
This is the full version of the extended abstract which appears in
Advances in Cryptology – Proceedings of Eurocrypt ’05 (22 – 26 may 2005, Aarhus, Denmark)
R. Cramer Ed. Springer-Verlag, LNCS ????, pages ???–???.

Public Traceability in Traitor Tracing Schemes

Hervé Chabanne1, Duong Hieu Phan2, and David Pointcheval2

1 SAGEM, Eragny, France
2 CNRS/ENS, Computer Science Department, Paris, France

http://www.di.ens.fr/users/{phan,pointche}

Abstract. Traitor tracing schemes are of major importance for secure distribution of digital con-
tent. They indeed aim at protecting content providers from colluding users to build pirate decoders.
If such a collusion happens, at least one member of the latter collusion will be detected. Several
solutions have already been proposed in the literature, but the most important problem to solve
remains having a very good ciphertext/plaintext rate. At Eurocrypt ’02, Kiayias and Yung proposed
the first scheme with such a constant rate, but still not optimal. In this paper, granted bilinear maps,
we manage to improve it, and get an “almost” optimal scheme, since this rate is asymptotically 1.
Furthermore, we introduce a new feature, the “public traceability”, which means that the center
can delegate the tracing capability to any “untrusted” person.
This is not the first use of bilinear maps for traitor tracing applications, but among the previous
proposals, only one has remained unbroken: we present an attack by producing an anonymous pirate
decoder. We furthermore explain the flaw in their security analysis. For our scheme, we provide a
complete proof, based on new computational assumptions, related to the bilinear Diffie-Hellman
ones, in the standard model.

1 Introduction

The secure distribution of digital content to a set of subscribers is an important application
of global networking (e.g. pay-per-view television.) There are two main types of schemes in the
literature to deal with this topic: broadcast encryption schemes, which enable a center to prevent
a set of users from recovering the broadcasted information; and traitor tracing schemes, which
enable the center to trace users who collude to produce pirate decoders. Both types of schemes
can be trivially combined by XOR’ing the results as shown in [6, 7]. There are also several works
considering efficient combinations of the two attributes of broadcast capability and traceability [8,
9, 18, 16]. This paper focuses on the traceability property. As mentioned in the seminal paper on
traitor tracing of Chor et .al [6, 7], a c-traitor tracing scheme should guarantee that:

1. either the cleartext information itself is continuously transmitted to the enemy by a traitor;
2. or any captured pirate decoder will correctly identify a traitor and will protect the innocent

even if up to c traitors collude.

There is indeed no technical way to prevent a pirate from decoding and forwarding the stream
to a user. But this would be rather expensive and commercially unattractive. Therefore, traitor
tracing schemes deal with the traceability of pirate decoders only.

1.1 Transmission Rates

A direct solution to the traitor tracing problem is to give to each subscriber an individual key
and encrypt the data separately under each key. But this is extremely inefficient because this
means that the total size of the broadcast ciphertext is at least n times the size of the plaintext,
where n is the number of authorized users: the ciphertext/plaintext rate is thus greater than
n. The transmission rate [13] has a quite important practical impact. It actually collects three
parameters: ciphertext rate, encryption-key rate and user-key rate, which are respectively the
ratio of the size of ciphertext, encryption-key and user-key over the size of the plaintext (in an
asymptotic way.) We thus have two main categories for traitor tracing schemes:

c© IACR 2005.



1. Schemes with constant transmission rate [13]. They are well-suited to encrypt large mes-
sages. Another interesting advantage of these schemes is the efficient black-box traceability.
This means that the tracing procedure does not have to open the pirate decoder, but just
to interact with it. On the other hand, the constant transmission rate is asymptotically
achieved, and thus for large plaintexts only (this is due to the use of collision-secure codes.)

2. Schemes with no constant transmission rate [4, 2, 14]. The main advantage of these schemes
is about their relatively small size of admissible plaintexts. However, the transmission rate
is often linear w.r.t the maximal number of colluders. Furthermore, in these schemes, there
is no efficient black-box traitor tracing. It is possible to do black-box traitor tracing [2], but
it is shown that the algorithm is non-realistic because of the complexity which is larger than
the binomial of n and c, where n is the number of users and c is the maximal number of
colluders.

According to the context, one may use a scheme from the first category or a scheme from the
second one: if one wants to distribute large messages, the first category is much more suitable,
however if one simply wants to exchange a session key, which size is relatively small, the second
category may be better from efficiency point of view, but the actual security can be discussed
because of the inefficient black-box tracing procedure. In this paper, we further improve the
transmission rate of the unique above constant transmission rate scheme [13].

1.2 Traceability

In all known traitor tracing schemes, only the center, owning some crucial private information,
can execute the tracing procedure: delegation is not possible, unless the center discloses pri-
vate information allowing to trace, but also to create new anonymous decoders, which is not
reasonable.

However, such a delegation could be a quite interesting feature: if the center is the only server
able to run the tracing procedure, a bottleneck may appear because of a possibly large number
of pirate decoders.

This paper thus introduces a new property, called public traceability : the tracing procedure
can be publicly done, by simply providing the tracing information, which just helps to trace,
but nothing else.

1.3 Bilinear Maps

Let us now turn to the tool recently introduced in cryptographic protocols by Joux [12]: the use
of some specific bilinear maps, such as the modified Weil pairing or the Tate pairing. They have
already been widely used to achieve new features, such as identity-based cryptosystems [3], or
to improve the efficiency of some schemes [1]. However, such particular properties could be used
by adversaries too, in order to break underlying schemes such as the attacks from [19] on the
traitor tracing scheme proposed in [15].

In this paper, we show these two sides of the use of bilinear maps. On the one hand, we
show how the pairings can be used for improving a traitor tracing scheme, in two directions. It
indeed helps to get a more efficient scheme as well as the new feature of public traceability. On
the other hand, we show that the adversaries can also take advantage of them in some schemes:
we present an attack against the only unbroken traitor tracing scheme based on pairings [19].

1.4 Contribution

At Eurocrypt ’02, Kiayias and Yung [13] proposed a new traitor tracing scheme (named KY in
the following) with constant transmission rates: the ciphertext rate is 3, the encryption-key rate
is 4 and the user-key rate is 2.

2



In this paper we propose a scheme which further improves them: the ciphertext rate is
reduced to 1 (asymptotically), which is optimal; the encryption-key rate is reduced to 1; and
the user-key rate is kept unchanged. As already noticed, these transmission rates are considered
in the multi-user setting, when the number of users is large, and when the size of the plaintext
is large too. Above improvements are achieved, while still keeping the two extremely desirable
properties, as in the KY scheme:

– public-key traitor tracing, where any third party is able to send secure messages to the set
of subscribers;

– efficient black-box traitor tracing in which the tracing procedure can be accomplished with-
out opening the pirate decoder.

We furthermore introduce a new quite interesting functionality: the public traceability. In
all previous traitor tracing schemes, only the center, owning some crucial private information,
could execute the tracing procedure. In our scheme, the center can publish some information in
such a way that every one can do the tracing procedure, at least the interactive part with the
pirate decoder.

As already said, pairings are of great help to achieve this goal. But care is required. To
the best of our knowledge, only one such a scheme based on pairings has remained unbroken:
the scheme proposed by To, Safavi-Naini and Zhang [19] (named TSZ in the following). In this
paper we show an attack on the TSZ scheme: we exhibit a way to produce an anonymous pirate
decoder, while they provided a security proof. We thereafter explain where is the flaw in their
tracing algorithm.

2 TSZ: the To, Safavi-Naini and Zhang’s Scheme

Mitsunari, Sakai and Kasahara [15] proposed the first traitor tracing scheme using the bilinear
maps. One year later, To, Safavi-Naini and Zhang [19] presented an attack and tried to repair
it. Unfortunately, this modification is not correct either. Let us first review it, then we present
an attack. This scheme and the attack will help to understand later our new construction which
is a combination of the TSZ scheme and the KY scheme, taking advantage of the best of each.

2.1 Description of the Scheme

The TSZ scheme uses a bilinear map ê : G1 × G1 → G2, where G1,G2 are groups of prime order
q (see section 3 for a brief review.)

Initialization: two arbitrary random generators P,Q ∈ G1 and a unitary polynomial with
coefficients in Zq of degree 2k − 1:

f(x) = a0 + a1x + . . . + a2k−2x
2k−2 + x2k−1.

Let Q0 = a0Q, Q1 = a1Q, . . . , Q2k−2 = a2k−2Q and g = ê(P,Q) ∈ G2.

Private key of the center: the generator P , and the polynomial f .

Encryption key: the tuple (g,Q,Q0, Q1, . . . , Q2k−2).

User key (for user u): Ku = f(u)−1P .

Encryption Algorithm: one generates a random r ∈ Zq, then the session key s ∈ G2 is
encrypted into: c = (sgr, rQ, rQ0, . . . , rQ2k−2).

Decryption Algorithm: user u first computes gr, granted Ku, and then recovers s. Indeed,
gr = ê(Ku, rQ0)× . . .× ê(u2k−2Ku, rQ2k−2)× ê(u2k−1Ku, rQ).

3



2.2 Attack

In [19], authors showed that nobody can build an anonymous decoder, even a collusion of
registered users. Here, we explain how a unique user can build such an anonymous decoder: user
u chooses random elements z0, z1, . . . , z2k−2 in Zq and produces the following decoder:

– Xi = uiKu + ziQ, for i from 0 to 2k − 2.
– X2k−1 is determined by the relation:

X2k−1 = u2k−1Ku − (z0Q0 + z1Q1 + . . . + z2k−2Q2k−2). (1)

User u can then publish X0, X1, . . . , X2k−1, which provides everyone with the ability of recovering
gr = ê(X0, rQ0)× . . . × ê(X2k−2, rQ2k−2)× ê(X2k−1, rQ).

2.3 Flaw in the Security Analysis

While authors provided a tracing procedure, we now show that our above decoder, which only
uses X0, . . . , X2k−2, X2k−1, cannot trace back user u. First, X0, . . . , X2k−2, X2k−1 satisfy the
following relation:

2k−1
∑

0

aiXi =

(

2k−2
∑

0

aiu
i

)

Ku +

(

2k−2
∑

0

aizi

)

Q + u2k−1Ku −

(

2k−2
∑

0

ziai

)

Q

= f(u)Ku = P. (2)

Remark also that for each user, and all i (i = 0, . . . , 2k−2), the application, from Zq to G1, which
maps zi to Xi, is a bijection. Therefore, instead of choosing z0, z1, . . . , z2k−2, one can randomly
choose X0, . . . , X2k−2 in G1, which uniquely defines the tuple (z0, z1, . . . , z2k−2). Thereafter,
X2k−1 is also uniquely determined by the relation (1). It also satisfies the relation (2). Hence,
one can formally define it from the latter relation: it thus clearly does not depend on u.

As a consequence, one easily sees that all the users would produce the same set of pirate
decoders, with parameters (X0, X1, . . . , X2k−2, X2k−1), so that X0, X1, . . . , X2k−2 are randomly
chosen in G2k−1

1 , while X2k−1 is defined according to the relation (2).
Note that this attack is quite different from the one in [19]. Our pirate decoder indeed

combines informations of the user-key, together with the public information of the system. The
latter part points out the flaw in the tracing algorithm from [19], which works as follows: for a
suspect set of users A = {u1, . . . , ut} (whose size is up to k), they construct another polynomial
f ′(x) = f(x)+α×(x−u1)×. . .×(x−ut). For any user in the set A, his key in the scheme using f
(named Scheme(f)) and the one in the scheme using f ′ (named Scheme(f ′)) are identical. For this
reason, they claimed that if the colluders are in the set A, then any pirate decoder produced by
them in Scheme(f) is also a pirate decoder in Scheme(f ′). Accordingly, this decoder will decrypt
a ciphertext in Scheme(f ′) as it would be in Scheme(f). Therefore, by sending a decryption
query to the decoder, the center can easily detect whether the set of colluders is included in A
or not.

Unfortunately, their argument is not correct. If the construction of the pirate decoder depends
only on the user-keys of the colluders, their tracing algorithm works well. But if the construction
depends on the public information too (which are of course available to the colluders), the tracing
procedure fails, as shown above.

3 Bilinear Maps and Computational Assumptions

3.1 Bilinear Maps

Let G1 and G2 be two groups of order q, for some large prime q. We use in our system a bilinear
map ê : G1 × G1 → G2, which must satisfy the following properties:

4



Bilinear: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Zq;
Non-degenerated: The map does not send all pairs in G1 × G1 to the unit in G2;
Computable: There is an efficient algorithm to compute ê(P,Q) for any elements P,Q ∈ G1.

A bilinear map satisfying the three above properties is said to be an admissible bilinear map.
Throughout the paper we view G1 as an additive group and G2 as a multiplicative group. Remark
that since G1,G2 are groups of prime order and ê is non-degenerated, if P is a generator of G1

then ê(P, P ) is a generator of G2.

Example: The modified Weil pairing or the Tate pairing can be used to construct an admissible
bilinear map that satisfies the three above properties.

3.2 Computational Assumptions

In this section, we review some well-known problems such as the computational bilinear Diffie-
Hellman problems. We also propose new problems, we believe to be hard to solve. Relations
claimed in propositions are provided in the appendix. They will be used in the next sections, in
the security analysis of our scheme.

Classical Assumptions and Variants. We first review the most classical problems in G1.

CDH – the computational Diffie-Hellman problem in G1:
Given (P, aP, bP ) for some a, b ∈ Z

?
q, output abP .

CBDH1 – the computational bilinear Diffie-Hellman problem in G1:
Given (P, aP, bP, cP ) for some a, b, c ∈ Z

?
q, output abcP .

DBDH1 – the decisional bilinear Diffie-Hellman problem in G1:
Given (P, aP, bP, cP, U) for some a, b, c ∈ Z

?
q and U ∈ G1, output yes if U = abcP and no

otherwise.

We now introduce modified versions of the two above Bilinear Diffie-Hellman problems. They
are actually particular cases, where b = c. We then provide some relations between them and
the usual CDH problem.

CBDH1
-M – the modified computational bilinear Diffie-Hellman problem in G1:

Given (P, aP, bP ) for some a, b ∈ Z
?
q, output ab2P .

DBDH1
-M – the modified decisional bilinear Diffie-Hellman problem in G1:

Given(P, aP, bP, U) for some a, b ∈ Z
?
q and U ∈ G1, output yes if U = ab2P and no otherwise.

Proposition 1. The CBDH1
-M problem is at least as hard as the CBDH1 problem, which is at

least as hard as the usual CDH problem:

(SuccCBDH1
-M

G1
(t))2 ≤ SuccCBDH1

G1
(t) ≤ SuccCDH

G1
(t).

Pairing-Based Problems. We now review the bilinear Diffie-Hellman problems, all in G1 and
G2, with the admissible map ê (we thus omit them in the notation.)

CBDH2 – the computational bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP ) for some a, b, c ∈ Z

?
q, output gabc, where g = ê(P, P ).

DBDH2 – the decisional bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP, Z) for some a, b, c ∈ Z

?
q and U ∈ G2, output yes if Z = gabc and no

otherwise, where g = ê(P, P ).
CBDH2

-E – the extended computational bilinear Diffie-Hellman problem:
Given (P, aP, bP, cP, ab2P ) for some a, b, c ∈ Z

?
q, output gcb2 , where g = ê(P, P ).

5



DBDH2
-E – the extended decisional bilinear Diffie-Hellman problem:

Given (P, aP, bP, cP, ab2P,Z) for some a, b, c ∈ Z
?
q and U ∈ G2, output yes if Z = gcb2 and

no otherwise, where g = ê(P, P ).

We furthermore introduce a slight variant of the CBDH2, in order to get more confidence in the
above CBDH2-E problem:

CBDH2
-V – a variation of the computational bilinear Diffie-Hellman problem:

Given (P, aP, bP, cP, a(a2 − b2)P, b(a2 − b2)P ) for some a, b, c ∈ Z
?
q, output gabc, where

g = ê(P, P ).

Proposition 2. The CBDH2
-E problem is at least as hard as the CBDH2

-V problem:

(SuccCBDH2
-E

ê,G1,G2
(t))2 ≤ SuccCBDH2

-V
ê,G1,G2

(t).

Mixed Problems. Let us now introduce new problems which involve elements from G1 and
G2, still with the admissible map ê (we thus omit them in the notation.)

MCDH – the mixed computational Diffie-Hellman problem:
Given (P, aP, a2P, gb) for some a, b ∈ Z

?
q, where g = ê(P, P ), output gba2

.

MDDH – the mixed decisional Diffie-Hellman problem:
Given (P, aP, a2P, gb, Z) for some a, b ∈ Z

?
q and Z ∈ G2, where g = ê(P, P ), output yes if

Z = gba2
and no otherwise.

4 The Basic Building Block: The Two-User Case

4.1 The Assumptions for our Scheme

We have introduced several new problems, which will simplify the security analysis of our pro-
posal. Let us sum up which assumptions will be really needed, according to the security level.

Traitor Tracing. Let us first consider the semantic security of the encryption scheme. In
the random-oracle model, the security will hold under the MCDH assumption. In the standard
model, the security relies on the stronger MDDH assumption. We believe these are reasonable
assumptions.

About the traitor-tracing functionality, the non-incrimination relies on the CDH assumption,
while the traceability of colluders is guaranteed under the DBDH1-M assumption.

As a consequence, our scheme will achieve the classical security notions of traitor-tracing
under the MDDH and DBDH1-M assumptions.

Public Traceability. Our scheme will provide the new and interesting property of public
traceability. It however requires stronger assumptions, since more information is available to the
adversary (since the tracing capability can be provided to a bad guy.)

About the semantic security of the encryption scheme encryption, in the random-oracle
model, the CBDH2-E assumption is required. The latter is in fact a quite minor extension of the
classical CBDH2 assumption (see proposition 2.) In the standard model, the security relies on
the DBDH2-E assumption. Again, we believe this is a reasonable assumption.

Considering the properties of traitor-tracing, the non-incrimination is captured by the tracing
of colluders, which is again proven under the DBDH1-M assumption.

6



Conclusion. Finally, our scheme, with public traceability, will essentially require the three new
assumptions MDDH for the security of encryption, DBDH1-M for the traitor-tracing property,
and the DBDH2-E for the public traceability.

4.2 Kiayias-Yung’s Scheme

Our construction of 2-user traitor tracing scheme is based on the Kiayias and Yung’s scheme [13],
which can be seen as a special case of the Boneh and Franklin’s scheme [2]. Let us thus first
review the KY scheme.

Setup: Given a security parameter κ ∈ Z, the algorithm works as follows:
Step 1: Generate a κ-bit prime q and a group G of order q. Choose an arbitrary generator

g ∈ G.
Step 2: Pick random elements a, z ∈ Z

?
q, and set Q = ga, Z = gz .

Private key of the center: the pair (a, z).
Encryption key: the tuple pk = (g,Q,Z).
User key: user ub (for b ∈ {0, 1}, since we focus on the two-user case) is associated to a

“representation” kb = (αb, βb) of gz with respect to the basis (g, ga), i.e, the authority selects
two vectors (α0, β0) and (α1, β1) in Z

2
q so that αb + aβb = z mod q for both b ∈ {0, 1}. The

two vectors are chosen so that they are linearly independent. The set of all possible keys is

Kpk = {(α, β)|α + aβ = z mod q}.

Encryption Algorithm: The encryption algorithm generates a random k ∈ Zq and outputs
a ciphertext (c1, c2, d) into G3: on a plaintext m, assumed to be in the group G, the center
computes C = (c1 = gk, c2 = Qk, d = m×Zk). We say that a triple (c1, c2, d) ∈ G3 is a valid
ciphertext if there exits k ∈ Zq such that c1 = gk and c2 = Qk. Otherwise, the ciphertext is
invalid.

Decryption Algorithm: On a ciphertext (c1, c2, d), user ub computes:

Zk = cα
1 × cβ

2 and m = d/Zk.

4.3 Our Construction

We now show how we can use bilinear maps in order to improve this scheme. More precisely,
we introduce the notion of public-key traitor tracing with proxy quantity. Contrarily to usual
public-key traitor tracing schemes, the authority generates for each user a key along with a
corresponding proxy quantity. The authority keeps in his hands the user’s key and gives only to
the user the proxy quantity which is enough for decryption. The user’s key will be later used for
tracing.

Setup: Given a security parameter κ ∈ Z, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible

bilinear map ê : G1×G1 → G2. Choose an arbitrary generator P ∈ G1 and set g = ê(P, P )
which is a generator of group G2.

Step 2: Pick random elements a, z ∈ Z
?
q, and set Q = aP , Z = gz .

Step 3: Choose a function H : G1 → M. The security analysis will view H as either a
random oracle or a function in a universal hash function family (using the leftover-
hash-lemma [10, 11]).

The message space is M = {0, 1}κ. The ciphertext space is G?
1 × G

?
1 × {0, 1}

κ. The system
parameters are params = (q,G1,G2, ê, P,H).

Private key of the center: the pair (a, z).

7



Encryption key: the tuple pk = (g,Q,Z).
User key: user ub (for b ∈ {0, 1}) is associated to a “representation” kb = (αb, βb) of gz with

respect to the base (g, ga). The set of all possible keys is

Kpk = {(α, β)|α + aβ = z mod q}.

Remark that the authority generates these keys for each user but does not give them to the
users. Each user is just given a proxy quantity, as described below.

Proxy Quantity: user ub (for b ∈ {0, 1}) receives a proxy quantity Π(kb) = (αb, πb = βbP ).
The set of all possible proxy quantities is

Πpk = {(α, π = βP )|(α, β) ∈ Kpk}.

Encryption Algorithm: The encryption algorithm generates a random k ∈ Zq and outputs
a ciphertext (c1, c2, d) into G1 × G1 × M: on a plaintext m ∈ M, the center computes
C = (c1 = kP, c2 = k2Q, d = m⊕H(Zk2

)). We say that (c1, c2, d) ∈ G1 × G1 ×M is a valid
ciphertext if there exits k ∈ Zq such that c1 = kP and c2 = k2Q. Otherwise, the ciphertext
is invalid.

Decryption Algorithm: On a ciphertext (c1, c2, d), user ub computes, granted his proxy quan-
tity Π(kb) = (αb, πb),

Zk2
= ê(αbc1, c1) · ê(πb, c2) and m = d⊕H(Zk2

).

4.4 Rationale

First, one can wonder why we do not encrypt the message by c1 = kP , c2 = kQ and d =
m⊕H(Zk), while each user would receive the key kb = (αb, βb) (so that αb + aβb = z mod q).
Such scheme would thus be a simple and natural variation of the KY scheme using bilinear maps.
However, as in our above attack against the TSZ scheme, the adversary could take advantage
of the bilinear property to combine the secret key and the public information. Actually, any
adversary, although it could not produce a new key, could produce and distribute an anonymous
decoder (X = αP − uQ, Y = βP + uP ), in which u could be randomly chosen in Zq. Then,
everyone could recover Zk = ê(X, c1) · ê(Y, c2). Because of the random choice of u, the authority
cannot trace back the traitor.

In our scheme, we prove that such an adversary cannot exist: users do not have keys of the
form (α, β), but proxy quantities only, of the form (α, βP ). As a consequence, even if two users
collude to produce another key (by a linear combination of their keys), they cannot learn the
secret key (a, z). We will see that this is crucial to improve the result in the multi-user case.

4.5 Security of the Encryption Scheme

Before considering security properties specific to the traitor tracing functionality, let us first
study the encryption scheme. Actually, if we consider the function H as a random oracle, the
semantic security of the encryption can be proved under the MCDH problem. If we consider that
the function H is randomly chosen in a universal hash function family [10, 11], the semantic
security of the encryption is proved under the MDDH problem. The proofs of the following
theorems can be found in the appendix.

Theorem 3. Let H be seen as a random oracle. The above scheme is semantically secure under
the MCDH problem.

Theorem 4. Let H be a function randomly chosen in a universal hash function family. The
above scheme is semantically secure under the MDDH problem.

8



4.6 Non-Incrimination

The main goal of a traitor tracing scheme is to be able to trace a pirate. But a pirate could try
to incriminate another user. E.g., using his private information, a pirate could try to produce
another proxy quantity and distribute it. We show that this scenario cannot happen. The proof
can be found in the appendix.

Theorem 5. Given the encryption key and a proxy quantity (α, π) ∈ Πpk, it is computationally
infeasible to construct another proxy quantity in Πpk under the CDH problem.

4.7 Black-Box Traitor Tracing

For practical reasons, it is important not to have to open the pirate decoder in order to trace
back the pirate. We thus show that our scheme is black-box traitor tracing against a collusion of
the 2 users under the DBDH1-M problem, by constructing a tracing algorithm. For this security
result, we assume that the hash function H is a function randomly chosen in a universal hash
function family. The proof can be found in the appendix.

Theorem 6. Let us assume that, given the encryption key pk and a proxy quantity (α, π =
βP ) ∈ Πpk, the adversary A produces a decryption simulator S that decrypts valid ciphertexts,

but when given a “randomized” ciphertext of the form (kP, ak ′2P, d) with k, k′ R
← Zq, d

R
←M, it

outputs a value different from d⊕H(gαk2+aβk′2
) with probability ε. Then the DBDH1

-M problem
can be solved with an advantage ε/2.

Intuitively, the above theorem shows that a “randomized” and thus invalid ciphertext cannot
be distinguished from a regular and valid ciphertext. Therefore, given a black-box access to
a decryption simulator S constructed by one of two users, one can always decide which one

of them has built it: one randomly chooses k, k ′ R
← Z

?
q (we suppose that k 6= k′), and sets

u0 = α0k
2 + aβ0k

′2 and u1 = α1k
2 + aβ1k

′2. With high probability (greater than 1 − 2/q), u0

is different from u1, which is thus assumed in the following. One then submits the randomized
invalid ciphertext (kP, ak′2P, d). If the output of S is d/gu0 then one claims that u0 is the traitor.
If the output is d/gu1 , then u1 is blamed. If the output is none of these two values, one concludes
that the two users colluded. Hence the following corollary.

Corollary 7. The above scheme is black-box traitor tracing against active adversaries.

4.8 Public Traceability

Let us now turn to the additional and quite interesting property: in order to execute the black-
box traitor tracing procedure, the two user-keys (α0, β0) and (α1, β1) are used. However, the
proxy quantities would be enough, and even less: (α0P, β0P ) and (α1P, β1P ) are sufficient.

From k, k′ R
← Z

?
q, one does not really need u0, u1, but just gu0 and gu1 :

gu0 = ê(α0P, k2P )× ê(Q, k′2(β0P ));

gu1 = ê(α1P, k2P )× ê(Q, k′2(β1P )).

This is a quite new and interesting property: one can split the roles of the center. Moreover,
the tracing capability can be delegated to several servers in order to speed up the tracing. This
delegation does not require any trust in these servers, since the given information does not
leak the private key (a, z), nor even any information to build a decoder (under an additional
computational assumption). Furthermore, one can thereafter check whether the incriminated
people are the pirates or not.

We now formally state the above security properties in the following theorems whose proofs
can be found in the appendix.

9



Theorem 8. Let us assume that the tracing information is public, then the encryption scheme is
semantically secure: in the random-oracle model, the security relies on the CBDH2

-E assumption,
while the standard model requires the DBDH2

-E assumption.

Theorem 9. Let us assume that A is an algorithm which, given the encryption key pk, one
proxy quantity (α, π = βP ) (among the two (α0, π0 = β0P ) and (α1, π1 = β1P ) provided by
the center), and the public tracing information (α0P, β0P, α1P, β1P ), can produce a decryption
simulator S that decrypts valid ciphertexts, but when given a “randomized” ciphertext of the form

(kP, ak′2P, d) with k, k′ R
← Zq, d

R
←M, S outputs a value different than d⊕H(gα0k2+aβ0k′2

) with
probability ε. Then the DBDH1

-M problem can be solved with advantage ε/2.

5 The Multi-User Case

5.1 Description

Let C = {ω1, . . . , ωN} be an (N, c, `, ε)-collusion-secure code over the alphabet {0, 1} with `-
long codewords, that allows collusions of up to c users and has a tracing algorithm that succeeds
with probability 1− ε (see [4] for more details). The multi-user case (`-key system) is simply `-
instantiations of the 2-user public-key 1-traitor tracing scheme with proxy quantities. We indeed
build such an `-key system using an (N, c, `, ε)-collusion-secure code C as a combination of `
2-user systems S1, S2, . . . , S`:

Setup: Given the security parameters k, c and ε:
Step 1: Generate a k-bit prime q, two groups G1, G2 of order q, and an admissible bilinear

map ê : G1 × G1 → G2. Choose an arbitrary generator P ∈ G1.
Step 2: Generate an (N, c, `, ε)-collusion-secure code C = {ω1, .., ωN}.
Step 3: Pick random elements a, zj ∈ Z

?
q, and set Q = aP , Zj = gzj , for j = 1, . . . , `.

Step 4: Choose a function H : G1 →M.
The system parameters are params = (q,G1,G2, ê, P,H). These parameters are common for
all 2-user systems S1, S2, . . . , S`.

Private key of the center: the element a, and the tuple (zj)j=1,...,`.
Encryption key: this is the combination of the encryption keys from the ` 2-user schemes:

pk = (g,Q, {Zj = gzj}j=1,...,`).
User key: user ui (for i ∈ ZN) is associated to a codeword ωi in C and the corresponding

“representation” (αωi,j ,j, βωi,j ,j) of gzj with respect to the basis (g, ga), where ωi,j is the j-th
bit of the codeword ωi. Recall that (αb,j , βb,j) is a “representation”of gzj with respect to the
base (g, ga). Again, this user key is not given to the user, but only the proxy quantity.

Proxy Quantity: user ui (for i ∈ ZN ) is given the proxy quantity Πi = (Πωi,1,1, . . . ,Πωi,l,`).
More precisely, for j = 1, . . . , `,

Πωi,j ,j = (αωi,j ,j, πωi,j ,j = βωi,j ,jP ).

Encryption algorithm: The plaintext space of the `-key system isM`. On input (m1, . . . ,m`),
the encryption algorithm uses a random k ∈ Zq and outputs the ciphertext (c1, c2, d1, . . . , d`)

into G1 × G1 × G
`
2, where: c1 = k × P , c2 = k2 × aP and dj = mj ⊕H(Zk2

j ).
Decryption Algorithm: On the ciphertext (c1, c2, d1, . . . , d`), user ui computes, granted his

proxy quantity, Zk2

j = ê(αωi,j ,jc1, c1)× ê(πωi,j ,j, c2) and then mj = dj ⊕H(Zk2

j ).

For the security analysis, one could use the following assumption, from [13]: the threshold
assumption says that a pirate-decoder that just returns correctly a fraction p of a plaintext of
length λ where 1− p is a non-negligible function in λ, is useless. However, as already mentioned
in [13], by employing an all-or-nothing transform [17, 5], this assumption is not necessary.

10



Proposition 10. The collusion of the users in the (` − 1) 2-user systems of ` 2-user systems
does not affect the security of the remained 2-user system.

This proposition which proof can be found in the appendix, combined with the fact that C is
an (N, c, `, ε)-collusion-secure code, leads to following corollary:

Corollary 11. The above scheme is a N -user, c-traitor tracing scheme.

About the public traceability, with the public information, anybody can recover the codeword as-
sociated to the pirate decoder, the interactive and thus costly phasis. However, classical collusion-
secure codes do not allow to publicly trace back to a guilty, but this is an off-line prodecure,
which still must be performed by a trusted authority.

5.2 Comparison with the Kiayias-Yung’s Scheme

In the KY scheme, the ciphertext rate is 3, while ours is asymptotically 1. One could wonder
why we could use the above construction, while they could not.

The reason is that in our 2-user scheme, even the collusion of the 2 users does not leak any
information about a. In the KY 2-user scheme, such a collusion immediately reveals a: in the
multi-user case, if one uses the same a for the ` 2-user schemes, the collusion of two users could
leak this value a and then all the values zi, which would easily lead to an anonymous pirate
decoder. As a consequence, they have to use distinct a’s in each 2-user scheme instance, while
in our scheme, a common a is possible.

6 Conclusion

We thus proposed a scheme which improves the Kiayias and Yung’s scheme in various ways:
first, the transmission rates are reduced near optimality; and we introduce the quite interesting
functionality of public traceability. The full feature of public traceability in the multi-user case,
which would lead to a guilty, is however an open problem.

Acknowledgement

The work described in this paper has been supported in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

References

1. D. Boneh and X. Boyen. Short signatures without random oracles. In Adv. in Cryptology – Proceedings of
Eurocrypt 2004, volume LNCS 3152, pages 56–73. Springer-Verlag, 2004.

2. D. Boneh and M. Franklin. An efficient public key traitor tracing scheme. In M.Wiener, editor, Adv. in
Cryptology – Proceedings of Crypto 1999, volume LNCS 1666, pages 338–353. Springer-Verlag, 1999.

3. D. Boneh and M. Franklin. Identity-based Encryption from the Weil Pairing. In J. Kilian, editor, Adv. in
Cryptology – Proceedings of Crypto ’01, LNCS 2139, pages 213–229. Springer-Verlag, Berlin, 2001.

4. D. Boneh and J. Shaw. Collusion secure fingerprinting for digital data. IEEE Transactions on Information
Theory, 44(5):1897–1905, 1998.

5. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-Resilient Functions and All-Or-
Nothing Transforms. In Eurocrypt ’00, LNCS 1807, pages 453–469. Springer-Verlag, Berlin, 2000.

6. B. Chor, A. Fiat and M. Naor. Tracing traitor. In Y. Desmedt, editor, Adv. in Cryptology – Proceedings of
Crypto 1994, volume LNCS 839, pages 257–270. Springer-Verlag, 1994.

7. B. Chor, A. Fiat, M. Naor and B. Pinkas. Tracing traitor. IEEE Transactions on Information Theory, 46(3):
893–910, 2000.

8. Y. Dodis and N. Fazio. Public key trace and revoke scheme secure against adaptive chosen ciphertext attack.
In Y.G.Desmedt, editor, Proceedings of PKC 2003, volume LNCS 2567, pages 100–115. Springer-Verlag, 2003.

11



9. E. Gagni, J. Staddon, and Y.L. Yin. Efficient methods for integrating traceability and broadcast encryption.
In M.Wiener, editor, Adv. in Cryptology – Proceedings of Crypto 1999, volume LNCS 1666, pages 372–387.
Springer-Verlag, 1999.

10. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom Generator from any One-Way Function.
SIAM Journal of Computing, 28(4):1364–1396, 1999.

11. I. Impagliazzo, L. Levin, and M. Luby. Pseudo-Random Generation from One-Way Functions. In Proc. of
the 21st STOC, pages 12–24. ACM Press, New York, 1989.

12. A. Joux. A One-Round Protocol for Tripartite Diffie-Hellman. In Algorithmic Number Theory Symposium
(ANTS IV), LNCS 1838, pages 385–394. Springer-Verlag, Berlin, 2000.

13. A. Kiayias and M. Yung. Traitor tracing with constant transmission rate. In L. Knudsen, editor, Adv. in
Cryptology – Proceedings of Eurocrypt 2002, volume LNCS 2332, pages 450–465. Springer-Verlag, 2002.

14. A. Kiayias and M. Yung. Breaking and repairing asymmetric public-key traitor tracing. In J. Feigenbaum, ed-
itor, ACM Workshop in Digital Rights Management – DRM 2002, volume LNCS 2696, pages 32–50. Springer,
2003.

15. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing scheme. IEICE Trans. Fundamentals,
E85-A(2), 2002.

16. M. Naor and B. Pinkas. Efficient Trace and Revoke Schemes. In Proc. of Financial Crypto ’2000, volume
LNCS 1692, pages 1–20. Springer-Verlag, 2000.

17. R. Rivest. All-or-Nothing Encryption and the Package Transform. In Proc. of the 4th FSE, LNCS 1267.
Springer-Verlag, Berlin, 1997.

18. V.D. To and R. Safavi-Naini. Linear code implies public-key traitor tracing with revocation. In H. Wang,
editor, Proceedings of ACISP 2003, volume LNCS 3108, pages 24–35. Springer-Verlag, 2003.

19. V.D. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear map. In Proceedings of
the 2003 ACM Workshop on Digital Rights Management, pages 67–76, 2003.

A Proofs of the Relations between the Diffie-Hellman Problems

A.1 Proof of the Proposition 1

We first prove the left inequation. Let us assume that A can solve the CBDH1-M problem with
probability ε. Then we can construct an algorithm B that solves the CBDH1 problem with
probability ε2. B is given as input a random CBDH1 instance (P,A = aP,B = bP,C = cP )).
Let us denote by D = abcP the solution that B finds by interacting with A as follows:

Step 1: B computes X1 = A− B = (a− b)P and sends αC, X1 to A for a random α. A then
outputs Y1 = αc(a− b)2P with probability ε.

Step 2: B computes X2 = A + B = (a + b)P and sends βC, X2 to A for a random β. A then
outputs Y2 = βc(a + b)2P with probability ε.

Step 3: The algorithm B outputs

D = (4−1 mod q)(β−1Y2 − α−1Y1)P = 4−1c
(

(a + b)2 − (a− b)2
)

P = 4−1c(4ab)P = abcP.

Since a and b are random and independent, a + b and a − b are random and independent too.
Hence, B succeeds with probability greater than ε2.

We now prove the right inequation. Let us assume that A can solve the CBDH1 problem
with probability ε, we can then construct an algorithm B that solves the CDH problem with
probability ε. B is given as input a random CDH instance (P,A = aP,B = bP )). Let D = abP
be the solution, which can be found by B as follows:

Step 1: B randomly chooses c ∈ Zq and sends (P,A,B,C = cP ) to A.A then outputs U = abcP
with probability ε.

Step 2: B outputs D = c−1U .

We see easily that B succeeds with probability larger than ε. ut

12



A.2 Proof of the Proposition 2

LetA be an adversary that solves the CBDH2-E problem with probability ε. We then construct an
algorithm B that solves the CBDH2-V problem with probability ε2. Algorithm B is given as input
a random CBDH2-V instance (P,A = aP,B = bP,C = cP, U = a(a2 − b2)P, V = b(a2 − b2)P ).
Let Z = gabc be the solution, that B finds as follows:

Step 1: B computes xP = A + B = (a + b)P , yP = A−B = (a− b)P and zP = cP , as well as
xy2P = U − V . B sends (xP, yP, zP, xy2P ) to A, which answers Z1 = gzy2

= gc(a−b)2 with
probability ε.

Step 2: B computes yx2P = U + V and sends (yP, xP, zP, yx2P ) to A, which answers Z2 =
gzx2

= gc(a+b)2 .
Step 3: B outputs Z = (Z2/Z1)

4−1 mod q.

To be sure of the independent probabilities, one could randomize the instances. ut

B Proofs for the Semantic Security

B.1 Proof of the Theorem 3

Let us assume that the scheme is not semantically secure against passive adversaries. Then there
is an IND-CPA adversary A that, given the public key, can break the scheme with the advantage
ε. We can then construct an algorithm B that solves the MCDH problem. Algorithm B is given as
input a random MCDH instance (P,A = kP,B = k2P,C = gz)). Let D = gzk2

be the solution,
that B finds as follows:

Setup: B randomly chooses a and sets the public key pk = (g,Q = aP,Z = C). It sends pk to
A.

H-query: B maintains a list H-List to answer the H−queries of the algorithm A.
Challenger: A outputs two messages m0,m1 on which it wishes to be challenged. B picks a

random element d ∈ M and gives (A, aB, d) as the challenge to A. We note that this is a
perfect simulation unless gzk2

has already been asked to the oracle H. By this simulation,
A has zero advantage, since d is independent of m0,m1.

Guess: Algorithm A outputs a guess b′ ∈ {0, 1}. At this point, algorithm B picks a random
tuple (X,h) in the H-List and outputs X.

We see easily that the algorithm B gives the correct answer D with probability at least ε/qH :
the only way for A to have some advantage against the semantic security is to have queried D
to H. ut

B.2 Proof of the Theorem 4

Let us assume that the scheme is not semantically secure against passive adversaries. Then
there is an IND-CPA adversary A that, given the public key, can break the scheme with the
advantage ε. We can then construct an algorithm B that breaks the MDDH problem. Algorithm
B is given as input a random MDDH instance (P,A = kP,B = k2P,C = gz, U)), from either
the distribution in which U is the MCDH solution, or the distribution in which U is a random
element in G2. The algorithm B runs as follows:

Setup: B randomly chooses a and sets the public key pk = (g,Q = aP,Z = C). It sends pk to
A.

Challenger: A outputs two messages m0,m1 on which it wishes to be challenged. B picks a
random element b ∈ {0, 1} and sends C = (A, aB, d = mb ⊕H(U)) as the challenge to A.

13



Guess: Algorithm A outputs a guess b′ ∈ {0, 1}. At this point, B returns 1 if b = b′ and 0
otherwise.

Observe that if U is the MCDH solution, then the ciphertext C is an encryption of mb. Otherwise,
since H is randomly chosen from a universal hash function family, C is the ciphertext of a random
message, hence b = b′ holds with probability 1/2. By a standard argument, the adversary B has
an advantage of ε/2 in deciding MDDH. ut

C Proof for the Non-Incrimination and Traitor-Tracing

C.1 Proof of the Theorem 5

Let us assume that, given a proxy quantity (α, π) ∈ Πpk, A can construct another proxy quantity.
We then construct an algorithm B that solves the inverse Diffie-Hellman problem, which is well-
know to be equivalent to the CDH problem. Algorithm B is given as input a random instance
(P,A = aP ) of the inverse Diffie-Hellman problem. Let B = a−1P be the solution, that B finds
as follows:

Setup: B randomly chooses α
R
← Z

?
q and π

R
← G1), and then computes Z = ê(P, αP )ê(A, π).

Finally, B sets the public key pk = (g,A, Z). It then sends pk to A as well as a proxy
quantity (α, π).

Attack: A outputs another proxy (α̃, π̃).

Break: B computes c = α̃− α and outputs B = (c−1 mod q)(π − π̃).

We see that, since (α̃, π̃) is a new proxy, for any ciphertext (c1, c2, d),

ê(αc1, c1)× ê(π, c2) = ê(α̃c1, c1)× ê(π̃, c2)

⇐⇒ ê(αkP, kP ) × ê(π, ak2P ) = ê(α̃kP, kP ) × ê(π̃, ak2P )

⇐⇒ ê(αP, P )× ê(π, aP ) = ê(α̃P, P )× ê(π̃, aP )

⇐⇒ ê((α̃ − α)P, P ) = ê(π − π̃, aP ).

From the fact that (α, π), (α̃, π̃) ∈ Πpk, we get that π and π̃ are in the group G1 generated by
P . Therefore, π − π̃ = bP for some b. We then have c = α̃− α = ab and thus:

B = (c−1 mod q)(π − π̃) = (ab)−1 × bP = a−1P.

ut

C.2 Proof of the Theorem 6

Note that this proof is quite similar, since a simpler case, as the proof of the Theorem 9. From
such an adversary A, we build an algorithm B that breaks the DBDH1-M problem: Algorithm B
is given as input the DBDH1-M parameters (G1,G2, ê) together with a random instance (P,A =

aP,B = kP,X) (for a, k
R
← Z

?
q, X

R
← G1). Algorithm B decides whether X = ak2P by interacting

with A

Setup: B randomly chooses α
R
← Z

?
q and π

R
← G1. B sets Q = A and computes Z = gα · ê(Q,π).

B sets pk = (g,Q,Z) and defines the proxy (α, π). The latter can be considered as randomly
chosen in the set Πpk. Finally, B gives pk and the proxy (α, π) to A.

Ciphertext: B randomly chooses d ∈M and builds a ciphertext (c1 = B, c2 = X, d). B sends it
to A. Because of the random choice of (B,X, d) and the random choice of the hash function
H in a universal hash function family, the challenge (c1, c2, d) is a random ciphertext.

14



Break: If algorithm A returns d⊕H(ê(αc1, c1) · ê(π,X)), B outputs randomly yes or no. Oth-
erwise B output no (X is certainly not ak2P ).

Note that when X = ak2P , the ciphertext (kP,X, d) is a random valid ciphertext and the
algorithm A outputs correctly the plaintext m = d ⊕ H(ê(αc1, c1) · ê(π,X)). In this case, the
algorithm B outputs randomly yes or no and the probability that B gives a correct guess is 1/2.

When X 6= ak2P , the ciphertext (kP,X, d) is a random invalid ciphertext. Since the decoder
behaves differently for invalid ciphertexts with probability ε, A outputs differently than the
expected plaintext with probability ε. In such a case, B correctly answers that X is not equal to
ak2P . In the case A outputs the expected plaintext (which happens with probability less than
1− ε), B answers randomly yes or no. Therefore, when X 6= ak2P , the probability that B gives
a correct guess is ε + (1− ε)× 1/2 = 1/2 + ε/2.

Combining the two above cases, we easily see that B can solve the DBDH1-M problem with
advantage ε/2. ut

D Proofs for the Public Traceability

D.1 Proof of the Theorem 8

We focus on the case where the function H is randomly chosen in a universal hash function
family. The case where H is a random oracle is similar to the proof of the Theorem 3.

Let us assume that the scheme is not semantically secure against passive adversaries. Then
there is an IND-CPA adversary A that, given the public key pk and the tracing information
(α0P, β0P, α1P, β1P ), can break the scheme with advantage ε. We can then construct an algo-
rithm B that solves the DBDH2-E problem. Algorithm B is given as input a random DBDH2-E

instance (P,A = aP,B = kP,C = zP,D = ak2P,U) from either the distribution in which U is
the CBDH2-E solution, or the distribution in which U is a random element in G2. The algorithm
B runs as follows:

Setup: B sets the public key pk = (g,Q = A,Z = gz = ê(C,P )). B randomly chooses β0, β1

and computes:

α0P = zP − β0Q α1P = zP − β1Q.

It sends pk, along with (α0P, β0P, α1P, β1P ) to A.

Challenger: A outputs two message m0,m1 on which it wishes to be challenged. B picks a
random element b ∈ {0, 1} and gives (A,D, d = mb ⊕H(U)) as the challenge to A.

Guess: Algorithm A outputs a guess b′ ∈ {0, 1}. At this point, B returns 1 if b = b′ and 0
otherwise.

Observe that if U is the CBDH2-E solution, then the challenge ciphertext is an encryption of
mb. Otherwise, since H is randomly chosen from a universal hash function family, the challenge
is the ciphertext of a random message, hence b = b′ holds with probability 1/2. By a standard
argument, the adversary B has an advantage of ε/2 in deciding DBDH2-E. ut

D.2 Proof of the Theorem 9

From such an adversary A, we build an algorithm B that breaks the DBDH1-M problem: Algo-
rithm B is given as input the DBDH1-M parameters (G1,G2, ê) together with a random instance

(P,A = aP,B = kP,X) (for a, k
R
← Z

?
q, X

R
← G1). Algorithm B decides whether X = ak2P by

interacting with A

15



Setup: B randomly chooses α0, β0, β1
R
← Z

?
q and computes:

zP = α0P + β0A α1P = zP − β1A π0 = β0P Z = ê(P, zP ).

B sets Q = A, pk = (g,Q,Z) and a proxy (α0, π0), as well as the public tracing infor-
mation (α0P, β0P, α1P, β1P ). The proxy (α0, π0) can be considered as randomly chosen
in the set Πpk. Finally, B gives pk, the proxy (α0, π0) and the public tracing information
(α0P, β0P, α1P, β1P ) to A.

Ciphertext: B randomly chooses d ∈M and builds a ciphertext (c1 = B, c2 = X, d). B sends it
to A. Because of the random choice of (B,X, d) and the random choice of the hash function
H in a universal hash function family, the challenge (c1, c2, d) is a random ciphertext.

Break: If algorithm A returns d ⊕ H(ê(α0c1, c1) · ê(π0, X)), B outputs randomly yes or no.
Otherwise B output no (X is certainly not ak2P ).

Note that when X = ak2P , the ciphertext (kP,X, d) is a random valid ciphertext and the
algorithm A outputs correctly the plaintext m = d⊕H(ê(α0c1, c1) · ê(π0, X)). In this case, the
algorithm B outputs randomly yes or no and the probability that B gives a correct guess is 1/2.

When X 6= ak2P , the ciphertext (kP,X, d) is a random invalid ciphertext. Since the decoder
behaves differently for invalid ciphertext with probability ε, A outputs differently than the
expected plaintext with probability ε. In such a case, B answers correctly that X is not equal to
ak2P . In the case A outputs the expected plaintext (which happens with probability less than
1− ε), B answers randomly yes or no. Therefore, when X 6= ak2P , the probability that B gives
a correct guess is ε + (1− ε)× 1/2 = 1/2 + ε/2.

Combining the two above cases, we easily see that B can solve the DBDH1-M problem with
advantage ε/2. ut

E Proof for the Multi-User Case

E.1 Proof of the Proposition 10

Suppose there is an adversary A that, having information I of the system S1 and also all the
informations for the systems S2, . . . , S`, can get an advantage ε for breaking the system S1 (for
some goal G). We can then construct an algorithm B that, having only the information I of the
system S1, can also break the system S1 (for the goal G) with advantage ε. The idea is that
algorithm B can perfectly simulate all the informations about these collusions: Algorithm B is
given the parameters params = (q,G1,G2, ê, P,H), the public information (g,Q,Z1) and some
additional information I of the system S1. It can easily generate the informations for the system
Sj, for j = 2, 3, . . . , `:

– it picks random elements α0,j, β0,j , α1,j ;
– it computes Zj = ê(α0,jP, P )× ê(β0,jP,Q);
– it completes the proxy quantities by π0,j = β0,jP and π1,j = α0,jP + β0,jQ− α1,jP .

ut

16


