)-pseudo-random hash-family if no probabilistic Turing machine A
can distinguish hK from a random oracle in less than t state-transitions and n
queries, with an advantage greater than ε.

In other words, we require that for all n-limited A:

∣

∣

∣

∣

Pr
ω,K

[

AhK(ω) accepts
]

− Pr
ω,h

[

Ah(ω) accepts
]

∣

∣

∣

∣

≤ ε

where ω is the random tape and h is a random mapping from A to B.
So far, this criterion has been used in block-cipher design but never in con-

junction with hash functions. Actually, Luby and Rackoff [16] proved that a truly
random 3-round, `-bit message Feistel-cipher is (n, n2/2`/2)-pseudo-random and

2 although, as showed recently, there is no guarantee that a provably secure scheme in the random
oracle model will still be secure in reality [5].

3

System parameters: k, security parameter
p and q primes, q|(p − 1)
g ∈ ZZ?

p of order q
h : {0, 1}∗ → ZZq

Key generation: generate(1k)
secret: x ∈R ZZq and f : {0, 1}∗ → ZZq

public: y = gx mod p

Signature generation: sign(m) := {e, s}
u = f(m, p, q, g, y)
r = gu mod p
e = h(m, r)
s = u − xe mod q

Signature verification: verify(m; e, s)
r = gsye mod p
check that e = h(m, r)

Fig. 1. A deterministic variant of Schnorr’s scheme.

safe until n ∼= 2`/4 messages have been encrypted (this argument was brought
as an evidence for DES’ security).

Note that (n, ε)-pseudo-randomness was recently shown to be close to the
notion of n-wise decorrelation bias, investigated by Vaudenay in [24].

This construction can be adapted to pseudo-random hash-functions as fol-
lows: we first show how to construct a pseudo-random hash-function from a huge
random string and then simplify the model by de-randomizing the string and
shrinking it to what is strictly necessary for providing provable security. Fur-
ther reduction will still be possible, at the cost of additional pseudo-randomness
assumptions.

Theorem 3. Let B be the set of `-bit strings and A = B2. Let us define two

B-to-B functions, denoted F and G, from an ` × 2`+1-bit key K = {F, G}. Let

hK(x, y) = y ⊕ G(x ⊕ F (y)). The family (hK)K is (n, n2/2`+1)-pseudo-random.

Proof. The considered family is nothing but a truncated two-round Feistel con-
struction and the proof is adapted from [16, 19] and [17]. The core of the proof
consists in finding a meaningful lower bound for the probability that n different
{xi, yi}’s produce n given zi’s. More precisely, the ratio between this probability
and its value for a truly random function needs to be greater than 1− ε. Letting
T = x ⊕ F (y), we have:

Pr[hK(xiyi) = zi; i = 1, . . . , n] ≥ Pr[hK(xiyi) = zi and Ti pairwise different]

≥
(

1

2`

)n
(

1 −
n(n − 1)

2
min
i,j

Pr[Ti = Tj]

)

and for any i 6= j (since xiyi 6= xjyj), we either have yi 6= yj ⇒ Pr[Ti = Tj] =
1/2`, or yi = yj and xi 6= xj which implies Pr[Ti = Tj] = 1.

4

Consequently:

Pr[hK(xiyi) = zi; i = 1, . . . , n] ≥
(

1

2`

)n
(

1 −
n(n − 1)

2

1

2`

)

⇒ ε =
n2

2`−1
.

Considering a probabilistic distinguisher AO using a random tape ω, we get:

Pr
ω,K

[AhK(ω) accepts] =
∑

accepting
x1y1z1...xnynzn

Pr
ω,K

[x1y1z1 . . . xnynzn]

=
∑

xiyizi

Pr
ω

[xiyizi/xiyi
O
→ zi] Pr

K
[hK(xiyi) = zi]

≥ (1 − ε)
∑

xiyizi

Pr
ω

[xiyizi/xiyi
O
→ zi] Pr

O
[O(xiyi) = zi]

= (1 − ε) Pr
ω,O

[AO(ω) accepts]

and
Pr
ω,K

[AhK (ω) accepts] − Pr
ω,O

[AO(ω) accepts] ≥ −ε

which yields an advantage smaller than ε by symmetry (i.e. by considering an-
other distinguisher that accepts if and only if A rejects). ut

Note that this construction can be improved by replacing F by a random lin-
ear function: if K = {a, G} where a is an `-bit string and G an n`-bit string defin-
ing a random polynomial of degree n − 1, we define hK(x) = y ⊕ G(x ⊕ a × y)
where a × y is the product in GF(2`) (this uses Carter-Wegman’s xor-universal
hash function [6]).

More practically, we can use standard hash-functions such as:

hK(x) = HMAC-SHA(K, x)

at the cost of adding the function’s pseudo-randomness hypothesis [2, 3] to the
(already assumed) hardness of the discrete logarithm problem.

To adapt random oracle-secure signatures to everyday’s life, we regard (hK)K

as a pseudo-random keyed hash-family and require an indistinguishability be-
tween elements of this family and random functions. In engineering terms, this
precisely corresponds to encapsulating the hash function in a tamper-resistant
device.

Theorem 4. Let H be a (n, ε1)-pseudo-random hash-family. If the signature

scheme Σh is (n, t, ε2)-secure against adaptive-attacks for existential-forgery,

where h is a uniformly-distributed random-oracle, then ΣH is (n, t, ε1+ε2)-secure
as well.

Proof. Let AH,sign be a Turing machine capable of forging signatures for hK

with a probability greater than ε1 + ε2. hK is distinguished from h by apply-

ing A and considering whether it succeeds or fails. Since Ah,sign can not forge
signatures with a probability greater than ε2, the advantage is greater than ε1,
which contradicts the hypothesis. ut

5

3 Implementation

An interesting corollary of theorem 4 is that if n hashings take more than t
seconds, then K can be chosen randomly by a trusted authority, with some
temporal validity. In this setting, long-term signatures become very similar to
time-stamping [13, 1].

Another consequence is that random oracle security-proofs are no longer
theoretical arguments with no practical justification as they become, de facto, a
step towards practical and provably-secure schemes using pseudo-random hash
families; however, the key has to remain secret, which forces the implementer to
distinguish two types of oracles:

– A public random oracle h, that could be implemented as keyed pseudo-
random hash function protected in a all tamper-resistant devices (signers
and verifiers).

– A private random oracle f , which in practice could also be any pseudo-
random hash-function keyed with a secret (unique to each signature device)
generated by generate.

An efficient variant of Schnorr’s scheme, provably-secure in the standard model
under the tamper-resistance assumption, the existence of one-way functions and
the DLP’s hardness is depicted in figure 2.

System parameters: k, security parameter
p and q primes, q|(p − 1)
g ∈ ZZ?

p of order q
(hv : {0, 1}∗ → ZZq)v∈K pseudo-random hash-family
v ∈R K secret key

(same in all tamper-resistant devices)

Key generation: generate(1k)
secret: x ∈R ZZq and z ∈R K
public: y = gx mod p

Signature generation: sign(m) := {e, s}
u = hz(m, p, q, g, y)
r = gu mod p
e = hv(m, r)
s = u − xe mod q

Signature verification: verify(m; e, s)
r = gsye mod p
check that e = hv(m, r)

Fig. 2. A provably-secure deterministic Schnorr variant.

The main motivation behind our design is to provide a memoryless pseudo-
random generator, making the dynamic information related to the state of the

6

generator avoidable. In essence, the advocated methodology is very cheap in
terms of entropy as one can re-use the already existing key-material for gener-
ating randomness.

Surprisingly, the security of realistic random-oracle implementations is en-
hanced by using intentionally slow devices:

– use a slow implementation (e.g. 0.1 seconds per query) of a (240, 1/2000)-
pseudo-random hash-family.

– consider an attacker having access to 1000 such devices during 2 years (∼= 226

seconds).
– consider Schnorr’s scheme, which is (n, t, 220nt/TDL)-secure in the random

oracle model, where TDL denotes the inherent complexity of the DLP [21].

For example, {|p| = 512, |q| = 256}-discrete logarithms can not be computed
in less than 298 seconds (∼= a 10,000-processor machine performing 1,000 modular
multiplications per processor per second, executing Shank’s baby-step giant-step
algorithm [23]) and theorem 4 guarantees that within two years, no attacker can
succeed an existential-forgery under an adaptive-attack with probability greater
than 1/1000.

This proves that realistic low-cost implementation and provable security can
survive in harmony. Should a card be compromised, the overall system security
will simply become equivalent to Schnorr’s original scheme.

Finally, we would like to put forward a variant (see figure 3) which is not
provably-secure but presents the attractive property of being fully deterministic
(a given message m, will always yield the same signature):

Lemma 5. Let {r1, s1} and {r2, s2} be two Schnorr signatures, generated by the

same signer using algorithm 2 then {r1, s1} = {r2, s2} ⇔ m1 = m2.

Proof. If m1 = m2 = m then r1 = r2 = gh(x,m,p,q,g,y) = r mod p, e1 = e2 =
h(m, r) = e mod q and s1 = h(x, m, p, q, g, y) − xe mod q = s2 = s, therefore
{r1, s1} = {r2, s2}.

To prove the converse, observe that if r1 = r2 = r then gu1 = gu2 mod p
meaning that u1 = u2 = u. Furthermore, s1 = u − xe1 = u − xe2 = s2 mod q
implies that e1 = h(m1, r) = h(m2, r) = e2 mod q; consequently, unless we
found a collision, m1 = m2. ut

Industrial motivation: This feature is a cheap protection against direct
physical attacks on the signer’s noise-generator (corrupting the source to obtain
twice an identical u).

4 Deterministic versions of other schemes

The idea described in the previous sections can be trivially applied to other
signature schemes such as [10] or [12]. Suffice it to say that one should replace
each session’s random number by a digest of the keys (secret and public) and
the signed message.

7

System parameters: k, security parameter
p and q prime numbers such that q|(p − 1)
g ∈ ZZ?

p of order q
h, hash function

Key generation: generate(1k)
secret: x ∈R ZZq

public: y = gx mod p

Signature generation: sign(m) := {e, s}
u = h(x, m, p, q, g, y) mod q
r = gu mod p
e = h(m, r) mod q
s = u − xe mod q

Signature verification: verify(m; e, s)
r = gsye mod p
check that e = h(m, r) mod q

Fig. 3. A practical deterministic Schnorr variant.

Blind signatures [8] (a popular building-block of most e-cash schemes) can
be easily transformed as well: in the usual RSA setting the user computes
w = h(k, m, e, n) (where k is a short secret-key) and sends m′ = wem mod n
to the authority who replies with s′ = wedmd mod n that the user un-blinds by
a modular division (s = s′/w = md mod n).

The “blinding” technique can also be used to prevent timing-attacks [15],
but it requires again a random blinding factor [14].

More fundamentally, our technique completely eliminates a well-known at-
tack on Mc Eleice’s cryptosystem [18] where, by asking the sender to re-encrypt
logarithmically many messages, one can filter-out the error vectors (e, chosen
randomly by the sender at each encryption) through simple majority votes.

We refer the reader to section iii.1.4.a.c of [7] for more detailed description
of this attack (that disappears by replacing e by a hash-value of m and the
receiver’s public-keys).

References

1. D. Bayer, S. Haber, and W. S. Stornetta. Improving the Efficiency and Reliability of Digital
Time-Stamping. Sequences II, Methods in Communication, Security and Computer Science, pages
329–334, 1993.

2. M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message Authentication.
In Crypto ’96, LNCS 1109. Springer-Verlag, 1996.

3. M. Bellare, R. Canetti, and H. Krawczyk. Message Authentication using Hash Functions: The
hmac construction. RSA Laboratories’ Cryptobytes, 2(1), Spring 1996.

4. L. Blum, M. Blum, and M. Shub. A Simple Unpredictable Random Number Generator. SIAM

Journal on computing, 15:364–383, 1986.
5. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracles Methodology, Revisited. In Proc.

of the 30th STOC. ACM Press, 1998.
6. L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and System Sciences,

18:143–154, 1979.

8

7. F. Chabaud. Recherche de Performance dans l’Algorithmique des Corps Finis, Applications à la

Cryptographie. PhD thesis, École Polytechnique, 1996.
8. D. Chaum. Blind Signatures for Untraceable Payments. In Crypto ’82, pages 199–203. Plenum,

NY, 1983.
9. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.

In IEEE Transactions on Information Theory, volume IT–31, no. 4, pages 469–472, July 1985.
10. A. Fiat and A. Shamir. How to Prove Yourself: practical solutions of identification and signature

problems. In Crypto ’86, LNCS 263, pages 186–194. Springer-Verlag, 1987.
11. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptative

Chosen-Message Attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.
12. L. C. Guillou and J.-J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to Security

Microprocessor Minimizing Both Transmission and Memory. In Eurocrypt ’88, LNCS 330, pages
123–128. Springer-Verlag, 1988.

13. S. Haber and W. S. Stornetta. How to Timestamp a Digital Document. Journal of Cryptology,
3:99–111, 1991.

14. B. Kaliski. Timing Attacks on Cryptosystems. RSA Laboratories’ Bulletin, 2, January 1996.
15. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other

Systems. In Crypto ’96, LNCS 1109, pages 104–113. Springer-Verlag, 1996.
16. M. Luby and Ch. Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom

Functions. SIAM Journal of Computing, 17(2):373–386, 1988.
17. U. M. Maurer. A Simplified and Generalized Treatment of Luby-Rackoff Pseudorandom Permu-

tation Generators. In Eurocrypt ’92, LNCS 658, pages 239–255. Springer-Verlag, 1993.
18. R. J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory. DSN progress

report, 42-44:114–116, 1978. Jet Propulsion Laboratories, CALTECH.
19. J. Patarin. Étude des Générateurs de Permutations Pseudo-aléatoires Basés sur le Schéma du

DES. PhD thesis, Université de Paris VI, November 1991.
20. D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In Eurocrypt ’96, LNCS

1070, pages 387–398. Springer-Verlag, 1996.
21. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.

Journal of Cryptology, 1998. To appear.
22. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Crypto ’89, LNCS 435,

pages 235–251. Springer-Verlag, 1990.
23. D. Shanks. Class number, a theory of factorization, and genera. In Proceedings of the symposium

on Pure Mathematics, volume 20, pages 415–440. AMS, 1971.
24. S. Vaudenay. Provable Security for Block Ciphers by Decorrelation. In STACS ’98, LNCS 1373,

pages 249–275. Springer-Verlag, 1998.

