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45 rue d’Ulm, 75230 Paris Cedex 05, France.

{duong.hieu.phan,david.pointcheval}@ens.fr

Abstract. We propose asymmetric encryption schemes for which all ciphertexts are valid (which means
here “reachable”: the encryption function is not only a probabilistic injection, but also a surjection). We
thus introduce the Full-Domain Permutation encryption scheme which uses a random permutation. This is
the first IND-CCA cryptosystem based on any trapdoor one-way permutation without redundancy, and more
interestingly, the bandwidth is optimal: the ciphertext is over k more bits only than the plaintext, where
2−k is the expected security level. Thereafter, we apply it into the random oracle model by instantiating
the random permutation with a Feistel network construction, and thus using OAEP. Unfortunately, the
usual 2-round OAEP does not seem to be provably secure, but a 3-round can be proved IND-CCA even
without the usual redundancy m‖0k1 , under the partial-domain one-wayness of any trapdoor permutation.
Although the bandwidth is not as good as in the random permutation model, absence of redundancy is
quite new and interesting: many implementation risks are ruled out.
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1 Introduction

By now, the widely admitted appropriate security level for asymmetric encryption is the so-called
chosen-ciphertext security (IND-CCA): that is actually the semantic security [16] against adaptive
chosen-ciphertext attacks [20]. For achieving semantic security, even in the basic chosen-plaintext
scenario, the encryption algorithm must be probabilistic, which means that a given plaintext (with a
fixed public key) should be possibly encrypted in many different ways (at least 2k different ciphertexts
if 2−k is the expected security level). This naturally implies an expansion: the ciphertext is at least
over k more bits than the plaintext. OAEP achieves the optimal bound if one considers IND-CPA only,
but fails when considering IND-CCA [5, 15].

The general idea for designing cryptosystems which are secure in the sense of chosen-ciphertext
security is indeed to make the decryption oracle useless by making the creation of new “valid” cipher-
texts (which are not produced by actually encrypting some known plaintexts) impossible. The general
approach is thus to add some redundancy either to the plaintext before encrypting [5] or in a tag
appended to the ciphertext [4, 18]. The former method can be named “encode-then-encrypt”, with a
randomized bijective encoding (padding), and a trapdoor injective one-way function as encryption [5,
22, 8]. The latter is more like a key-encapsulation technique combined with a MAC of the plaintext,
the ciphertext and/or the ephemeral key [10, 1, 18].

For symmetric encryption schemes, Desai [11] avoids the overhead due to the MAC or redundancy
by using variable-length input PRF, variable-length output PRF (unbalanced Feistel paradigm) or
variable-length input super-PRF (encode-then-encipher). The proposed schemes are chosen-ciphertext
secure, without redundancy and the ciphertext expansion is smaller than for any other provably secure
scheme.

In the present paper, inspired by this idea (encode-then-encipher), we consider the case of asym-
metric encryption, by using a public random permutation which is clearly a bijective encoding, and
this leads to the first IND-CCA scheme without any redundancy. More interestingly, the bandwidth of
this scheme is optimal.

On the other hand, the security proof holds in the strong and ideal “random permutation model”.
Such a scheme in a weaker model (the random oracle model or the standard model) would be better.
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The second part of this paper is devoted to this goal. We use the construction of OAEP but with 3
rounds, instead of 2, and we can prove that such a scheme is IND-CCA and all the ciphertexts are
reachable by the encryption algorithm, and are thus valid (or almost all in the most general case).

The rest of the paper is organized as follows: We first briefly recall the security notions for asym-
metric encryption; then we present the FDH encryption and we prove that it is IND-CCA secure with
any trapdoor one-way permutation. Finally we consider the random oracle model, in which we pro-
pose a 3-round OAEP for which (almost) any ciphertext is valid (i.e., reachable) and we show that it
achieves IND-CCA under the partial-domain one-wayness of any trapdoor permutation [15].

2 Public Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the public key of Alice to
send her a message that she will be the only one able to recover, thanks to her private key.

2.1 Definitions

A public-key encryption scheme π is defined by the three following algorithms:

– The key generation algorithm G. On input 1k, where k is the security parameter, the algorithm G
produces a pair (pk, sk) of matching public and private keys.

– The encryption algorithm E . Given a message m and a public key pk, Epk(m) produces a ciphertext
c of m. This algorithm may be probabilistic (involving random coins r ∈ R, and then denoted
Epk(m; r).)

– The decryption algorithm D. Given a ciphertext c and the secret key sk, Dsk(c) gives back the
plaintext m.

2.2 Security Notions

The widely admitted security notion for encryption schemes is the so-called semantic security [16]
(a.k.a. polynomial security/indistinguishability of encryptions): if the attacker has some a priori in-
formation about the plaintext, the view of the ciphertext should not increase this information. This
security notion requires the computational impossibility to distinguish between two messages, chosen
by the adversary itself, which one has been encrypted, with a probability significantly better than
one half: its advantage Advind

π (A), as defined below where the adversary A is seen as a 2-stage Turing
machine (A1, A2), should be negligible.

Advind
π (A) = 2× Pr

b,r

[

(pk, sk)← G(1k); (m0,m1, s)← A1(pk)
c = Epk(mb; r) : A2(m0,m1, s, c) = b

]

− 1.

Another notion has been thereafter defined, the so-called non-malleability [12], but this notion is
equivalent to the above one in some specific scenarios [7]. Moreover, it is equivalent to the semantic
security [3] in the most interesting scenarios, described below.

Indeed, an attacker can play many kinds of attacks: it may just have access to public data, and
then encrypt any plaintext of its choice (chosen-plaintext attacks), or have access to extra informa-
tion, modeled by various oracles. In this model, the strongest oracle is definitely the decryption algo-
rithm, which can be queried on any ciphertext, except the challenge ciphertext (adaptive/non-adaptive
chosen-ciphertext attacks [17, 20]).

A general study of these security notions and attacks has been driven in [3], we therefore refer the
reader to this paper for more details. Actually, one conclusion is that the strongest security level is
the so-called chosen-ciphertext security, which is the semantic security (IND) under adaptive chosen-
ciphertext attacks (CCA), hence the notation IND-CCA, also known as IND-CCA2, to be compared to
IND-CCA1, which captures lunchtime attacks [17] only.
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2.3 Secure Designs

The expected security level is thus IND-CCA, which is now required to be provably achieved before
any practical use. The last ten years have seen several practical proposals which provide this strong
security level. The first, and most famous one, is definitely OAEP [5], a generic conversion proposed
by Bellare and Rogaway, which applies to any trapdoor partial-domain one-way permutation, such as
RSA, in the random oracle model [15]. Some variants have been recently proposed, which either apply
to particular cases (SAEP, SAEP+ [8]) or more general ones (OAEP+ [22]). But they all add some
redundancy in the plaintext before encrypting it: a ciphertext that is not properly generated, without
knowing the plaintext, is valid with negligible probability only. The latter property had been formally
defined by the plaintext-awareness notion [5, 3]. Granted it, a decryption oracle does not provide any
information.

Some other paddings have also been proposed to apply to more general families of functions,
which are not necessarily one-to-one: Fujisaki and Okamoto [13, 14], Pointcheval [19] and Okamoto
and Pointcheval [18]. Once again, chosen-ciphertext security is achieved granted redundancy, but in
the ciphertext: only properly generated ciphertexts (with some known plaintexts) have a chance to be
valid: plaintext-awareness.

3 FDP: Full-Domain Permutation Encryption

In the same vein as the Full-Domain Hash signature [6, 9], we suggest the Full-Domain Permutation
encryption, in which one applies a random permutation to the message (and the random coins) before
encrypting it with the trapdoor one-way permutation. We therefore obtain the first cryptosystem which
achieves chosen-ciphertext security, without redundancy: any ciphertext is valid, and the bandwidth
is optimal.

3.1 Description

The FDP-encryption is quite simple, since it uses a random permutation P (which is a bijective
random oracle, or an ideal-cipher with a particular key, say 0. See also [21]). The key generation
algorithm selects a trapdoor one-way permutation ϕpk (and its inverse ψsk, granted the trapdoor sk)
over {0, 1}k+`, and a random permutation P over the same space —{0, 1}` × {0, 1}k is identified to
{0, 1}`+k . The public key pk thus defines the permutation ϕpk, while the private key sk defines the
inverse ψsk of ϕpk. Then,

Epk(m; r) = ϕpk(P(m, r)) Dsk(c) = m, where (m, r) = P−1(ψsk(c)).

The space of the plaintexts is {0, 1}`, while the space of the random coins r is {0, 1}k . Note that both
P and P−1 are public permutations.

Note that usual trapdoor one-way permutations are not on a binary set, as it will be discussed
in a more extensive way in the following. Anyway, just doubling the computational cost, on average,
one easily gets such a particular case from any permutation over an interval: [2] suggested an iterated
version.

3.2 Security Result

As already said, the first advantage of this scheme is that any ciphertext is valid: any ciphertext
can be decrypted into a plaintext, furthermore any ciphertext can also be reached by the encryption
algorithm. The second important advantage comes from the security result given below: it provides
chosen-ciphertext security under the intractability of inverting ϕ, with a security level in 2k, with an
overhead of k bits (the random coins). This means that the bandwidth is optimal: contrary to OAEP
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or OAEP+ which need an overhead of at least 2k bits (the random coins and the redundancy), for a
similar security level. Of course, this remark only applies to the most general case where ` ≥ k (e.g.,
k = 80 and k + ` = 1024.)

Theorem 1. Let A be any chosen-ciphertext adversary against ϕ-FDP, within time τ . After qp and
qd queries to the permutation oracles and the decryption oracle respectively,

Advind-cca
π (A) ≤ 2× Succow

ϕ (τ + 2qp × Tϕ) + 2×

(

(qp + qd + 1)2

2k+`
+
qp
2k

+
(qd + 1)2

2`

)

where Tϕ is the time complexity for evaluating ϕ.

Let us briefly recall that for any algorithm A,

Succow
ϕ (A) = Pr

pk,

x∈{0,1}k+`

[A(ϕpk(x)) = x], and Succow
ϕ (τ) = max

|A|≤τ

{

Succow
ϕ (A)

}

.

3.3 Sketch of the Proof

The goal of the proof is to simulate the oracles P, P−1, and Dsk in such a way that the adversary can
not distinguish the simulations from the real oracles. In the simulation, the decryption answer for a
ciphertext that has not been obtained before is a new random value (and independent with others).
We then have to keep the simulation of the random permutation consistent. On the other hand, the
challenge is made independent with the plaintexts m0 and m1: the adversary has no advantage.

The proof follows by successively modifying the rules involved in the (perfect) simulation pre-
sented on the Figure 1, where the oracles P and P−1 are first simulated by using a perfectly random
permutation P and its inverse P−1. The last game provides a simulation of Dsk, without inverting ϕpk.

Anyway, the simulation remains almost perfect unless the adversary asks the pre-image via ϕpk

of the challenge ciphertext to the random permutation P−1: it thus helps to invert ϕ. The complete
proof can be found in the Appendix A.

4 The Random Oracle Model and OAEP

The above result is not so surprising, but the optimal bandwidth is a very good news. However the proof
requires a full-domain random permutation, which is hard to find: practical block-ciphers have smaller
block sizes. In this section, we present an instantiation of this random permutation, in the random
oracle model only. The counter-part will be the need of a stronger assumption about the trapdoor
one-way permutation: with a 3-round OAEP, a trapdoor partial-domain one-way permutation leads
to an IND-CCA cryptosystem, without redundancy.

4.1 The 2-round OAEP Case

Before studying the 3-round OAEP, let us first consider the more classical 2-round OAEP which can
be described as follows: we use two hash functions G and H before encrypting with a trapdoor one-way
permutation ϕpk. More precisely, for encrypting a message m, one randomly chooses r, and computes
s and t:

s = m⊕ G(r) t = r ⊕H(s).

Then, the ciphertext is c = ϕpk(s, t). For decryption, one computes

(s, t) = ψsk(c) r = t⊕H(s) m = s⊕ G(r).
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The usual way to prove the security of a scheme is to exploit an adversary to break the assumption
(for instance, the partial-domain one-wayness of the permutation ϕpk). For that, we must simulate all
the resources that the attacker can access, namely, the oracles G, H but also the decryption oracle Dsk.
For the above 2-round OAEP, the decryption oracle does not seem simulatable. The following attack
game uses the same arguments as the counter-example shown by Shoup against the original OAEP
security result [22]. Let us consider an attacker who chooses s, s′ and calls for H to get respectively
h = H(s) and h′ = H(s′). Then it chooses t and computes c = ϕpk(s, t). If it asks c to Dsk, it gets the
corresponding plaintext m. Then, it computes t′ = t⊕h⊕h′ and c′ = ϕpk(s

′, t′). If it asks c′ to Dsk, it
gets the corresponding plaintext m′. One can easily see that, since r′ = r, the relation m⊕m = s⊕ s′

should hold. But if the simulator can not detect that r ′ = r, it can not output a consistent value for
m′.

Unfortunately, we did not find any easy way to make a consistent simulation for the 2-round OAEP.
But a 3-round is more promising.

4.2 Description of the 3-round OAEP

The public key is any trapdoor (partial-domain) one-way bijection ϕpk from a set E to a set F, while
the private key is the inverse ψsk. For the sake of generality, we do not stick to binary sets (of the form
{0, 1}k): we just assume that there is an integer κ such that:

{0}κ × {0, 1}k+` ⊆ E ⊆ {0, 1}κ+k+` (identified to {0, 1}κ × {0, 1}k × {0, 1}`).

However, note that in the case that E 6= 0κ‖{0, 1}k+` we won’t get (as announced) a surjective
encryption. But contrary to all the previous IND-CCA schemes, the proportion of valid ciphertexts
(i.e., which are reachable) is greater than 1/2κ, which is not negligible: for efficient applications with
RSA, it can be equal to 1/2, or even 1 (by loosing a factor 2 in efficiency, one can get κ = 0, with the
iterated-RSA [2]).

The encryption and decryption algorithms use three hash functions: F , G, H (assumed to behave
like random oracles in the security analysis):

F : {0, 1}k → {0, 1}` G : {0, 1}` → {0, 1}k H : {0, 1}k+κ → {0, 1}`.

Encryption Algorithm: The space of the plaintexts isM = {0, 1}`, the encryption algorithm uses
random coins in R = {0, 1}k , and outputs a ciphertext c into F: on a plaintext m ∈M, and a random
r ∈ R, one computes

s = m⊕F(r) t = r ⊕ G(s) u = s⊕H(0κ‖t) c = ϕpk(0
κ, t, u).

Decryption Algorithm: On a ciphertext c, one first computes (B, t, u) = ϕsk(c), where B ∈ {0, 1}κ,
t ∈ {0, 1}k , u ∈ {0, 1}` and then

s = u⊕H(B‖t) r = t⊕ G(s) m = s⊕F(r).

4.3 Security Result

About the 3-round OAEP, one can claim the following security result, which states that the IND-CCA

security level is achieved under the (set) partial-domain one-wayness of the trapdoor permutation
ϕ [15].



6

Theorem 2. Let A be any chosen-ciphertext adversary against the 3-round OAEP construction with
the trapdoor permutation family ϕ, within time τ . After qf , qg, qh and qd queries to the random oracles
F , G and H, and the decryption oracle respectively,

Advind-cca
π (τ) ≤ 2κ × Succs-pd-ow

ϕ (τ + qg · qh × Tϕ + qd · Tlu, qh)

qf
2k

+
qg
2`

+ 2κ ×

(

qd(2qg + qd)

2`
+
qd(3qf + 2qd)

2k

)

where Tϕ is the time complexity for evaluating ϕ, and Tlu is the time complexity for a look up in a list.

Let us recall the definition of the (set) partial-domain one-wayness in our particular case, where A is
any algorithm which outputs a subset of {0, 1}k of size q:

Succs-pd-ow
ϕ (A, q) = Pr

pk,

(B,t,u)∈E

[t ∈ A(ϕpk(B, t, u))] and Succs-pd-ow
ϕ (τ, q) = max

|A|≤τ

{

Succs-pd-ow
ϕ (A, q)

}

,

is small for any reasonable time bound τ .

4.4 Sketch of the Proof

The goal of the proof is again to simulate the oracles. For simulating the random oracles, we use lists
as usual to store the known answers. We simulate the decryption oracle as follows: when we receive
a query y, either the corresponding s and t have both been asked to G and H, we can extract m, or
one of them has not been asked, we can safely answer a random plaintext. However, such a plaintext-
ciphertext relation implicitly defines several relations about the random oracles F , G and H. We show
that it is still possible to answer consistently. The challenge ciphertext also implicitly defines relations.
We show that possible inconsistencies with the latter relations can not be detected by the adversary
unless it has partially inverted the function ϕpk on the challenge ciphertext.

The proof is provided by a sequence of games, but for clarity reasons, we briefly explain only the
distances between two consecutive games. The formal and full proofs are provided in the Appendix B.
Game G0: The adversary is fed with the public key pk, and outputs a pair of messages (m0,m1).
Next a challenge ciphertext is produced by flipping a coin b and producing a ciphertext c? of m? = mb.
This ciphertext comes from a random r? ← {0, 1}k and c? = E(mb, r

?) = ϕpk(0
κ, t, u). On input c?,

A2 outputs bit b′ in the time t. We denote by S0 the event b′ = b and use the same notation Sn in
any game Gn below. Note that the adversary is given access to the decryption oracle Dsk during both
steps of the attack. The adversary can also ask the random oracles F , G, and H.
Game G1: The simulation in this game is presented on the Figure 2. We simulate the way that
the challenge c? is generated as the challenger would do, and we simulate the random oracles F , G,
and H, as well as the decryption oracle Dsk, by maintaining lists F -List, G-List,H-List and D-List to
deal with identical queries, since they all are deterministic. Since the simulation is perfect, we directly
derive that

Pr[S1] = Pr[S0]. (1)

Game G2: We manufacture the challenge c? independently of anything else.

�
Rule Chal(2)

Choose randomly ahead of time c+
R
← F and set c? = c+.

Lemma 3. Let us note (B+, t+, u+) the pre-image of the challenge c+. We denote by AskH2 the event
that B+‖t+ has been asked to H. Then,

Pr[S1] ≤
1

2
+
qf
2k

+
qg
2`

+ 2κ × Pr[AskH2]. (2)
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Proof (Full proof in the Appendix B.1). The main idea in simulating this game is that we make the
components of the challenge c? (namely r?, f?, s?, g?, t?, h?, u? and c?) independent to m?. We can
do this by choosing ahead of time random values for r?, s?, and t?, and we can see that a difference
occurs when one of these values is asked to the corresponding oracle. On the other hand, when the
challenge is independent to m?, the attacker has only the chance of one half to guess the bit b. ut

Game G3: In this game, we modify the simulation of the decryption oracle, by outputting a
random message when the ciphertext has not been “correctly” encrypted. We thereafter define in a
consistent way the values of the random oracles:

�
Rule Decrypt-TnoS(3)

Choose m
R
← {0, 1}` and g

R
← {0, 1}k ,

then define r = t⊕ g and f = m⊕ s.
Add (r, f) in F -List, and (s, g) in G-List.

�
Rule Decrypt-noT(3)

Choose m
R
← {0, 1}`, h

R
← {0, 1}` and g

R
← {0, 1}k,

then define s = u⊕ h, r = t⊕ g and f = m⊕ s.
Add (r, f) in F -List, (s, g) in G-List, and (B, t, h) in H-List.

Lemma 4.

|Pr[AskH3]− Pr[AskH2] | ≤
qd(qg + qd)

2`
+ 2

qd(qf + qd)

2k
. (3)

Proof (Full proof in the Appendix B.2). In the proof, one successively modifies the simulation of the
decryption oracle, just changing the order of elements to be randomly chosen, so that the decryption
of a ciphertext which has not been correctly encrypted is a truly random plaintext. ut

Game G4: In this game, we delay the explicit definitions of some oracle answers implicitly defined by
some plaintext-ciphertext relations: we do not introduce them during the simulation of the decryption
oracle, but when s is asked to G. Some problems may appear if the implicitly defined answers are
asked before G(s) is queried.

�
Rule Decrypt-TnoS(4)

Choose m
R
← {0, 1}`.

�
Rule Decrypt-noT(4)

Choose m
R
← {0, 1}`.

�
Rule EvalGAdd(4)

Look up for (B, t, h) ∈ H-List and (m, c) ∈ D-List such that c = ϕpk(B, t, h⊕ s).
If the record is found, we compute r = t⊕ g and f = m⊕ s, and finally add (r, f)
in F -List.

Lemma 5.

|Pr[AskH4]− Pr[AskH3] | ≤
qd · qf

2k
+
qd · qg

2`
. (4)

Proof (Full proof in the Appendix B.3). Since we don’t store anymore (r, f), (s, g), (B, t, h), inconsis-
tencies could occur when B‖t, s or r are asked. For solving this problem, we modify the rule EvalGAdd

by defining in a consistent way F(r) at the moment that s is asked to G. But there is still a problem
if r is asked before G(s) is queried, or if s is asked before H(B‖t) is queried. ut
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Game G5: We now complete the simulation of the oracle Dsk. We don’t ask any query to ψsk.
Intuitively, if both B‖t and s have been asked, we can easily find them, and then m. Otherwise, we
give a random answer as in the game G4.

�
Rule Decrypt-Init(5)

Look up for (B, t, h) ∈ H-List and (s, g) ∈ G-List such that ϕpk(B, t, s⊕ h) = c.

– if the record is found, we furthermore define u = s⊕ h.
– otherwise, we take B = ⊥, t = ⊥, u = ⊥.

�
Rule Decrypt-TS(5)

r = t⊕ g, f = F(r), m = s⊕ f .

The two games G5 and G4 are perfectly indistinguishable. In fact, in the first case, nothing is
modified and in the second case, by making B = ⊥, t = ⊥, u = ⊥, the answer of the decryption oracle
for the question c will be a random m as in the game G4:

Pr[AskH5] = Pr[AskH4]. (5)

Simply outputting the list of queries to H during this game, one gets:

Pr[AskH5] ≤ Succs-pd-ow
ϕ (τ ′, qh), (6)

where τ ′ is the running time of the simulation in this game: τ ′ ≤ qg · qh×Tϕ + qd×Tlu. We can indeed
perform the simulation granted an additional list GH-List which contains all the tuples (B, t, h, s, g, y)
where (B, t, h) ∈ H-List, (s, g) ∈ G-List and y = ϕpk(B, t, s ⊕ h). This concludes the proof of the
Theorem.

4.5 Special Cases

In the particular but classical case where κ = 0 and k ≤ `, one can claim

Theorem 6. Let A be any chosen-ciphertext adversary against the 3-round OAEP construction with
the trapdoor permutation family ϕ, within time τ . After qo and qd queries to the random oracles and
the decryption oracle respectively,

Advind-cca
π (τ) ≤ Succs-pd-ow

ϕ (τ + q2
o × Tϕ + qd × Tlu, qo) +

2qo + qd(5qo + 2qd)

2k

where Tϕ is the time complexity for evaluating ϕ, and Tlu is the time complexity for a look up in a list.

5 Conclusion

We have described the Full-Domain Permutation encryption which is IND-CCA without redundancy
and provides an optimal bandwidth. In the random oracle model, we have shown that the absence
redundancy can be obtained by considering the 3-round OAEP construction. However, the bandwidth
is not optimal, and the security relies on the strong partial-domain one-wayness assumption.
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A Security Proof of the ϕ-FDP Encryption

Game G0: This is the attack game, in the random permutation model. Several oracles are thus
available to the adversary: two random permutation oracles (P and P−1) and the decryption oracle
Dsk. The adversary A = (A1, A2) runs its attack in two steps. First, A1 is fed with the public key pk,
and outputs a pair of messages (m0,m1). Next a challenge ciphertext is produced by the challenger,
which flips a coin b and computes a ciphertext c? of m? = mb. This ciphertext comes from a random

r? R
← {0, 1}k and

c? = E(mb, r
?) = ϕpk(P(mb, r

?)).

In the second step, on input c?, A2 outputs a bit b′. We denote by S0 the event b′ = b and use the
same notation Sn in any game Gn. Note that the adversary is given access to the decryption oracle
Dsk during both steps of the attack.
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By definition,
ε = Advind-cca

π (A) = 2Pr[S0]− 1. (7)

In the games below, we furthermore assume that when the game aborts or stops with no answer b ′

outputted by the adversary A, we choose this bit b′ at random, which in turn defines the actual value
of the event Sn.
Game G1: A perfect simulation of the real attack game is described on the Figure 1. Actually,
the rule Chal(1) simulates the way the challenge c? is generated, exactly as the challenger would do.
Besides, we simulate the two random permutation oracles P and P−1, and the decryption oracle Dsk,
by maintaining a list P-List, and using a truly random permutation P and its inverse P −1.

Note that when we “store” an element (m, r, p, y) in P-List: if p 6= ⊥, and if there is already an
element (m, r, ?, y) in P-List, we replace the latter by the former; if p 6= ⊥, and if there is already an
element (m, r, c, y). we don’t append the element; otherwise, the tuple is appended to the list.

We see that the simulation is perfect since P-List is not used. The latter list is only introduced for
later simulation in the proof.

Pr[S1] = Pr[S0]. (8)

Game G2: In this game, we modify the simulation of the oracle P, so that the random permutation
P is called at most once for each input. We use the following rule:

�
Rule EvalP(2)

Look up for (m, r, α, y) in P-List:

– if the record is found,
• if α 6= ⊥, p = α;

• otherwise, p
R
← {0, 1}`+k.

– otherwise, p = P (m, r).

Note that if α = ⊥, we likely give a wrong answer (the correct answer should be ψsk(y)), we define this
event BadP2. Unless this event happens, the two games G2 and G1 are perfectly indistinguishable:

|Pr[S2]− Pr[S1] | ≤ Pr[BadP2], (9)

Game G3: We now modify the same way the simulation of the oracle P−1 by using the following
rule:

�
Rule InvP(3)

Compute c = ϕpk(p) and look up for (m, r, α, c) in P-List:

– if the record is found, (m, r) is defined,
– otherwise we compute (m, r) = P−1(p).

The two games G3 and G2 are perfectly indistinguishable:

Pr[S3] = Pr[S2] Pr[BadP3] = Pr[BadP2]. (10)

Game G4: In this game, we continue to modify the simulation of the oracles P and P−1, without
asking any query at all to the random permutation P (and its inverse P −1), but answering a random
value for any new query: for a new (m, r), we answer P(m, r) by a random p, and for a new p we
answer P−1(p) by a random pair (m, r). We rewrite the rules as follows:

�
Rule EvalP(4)

Look up for (m, r, α, y) in P-List:

– if the record is found,
• if α 6= ⊥, p = α;

• otherwise, p
R
← {0, 1}`+k.

– otherwise, p
R
← {0, 1}`+k .
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�
Rule InvP(4)

Compute c = ϕpk(p) and look up for (m, r, α, c) in P-List:

– if the record is found, (m, r) is defined,
– otherwise we randomly choose (m, r) in {0, 1}`+k .

The two games G4 and G3 are perfectly indistinguishable unless a collision appears over (m, r) or p
in P-List, we define this event CollP4. So, we have:

|Pr[S4]− Pr[S3] | ≤ Pr[CollP4] |Pr[BadP4]− Pr[BadP3] | ≤ Pr[CollP4]. (11)

Since there are at most qd + qp + 1 elements in the P-List, such a collision appears with probability
bounded by (qp + qd + 1)2/2k+`+1:

Pr[CollP4] ≤
(qp + qd + 1)2

2k+`+1
. (12)

Game G5: Finally, we can simulate the decryption oracle Dsk without inverting ϕsk:
�
Rule Decrypt(5)

Look up for (m, r, α, c) in P-List:

1. if the record is found, (m, r) is defined,
2. otherwise we randomly choose (m, r) in {0, 1}`+k .

The two games G5 and G4 are perfectly indistinguishable since in case 2, we do exactly as P−1 was
simulated by the rule InvP(4) in the previous game:

Pr[S5] = Pr[S4] Pr[BadP5] = Pr[BadP4]. (13)

Game G6: We consider the elements of the form (m, r,⊥, y) in P-List (there are at most qd + 1
elements). If there is a collision on m, we abort the game, which event is named CollM6.

|Pr[S6]− Pr[S5] | ≤ Pr[CollM6] |Pr[BadP6]− Pr[BadP5] | ≤ Pr[CollM6]. (14)

We see that for any (m, r,⊥, y) except if m = m?, m is chosen randomly. As a consequence, a collision
over m can be found with probability bounded by (qd + 1)2/2`+1. Therefore,

Pr[CollM6] ≤
(qd + 1)2

2`+1
. (15)

When collisions are excluded, for any m, there is at most one r (and a y) such that (m, r,⊥, y) ∈ P-List.
Therefore one can see that

Pr[BadP6] ≤
qp
2k
. (16)

Game G7: Now we suppress the element (m?, r?,⊥, c?) from P-List.
�
Rule ChalAdd(7)

Do nothing.

The two games G7 and G6 are perfectly indistinguishable unless (m?, r?) is asked for P (which event is
included in event BadP7, already excluded) or p? is asked to P−1. We define the latter event AskInvP7.
We have:

|Pr[S7]− Pr[S6] | ≤ Pr[AskInvP7]. (17)

Since (m?, r?, p?, c?) does not appear in P-List, the adversary receives answers which are perfectly
independent of the latter, and therefore, it has no advantage for guessing b:

Pr[S7] =
1

2
. (18)

Game G8: Instead of choosing c? = ϕpk(p
?), we choose c?, uniformly at random.
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�
Rule Chal(8)

y
R
← {0, 1}k+`; c? = y.

So, one implicitly defines p? = ψsk(y). Since the tuple (m?, r?, p?, c?) is not used anywhere in the
simulation, the two games G8 and G7 are perfectly indistinguishable:

Pr[AskInvP8] = Pr[AskInvP7]. (19)

Finally, it is clear that when the event AskInvP8 happens, one can easily invert ϕ on y: with a look up
into P-List, on can extract p such that y = ϕpk(p). Therefore,

Pr[AskInvP8] ≤ Succow
ϕ (τ ′ + qp × Tϕ), (20)

where Tϕ is the time for evaluating ϕ, and τ ′ ≤ τ + qp × Tϕ is the running time of the simulation in
the current game.

Conclusion. Finally, combining all the above equations:

ε

2
=

1 + ε

2
−

1

2
= Pr[S0]− Pr[S7]

≤ Pr[S0]− Pr[S1] + Pr[AskInvP7] + Pr[CollM6] + Pr[CollP4] + Pr[BadP2]

≤ Pr[AskInvP8] + 2Pr[CollM6] + 2Pr[CollP4] + Pr[BadP6].

The equations (20), (15), (12) and (16) lead to

ε

2
≤ Succow

ϕ (τ + 2qp × Tϕ) +
(qd + 1)2

2`
+

(qp + qd + 1)2

2k+`
+
qp
2k
.

B Complements for the Proof of the Theorem 2

B.1 Proof of Lemma 3

Game G1.1: For proving this lemma, we present a more detailed sequence of games from the game
G1 to the game G1.2 . We first make the value of the random seed r? explicit and move its generation
up-front.

�
Rule Chal(1.1)

The two values r+ R
← {0, 1}k , f+ R

← {0, 1}` have been chosen ahead of time, then

r? = r+, f? = f+, s? = m? ⊕ f+, g? = G(s?),

t? = r+ ⊕ g?, h? = H(0κ‖t?), u? = s? ⊕ h?.

Compute c? = ϕpk(0
κ, t?, u?).

The two games G1.1 and G1 are perfectly indistinguishable unless r? has been asked for F . We define
this event AskF1.1. We have:

|Pr[S1.1]− Pr[S1] | ≤ Pr[AskF1.1]. (21)

In this game, f+ is used in (s, t) but does not appear in the computation since F(r+) is not defined to
be equal to f+. Thus, the input to A2 follows a distribution that does not depend on b. Accordingly:

Pr[S1.1] =
1

2
. (22)

Game G1.2: In this game, instead of defining s? from f? which is a random value f+, we randomly
choose s? and then we define f+ from s?. Because s? is chosen randomly, we give a random answer
for the question s? to G.
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�
Rule Chal(1.2)

The values r+ R
← {0, 1}k , s+

R
← {0, 1}`, g+ R

← {0, 1}k have been chosen ahead of
time, then

r? = r+ s? = s+ g? = g+ f? = s+ ⊕m?

t? = r+ ⊕ g+ h? = H(0κ‖t?) u? = s+ ⊕ h?.

Compute c? = ϕpk(0
κ, t?, u?).

The two games G1.2 and G1.1 are perfectly indistinguishable unless s? is asked for G. We define this
event AskG1.2. We have:

|Pr[AskF1.2]− Pr[AskF1.1] | ≤ Pr[AskG1.2]. (23)

In this game, r+ = t? ⊕ g+ is uniformly distributed, and independently of the adversary’s view since
g+ is never revealed:

Pr[AskF1.2] =
qf
2k
. (24)

Game G1.3: Similarly to the above game, instead of defining t? from a random g+, we randomly
choose t? and then we define g+ from t?. Because t? is chosen randomly, we give a random answer for
the question (0κ‖t?) to H.

�
Rule Chal(1.3)

The values r+ R
← {0, 1}k , s+

R
← {0, 1}`, t+

R
← {0, 1}k , h+ R

← {0, 1}` have been
chosen ahead of time, then

r? = r+ s? = s+ t? = t+ h? = h+

f? = s+ ⊕m? g? = t+ ⊕ r+ u? = s+ ⊕ h+.

Compute c? = ϕpk(0
κ, t?, u?).

The two games G1.3 and G1.2 are perfectly indistinguishable unless 0κ‖t? is asked for H. We define
this event AskH1.3. We have:

|Pr[AskG1.3]− Pr[AskG1.2] | ≤ Pr[AskH1.3]. (25)

In this game, s+ = u? ⊕ h+ is uniformly distributed, and independently of the adversary’s view since
h+ is never revealed:

Pr[AskG1.3] =
qg
2`
.

Game G1.4: We manufacture the challenge c? independently of anything else.

�
Rule Chal(1.4)

The values t+
R
← {0, 1}k , u+ R

← {0, 1}` have been chosen ahead of time.
Compute c? = ϕpk(0

κ, t+, u+).

The distribution of c? remains the same:

Pr[AskH1.4] = Pr[AskH1.3]. (26)

Game G1.5: We choose the challenge c? uniformly in the space F.

�
Rule ChalC(1.5)

The value c+
R
← F is chosen randomly ahead of time, then c? = c+.
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We can write c+ as ϕpk(B
+, t+, h+). We define AskH1.5 the event that B+‖t+ is asked to H. In the

case B+ = 0κ, which event is denoted by GoodB and which probability is at least 1/2κ, this game is
identical to the previous one:

Pr[AskH1.5] = Pr[AskH1.5 ∧ GoodB] + Pr[AskH1.5 ∧ ¬GoodB]

≥ Pr[AskH1.5|GoodB] · Pr[GoodB] ≥ Pr[AskH1.4] ·
1

2κ
. (27)

To conclude the proof of the lemma, one first notes that the games G1.5 and G2 are identical,
and thus Pr[AskH1.5] = Pr[AskH2]. Then, combining all the above equations, on gets

Pr[S1] ≤ Pr[S1.1] + Pr[AskF1.1] ≤
1

2
+ Pr[AskF1.1]

≤
1

2
+ Pr[AskF1.2] + Pr[AskG1.2]

≤
1

2
+ Pr[AskF1.2] + Pr[AskG1.3] + 2κ · Pr[AskH1.5]

≤
1

2
+
qf
2k

+
qg
2`

+ 2κ · Pr[AskH2].

B.2 Proof of Lemma 4

Game G2.1: First, we modify the rule Decrypt-noT by not calling anymore the oracles G and H.
Let us remind that the adversary asks a D-query on c = ϕpk(B, t, u) such that H(B‖t) has never been
queried.

�
Rule Decrypt-noT(2.1)

Choose h
R
← {0, 1}` and set s = u⊕ h.

Choose g
R
← {0, 1}k and set r = t⊕ g.

Compute f = F(r) and set m = s⊕ f .
Add (s, g) in G-List, (B, t, h) in H-List.

The two games G2.1 and G2 are perfectly indistinguishable unless s is already in G-List. Because B‖t
has not been queried to H, h = H(B‖t) is uniformly distributed and therefore, we can consider s as
a uniform variable. So, the probability that s has already been queried to G is (qg + qd)/2

`:

|Pr[AskH2.1]− Pr[AskH2] | ≤ qd(qg + qd)/2
`. (28)

Game G2.2: In this game, we modify again the rule Decrypt-noT(2.2) by not querying the oracle F
either:

�
Rule Decrypt-noT(2.2)

Choose h
R
← {0, 1}` and set s = u⊕ h.

Choose g
R
← {0, 1}k and set r = t⊕ g.

Choose f
R
← {0, 1}` and set m = s⊕ f .

Add (r, f) in F -List, (s, g) in G-List, (B, t, h) in H-List.

The two games G2.2 and G2.1 are perfectly indistinguishable unless r is already in F -List. Since g is
randomly chosen, we can consider r as a uniform variable. So, the probability that r has already been
queried to F is less than (qf + qd)/2

k:

|Pr[AskH2.2]− Pr[AskH2.1] | ≤ qd(qf + qd)/2
k. (29)

Game G2.3: Still about the rule Decrypt-noT, instead of defining m from a random f , we first
choose m and then we define f from m:
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�
Rule Decrypt-noT(2.3)

Choose m
R
← {0, 1}`.

Choose h
R
← {0, 1}` and set s = u⊕ h.

Choose g
R
← {0, 1}k and set r = t⊕ g.

Compute f = m⊕ s.
Add (r, f) in F -List, (s, g) in G-List, (B, t, h) in H-List.

The two games G2.3 and G2.2 are perfectly indistinguishable:

Pr[AskH2.3] = Pr[AskH2.2]. (30)

Game G2.4: We now modify the rule Decrypt-TnoS by not calling anymore the oracles F and G.
About this rule, the adversary asks for the decryption of c = ϕpk(B, t, u) such that h = H(B‖t) is
known, but s = u⊕ h has never been queried to G.

�
Rule Decrypt-TnoS(2.4)

Choose g
R
← {0, 1}k and set r = t⊕ g.

Choose f
R
← {0, 1}` and set m = s⊕ f .

Add (r, f) in F -List, (s, g) in G-List.

The two games G2.4 and G2.3 are perfectly indistinguishable unless r is already in F -List. Since g is
randomly chosen (s is not in G-List), we can consider r as a uniform variable. So, the probability that
r is queried to F is less than (qf + qd)/2

k:

|Pr[AskH2.4]− Pr[AskH2.3] | ≤ qd(qf + qd)/2
k. (31)

Game G2.5: As above, in the rule Decrypt-TnoS, instead of defining m from a random f , we first
choose m and then we define f from m:

�
Rule Decrypt-TnoS(2.5)

Choose m
R
← {0, 1}`.

Choose g
R
← {0, 1}k and set r = t⊕ g.

Compute f = m⊕ s.
Add (r, f) in F -List, (s, g) in G-List.

The two games G2.5 and G2.4 are perfectly indistinguishable:

Pr[AskH2.5] = Pr[AskH2.4]. (32)

B.3 Proof of Lemma 5

Game G3.1: In this game, we don’t store anymore (s, g) in G-List, nor (r, f) in F -List and we
modify the simulation of G, so that F -List is built as soon as possible:

�
Rule Decrypt-TnoS(3.1)

Choose m
R
← {0, 1}`.

�
Rule Decrypt-noT(3.1)

Choose h
R
← {0, 1}`.

Choose m
R
← {0, 1}`.

Add (B, t, h) in H-List.
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�
Rule EvalGAdd(3.1)

Search (B, t, h) ∈ H-List and (m, c) ∈ D-List such that c = ϕpk(B, t, h⊕ s). If the
record is found, we compute r = t⊕ g, f = m⊕ s and add (r, f) in F -List.

The two games G3.1 and G3 are perfectly indistinguishable unless r is asked to F before s is asked
to G, we denote this event by AskRbS, In fact, if r is asked after s, at the moment that s is asked,
by the above simulation of G, we will find out (B, t, h) and therefore (r, f) is computed and added in
F -List as in the game G3.

|Pr[AskH3.1]− Pr[AskH3] | ≤ Pr[AskRbS3.1]. (33)

Until s is asked, g is a uniform variable, so is r. Therefore, the probability that r has been asked
to F is qf/2

k:
Pr[AskRbS3.1] ≤ qd · qf/2

k. (34)

Game G3.2: We continue to simulate the oracle Dsk. We use the following rule:

�
Rule Decrypt-noT(3.2)

Choose m
R
← {0, 1}`.

In this game, we don’t store anymore (B, t, h) in H-List. In the G3.1, for the question t, we answer
randomly h, so the attacker in the two games G3.2 and G3.1 can not distinguish the answers of a
question to H. Nevertheless, H-List has been changed and therefore, the answer for a question to F
can be changed. We easily see that the two games G3.2 and G3.1 are perfectly indistinguishable unless
s is asked to G before B‖t is asked to H, we denote this event by AskSbT, In fact, if s is asked to
G after B‖t is asked to H, at the moment s is asked, by the above simulation of G, we will find out
(B, t, h) and therefore (r, f) is computed and added in F -List as in the game G3.1.

|Pr[AskH3.2]− Pr[AskH3.1] | ≤ Pr[AskSbT3.2]. (35)

Until B‖t is asked to H, h is a uniform variable, so is s = u⊕ h. Therefore, the probability that s has
been asked to G is qg/2

`:
Pr[AskSbT3.2] ≤ qd · qg/2

`.
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P

-O
ra

cl
e A query P(m, r) is answered by p, where

�
Rule EvalP(1)

p = P (m, r).

Furthermore, if (m, r) is a direct query from the adversary to P, store the record (m, r, p, ϕpk(p)) in P-List.

P
−

1
-O

ra
cl

e A query P−1(p) is answered by (m, r), where

�
Rule InvP(1)

(m, r) = P−1(p).

Furthermore, if p a direct query from the adversary to P−1, store the record (m, r, p, ϕpk(p)) in P-List.

D
-O

ra
cl

e A query Dsk(c) is answered by m, where

�
Rule Decrypt(1)

p = ψsk(c), and (m, r) = P−1(p).

Store (m, r,⊥, c) in P-List.

C
h
a
ll
en

g
er

For two messages (m0,m1), flip a coin b and set m? = mb, randomly choose r?.

�
Rule Chal(1)

p? = P(m?, r?); c? = ϕpk(p
?).

�
Rule ChalAdd(1)

Add (m?, r?, p?, c?) in P-List.

Answer c?

Fig. 1. Formal Simulations of the IND-CCA Game against ϕ-FDP
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,
G

a
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d
H

O
ra

cl
es

Query F(r): if a record (r, f) appears in F-List, the answer is f .
Otherwise the answer f is chosen randomly: f ∈ {0, 1}k and the record (r, f) is added in F-List.
Query G(s): if a record (s, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly: g ∈ {0, 1}` and the record (s, g) is added in G-List.

�
Rule EvalGAdd(1)

Do nothing

Query H(B‖t): if a record (B, t, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly: h ∈ {0, 1}k and the record (B, t, h) is added in H-List.

D
O

ra
cl

e Query Dsk(c): if a record (m, c) appears in D-List, the answer is m.
Otherwise the answer m is defined according to the following rules:

�
Rule Decrypt-Init(1)

Compute (B, t, u) = ψsk(c);

Look up for (B, t, h) ∈ H-List:

– if the record is found, compute s = u⊕ h.
Look up for (s, g) ∈ G-List:

• if the record is found
�
Rule Decrypt-TS(1)

h = H(B‖t),
s = u⊕ h, g = G(s),
r = t⊕ g, f = F(r),
m = s⊕ f .

• otherwise
�
Rule Decrypt-TnoS(1)

same as rule Decrypt-TS(1).
– otherwise

�
Rule Decrypt-noT(1)

same as rule Decrypt-TS(1).

Answer m and add (m, c) to D-List.

C
h
a
ll
en

g
er

For two messages (m0,m1), flip a coin b and set m? = mb, choose randomly r?, then answer c?, where

�
Rule Chal(1)

f? = F(r?), s? = m? ⊕ f?,

g? = G(s?), t? = r? ⊕ g?,

h? = H(0κ‖t?), u? = s? ⊕ h?.

Compute c? = ϕpk(0
κ, t?, u?).

Fig. 2. Formal Simulation of the IND-CCA Game against 3-OAEP


