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Abstract. Stateful pirate decoders are history recording and abrupt pirate decoders. These de-
coders can keep states between decryptions to detect whether they are being traced and are then
able to take some counter-actions against the tracing process, such as “shutting down” or erasing all
internal information. We propose the first constant ciphertext rate scheme which copes with such
pirate decoders. Our scheme moreover supports black-box public traceability.

1 Introduction

In the secure distribution of digital content, there are two main types of schemes: broadcast en-
cryption schemes, which enable a center to prevent a set of users from recovering the broadcasted
information; and traitor tracing schemes, which enable the center to trace users who collude to
produce pirate decoders. This paper focuses on the traceability property for pirate decoders in
the strongest model (according to the hierarchy established by Kiayias and Yung [7]). In [7], the
authors described various categories of pirate decoders which are resumed below:

Stateless pirate decoders. These decoders are resettable and available. A resettable decoder
can be reset to its initial state by the tracer at any time. This gives the tracer the advantage
of making independent tests during the tracing process. An available pirate decoder is a
device that does not take any counter-action against the tracing process and thus is always
available for the tracer.

Stateful pirate decoders. In contrast to stateless pirate decoders, these are history record-
ing and abrupt pirate decoders. A history recording pirate decoder can remember previous
queries made by the tracer in order to detect if it is being traced. Abrupt pirate decoders can
take some counter-actions against the tracing process such as the “shutting down” mecha-
nism, a process by which pirate decoders erase all internal key information and thus defeat
the tracing process. The history recording capability along with abrupt capability can be
used by pirate decoders to evade tracing.

Kiayias and Yung [7] also showed an interesting method to convert some types of tracing
systems for stateless pirate decoders into tracing systems for stateful ones by embedding robust
watermarks in the content. However, previous tracing systems for stateful decoders are inefficient
in terms of ciphertext rate.

Schemes with constant transmission rate. These schemes are well-suited to encrypt large
messages. An interesting property of these scheme is the efficient black-box traceability, i.e. the
tracing procedure does not have to open the pirate decoder, but only interacts with it. However,
the constant transmission rate is asymptotically achieved and for large plaintexts (due to the use
of collision-secure codes and codes with identifiable parent property). We note that the constant
ciphertext rate schemes [7, 5, 10] were only designed for stateless pirate decoders.

Public Traceability. Chabanne et al. [5] introduced the notion of public traceability where
tracing is a black-box and publicly computable procedure which allows an untrusted party to
trace pirate decoders. Phan et al. [10] introduced the first constant ciphertext rate traitor tracing
scheme with public-traceability.
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1.1 Contribution

We propose the first traitor tracing scheme for stateful decoders with constant ciphertext rate.
Furthermore, our scheme still keeps the desirable properties of previous traitor tracing with
constant ciphertext rate, namely black-box traceability and public traceability.

We first propose a basic scheme for stateful pirate decoders by employing watermarking tech-
nique [7] in the Phan, et al.’s basic scheme [10]. We then introduce an efficient generalization of
the basic scheme to obtain an efficient general scheme. Although our basic scheme is significantly
less efficient than Phan et al.’s basic scheme, the general scheme is almost as efficient as theirs.
We moreover point out that the latter cannot deal with stateful pirate decoders.

2 Preliminaries

In this section, we first recall definitions of Public Key Encryption (PKE) and of Data Encapsu-
lation Mechanism (DEM) which will be used in our constructions. We then review the definition
of traitor tracing systems with public traceability.

2.1 Public-Key Encryption

A public-key encryption scheme PKE is defined by the three following algorithms:

– The key generation algorithm Gen. On input 1λ, where λ is the security parameter, the
algorithm Gen produces a pair (pk, sk) of matching public and private keys.

– The encryption algorithm Enc. Given a message m (in the space of plaintexts M) and
a public key pk, Encpk(m) produces a ciphertext c (in the space of ciphertexts C) of m.
This algorithm may be probabilistic (involving random coins r ∈ R), it is then denoted
Encpk(m; r).

– The decryption algorithm Dec. Given a ciphertext c ∈ C and the secret key sk, Decsk(c) gives
back the plaintext m ∈M.

2.2 Data Encapsulation Mechanism (DEM)

A DEM is a symmetric encryption scheme that consists of the following algorithms:

– Setup algorithm DEM.Setup(1λ)→ KD: an algorithm that specifies the symmetric key space
KD.

– Encryption algorithm DEM.Encdk(m)→ τ : a deterministic, polynomial-time algorithm that
encrypts m into τ , using a symmetric-key dk ∈ KD.

– Decryption algorithm DEM.Decdk(τ)→ m: a deterministic, polynomial-time algorithm that
decrypts τ to m, using a symmetric-key dk ∈ KD.

2.3 Traitor Tracing System with Public Traceability

Definition 1 (Pirate Decoder). A pirate decoder D is defined as a probabilistic circuit that
takes as input a ciphertext C and outputs some message M or ⊥.

Definition 2 (Traitor Tracing System with Public Traceability). A Traitor Tracing
system with public traceability consists of the following four algorithms:

Setup(N,λ) akes as input N , the number of users in the system, and λ, the security parameter.
The algorithm runs in polynomial time in λ and outputs a public key pk and private keys
K1, ...,KN , where Ku is given to user u.

Encrypt(pk,M) encrypts M using the public broadcasting key pk and outputs ciphertext C.
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Decrypt(j,Kj , C, pk) decrypts C using the private key Kj of user j. The algorithm outputs a
message M or ⊥.

Trace(D, pk) is an oracle algorithm that is only given as input the public key pk and a pirate
decoder D. The tracing algorithm queries the pirate decoder D as a black-box oracle, as
defined above. It outputs at least a user in 1, 2, . . . , N

The system, called a (N, t)−TTS, must satisfy the following properties:

Correctness property: for all user i ∈ {1, . . . , N}, and all messages M :

Decrypt(j, Kj ,Encrypt(pk,M), pk) = M

Traceability property: from a pirate decoder D produced from a collusion of up to t users,
the above tracing algorithm should be able to correctly return at least a user in the collusion
producing D.

3 PST Basic Scheme [10]

Below, we briefly review the basic scheme of Phan, Safavi-Naini, Tonien [10] (called PST scheme)
which will take part in our construction of general scheme. Their basic scheme, called PSTBa-
sic(N,λ), is described as follows.

Primitives: a public-key encryption PKE and a data encapsulation mechanism DEM.
Setup(N,λ): Algorithm PSTBasic.Gen(1λ, N)→ (pk, sk1, . . . , skN ).

The algorithm PSTBasic.Gen(.) takes as input the number of users N and a security param-
eter λ. It simply runs the setup algorithm of the public key encryption to define its public
key pk and its private keys sk1, . . . , skN :
– For each i = 1, . . . , N , call PKE.Gen(1λ)→ (pki, ski).
– Set pk = (pk1, . . . , pkN ).

Encrypt(pk,m): Algorithm PSTBasic.Enc(pk,m)→ c.
The algorithm PSTBasic.Enc(.) takes as input the public key pk, a message m and outputs
a ciphertext c. It uses DEM to encrypt the message m and PKE to encrypt the key used in
DEM:
– Choose a random dk
– Call DEM.Encdk(m)→ τ
– Compute h = H(τ) and for each i = 1, . . . , N , call PKE.Encpki

(dk||h)→ σi.
– Define c = (σ1, . . . , σN , τ).

Decrypt(i, ski, c, pk): Algorithm PSTBasic.Dec(ski, c)→ m or ⊥.
The algorithm PSTBasic.Dec(.) takes as input a secret key ski and a ciphertext c = (σ1, . . . , σN , τ)
and outputs a message m ot ⊥:
– Call PKE.Decski

(σi)→ dk||h
– If h 6= H(τ), return ⊥
– Otherwise, call DEM.Decdk(τ)→ m and output m

Trace(D, pk):
Algorithm PSTBasic.Public-Trace(pk,D)→ t.

The algorithm PSTBasic.Public-Trace(.) takes as input the public key pk and a pirate decoder
D and outputs a traitor t as follows:
– Choose randoms dk, m, then call PSTBasic.Encpk(m)→ (σ1, . . . , σN , τ).
– For each i = 1, . . . , N , choose random d′i 6= dk||h such that d′i has the same length as

dk||h.
– Call PKE.Encpki

(d′i)→ σ′
i.

– Calculate the following probabilities:

3



• p0 = Pr[D(σ1, σ2, . . . , σN , τ) = m]
• p1 = Pr[D(σ′

1, σ2, . . . , σN , τ) = m]
• . . .
• pn = Pr[D(σ′

1, σ
′
2, . . . , σ

′
N , τ) = m].

– If |pi − pi−1| is not negligible, output t = i as a traitor.

We first show that the above scheme can not be used for stateful pirate decoders.

Proposition 3. A stateful pirate decoder can defeat the above tracing algorithm.

Proof. Assume that user 1 and user N collude to produce a pirate decoder D, whenever D
receives a ciphertext (σ′

1, σ2, . . . , σN , τ), it can detect whether a tracing procedure has been
applied. Therefore, by applying a standard delaying technique (such as the one used in [7]), the
stateful pirate decoder can defeat the tracing algorithm: upon detecting tracing, the decoder
might continue to work by returning the message m (by decrypting the ciphertext σN ) for a
random number of trials and then start returning a random message m?. By this strategy, any
user 2, . . . , N can be claimed to be guilty.

4 Basic Scheme against Stateful Pirate Decoders

We now transform the PSTBasic scheme for stateless decoders to a scheme for stateful decoders.
In our construction, inspired by Kiayias and Yung’s method, we employ a watermarking scheme.
The basic scheme is therefore quite inefficient. However, in the next section, we will show how
to use this basic scheme to construct an efficient general scheme.

Adequate presentation of a message. In almost all applications of traitor tracing, a slight
modification of data does not affect the user. For example, users are not affected by a slight
modification of a pixel in a figure or small changes in spaces between words in text display. For
a data M , we call “adequate” presentations of M varied copies which can replace M without
affecting the users. A decoder is usable if, from a ciphertext of M , it returns an adequate
presentation of M .

Formally, as in [7], we restrict ourselves to plaintext spaces for which the following water-
marking assumption is true:

Assumption 4 (Watermarking Assumption) For some t, h, there is a probabilistic algo-
rithm (t, h)-W such that, given any M ∈ M, it produces h “versions” of M , M1,M2, ...,Mh,
such that the following are true:

(i) Mi are “adequate” presentations of M

(ii) there is an algorithmW ′ such that for any algorithm A that generates a M ′ given Mj1 , . . . ,Mjk
,

W ′ given M ′ traces back to one of the Mjl
, provided that M ′ is an adequate presentation

of M , and that k is below a certain threshold t.

This assumption has been used in [6, 7] and can be achieved in most audio or video streams.
We can thus make use of watermarking techniques as those of [9, 2] to support the tracing
process.

We remark that a (t, h)−watermarking scheme is also a (t′, h′)− watermarking scheme, for
all t′ ≤ t, h′ ≤ h. Therefore, possessing a (t, h)−watermarking scheme, we can use it as a
(N,N)−watermarking scheme, for N ≤ t and N ≤ h.
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Basic scheme. Our basic scheme, called StatefulBasic(N,λ) is described as follows:

Primitives: a public-key encryption PKE, a data encapsulation mechanism DEM and a water-
marking algorithm (N,N)-W.

Setup(N,λ): It simply runs PSTBasic(N,λ) with the same parameters, and outputs pk as the
public encryption key and sk1, . . . , skN as private keys.

Encrypt(pk,M): Algorithm StatefulBasic.Enc(pk,m)→ c.
The algorithm StatefulBasic.Enc(.) takes as input the public key pk, a message m and outputs
a ciphertext c. It uses W to produce “adequate” presentations of m, DEM to encrypt the
messages and PKE to encrypt the keys used in DEM:
– Call W(m)→ m1, . . . ,mN .
– Choose random keys dk1, . . . , dkN

– For each i = 1, . . . , N , call DEM.Encdki
(mi)→ τi

– Compute hi = H(τi) and for each i = 1, . . . , N , call PKE.Encpki
(dki||hi)→ σi.

– Define c = (σ1, . . . , σN , τ1, . . . , τN ).
Decrypt(j,Kj , C, pk): Algorithm StatefulBasic.Dec(ski, c)→ mi or ⊥.

The algorithm StatefulBasic.Dec(.) takes as input a secret key ski and a ciphertext
c = (σ1, . . . , σN , τ1, . . . , τN ), it outputs a message mi or ⊥:
– Call PKE.Decski

(σi)→ dki||hi

– If hi 6= H(τi), return ⊥
– Otherwise, call DEM.Decdki

(τi)→ mi and output mi

Trace(D, pk):
Algorithm StatefulBasic.Public-Trace(pk,D)→ t.

The algorithm StatefulBasic.Public-Trace(.) takes as input the public key pk and a pirate
decoder D and outputs a traitor t as follows:
– Choose random dk, m, and call PSTBasic.Enc(pk,m)→ (σ1, . . . , σN , τ1, . . . , τN ). Recall

that τi = DEM.Encdki
(mi) and m1, . . . ,mN are outputted by W(m).

– Give (σ1, . . . , σN , τ1, . . . , τN ) to D.
– Suppose that D(σ1, . . . , σN , τ1, . . . , τN )→ m?

– Call W ′(m?)→ mt and output t as a traitor.

Traceability. We first consider the traceability of the above system.

Theorem 5. If W is a (N,N)−watermarking scheme, PKE and DEM are semantically secure,
the above scheme is a fully collusion resistant traitor tracing scheme against stateful pirate
decoders.

Proof. We remark that the above tracing only makes one query to the pirate decoder. Moreover,
this query is a valid ciphertext. Therefore, if a pirate decoder is usable, it should return an
“adequate” presentation m? of the original message m.

Let (σ1, . . . , σN , τ1, . . . , τN ) be the query to the pirate decoder and m1, . . . ,mN be the N
underlying messages of σ1, . . . , σN . We note that m1, . . . ,mN are outputted by W(m).

Suppose that the pirate decoder D is produced from a collusion of k users uj1 , . . . , ujk
, we

show that all the information the pirate decoder knows from the unique query (σ1, . . . , σN , τ1, . . . , τN )
are the k messages mj1 , . . . ,mjk

. For this, we use a hybrid argument as follows.
Denote by i1, . . . , iN−k the N − k indexes that are not in {j1 . . . jk}. At each qth step (q runs

from 1 to N−K), we replace σiq by σiq = PKE.Encpkiq
(dk′iq ||hiq), where dk′iq is randomly chosen

in the key space, and τiq by τiq = DEMdk′
iq

(m′
iq

), where m′
iq

is randomly chosen in the message

space. The pirate decoder has thus, after the qth step, no information about miq . Because PKE
and DEM are semantically secure, the pirate decoder has a negligible advantage to distinguish
between two successive steps.

The message m? is thus produced from mj1 , . . . ,mjk
. At this stage, we can use the algorithm

W ′ to reveal one of mjt ∈ {mj1 . . .mjk
} and can correctly return the user jt as a traitor. ut
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Security of Encryption. The PSTBasic scheme can be considered as a particular case of our
StatefulBasic scheme with dk1 = . . . = dkN = dk and m1 = . . . = mN = m. Using the argument
in the security proof of PSTBasic [10], our scheme achieves the same security level, i.e. semantic
security against “Replayable” CCA adversaries.

Remarks. The above basic scheme is inefficient in comparison with PSTBasic scheme because
of its linear ciphertext rate. However, its main advantage is that it can be used for stateful
pirate decoders and that the tracing procedure is very efficient with only one query to each
pirate decoder. More interestingly, this basic scheme, although inefficient, helps us to construct
an efficient general scheme which is almost as efficient as the PST general scheme [10].

The construction of the general scheme is described in the next section.

5 General Scheme for Stateful Pirate Decoders

5.1 IPP codes

Let Q be an alphabet containing q symbols. If C = {w1, w2, . . . , wN} ⊂ Q`, then C is called
a q-ary code of size N and length `. Each wi ∈ C is called a codeword and we write wi =
(wi,1, wi,2, . . . , wi,`) where wi,j ∈ Q is called the jth component of the codeword wi.

We define descendants of a subset of codewords as follows. Let X ⊂ C and u = (u1, u2, . . . , u`) ∈
Q`. The word u is called a descendant of X if for any 1 ≤ j ≤ `, the jth component uj of u
is equal to a jth component of a codeword in X. In this case, codewords in X are called par-
ent codewords of u. For example, (3, 2, 1, 3) is a descendant of the three codewords (3, 1, 1, 2),
(1, 2, 1, 3) and (2, 2, 2, 2).

3 1 1 2
1 2 1 3 ←− parent codewords
2 2 2 2
3 2 1 3 ←− a descendant

We denote by Desc(X) the set of all descendants of X. For a positive integer c, denote by
Descc(C) the set of all descendants of subsets of up to c codewords. Codes with identifiable
parent property (IPP codes) are defined as follows.

Definition 6. A code C is called c-IPP if, for any u ∈ Descc(C), there exists a w ∈ C such that
for any X ⊂ C, if |X| ≤ c and u ∈ Desc(X), then w ∈ X.

In a c-IPP code, given a descendant u ∈ Descc(C), we can always identify at least one of
its parent codewords. Binary c-IPP codes (with more than two codewords) do not exists, thus
in any c-IPP code, the alphabet size q ≥ 3. Some typical constructions are in [12]. The best
known algorithms construct c-IPP codes and c-collusion secure codes [2] with logarithmic length
in number of codewords.

5.2 Framework for Combination of Basic Schemes

In [8, 5, 10], the authors constructed general schemes from combinations of basic schemes by
using collusion secure codes or IPP codes. We resume this framework, in the case of using IPP
codes, as follows:

Primitives: BasicSch1, . . . , BasicSch` are basic schemes of q users. C is a q-ary c-IPP code of
length `.

Step 1: Each user is associated to a codeword w = w1 . . . w` (wi ∈ {1, . . . , q}) of C. This
codeword determines the user key which contains ` sub-keys corresponding to ` basic schemes
BasicSch1, . . . , BasicSch`: the wth

i key in scheme BasicSchi, for each i = 1, 2, . . . , n.
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Step 2: The general scheme is combined from ` basic schemes:

GeneralSch = (BasicSch1, . . . , BasicSch`)

Step 3: For tracing, we first find out the codeword w? associated to the pirate decoder D by
finding out each w?

i as follows:
– create valid ciphertexts in BasicSch1, . . . , BasicSchi−1, BasicSchi+1, . . . , BasicSch`:

c1, . . . , ci−1, ci+1, . . . , c`

– create probe ciphertext (ciphertext for tracing) in BasicSchi: c?
i

– give the combined ciphertext c = (c1, . . . , ci−1, c
?
i , ci + 1, . . . , c`) to the pirate decoder

D. On feedback of D, by using the tracing algorithm in BasicSchi, find out w?
i .

Step 4: from w? = w?
1 . . . w?

` , the codeword associated to the pirate decoder, thanks to the
identifiable parent property of codes, we can trace back one traitor.

In the PST general scheme, in Step 2, BasicSch1, . . . , BasicSch` are independent instances
of the PSTBasic. We can replace BasicSch1, . . . , BasicSch` by our basic schemes StatefulBasic.
However, in this case, we lost a q factor of efficiency in comparison with the PST general scheme,
as each of our StatefulBasic scheme loses a linear factor in comparison with PSTBasic scheme.

By using 3-ary IPP codes (q = 3), we only loose a small constant factor of 3. We would like
nevertheless to improve the efficiency to make it comparable to the PST scheme. The idea is
to include a StatefulBasic scheme in a sequence of PSTBasic schemes. More precisely, in Step
2, we replace one of ` PSTBasic schemes by one StatefulBasic scheme. Due to the independence
between basic schemes, such a combination works well for encryption and decryption. We are only
worrying about the tracing capability. Below, we present such a combination with traceability.
We note however that this technique of combination cannot be used for constructions where
basic schemes share common data. In [5], in order to improve the efficiency, the general scheme
combines basic schemes which share some common data. Our technique is thus not suitable to
make the scheme in [5] resistant against stateful pirate decoders.

5.3 General Scheme

Let C = {ω1, . . . , ωN} be a q-ary c-IPP code that allows collusion of up to c users. The N -user
general scheme is a combination of ` basic schemes PSTBasic S1, S2, . . . , S` and a basic scheme
StatefulBasic, each basic scheme supports q users:

Setup: Given security parameters λ and c, the algorithm works as follows:

– For each j = 1, . . . , `, call the algorithm PSTBasic.Gen(1λ, q) to generate an encryption
key pkj and q decryption keys skj,1, . . . , skj,q for the q-user system Sj .

– For each j = 1, . . . , `, call the algorithm StatefulBasic.Gen(1λ, q) to generate an encryp-
tion key pkj and q decryption keys skj,1, . . . , skj,q for the q-user system Sj .

– Public key pk is defined by the tuple (pki)i=1,...,`, (pki)i=1,...,` and the code C.
– Private key Ki of each user i (for i = 1, . . . , N) contains a codeword wi ∈ C, ski, the

`-tuple key sk1,wi,1 , sk2,wi,2 , . . . , sk`,wi,`
and the `-tuple key sk1,wi,1 , sk2,wi,2 , . . . , sk`,wi,`

,
where wi,j ∈ Q = {1, 2, . . . , q} is the symbol at the jth position of the codeword wi.

Ki
.= (wi, sk1,wi,1 , sk2,wi,2 , . . . , sk`,wi,`

, sk1,wi,1 , sk2,wi,2 , . . . , sk`,wi,`
)

Encrypt(pk,m): The plaintext space of the `-key system is M`. On input m = (m1,m2, . . . ,m`),
the encryption algorithm works as follows:
– an index k is randomly chosen k

R← i = 1, . . . , `.
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– the kth component ck is encrypted by StatefulBasic Sk:

ck = StatefulBasic.Encpkk
(mk) = (σk,1, . . . , σk,q, τk,1, . . . , τk,q)

– for j = 1, . . . , `, j 6= k, the jth component ck is encrypted by PSTBasic Sj :

cj = PSTBasic.Encpkj
(mj) = (σj,1, . . . , σj,q, τj)

– the ciphertext c
.= (k, c1, c2, . . . , c`)

Decrypt(j,Kj , c, pk): On the ciphertext (k, c1, c2, . . . , c`), user i uses his secret key to compute:

mk = StatefulBasic.Decskk,wi,k
(ck)

mj = PSTBasicskj,wi,j
(cj), for j = 1, . . . , `, j 6= k

Trace(D, pk): Let E = {1, . . . `}. Repeat the following steps until E = ∅.

– randomly choose an index k
R← i = 1, . . . , `, E = E\{k}

– choose a message m = (m1,m2, . . . ,m`)
– create components: cj = PSTBasic.Encpkj

(mj), for j = 1, . . . , `, j 6= k

– create component ck = StatefulBasic.Encpkk
(mk)

– define c = (k, c1, c2, . . . , c`) and give c to the pirate decoder D
– on feedback m′ = (m′

1,m
′
2, . . . ,m

′
`), extract the component m′

k and use the same argu-
ment used in the tracing algorithm of StatefulBasic scheme to get wk.

– from the descendant codeword w = (w1|| . . . ||w`) ∈ Q`, identify one of its parent code-
words. The user associated with this codeword is a traitor.

Traceability. We first consider the traceability of the above system.

Proposition 7. Suppose that D is a stateful pirate decoder, the above tracing algorithm can
correctly trace back a traitor.

Proof. We remark that, in the above tracing algorithm, query ciphertexts are identical to valid
ciphertexts. Therefore, a pirate decoder cannot detect whether it is being traced. Consequently,
a stateful pirate decoder always decrypts correctly as it would do. In this case, a stateful pirate
decoder is not more powerful than a stateless one.

Using the same arguments from Theorem 5, the tracing procedure can reveals each wk as
the tracing procedure in StatefulBasic can correctly reveal a traitor. Therefore, the tracing can
correctly associate a descendent codeword w = (w1|| . . . ||w`) of the set of codewords correspond-
ing to the users in the collusion. By the property of IPP codes, the tracing algorithm can thus
identify at least one traitor.

Security of Encryption. We now consider the security of the encryption. For this, one could use
the following assumption, used in [8, 5, 10]:

Assumption 8 (threshold assumption) A pirate-decoder that only returns correctly a frac-
tion p of a plaintext of length λ where 1− p is a non-negligible function in λ, is useless.

We emphasis that, as already mentioned in [8], by employing an all-or-nothing transform [11,
4], this assumption is not necessary.

Proposition 9. In the general scheme, a collusion of users in the (` − 1) basic schemes does
not affect the security of the remaining basic scheme.
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Proof. The proof follows the one in [5]. Assume there is an adversary A that, having information
I of the targeted system, called Basic1, and also all the information for ` remained systems,
called Basic2, . . . , Basicn can get an advantage ε for breaking the system Basic1 (for some goal
G). We can then construct an algorithm B that, having only the information I of the system
Basic1, can break the system Basic1 (for the goal G) with advantage ε. Indeed, the algorithm
B can perfectly simulate all the information about Basic2, . . . , Basicn systems by generating
itself all parameters for Basic2, . . . , Basicn. Because the Basic1, . . . , Basicn systems are totally
independent that they do not have any common information, this simulation of B is perfect. ut

This proposition shows that the security of the general scheme is at least the same as the
security of each basic scheme. Therefore, the encryption in the above general system is secure.

Efficiency: The ciphertext contains two parts: ciphertext body (τ1, . . . , τ`) and ciphertext header
(σj,1, . . . , σj,q)j=1,...,`. Between ` sub-ciphertext bodies (τ1, . . . , τ`), ` − 1 sub-ciphertext bodies
correspond to the basic schemes PSTBasic and only one sub-ciphertext bodie corresponds to
the basic scheme StatefulBasic. As in PSTBasic scheme, the ciphertext body approximately has
the same size as the plaintext, and as ` is large, the ciphertext body in our general scheme
approximately has the same size as the original message. Concerning the ciphertext header, as
we use the hybrid framework, each σj,k is significantly smaller than τj . Therefore, the header’s
size is small compared to the message size and the ciphertext rate is almost optimal (rate =1).
Without the hybrid argument, the header rate is also small (this rate = q = 3) and therefore,
the ciphertext rate still remains constant.

6 Conclusion

We proposed the first constant ciphertext rate traitor tracing for stateful pirate decoders. Our
scheme moreover supports black-box public traceability. However, due to the use of IPP codes,
our scheme does not support full collusion as schemes for stateless pirate decoders in [1, 3]. We
raise thus the open question of constructing a fully collusion resistant scheme for stateful pirate
decoders with constant ciphertext rate.
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