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Abstract

In this thesis, we consider a generalization of the encryption from “one-to-one” to “one-to-
many” communication. The objective is to allow a center to send secret messages to a large
number of receivers. The security notions in “one-to-many” communications need to be extended
beyond the notion of confidentiality in “one-to-one” encryption to meet practical requirements.
Two main functionalites are studied: traitor tracing which identifies malicious users who leak
their secrets to a pirate and broadcast encryption which prevents non-legitimate or revoked users
from decrypting broadcasted information.

In the first part of this thesis, we focus on combinatorial schemes. Our objective is to de-
sign solutions that support both the functionalities of broadcast encryption and traitor tracing
against various pirate strategies. In one direction, we introduce a trace&revoke code and a trac-
ing technique called “shadow group testing” to deal with “smart” pirates. In another direction,
we propose a method to integrate revocation into some code-based schemes.

The second part discusses the techniques for constructing algebraic schemes. We first extend
some well-known schemes, in particular the pairing-based BGW one, in order to enhance the
security and to capture new properties. We then propose the first lattice-based traitor tracing
of which the security is based on the hardness of the Learning With Errors problem. We
finally consider the combination of algebraic and combinatorial methods and propose an optimal
ciphertext rate traitor tracing scheme.

Finally, in the third part of the thesis, we propose an extended attack model, namely Pirates
2.0, that goes beyond the formalism of the conventional attacks. We also propose some gener-
alized primitives for broadcast encryption and traitor tracing to fit new practical requirements
such as multi-channel and decentralized broadcast encryption.

Keywords: Provable security, broadcast encryption, traitor tracing, lattice, pairings, combina-
toric.
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Résumé

Nous considérons dans cette these une généralisation du chiffrement au cas d’utilisateurs
multiples, a savoir la diffusion de données chiffrées. Cette généralisation du chiffrement intro-
duit deux nouveaux problémes au-dela de la confidentialité : comment le centre peut-il identifier
les abonnés malhonnétes (qui fabriquent des décodeurs pirates et sont appelés traitres) et com-
ment le centre peut-il révoquer les abonnés malhonnétes sans avoir besoin de mettre a jour les
parametres du systeme.

Dans un premier temps, nous prenons ’approche combinatoire dans le but de construire
des schémas qui supportent a la fois la tragabilité et la révocation. Nous avons en particulier
introduit un nouveau type de code, nommé trace&revoke code, et la technique de “shadow group
testing” pour contrer les pirates “intelligents”. Nous avons en outre proposé une méthode pour
intégrer la révocation a quelques schémas de tracage de traitres fondés sur les codes.

Dans un deuxieme temps, nous suivons I'approche algébrique. Tout d’abord, en considérant
les schémas fondés sur les couplages sur des courbes elliptiques, nous renforgons la sécurité du
schéma de Boneh-Gentry-Waters et le rendons dynamique. Nous étudions ensuite ’application
des réseaux euclidiens et proposons un schéma de tragage de traitres dont la sécurité est assurée
sous 'hypothese bien connue de LWE (Learning with errors).

La derniere partie de la theése est consacrée a la présentation d’un nouveau type d’attaque
en collaboration publique, appelé attaque Pirates 2.0 et quelques extensions du modele de diffu-
sion de données qui répondent aux exigences pratiques comme les schémas décentralisés ou les
schémas multi-canaux.

Mots-clés : Sécurité prouvée, diffudion de donées chiffrées, tracage de traitres,réseaux eucli-
diens,couplages sur des courbes elliptiques.
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Chapter 1

Introduction

1.1 Broadcast Encryption & Traitor Tracing

The oldest goal of cryptography is to allow parties to communicate in a secured manner over an
insecure channel which might be under adversarial control. Nowadays, confidentiality remains
one of the main goals, besides authentication and integrity. Almost all standard protocols for
confidentiality, termed encryption, are implemented in a “one-to-one” communication frame-
work: a sender encrypts the message and sends the ciphertext to a receiver who has the secret
key to decrypt the ciphertext. The objective, from a security point of view, is to prevent an
outside attacker (who observes and may be able to interact with the system) to break the con-
fidentiality, 7.e. to recover some information about the original message. The situation will not
be exactly the same when one generalises “one-to-one” to “one-to-many” communication, aka
multi-receiver encryption where the sender needs to send a secret message to many receivers.
One might think that the trivial solution consisting of sharing a common secret key among all le-
gitimate receivers would be sufficient. However, this is not the case, mainly because the security
notions in “one-to-many” communications need to be extended to meet practical requirements.
As the old saying goes: when a secret is known by more than one person, it is not a secret
anymore. Therefore, if a common secret key is shared among all the receivers, then one of the
receivers can give it to the adversary. Consequently, on the one hand, the confidentiality of the
whole system is totally broken and on the other hand, we have no idea who the source of secret
leakage is and we can not detect and exclude this dishonest user (commonly called a traitor),
since all the receivers have the same secret key.

In “one-to-many” communications, there are new fundamental security requirements for the
security to deal with access control and traceability.

e Access control assures that only legitimate or targeted users have the right to decrypt the
message. The resulting schemes are generally called broadcast encryption (BE in short).
In practical applications such as pay-TV, the targeted set is often very large and contain
almost all users except some non-paying ones (who should be revoked from the system),
the targeted set is implicitly determined via the revoked set and the corresponding system
is commonly called a revoke scheme.

e While access control is quite natural to be considered in broadcast encryption, traceability
is really a new property which is “orthogonal” to the main objectives of classical crypto-
graphic systems. Since one cannot totally prevent receivers from leaking their secret keys
in “one-to-many” communications, we should discourage them from doing this. In fact,
when a user joins the system and commits himself to respect the security requirement by
not revealing any secret information; and if the user knows that the source of any secret in-
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Chapter 1. Introduction

formation leakage will be detected, then dishonest users are deterred from revealing their
secret. A multi-receiver encryption scheme with the ability to trace traitors is called a
traitor tracing (TT in short).

More formally, in “one-to-many” communications, two main primitives have been studied:
broadcast encryption prevents non-legitimate users from decrypting broadcasted information
and traitor tracing discourages malicious users from leaking their secrets to a pirate. In these
primitives, each user receives a decryption box, called a decoder, containing the secrets that help
to decrypt the broadcasted ciphertext. Broadcast encryption enables the center (i.e. broad-
caster) to choose any set of legitimate users to decrypt the broadcasted information. Traitor
tracing provides a way of embedding different secrets into each user’s decryption box so that
even if several traitors collude to produce a pirate decoder, the authority will still have the
capacity to trace at least one of them.

Before giving an overview of broadcast encryption and traitor tracing, let us discuss some
impacts in practice of these primitives.

Practical impact. Among many cryptographic primitives which have been proposed since the
introduction of public-key encryption, broadcast encryption and traitor tracing have received
quite a lot of attention due to their practical impact, especially in pay-TV and in positioning
systems. In the context of pay-TV, piracy has an increasingly alarming and direct impact on the
revenues of broadcasters. According to AEPOC (“Association Européenne pour la Protection
des Oeuvres et services Cryptés”), about € 1 billion are spent in the EU alone to acquire pirate
equipments every year. Another report from Datamonitor estimates that between 2004 and
2010, the loss for broadcast operators would have been around € 681 millions for a € 3.2 billions
benefit over the same period. Recent years have witnessed the emergence of a growing global
black economy based on piracy. In the context of positioning system, we can look at GALILEO
European project to build a global navigation satellite system (whose cost is estimated at € 3.4
billions). This project aims to be an alternative to the American GPS and broadcast encryption
schemes are at the core of Galileo to operate group management i.e. to allow or deny access
to some of its services. Depending on the practical requirements, the prime objective might be
very different from one system to another:

e in the commercial domain, the quality of service is more important than security: the
overall goal is to maintain a good quality of service while minimising the financial loss due
to piracy;

e in the military domain, the safety and preservation of governmental interests are the prime
concerns. If a technical solution cannot achieve a sufficient level of security with respect
to that purpose, it will not be implemented.

Due to a large number of potential multi-receiver scenarios, it is highly unlikely that a single
solution will fit them all. This motivates a trade-off between efficiency parameters and security
levels. Our goal is to construct schemes which are flexible enough to fit a variety of scenarios
in a way that is optimal (or close to optimal) and of which the security levels are rigorously
investigated. For the latter, we provide a quick overview of the vast domain of provable security.

1.2 Provable Security: a Rigorous Analysis of Security in Cryp-
tographic Systems

Cryptography has a very long history and the traditional way to design a cryptographic protocol
is by “trial and error”: a protocol is proposed and one tries to break it; if the protocol resists

— 4 —



1.3. Security Notions for Broadcast Encryption & Traitor Tracing

all attacks for a while then it is considered secure. Unfortunately, history has taught us that
this is not an appropriate way: many protocols (for example the Chor-Rivest scheme) have been
broken many years after they were believed secure. Only about 30 years ago, a fundamental and
radical idea was proposed by Goldwasser and Micali [GM84], followed by Blum, Micali [BM84]
and Yao [Yao82], suggesting that the security could be proved under standard and well believed
complexity theoretic assumptions, e.g. the assumed hardness of factoring. The methodology
they proposed has come to be known as provable security.

Security notions have been defined for cryptographic primitives. In our context of broadcast
encryption, we will mainly focus on confidentiality. The main goal for any encryption scheme is
secrecy: ideally, such a notion means that a ciphertext should not reveal any information about
the plaintext, no matter how powerful the adversary is. This had been defined under the term
“perfect secrecy” [Sha49], but also showed to be impossible unless one uses one-time pad, which
is a symmetric encryption that uses a secret key as long as the message to be encrypted. That
is, if one wants either to use a small symmetric key in order to protect many plaintexts or a
long message, or to use an asymmetric encryption, such perfect secrecy is impossible.

To overcome this theoretical impossibility which has no real practical impact (since adver-
saries are computationally limited), several security notions have thereafter been defined, namely
the polynomial security [GMS84], a.k.a. indistinguishability of ciphertexts or semantic security.
The semantic security intuitively means that no polynomially bounded adversary can extract
any information about the plaintext from the ciphertext. Indistinguishability was indeed de-
fined in the basic scenario only, where the adversary only has access to public information (in
the public-key encryption setting, the adversary can thus encrypt any plaintext of its choice,
hence the name of chosen-plaintext attacks, denoted CPA.) Naor and Yung [NY90] introduce
the notion of chosen-ciphertext attacks. However, they restrict the chosen-ciphertext attacks
to be non-adaptive, in the sense that the decryption queries can not depend on the challenge
ciphertext (a.k.a. lunchtime attacks, denoted CCA1l.) Rackoff and Simon [RS91] extend this
notion, with an unlimited access to the decryption oracle (excepted on the challenge cipher-
text), denoted CCA2, and provide a candidate with non-interactive zero-knowledge proofs of
knowledge. By now, the widely admitted appropriate security level for asymmetric encryption
is the chosen-ciphertext security (IND-CCA2, or CCA) which is actually the semantic security
against adaptive chosen-ciphertext attacks. In order to achieve semantic security, even in the
basic chosen-plaintext scenario, the encryption algorithm must be probabilistic, which means
that a given plaintext (with a fixed public key) could be encrypted in many different ways (at
least 2¥ different ciphertexts if 27% is the expected security level).

In the context of multi-receiver encryption, the most desired security level remains the se-
mantic security against adaptive chosen-ciphertext attacks. However, the adversarial model
needs to be extended. Indeed, the adversaries can have access to encryption/decryption oracles
but they can also corrupt legitimate users. In fact, in classical (single-receiver) encryption, if the
receiver is corrupted then the system collapses but in multi-receiver encryption, it is required
that even if a pirate corrupts many receivers, the security should still hold for the remaining
users. In the third part of this introduction, we will discuss the security notions for broadcast
encryption and traitor tracing which are the basis of our results.

1.3 Security Notions for Broadcast Encryption & Traitor Trac-
ing
The main goal of a BE scheme is to enable the sender of a message to choose any subset of users

(called the target set or the privileged set) to which the message will be encrypted. The target
set can be directly determined by the sender or can be implicitly determined via its complement
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- the revoked set. In the latter case, the resulting scheme is called a revoke scheme.

Theoretically, it requires N bits to uniquely identify a subset of a set of size N. However, if
the size r of the revoked set is small, it is sufficient to identify the revoked users, which can be
done using rlog NV bits. The same technique applies if the target set is small. In practice, we
should notice that the target set is quite stable (for example, in pay-TV, the target set is almost
stable during the whole month) and we only need to communicate the modification of the target
set between two periods. It was often sufficient to consider group key distribution where one
user is added to or removed from the target group: it corresponds to a broadcast encryption
where one user is added or removed from the target set. In general, it is widely accepted that
the size of the description of the target set is not taken into account when broadcast encryption
schemes are compared.

We now give formal definitions for BE schemes as key encapsulation mechanisms and define
the relevant security notions.

1.3.1 Definitions

Broadcast encryption is conventionally formalised as broadcast encapsulation in which a session
key is produced and this session key is required to be indistinguishable from random, under the
adversarial view. Such a scheme can provide public encryption functionality in combination with
a symmetric encryption through the hybrid encryption (a.k.a. KEM-DEM) paradigm [CS03]. We
hence use the terms encryption and encapsulation, key header and ciphertext interchangeably.

Definition 1.3.1 [Broadcast Encryption Scheme| a (public-key) dynamic broadcast encapsula-
tion scheme is a tuple of four algorithms BE = (Setup, Join, Encaps, Decaps) where:

e Setup(1¥) outputs (msk,ek) containing the master secret key and the (initial) encryption
key;

e Join(msk, i) outputs the key pair (sk;, pk;) for user i, and updates system parameters to
include the information of the users ¢ (by appending pk; to ek and sk; to msk).

e Encaps(ek, S) for a set of users S outputs (H, K) containing a ciphertext (a.k.a. key header)
and a session key (for a revoke scheme, replace S with R.)

o Decaps(ek, sk;, S, H) outputs K if i € S (or ¢ ¢ R in a revoke scheme) and L otherwise.

In some static schemes, the setup algorithm takes as input N as the number of users and
returns the secret keys for all users. This can be made to fit our definition by defining msk to
contain the concatenation of the user secret keys and defining Join to simply return the i-th key
contained in msk.

The correctness requirement is that for all subset S of users and for any ¢ € S:

If [(msk, ek) < Setup(1¥), K; < Join(msk, i), (H, K) < Encaps(ek, S)] then Decaps(K;, S, H) =
K. For revoke schemes, the definition is the same except that S is replaced with R, and we
require that i ¢ R.

We now discuss traitor tracing and more generally, trace&revoke schemes.

Definition 1.3.2 [Trace&Revoke Scheme| A trace&revoke encapsulation scheme is a broad-
cast encapsulation scheme with an additional tracing algorithm TraceD(RD, pk, msk): the traitor
tracing algorithm interacts in a black-box manner with a pirate decoder D that is built from a
certain set T' of traitors. The algorithm takes as input a subset Rp C [N] (suppose that, at the
time of tracing, there are N users in the system and Rp can be adversarially chosen), the public
key pk, the master key msk, and outputs a set Tp C [N]. Precisely, under the conditions:

— 6 —
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e There are at most ¢ traitors: |T'| < t;

e The minimal revoked set does not contain all the traitors: T' € Rp, or equivalently Sp =
(IN] — Rp) contains at least one traitor;

e D is “efficient” to decrypt ciphertexts (i.e. decrypts with some non-negligible probability)
for some revoked sets R that include the minimal revoked set Rp but do not contain all
the traitors (Rp C R but T' ¢ R);

then the tracing algorithm outputs at least one traitor in Sp, i.e. # # Tp € T N Sp.

The above definition captures both the functionalities of revoking users and tracing traitors in
a general black-box model. However, there are many others models for tracing such as non-
black-box tracing, single-key black box tracing [BF99b] models and tracing for stateful pirates
[KY02b]. The objective of the tracing procedure could also be relaxed in some situation where
it might be sufficient for the authority to disable pirate decoders. We would refer to the Kiayias
and Pehliganoglu’s book [KP10] for an overview of different types of tracing games.

A traitor tracing scheme is in fact a trace&revoke scheme without the possibility to revoke
users, namely the target set is always set to be the whole set of users. The combination of
traceability and revocability is challenging and they are often studied in separated ways. In our
works, on the one hand, we continue to investigate these properties in independent ways and on
the other hand, we try to combine them to achieve trace&revoke schemes.

1.3.2 Security notions

We define the strongest security model, namely the adaptive CCA security game for a dynamic
broadcast encryption Exsz E=CCA The game involves five phases:

1. Setup. The environment runs Setup(1%) to initialise the system and gives the adversary the
encryption key. (For symmetric schemes, the adversary receives access to an encryption
oracle instead.)

2. Query 1. The adversary has access to an ODecaps, an OJoin and an OCorrupt oracles. He
can query these oracles adaptively to: decrypt a chosen ciphertext; join new users to the
system; corrupt a subset of them and receive all their secrets. (In a BE scheme that is not
dynamic, there is no Join oracle as all users are created during setup.)

3. Challenge. The adversary outputs a set S of receivers it wants to attack. S must not
contain any user for which the adversary has already obtained the decryption keys. The

environment obtains (H, K') < Encaps(ek, S). It flips a coin b & {0,1} and sets K, = K,
K, & K. Then it returns (S, H, Ko, K1) to the adversary.

4. Query 2. This is the same as the key query 1 phase, except that the adversary cannot
corrupt users in S.

5. Guess. The adversary outputs his guess bit &’. If he has corrupted users in the set S or
queried the decryption oracle on the challenge header, the experiment aborts and outputs
L. The experiment outputs 1 if b =¥/, else 0.

We define the advantage of the adversary as

1

AdvpPEmCCA(A) = [ PrBxply M =1] - o



Chapter 1. Introduction

Definition 1.3.3 A BE scheme is (t, €, ¢p, gi )-secure, if for any ¢-time adversary A who makes
a total of gp decryption queries and gx key queries Adsz E-cca (A) <e.

In some security models, the adversary is given only one key, which is either the correct key
or a random element from the key set. We call this version the “real-or-random” (ROR) game,
and the experiment described above the “left-or-right” (LOR) game, in analogy to the security
definitions for encryption in [BDJRI7]. We can show in the same fashion that the two notions
are essentially equivalent, with a factor 2-loss in the reduction from LOR to ROR.

We dropped the requirement that S’ C S for the decryption oracle from [BGWO05]. The
notions are equivalent in the static security model used in the BGW paper, because the adversary
already knows all the decryption keys for users not in S and can therefore decrypt all the other
messages himself. The restriction seems artificial and is probably an artifact of the security
proof.

In the CCA1 version, the adversary has access to the decryption oracle only before the
challenge phase. In the CPA version, the adversary does not have access to the decryption
oracle.

1.4 Short Overview of Broadcast Encryption & Traitor Tracing

In the next chapters, we will discuss the most relevant techniques in designing a BE or TT
scheme and our contributions. Here we only give a short overview of the domain.

Broadcast encryption has first been described by Fiat and Naor in [FN93]. BE has not
received much attention until the last decade, when Naor, Naor, and Lotspiech presented their
(symmetric-key) subset-cover framework along with a security model and a security analy-
sis [NNLO1]. Since then, many BE schemes have been proposed and the subset cover framework
has become the basis for many subsequent proposals, including [DF03] which proposes the first
public key broadcast encryption.

Boneh, Gentry, and Waters [BGWO05| are first to propose a fully collusion-resistant public
key broadcast encryption in which the ciphertext size is constant. They proposed two schemes,
respectively CPA and CCA secure, both in the selective model of security where the adversary
is required to choose the corrupted users before the set up.

Adaptive security is proposed by [GW09] where the authors give several schemes which
achieve adaptive CPA security, including two broadcast encryption schemes and two identity-
based broadcast encryption (IBBE) schemes, one of them achieves constant-size ciphertexts in
the random oracle model. The schemes proposed in [Wat09] and [LSW10], respectively a broad-
cast encryption and a revocation scheme, are the only secure schemes under static assumptions
(as opposed to the so called ¢g-based ones). [LSW10] also proposes an identity-based revocation
scheme which is proved selective CPA secure.

Dynamic broadcast encryption is proposed in [DPP07] where they design CPA secure schemes
that are only partially adaptive secure. Strictly speaking, their scheme is a revocation scheme in
which the set of revoked users is selected at the time of encryption, and in turn, any user outside
of the revoked set is able to decrypt. [Del07] proposes identity-based broadcast encryption and
gives a selective CPA secure scheme. Based on BGW scheme, we propose in [PPSS13] a constant
size adaptive CCA secure inclusive-exclusive broadcast encryption scheme which can act both
as a broadcast encryption and as a revocation scheme at the same time.

The first formal definition of traitor tracing scheme appears in Chor et al. [CFN94b)|
CENPOQ] in which the construction requires storage, decryption time complexity of
O(t?1log? tlog(N/t)) and communication complexity of O(t3 log* t log(N/t)), where N is the size
of the users and t is the upper bound on the number of traitors. Stinson and Wei latter suggest
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in [SW98al explicit combinatorial constructions that achieve better efficiency for small values of
t and N.

In [BF99D], Boneh and Franklin present an efficient public-key traitor tracing scheme with
deterministic t-tracing based on an algebraic approach. Its communication, storage and decryp-
tion complexities are all O(t). The authors also introduce the notion of non-black-box traceability:
given a “valid” key extracted from a pirate device (constructed using the keys of at most ¢ users),
recover the identity of at least one traitor. This is in contrast with the notion of black-box tracing
where the traitor’s identity can be uncovered by only observing the pirate decoder’s replies on
“well crafted” ciphertexts. Unfortunately, Kiayias and Yung [KY01lc] show that black-box trac-
ing cannot be efficient (say, in poly-time) in this type of scheme whenever the number of traitors
is superlogarithmic. The Boneh-Franklin scheme can however achieve black-box confirmation:
given a superset of the traitors, it is guaranteed to find at least one traitor and no innocent
suspect is incriminated. Boneh et al. [BSW06b, BWO0GbD] propose traitor tracing schemes that
withstand any number of traitors (full traceability) while requiring a sub-linear ciphertext length
(O(V/N)). Very recently, Boneh and Zhandry [BZ14] propose a fully collusion resistant scheme
with poly-log size parameters. It relies on indistinguishability obfuscation |[GGH™13c|, of which
security foundation remains to be studied and practicality remains to be exhibited.

In [Pfi96], Pfitzmann introduces the notion of asymmetric traitor tracing. In this model,
the tracer uncovers some secret information about the traitor that was a priori unknown to the
system manager. Thus, the result of the tracing algorithm provides evidence of the treachery.
Further results in this direction are in [KD98bl [KY02d, KY02a]. We put forth the notion
of public traceability, i.e., the possibility of running tracing procedure on public information.
Some schemes [CPP05al [PSNTO06b, BWO6D, BZ14, [LPSS14] achieve public traceability and some
others achieve a stronger notion than public traceability, namely the non-repudation, but the
setup in these schemes require some interactive protocol between the center and each user such
as a secure 2-party computation protocol in [Pfi96], a commitment protocol in [PW9T7] or an
oblivious polynomial evaluation in [WHIO1, [KWHIOT) [KY02a].

Alternative traitor tracing solutions [FT01, BPS00, [SW03] have also been proposed to fight
rather leakage of the decrypted content than leakage of the decryption capabilities.

A class of schemes relying on the use of collusion secure codes [BS95, BS98, [Tar03] has
been introduced by Kiayias and Yung in [KY02c]. These code-based schemes enjoy many nice
and desirable properties: they support black-box tracing and the ratio between the ciphertexts
and the plaintexts is constant. However, since these schemes use collusion secure codes for
both the ciphertext and the key used in the decoders, the sizes of the ciphertexts and keys are
quite large. Another drawback of [KY02d, [CPP05a] comes from the use of an all-or-nothing
transform (AONT [Riv97]) to prevent deletion of keys from the pirate decoders as a way to
escape the tracing procedure based on the underlying collusion secure code. Based on robust
codes [SNWO3b), [Sir07al, BNO8b| Nui09], Boneh and Naor [BNO8b] and us [BP0§] independently
improve the Sirvent scheme to make the ciphertext size constant. These schemes become quite
competitive but their drawbacks remain the large private key size and their weak resistance to
collaborative attacks [BP09].

Recently, in [LPSS14], we introduce the first lattice based traitor tracing in the bounded
model in which the security relies on the hardness of a new variant of the LWE problem, called
k-LWE.

As originally observed in [GSY99|, traitor tracing schemes are most useful when combined
with revocation schemes; such trace&revoke approach consists in first uncovering the compro-
mised decryption keys and then revoking their decryption capabilities, thus making pirate de-
coders useless. We can name some schemes in this category [NP00, [TT01l, NNL01, DF02, DF03,
KHLO03, DFKY05, BWO0G6b, INPP13|. The construction of practical trace&revoke schemes still
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remains a challenge.

Organisation of the thesis. Overall, broadcast encryption and traitor tracing schemes can
be categorised into two main classes: combinatoric schemes and algebraic schemes. The first
chapter is devoted to combinatorial schemes; the second one deals with algebraic schemes and
also with schemes that combine both algebraic and combinatorial structures. In each chapter,
we present the state of the art and our contributions. Finally, the third chapter is devoted to
discussing about new attack models, generalised models of broadcast encryption and perspectives
for our future works.



Chapter 2

Combinatorial Approach

Combinatorial broadcast encryption schemes are mainly based on a tree structure or on a fin-
gerprinting code. Tree-based schemes support revocation but have limited capacity dealing with
tracing traitors, while code based ones provide traceability but not revocation. Our objective
is to propose methods that can support both traceability and revocation. In one direction, we
introduce a trace&revoke code and in another direction, we integrate revocation into some code
based schemes. We also propose efficient code based schemes with optimal transmission rate
but because these schemes require a combination with some algebraic structures, we postpone
the presentation to the end of the next chapter on algebraic schemes.

In Sections [2.1]and [2.2| we present the state of the art in constructing combinatorial schemes
and then, in Sections and we present our contributions.

2.1 Tree-based Constructions

The subset-cover framework proposed by Naor, Naor, and Lotspiech in [NNLO1] is a powerful
tool to design efficient trace&revoke systems. It captures the ideas in previously proposed traitor
tracing systems and forms the basis of the so called NNL scheme used in the content protection
system for HD-DVDs known as AACS [AACa].

2.1.1 Brief Description of the Subset-Cover Framework

The subset-cover framework is a powerful mean to capture several trace&revoke designs. It
encompasses several traitor tracing schemes proposed to date and maybe even more importantly,
serves as the basis for two of the most efficient trace&revoke schemes: the complete subtree
scheme and the subset difference scheme.

In the subset-cover framework, the set N of users in the system is covered by a collection of
subsets S; such that U;S; D N and S; NN = (). This covering is not a partition of N and the sets S;
rather overlap. To every subset S; corresponds a long term secret key L;, and every user that
belongs to S; is provided with this secret key—or in an equivalent way, with some materials that
allow him to derive this secret key. Therefore, every user u of the system is given a collection of
long term keys {L;, } that together form his secret key which we denote by sk,.

In order to broadcast a content M, the center uses a standard hybrid scheme: a session
key K is first drawn randomly and used to encrypt the content (with an encryption scheme E’)
before being encapsulated under multiple long term keys (with another encryption scheme E).
The long term keys L;,, k = 1,...,l are chosen so that the corresponding subsets S;,, ..., S;
only cover the set of users entitled to decrypt. Therefore, the center broadcasts ciphertexts of
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Figure 2.1: Complete subtree: leaves correspond to users, Sy, ..., Sg consist of the covering that
excludes revoked users (in black) while allowing other users to decrypt.This is derived from the
Steiner tree associated to the set of revoked users R.

the form:
[ (i1, Br,, (K)), (i, Bry (K)), -, (i, Ep, (K)) || Bge(M)]

To decrypt, a valid decoder for user u performs the following sequence of operations: it first
looks for an index 4; in the first element of each of the [ couples (ix, E;, (K)) in turn such
that 8;; C sky. If no index corresponds, the decoder does not decrypt; otherwise, the decoder
retrieves the corresponding long term key L;; and uses it to decrypt the associated encrypted
session key Ej, (K) and then decrypts the payload Ef (M).

Since the system is built to handle revoked users, let us also denote by R the set of revoked
users in the system at any point in time. In order to prevent them (individually but also
together as a collusion) from accessing the encrypted content E% (M), the collection S; , ..., S;
is specially crafted so that:

l
sy =N\R.
k=1

2.1.2 Complete Subtree Scheme

In this scheme, the users correspond to the leaves of a complete binary tree whereas the collection
of subsets S; exactly corresponds to all the possible subtrees in the complete tree. When |N| = 27,
the complete binary tree is of length n and there are exactly n subtrees that contain a given
leaf. Figure shows a covering using six subsets of twelve users that excludes four revoked
users (depicted in black). This subset scheme complies with the bifurcation property since any
subset (or equivalently any subtree of the complete binary tree) can be split into two subsets of
equal size (the two subtrees rooted at the two descendants of the root of the original subtree).
Regarding the key assignment, each user represented by a leaf uw in the complete binary tree is
provided with the keys L; associated to the nodes ¢ on the path from the leaf u to the root.

Covering algorithm. In the case of the complete subtree, the covering used to exclude the
r = |R| revoked users from N is the collection of subsets that hang off the Steiner tree of the
revoked leaves. (The Steiner tree of the revoked leaves is the minimal subtree of the complete
binary tree that connects all the revoked leaves to the root and it is unique.) Since any user
only knows the keys from its leaf to the root and since this path is included in the Steiner
tree for revoked users, these users cannot decrypt anymore. This algorithm produces covers of
size O(rlog(N/r)).

2.1.3 Subset Difference Scheme

The subset difference scheme has been introduced to lower the number of subsets required to
partition the set of legitimate users N \ R. It improves the above presented complete subtree
scheme by a factor of log(/N/r) in terms of bandwidth usage for the headers.
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Figure 2.2: Key assignment. User u receives all the labels LABEL; ; such that 7 is a parent of j
and ¢ is on the path from the leaf of u to the root.

To attain this level of performance, the number of possible subsets has been tremendously
increased. Remember that S; denotes the full binary subtree of the complete binary tree rooted
at node 7. Now, for each node j in S; different from ¢, let us denote by S; ; the binary subtree
rooted at node i of which the full binary subtree rooted at node j has been removed. (See
examples in Figure ) A user will need to know all the keys L; ; such that he belongs to the
subtree rooted at 7 but not to the subtree rooted at j. However, it would be impossible for each
device to store such a large number of long term keys. This is why a key derivation procedure
has been designed to allow the derivation of most of the O(N) long term keys: a user only
needs to store O(log?(N)) keys. Each node i in the full binary tree is first assigned a random
label LABEL;, then labels LABEL; ; together with their corresponding long term keys L; ; are
deduced (in a pseudo-random way) from label LABEL;. The key derivation procedure then works
as follows: from each LABEL;, a pseudo-random value LABEL,; ; is obtained for each sub-node j
using the tree based construction proposed by Goldreich, Goldwasser, and Micali [GGMS84];
from this value LABEL; ;, a long term key L; ; is eventually deduced (in a pseudo-random way).
Each user is then provided with labels LABEL; ; for all nodes ¢ that are on the path from the
leaf that represents the user to the root and all nodes j hanging off this path as described on
Fig. This key assignment ensures that every user in the subtree rooted at node ¢ but not
in the subtree rooted at node j is able to derive L;; while every user in the subtree rooted at
node j is not able to derive L; ;.

Covering algorithm. The covering algorithm works by maintaining a subtree T of the Steiner
tree of R and removes nodes from it at each step:

init: Make T the Steiner tree of R.

select: If there is only one leaf v;, in T and it is not the root (or node 0), add the subset Sg j
and return. If there is only the root in T, return. Otherwise, select two leaves v,
and v;, from T so that their least common ancestor v does not contain any other
leaves of T' than v;, and vj;,. Call v;; and v;, the children of v such that v;, is the
ancestor of v;, and v;, the ancestor of v;,. Then, if v;; # v;,, add 8;, ;; to the partition
and similarly if v;, # vj,, add 8;, j, to the partition. Remove all the descendants of v
from 7', which makes v a leaf of T'. Reiterate the step ‘select’.

An example output of this procedure is shown in Figure

2.2 Code based Traitor tracing

Fingerprinting with collusion secure codes allows one to identify a digital document among
several copies of it by embedding a fingerprint (a codeword). Such an identification scheme
must be resilient to collusions of traitors trying to remove their fingerprints so as to escape
identification. Therefore, collusion secure codes share some properties with traitor tracing;
However, the main assumption here (called the marking assumption) is that the traitors from a
collusion are only able to identify the positions where the digits from their respective codewords
differ; such positions are called detectable positions. This assumption especially makes sense
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Figure 2.3: Subset difference: leaves correspond to users and black nodes are not able to derive
the necessary information to decrypt. Therefore Sy 19 prevents user 19 from decrypting, S5 10
prevents users 20 and 21 from decrypting, and S3 28 prevents user 28 from decrypting. All other
users are able to decrypt.

with fingerprinting data: apart from the codewords, the documents are identical, and it is easy
to uncover places where two copies of a document differ.

Among the first constructions are the identifiable parent property (IPP) codes introduced
in [CEN94b|. These codes are defined over large alphabets and can be obtained from linear
codes or from combinatorial constructions. If the condition that a traitor is always correctly
identified in IPP can be relaxed, i.e. tracing algorithm may fail with some negligible probability,
then more efficient construction can be achieved. Randomized collusion secure codes, which can
be seen as “relaxed” binary IPP codes, have first been proposed by Boneh and Shaw in [BS95].
These codes are more efficient than linear codes based IPP codes. In Boneh-Shaw codes, the
length of the codewords is O(N3log(N/e¢)) for fully-collusion resistant codes and O(c* log(N/e))
for codes resisting collusions of at most ¢ traitors. Tardos latter introduces a new construction
in [Tar03] and proves that the size of its codewords is optimal: a length of O(c?log(N/e)) is
enough to resist collusions of at most c traitors. This obviously gives fully-collusion secure codes
of length O(N?%1log(N/e)).

We will first give a definition of an IPP code, then a description of Tardos’ construction and
finally explain the general framework of constructing traitor tracing schemes which relies on any
IPP code, including the most important case of collusion secure code.

2.2.1 IPP codes

Let Q be an alphabet set containing ¢ symbols. If C' = {wi,ws,...,wy} C QF, then C is
called a g-ary code of size N and length ¢. Each w; € C is called a codeword and we write
w; = (Wi 1,W;2,...,w;e) where w; ; € Q is called the 4* component of the codeword w;.

We define descendants of a subset of codewords as follows. Let X C C and v = (uq,...,u) €
Qf. The word u is called a descendant of X if for any 1 < j < ¢, the j* component u; of u
is equal to a j™ component of a codeword in X. In this case, codewords in X are called
parent codewords of u. For example, (3,2, 1,3) is a descendant of the three codewords (3,1, 1,2),
(1,2,1,3) and (2,2,2,2). We denote by Desc(X) the set of all descendants of X. For a positive
integer ¢, denote by Desc.(C) the set of all descendants of subsets of up to ¢ codewords. Codes
with identifiable parent property (IPP codes) are defined below.

Definition 2.2.1 A code C is called ¢-IPP if, for any u € Desc.(C), there exists w € C such
that for any X C C, if | X| < ¢ and u € Desc(X) then w € X.

In a ¢-IPP code, given a descendant u € Desc.(C), we can always identify at least one of
its parent codewords. It is also required that the tracing is error-free and a traitor is always
correctly identified. There are many constructions [SW98d|, [SSWO01bl [TMO05] of ¢-IPP codes.

Binary ¢-IPP codes (with more than two codewords) do not exist, thus in any ¢-IPP code, the
alphabet size ¢ > 3. However, if we relax the condition on error-free tracing then we can obtain
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binary codes which are called collusion secure codes. Therefore, in collusion secure codes, there
is an error parameter that specifies the probability that the tracing algorithm fails to output the
correct parent codeword. As mentioned, the most efficient codes are Tardos’s collusion secure
codes.

2.2.2 Tardos’ construction

We now briefly describe the generation of a Tardos collusion secure code as proposed in [Tar(03].
We additionally describe the associated tracing procedure.

Code generation. In order to generate a code for N users that resists c-collusions, set
the length ¢ = 100c?log(£) where € is the false-positive error probability (i.e. the probability
that an innocent user is accused) of the tracing algorithm and randomly draw a sequence of
probabilities p; as follows:

P = sin2(7“,-), ie[1,4]

where 7; is randomly drawn from [t,7/2 —t] and 0 < t < 7/4 is chosen so that 300 csin?¢ = 1.
FEach binary codeword w of the code is then constructed by setting its i-th digit to be either ‘1’
or ‘0" according to probability p;, that is: Pr[w; = 1] = p;.

Tracing procedure. The authority traces a subset of traitors from a collusion (of at most
¢ traitors) that has produced a binary word v by computing an accusation sum 7, for each
possible codeword w via:

Di 1 —p;

¢
1_ . -
Zw—Z’UZ"(’U_Ji pl—i-(u_)i—l) b ) s
=1

where w; is the bit w; viewed as an integer. Then, users corresponding to codewords w such
that Z,, > 20 clog(%) are declared traitors. Tardos proves that the probability of false-negative

alarms (7.e. the probability that no traitor is found) is then e“/*.

2.2.3 Code-based traitor tracing

At a high level, the idea is to first define a g-user sub-scheme which is resilient against a single
traitor, and then “concatenate” v instantiations of this sub-scheme according to the g-ary IPP
code C; in particular, each user ¢ € [1,n] is associated to a codeword w@® in C, and given the
decryption key sk; := (k’Lw(i), .. k o) )), where w() is the j-th bit of the codeword w(®, and
kjo,...,kjq—1 are the keys for the j- th 1nstant1at10n of the basic 2-user sub-scheme. The session
key K is decomposed into random sub-keys as K = K; @& Ko--- @ K; and then each Kj; is
encrypted with each of the k;; to form a sub-ciphertext ¢; ;. The whole ciphertext contains
all sub-ciphertexts and the decryption is realised in a natural way: each user i decrypts sub-
ciphertext € ol with its secret key k (l) to get K for any j = 1,...[ and finally gets K. Here

is an example of a traitor tracing Wlth 3 ary IPP code.
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Key assignment :

Tabeo SR - W

Table 1 kl,l k1,2 k1,3 k1,4 k1,5 kl,g
Table 2 k271 k272 k273 k274 k275 kz’g
Codeword 17 1 2 0 2 0 1
user 1% ]{)1,1 kz’g - k2’4 - k17z
Encryption :

Session Key K& Ko® Kz Ko Kz ... 0K, =K
Ciphertext [EICEMNGEICAINGEN - W

C1,1 C1,2 C1,3 Cl,4 5 .. Cie

C21 C2.2 C2.3 C2.4 C2.5 Cov

Construction of traitor tracing with robust fingerprinting codes [BP08]. Indepen-
dently from Boneh-Naor [BNO8b|, we consider an efficient way to construct a traitor tracing
from robust fingerprinting codes [BPOS]: instead of decomposing the session key K into I
parts, we simply decompose it into w parts, for some u much smaller than [. This helps
us to reduce the ciphertext size from O(lq) to O(ug). However, under this encryption, if
the adversary erases some position in his codeword then he still can decrypt a large part of
the ciphertexts and with fingerprinting codes, one cannot trace back the traitors. This re-
quires us to use robust fingerprinting codes which exactly deals with adversaries who can
erase some parts of their codewords. This requires a stronger definition of a feasible set:
FS*(w1,...,wy) = {w € {0,1}"|Vi € [n] : (wi] = x) VvV (3j € [t] : w[i] = w;[i])}. Robust
fingerprinting codes are constructed by Safavi-Naini and Wang [SNWO03b] and Sirvent [SirQ7a].
Nuida [Nui09] gives the most efficient construction to date.

2.3 Black-Box Trace & Revoke Codes [NPP13]

NNL schemes, though described as trace&revoke schemes, work better for revocation than for
tracing traitors. In fact, the tracing works well if we suppose that the decoder is naive, i.e.
it decrypts (with some non-negligible probability) all the ciphertexts as it can, without any
strategy. For smarter decoders, the scheme may not be able to identify a traitor but achieve
a medium goal of making the pirate box useless by finding a “pattern” that does not allow
decryption using the pirate box but still allows broadcasting to the legitimate users.

In practice, we certainly cannot assume that a decoder will accept to decrypt any signal
because the pirate might be able to distinguish a normal ciphertext from an abnormal ciphertext
which is probably only used in a tracing procedure. The pirate surely prefers an imperfect
decoder that decrypts “almost” all ciphertexts and is untraceable rather than a perfect but
traceable decoder. For example, considering the Complete Subtree scheme, let us first notice
that the complete subtree scheme can be casted in terms of a binary code as follows: there is
a codeword for each leaf of the N-leaf full binary tree 7. The code length is £ = 2N — 1, each
position (i.e. coordinate) of the code corresponds to a node of the tree. For each codeword w, 1
is put in a position if and only if the corresponding node is on the path from w to the root. We
will refer this code as the CS-code (see figure . The pirate decoder can employ the following
strategy: it does not decrypt any weight-1 signal where the 1 is in the position of a traitor leaf
node. Under this strategy, the CS-code is not traceable, unless with error probability of at least
1/2 because no tracing algorithm can distinguish a traitor (a leaf node) from its sibling in the
full binary tree. Note that the sibling may very well be a non-traitor. The CS-Code cannot
deal with this type of pirate strategy because the code has a rigid structure where each position
plays a specific role and corresponds to a subset of users of different sizes.
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Figure 2.4: Complete Subtree Scheme (for 8 users) can be viewed as a binary code with high
structure (each subtree corresponds to a line which defines a binary codeword)

Our objective is to propose probabilistic constructions of codes where all the code positions
have the same role and thus the strategy of refusing to decrypt some positions has no significant
impact on the tracing algorithm. Our probabilistic constructions, described in the next sections,
can deal with the above pirate strategy against CS-Code for that reason.

However, the pirate strategy can certainly be smarter than rejecting some position(s) of the
code. For example, for a probabilistic code where the codewords are chosen independently from
the same distribution and all positions play the same role, a non-trivial pirate can estimate the
(Hamming) weight of signals used in broadcast encryption and refuse to decrypt a ciphertext
that corresponds to a signal containing too few or too many 1s. This pirate strategy, called the
“weight-limited pirate”, is formalised as follows:

Definition 2.3.1 [Weight-Limited Decoder] A Weight-Limited Decoder is a decoder that
only decrypts signals ¢ with Hamming weight in an interval [a, b].

It seems to us that for probabilistic constructions of codes where all the code positions have
the same role, it is hard for a pirate to employ any other strategy than the Weight-Limited
Decoder because the codewords look random and the most important information seems to be
the Hamming weight. We therefore focus on Weight-Limited Decoder and construct a scheme in
which in the tracing procedure we randomly sample tracing signals that have the same weight
as in the ciphertext.

2.3.1 The construction

We first indicate a simple connection between traceability of codes with the so-called disjunct
matrices, a classical combinatorial object originally used in group testing, which has “built-
in” tracing capability. Roughly speaking, a r-disjunct matrix is a binary matrix satisfying the
following property: given the (boolean) union of at most r unknown columns of the matrix, we
can identify all the unknown columns. This concept is used to design non-adaptive group tests
in the following sense: there is a set of at most r positive items in a population of N items



Chapter 2. Combinatorial Approach

and the rest of the items are negative; we must identify the positives using as few non-adaptive
“tests” as possible; each test is a subset of items; a test returns positive iff at least one positive
item is contained in the test. In the original group testing application [Dor43], each item is a
blood sample, and a test is a pool of blood samples which indicates if any sample in the pool is
positive for syphilis. That application explains the “positive” and “negative” terms.

The problem with disjunct matrices is that they have no “built-in” efficient revocation capa-
bility. Indeed, disjunct matrices or equivalently cover-free families [EFF85] have been used for
traitor tracing in [TSNOG]. However, by following the tracing framework of [BF99D] it cannot
be used for revocation. We deal with this problem by considering a combinatorial object called
(r, s)-disjunct matrices which retains the tracing-capability of disjunct matrices while also sup-
ports revocation. Intuitively, a matrix M is said to be (r, s)-disjunct if for an arbitrary set R of
up to r columns of M, there is a set I C [¢] of at most s rows which eliminates R, or equivalently,
covers N — R. It is not hard to see that (r,s)-disjunct matrices, while attain efficient revoca-
tion capability, also retain the traceability of disjunct matrices. It turns out that (r, s)-disjunct
matrices are equivalent to exclusive set systems (ESS for short), first introduced by Aiello et al.
[ALO98| under the name complement cover families and independently latter by Kumar and
Russell [KRO3|]. In [GSY99], the authors consider traitor tracing for exclusive set systems but
only in white-box model where the pirate key is supposed to be known. This somewhat looses
the main advantage of supporting black-box tracing in code-based systems.

Our main contribution is to present good (r, s)-disjunct matrices which allow for black-box
tracing and efficient revocation.

In fact, we generate a matrix M € M(N,b,n) with £ = bn rows and N columns, and
independently generate columns of M where each column of M, viewed as a subset of [¢], is
chosen by picking uniformly (with probability 1/b) and exactly one bin from each part. In
particular, each column of M has exactly n elements.

We can think of each column as a “ball” and each part is a collection of b bins. The
distribution M(N,b,n) is defined by throwing N balls to b bins belonging to a part, and by
repeating that experiment n times, one for each part. This type of matrix distribution is used
in constructing compressed sensing matrices. The resulting random matrix can also be thought
of as the incidence matrix of concatenating a random code of length n with the identity code
[NPR12]. The idea is to choose a matrix M at random from M (N, b,n) with suitably chosen
parameters n and b, and show that M is (r, s)-disjunct with high probability.

Tracing smart pirate with shadow group testing If we consider naive pirates who decrypt
any ciphertext as they can then we are done. Indeed, the properties of (r, s)-disjunct matrices
directly allow us to do both revocation (as for r-disjunct matrices) and tracing (by sending
special weight-1 tracing signals to the pirate decoder and then we can cover the union vector
of the traitors’ codewords, which is sufficient for tracing). However, it is a challenging problem
to deal with a smart pirate, namely the Weight-Limited Decoder as discussed above. We first
remark that if the tracing algorithm works for a weight-limited decoder with interval [a, a], then
it a fortiori works for a weight-limited decoder with interval [u, v], for any u < a < v. Therefore,
the most interesting case is a singleton interval. The main problem for tracing procedure is that
we can now ask the decoder random queries of the same weight, say a, with normal ciphertexts.
The point is that, instead of identifying a traitor, we can only identify a vector w € {0,1} that
is contained in the union of all traitors’ codewords and contains at least one traitor’s codeword.
Identifying w = (wy, - -+ ,wy) is then equivalent to identifying all the coordinates ¢ of w for which
w; = 1. Thus, there is a subset U C [{] of at most D unknown coordinates that we want to
identify. We need to query the pirate decoder with weight-a signals ¢ to identify U. Each query
¢ is the characteristic vector of a subset of size a of [¢]. So we think of each query as an a-subset



2.4. Trace&Revoke from linear codes

Revoked users

uy U, Uy
1 S
b ligne k "1 S L
L Sy L
1 1
1
1 1 1
1 |
n blocs
T, T |
1 1
1
1 | | Sienb ||

Figure 2.5: Construction of (r, s)-disjunct matrices

A of [f]. The decoder is able to decrypt query A if and only if there is at least one traitor whose
codeword intersects A. In other words, each query A is a group test for the “positives” U in the
population [¢]. The queries then form a matrix which, interestingly, is also a disjunct matrix.
We thus have a group testing problem “inside” another group testing problem. We refer to
the “inner” group tests as the shadow tests, because they are not used to directly identify the
traitors: they are rather used to identify the shadow U of the traitors.

The resulting code yields a trace&revoke scheme with private key size and ciphertext length
O((t+r)log(N/(t+r))) for N users, at most r revoked users and at most ¢ traitors. The constants
hidden in the big-O are small (< 8). This randomized construction yields a key assignment
scheme where users independently pick their keys from the same distribution and all keys have
the same role. Thus, unlike the complete-subtree method which leads to a highly asymmetric
key assignment making it suitable for a more relaxed tracing model (called semi-BB in the
comparison table but unable to dealing with tracing a traitor for smart pirate decoders,
our code has better “built-in” support for traceability against non-trivial pirate strategies.

2.3.2 Summary

Table summarizes some known results on combinatorial constructions.

2.4 Trace&Revoke from linear codes

Linear codes can be used for traitor tracing. It is shown [SSWO0O0] that any (n,k, A),-code is
an g-ary c-IPP code with A > n(1 —1/c?). However, it is not known how we can achieve both
tracing and revoking ability with linear codes. We propose a method for this goal by generalising
the previous framework of constructing traitor tracing from IPP codes. We then instantiate the
generic scheme with concrete linear codes, namely Reed-Solomon code and Porat-Rothschild
codes.

In fact, we generalise the code based traitor tracing in section in two aspects:
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Paper 4 s k (keys per user) Constraints | Traceability | Eff. dec?
[KRO3]| O(s3(Ns)"/$log N) s>r O(s3(Ns)™/% log N) N large 777 No
[ATO98| (CNTZI) s = O(rlog.(N/r)) 2n any ¢ > 2 777 No
rlog N )2 rlog N )2 rlog N )2 .
[GSY99] (_Lffr ) s = (—l;fT ) (_l;ggr ) Com White-Box No
r° log N r° log N r° log N
[KRS99] oae— 5= 8 T 777 Yes
NNLO1 2N s = O(rlog(N/r)) log N semi-BB Yes
NNLOL Nlog N s=2r logZ N Com semi-BB Yes
HS02 s =0(r) log' T¢ N Com semi-BB Yes
GST04| s=0(r) O(log N) Com semiBB Yes
[JTHCT05) s = ﬁ + % O(cPt1h) for any p,c, No Yes
Com
[GRWO6) Poly(r, s) (1:) e s = rlog(N/r) Poly(r,log N) 777 No
[GRW06) o (rs (]:)1/3) 2r Poly(r)N1/2 777 Yes
Ours 8r2log(N/r) s = 4rlog(N) k = 2rlog(N/r) Black-Box Yes

Table 2.1: Known results on combinatorial constructions.
computational assumption. “?77”: not considered in the paper. “semi-BB”: tracing can either
trace a traitor or output a partition that the pirate decoder cannot decrypt.

“Com”: the security is based on
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e In each position, we do not encrypt the sub-key K; with all the keys k; ;. Instead, we
encrypt K; with a subset of the keys k; ;. By this way, we can revoke users by not
encrypting K; with the key k; ; if the user ¢ has been revoked.

e By “revoking” the key k; ; of a revoked user in a sub g-user scheme, legitimate users are
also affected because the key k;; is shared among many users and some of them might
also be revoked. The decomposition of the session key K as K = K1 @ Ko--- ® K; does
not work anymore. However, we can show that legitimate users still get sufficiently large
number of non-revoked sub-keys and therefore, if we decompose the session key K with
an appropriate secret sharing then non-revoked users can still decrypt.

We illustrate our modification of the code based traitor tracing in section to achieve a code
based trace&revoke as follows:

Key assignment:

Table 0 -
Table 1 N W)
Table 2 k2,1 k2’2 k}2’3 k2,4 k2’5 ]{52,4
Revoker 1 k11 k1,
Revoker 2 ka1 K1

Encryption:

Session Key K, Ky, Ks K, -secret sharing g

Ciphertext  [NEg

C1,2 C1,3 C1,5
C1,3 C1,5 (SW)

The analysis in this section is based on our on-going work and we would give some details
of our solution.

Let C be a (n,k, A)4-code, over an alphabet ¥ of ¢ symbols. A mizture S = (Si,...,S5y)
over X" is a sequence of n subsets of 3, i.e. S; C X. Given a vector w = (wy,...,w,) € X",
the agreement between w and a mixture S is defined to be the number of positions i € [n] for
which w; € S;:

n
AGR(W, S) =3 1yes,.
=1

We consider the following broadcast system. For each i € [n] and each symbol a € X, there
is a key k(; 4. There are N = ¢* users in the system. Each user corresponds to a codeword
c € C, where the user is given n keys k(; ).

Let s be a secret message to be broadcasted. Let si,..., s, be the shares of a (pn,n)-secret
sharing scheme. At least pn shares are needed to recover the secret s. Let S be a mixture over
X" We broadcast using mizture S by encrypting each s; with all the |S;| keys k; o for a € S;.
Thus, if anyone is able to decrypt the message, that person has to possess at least pn keys from
separate sets 5; of the mixture S.

Revocation To revoke r users R = {c; | j € [r]}, where ¢; € C are codewords, we do the
following. Define

Rli) = Ujep{e; il}-

And, we broadcast using the following mixture:
S=(S1,...,5)=(X—-R[1],...,X — R[n]).
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Now, we need to make sure that for every user w ¢ R, w is able to decrypt the message, which
means we want
AGR(w, S) > pn.

What property must the code satisfy for this to happen? Note that w shares at most n — A
positions with any codeword in R. Hence, there are at least n — r(n — A) positions ¢ for which
w; ¢ R;. In other words, AGR(w, S) > n — r(n — A). Thus, a non-revoked user can decrypt if

n—r(n—A)>pn

Azn(1-222).
r

Tracing Suppose we are broadcasting using some mixture S. Let T be the set of traitors.
Now, using the blackbox method described in [CEN94b], we obtain a set F' of at least pn keys
k; q; for which a; € S; for each such key.

Naturally, we will view F' as a mixture (F1, ..., F,) which has pn singletons (F; = {a;} if
ki q, € F) corresponding to the keys and the rest are empty sets. Let w be the codeword which
agrees with F' in the most number of positions. We want w € T

Let ¢ be the (maximum) number of traitors. We know that there must be one traitor ¢ who
contributed at least pn/t keys to F. Thus, it is sufficient to ensure that, for every user u ¢ T
AGR(u, F') < pn/t. But we know that AGR(u,c) < n — A for any traitor ¢ € T'. Hence,

which is equivalent to

AGR(u, F) < Z AGR(u,c) < t(n— A).
ceT

Thus, it is sufficient that
t(n —A) < pn/t,
which is equivalent to

A >n(l—p/t?).

Trace&revoke So, for the system to be able to trace&revoke, we need a (n,k, A)4-code in

which A>n.max{<1_1—rp>’(1_p/t2)} =n. (1—min{1—p’p/t2}>.

r

The number of keys per user is n. The broadcast key size is at most ng We just proved the
following theorem.

Theorem 2.4.1 Let p € (0,1) be an arbitrary real number. Let r,t < N be postive integers.
Suppose there exists a (n, k,d)q-code for which

1—
5>1—min{p,'02},
r 1
and ¢° > N. Then, there exists a tracefrevoke system which can support up to r revoked users

and t traitors in which the user key size is n and the broadcast key size is s < ngq.

Example 2.4.2 (Using a code meeting GV-bound) Let’s pick p=1/2.
Set d = max{2r, 2t?}. As we have seen above from the application of Porat-Rothschild derandom-

ization of the Gilbert-Varshamov bound, we can explicitly construct a code with relative distance
d=A/n>1-1/d where g =0O(d), n = O(dlog N).
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The number of keys per user is
n=0 (max{2r, 2t?} log N)
which is probably not too bad. The broadcast key size
s<gn=0 ((maX{Qr, 2t2})? log N)
is bad.
Example 2.4.3 (Using RS-code) Again pick p = 1/2 and set d = max{2r,2t*}. The RS-

code has § = ”‘Tk“ =1- % + % In this case, if we choose n = kd then p >1—1/d. Hence, to
use RS-code, we need to pick ¢ > n = kd such that ¢* > N or, equivalently, nlogq > dlog N.

For example, we can pick ¢ =n ~ % and k =~ lﬁ)gg];[. In this case, the number of keys
per user 1s
( 2dlog N >
n=0|——m—-=—
log(dlog N)
and the broadcast key size is
s = O(n?).

Or, if we only want to reduce the number of keys per user we can do something extravagant such
as picking ¢ = 2". In this case, we have

n = +/dlog N

and

s =n2" = /dlog NN

Final remark. The parameter p characterises in fact the trade-off between the capacity of
tracing and the capacity of revoking. Indeed:

e When p = 1, the above code is the Tracing traitor system in [CEN94b]. The (n,n)-secret
sharing could be very efficiently implemented (the xor of n parts).

e When 1 < pn < n, as shown above, we could combine the functionalities of an ESS system
(for revocation) and a black-box tracing against any pirate strategy. However, we should
note that the (pn,n)-secret sharing makes the scheme less efficient than in the cases where
pn=1or pn =n.

e When p = %, the above code is an ESS system. The (1, n)-secret sharing becomes trivial.
Each singleton S; = {a;} defines a subset covering all users who have the key k; 4,. This
corresponds to the case we consider in the previous section and the results lead to a
(N, 4r%log? N, r, 472 log® N)—disjunct matrix. As shown in the previous section, the code
can be used for revocation in a very efficient way and the shadow technique helps us
to trace weight-limited decoders. Even though the tracing complexity is expensive, the
resulting system enjoys the nice properties of an ESS system with constant decryption
time complexity at the receiver.
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Chapter 3

Algebraic Approach

While most combinatoric schemes deal with bounded collusions (the number of revoked users and
the number of traitors have been assumed to be below some threshold), algebraic schemes can
deal with both bounded collusions and full collusions. However, the situation is quite different
when it comes to broadcast encryption and traitor tracing:

Broadcast encryption: Boneh, Gentry, and Waters [BGWO05| are first to propose a fully
collusion-resistant public key broadcast encryption in which the ciphertext size is constant.
They proposed two schemes, respectively CPA and CCA secure, both in the selective model
of security. Dynamic fully collusion-resistant broadcast encryption is proposed in [DPP07]
where the authors designed CPA secure schemes that were only partially adaptive secure.
In brief, full collusion broadcast encryption can be made quite practical.

Traitor Tracing: The first non-trivial fully collusion resistant scheme is proposed by Boneh
et al. [BSWO6h]. However, its ciphertext size is still large (Q(v/N), where N is the total
number of users) and it relies on pairing groups of composite order. Very recently, Boneh
and Zhandry [BZ14] propose a fully collusion resistant scheme with poly-log size parame-
ters. This scheme relies on indistinguishability obfuscation [GGH™13c| of which security
foundation remains to be studied and practicality remains to be investigated. Unsurpris-
ingly, the most efficient schemes are in the bounded collusion model where the number of
malicious users is limited. The most efficient algebraic traitor tracing schemes remain the
Boneh-Franklin scheme, Naor-Pinkas scheme and their variants.

In this chapter, we first summarise in Sections [3.1 and [3.2] the main techniques for construct-
ing algebraic schemes, in bounded collusion model and full collusion model. We then present
our contributions:

o We first consider in Section some extensions of the BGW scheme in extended security
model and in multi-channel setting.

e We then introduce in Section [3.4]the first lattice based traitor tracing in the bounded model
in which the security is based on a new variant of the Learning With Errors problem (LWE)
problem, called k-LWE.

e We finally propose in Section optimal ciphertext rate traitor tracing schemes that
extend the Kiayias-Yung strategy for integrating combinatorial methods with algebraic

methods.
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3.1 From ElGamal encryption to multi-receiver encryption, tra-
tor tracing and revoke schemes

Desmedt and Kurosawa are the first to propose a method to transform Elgamal encryption into
a traitor tracing but their scheme was latter pointed out to be insecure. Boneh and Franklin
then propose another transformation that is based on a representation problem and linear space
tracing; Naor and Pinkas propose a revoke method that is based on polynomial interpolation.
The main idea in the construction of these schemes is to modify the form of the public key
in ElGamal encryption in such a way that it corresponds to many different secret keys. At
this stage, it suffices to distribute each secret key to a user and we will get a multi-receiver
encryption. The traceability is much more difficult to achieve though. We will briefly describe
the main ideas in Boneh-Frabklin and Naor-Pinkas traitor tracing schemes. Let us first recall
the ElGamal encryption.

Setup: On input the security parameter A, return a A-bit prime ¢, a group G of order ¢, and a
randomly chosen generator g € G.

Key setup Generate a <— Z,. Set sk <— o and pk <y = g“.

Encryption: Given a message m € G, randomly choose r < Z, and output the ciphertext
(9" y"m)

Decryption: Given a ciphertext (ci,c2), return ca/cf.

3.1.1 Boneh-Franklin method for traitor tracing [BF99b]

In addition to the element y = g% as in ElGamal scheme, one also chooses a vector (hy, ..., ha)
of 2t (where t is the bound on the number of traitors) random elements in G, say h; = ¢,
for r; < Z4. The public key is then set to be pk < (y, h1,...,ho). This allows the center to
represent the same y in different ways in the basis (hy, ..., hy). Indeed, by knowing the discrete
logarithm of y and of h; to the base g, it is easy for the center to generate a random representation
(a,...,a9) of y in the basis (hi,...,hg) such that: y = A" ... k5. Each individual key is
a representation («u,...,ag) which allows the user to compute y" from (h],...,h5,). The
encryption and the decryption work then in a natural manner: by adding (hf,...,hh;) to the
ciphertext, any legitimate user (who holds a representation) can compute y” and recover the
plaintext.

We now discuss the traceability. Boneh and Franklin show that, unless breaking the discrete
logarithm problem, the only way for the adversary to produce a new representation of y is to
linearly combine its known representations. This leads to the idea of using linear error-correcting
code for tracing. Indeed, consider any linear error-correcting code A (codewords generated by
the columns of A) that can correct up to k errors and its parity check matrix H. If we associate
each user to a row of H then from any linear combination of up to k corrupted rows of H, one
can trace back the corrupted rows. This is derived directly from the error-correcting property:
given d which is a linear combination of up to k corrupted rows of H, i.e. d = wB for an
unknown vector w of weight < k; the goal is to find w. We can do this by first computing any
v satisfying vB = d by linear algebra; we know then v — w is a codeword of A and thus v is
deviated from a codeword with at most k errors; the correction of the error of v will directly
provide us with the “error” w.

In fact, Boneh and Franklin use for A as a Reed-Solomon code corresponding to a Vander-
monde matrix and the white-box tracing follows the above intuition. A more challenging point
is the black-box tracing where one does not know any pirate key d. The black-box tracing, which



3.2. Dealing with Full Collusion

is in fact quite expensive, relies on the black-box confirmation: given a superset of the traitors,
it is guaranteed to find at least one traitor and no innocent suspect is incriminated.

3.1.2 Naor-Pinkas method for revocation [NP0O]

At a high level, the main idea is to use a t-out-of-N secret sharing and the scheme can revoke
up to ¢t — 1 users. For simplicity, we can suppose that the number of revoked users r is equal
to t — 1 (if the effective number of revoked users is less than ¢ — 1 then we can add “dummy”
users to the revoked list). The system works as follows: a secret is divided into N shares and
each user who joins the system receives a share; the ciphertext contains ¢ — 1 shares that cover
all the revoked users; each non-revoked user adds its share to have ¢ shares that can decrypt the
ciphertext while the revoked users only get ¢ — 1 shares in total and cannot decrypt even if they
all collude. In order to implement this idea, Naor and Pinkas use secret sharing in the exponent
and randomise the ciphertext.

More formally, the authority chooses a global polynomial P of degree ¢t — 1 in the setup,
then chooses and publishes a random element x; for each user ¢. The secret key for user i is
P(z;) and all the values g” (@) and ¢P©) are published. To revoke a set of users (1,2,...,t—1),
a broadcaster chooses a random element 7 then sets the session key K = ¢"F(©). The ciphertext
is composed of t — 1 elements ¢g"" (), J€1,...,t—1. Each non-revoked user has in possession
t shares and can perform a polynomial interpolation in the exponent to recover the session key,
while the revoked users have at most ¢t — 1 shares and get no information from the ciphertext.
It is worth noticing that the Naor-Pinkas method can be combined with the Boneh-Franklin
method to achieve a trace&revoke scheme.

3.2 Dealing with Full Collusion

We recall that, in full collusion of broadcast or traitor tracing schemes, the maximum number
of corrupted users is unbounded. As we mentioned at the beginning of the chapter, we will see
that full collusion broadcast encryption schemes are quite practical while full collusion traitor
tracing schemes remain inefficient.

3.2.1 Broadcast encryption: BGW scheme

We can explain the idea at a high level as follows: suppose that there are 2N 4 1 slots on a line
and there is only a hole at the position N 4 1. Each user is attributed a slot and a user at the
slot NV — ¢ is capable to push the hole exactly ¢ positions to the left.

Now, for the encryption, the center simply puts the balls into the positions of the non-revoked
users. In the decryption phase, each user 7 pushes to move the hole to his position: if there
is a ball in the hole then the decryption succeeds (see Figure . The use of pairings allows
the center to limit the capacity of the users: each user ¢ can only move the hole by exactly ¢
positions. _

How is this implemented? We can imagine that each slot i is attributed an element g; = g
and the magic element ¢’V*! corresponds to the hole at position N + 1. We can rewrite this
element for any set of users S C [N] as:

gN+1 = Wjesgni1—j+i/Tjes j#igN+1—j+i

In order to exploit this representation, one has to work in a bilinear group: the randomised
session key (with a random r) is set to be e(g,gn+1)". We can then rewrite it as:

e(g,9n+1)" = e(gi, Mjesgn+1—j+i)")/e(9", Ijes j£igN+1—j+i)
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Figure 3.1: High-level view of the BGW method.

Actually, if the public key contains g¢,¢1,...,g2n (so that the encryption is publicly com-
putable) and the ciphertext contains (¢", (Iljesgn+1—j44)"), then the session key can be publicly
computed. The main idea is to make the session key individually computable. This can be
achieved by adding an element v = g7 to the public key and give each user a secret key g;. The
session key is then computed as:

e(g.gn+1)" = e(gi, WILjesgnt1—j+i)")/e(9", 9/ T jes j£igN+1—j+i)

It is not hard to see that if the ciphertext contains ¢”, (vIljesgn+1—j+4)", then only usersi € S
can recover the session key by adding its secret key g; to the element IT;¢ S,j#AigN+1—j+i- We can
imagine the way we put the balls in the positions in S is characterised by (vIljesgn41—j44)"-
Each user i can then move the hole by i positions by using the secret key g] to compute
9/ jes j£igN+1—j+i: only users in S can put a ball in the hole and recover the session key.
If v is not used then each user can move the hole to any position and everyone can decrypt.
However, by using the element v, each user is forced to use its secret key to move the hole and
in consequence, each user can only move the hole by exactly i positions. As some of our works
are based on this scheme, we give a detailed description of the scheme as follow:

Setup(A): Let G be a bilinear group of prime order p. The algorithm first picks a random
generator ¢ € G and a random scalar o € Z,. It computes g; = g € G for i =
1,2,...,n,n+2,...,2n. Next, it picks a random scalar v € Z,, and sets v = g7 € G.

The public key is EK = (g1,...,9N,9N+2, - -, g2n,v), Whereas the private decryption key
of user i € {1,...,n} is d; = v®". These decryption keys are sent by the Extract algorithm.

Encrypt(S, EK): Pick a random scalar r € Z, and set K = e(gn+1,9)", where e(gn41,9) can
be computed as e(gn, g1) from EK. Next, set: Hdr = (g", (v - [[;e5 gn+1-;)") and output
(Hdr, K).

Decrypt(S, Hdr, i, d;, EK): Parse Hdr = (Cy, C2), output

K =e(gi, Co)fe(di- [ gnt1-j4iC1)
jES,j#i

Inversion technique. Delerablée, Paillier, and Pointcheval introduced the inversion technique
which helps to construct the first dynamic revoke scheme [DPPQ7]. The main idea is to generate
a value x, to each user u and then, in the decryption phase, to force the user to multiply a

group element by xrixu for each revoked user r. This means that every revoked user has to
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divide by 0 during decryption, which leads to a procedure failure. The construction requires
a pairing in prime-order groups, but it does not matter whether the pairing is symmetric or
not. The security guarantee is actually stronger than the static security level: The adversary
is allowed to corrupt users immediately before they join. The master secret key and the user
secret keys consist of a scalar value and one group element from each of the base groups G1, G,
the encryption key consists of one group element from each of the base groups and one from the
target group Gr. For each user, a scalar, an element from the base group Gy and an element
from the target group are added to the encryption key. The ciphertext consists of one element
from each of the base groups plus a scalar and an element from G for each revoked user.

Another modification of the public-key scheme makes it non-dynamic, but allow to achieve
constant-size ciphertexts at the expense of linear size decryption keys.

3.2.2 Traitor Tracing: BSW scheme

We recall that a trivial way to construct a multi-receiver scheme is to encrypt independently to
each user: the ciphertext contains many components, each of them is an individual encryption
of the session key for a user. We can then apply the linear tracing technique which consists of
replacing step by step each component by a random element: when we modify a component, it
only affects one user and therefore, if the pirate decoder decrypts differently from one step to the
next, we can detect a traitor. Now, in order to achieve a sub-linear size ciphertext, we should
deal with “dependent” component problems because a component in the ciphertext must be
related to many users. The task of the tracer becomes quite challenging because each time the
ciphertext is modified, many users are affected and it is not easy to detect the traitor. Boneh,
Sahai and Waters [BSWO06b| introduce a method to deal with this problem in which they took
benefit from the bilinearlity of pairings to arrange the users in a matrix. In such a way, each user
is identified by a couple of parameters: row position and column position. The main idea that
allows to use the linear tracing technique is to produce a probe ciphertext for any position (i, 7)
in such a way that: any user at position (x,y) will be able to decrypt the message if and only if
(x > i) or (x =i,y > 7). This requires to randomise row components and column components in
a smart way. In fact, Boneh, Sahai and Waters need to use pairings on composite order groups,
say e : G x G — Gt such that G is of composite order pg and if g, is an element from the order
p subgroup (which is called G) and g, is an element from the order ¢ subgroup (which is called
Gy), then e(gp,gq) = 1. Each ciphertext contains m = VN “well-formed” row components in
G and m “well-formed” column components in G. The user (z,y) can successfully decrypt if
the row component and the column component are of type (well-formed,well-formed). Now, the
tracer produces a probe ciphertext in which:

e Column ciphertext components are well formed in both G, and G subgroups for columns
greater than or equal to j ; well formed in the G, subgroup but random in the G, subgroup
for a column that is less than j.

e Row ciphertext components are completely random for rows less than ¢ ; well formed
elements in the G, subgroup for rows greater than ¢; and are well formed in both subgroups
for row i.

We can see that, the ciphertext structure will lead to restrictions on the decryption: it can be
successful for a user (x,y) if and only if x > i or z =i,y > j. Indeed:

e If x > ¢ then, because the row ciphertext components are well formed elements in the G,
subgroup, even if the column ciphertext components are randomized with an element in
G)p, the randomized part is cancelled out and the (row component, column component)
for (z,y) looks like (well-formed, well-formed).
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Figure 3.2: High-level view of the BSW’s method.

e If x =i and y < j then the (row component, column component) for (z,y) looks like
(well-formed, well-formed).

e If x =i and y < j or z < i then the (row component, column component) are randomized
either in G, or in G}, and are thus not of type (well-formed, well-formed) and the decryption
fails.

The idea is summarized in Figure [3.2l However, the detailed description is quite complicated
and the security analysis requires some assumptions, in particular the Bilinear Subgroup De-
cision Assumption which requires that: given g,,g, € G, a random order p element in Gp is
indistiguishable from a random element in Gr. We remark however that, because the ciphertext
size is of O(V/N), the scheme is more about theoretical interest than of practical interest.

Trace&Revoke: Boneh-Waters scheme. Boneh and Waters [BW0O6b] further improve the
BSW scheme by providing broadcast functionality. Their scheme is a combination of the BGW
scheme and the BSW scheme, in which they make use of the broadcast technique from the BGW
and of the tracing technique from the BSW scheme.

3.3 Some variants of BGW

3.3.1 Adaptive CCA Security with Constant-size Secret Keys and Cipher-

texts [PPSS13]

BGW is clearly a very interesting broadcast encryption (i.e. an inclusive scheme) but it still has
some inconveniences: i) the security is considered in the selective model and ii) it is not trivial for
the scheme to efficiently revoke users (i.e. not an exclusive scheme) when the number of revoked
users is relatively small compared to the total number of users. Our objective is to make BGW
more secure and more flexible by transforming it into an inclusive-ezclusive broadcast encryption
scheme. Our contribution is realised in several steps:
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e We first propose an efficient dynamic broadcast encryption scheme (called OurBE) and
prove that it is selective CCA secure based on the widely-used bilinear Diffie-Hellman
exponent (BDHE) assumption and a universal one-way hash function (UOWHF). The
proposed scheme has constant-size ciphertexts (only two group elements), constant-size
secret keys (only one group element), and a public key which increases linearly with the
number of users in the system. Our scheme is a variant of the selective CPA secure BGW.
The modification from BGW is minimal in the sense that our scheme has exactly the
same ciphertext and secret key sizes as those of the BGW schemes and is proved secure
under the same assumptions, plus the relatively weak UOWHEF assumption. The minor
difference is that our scheme has one extra element in the linearly-growing public key.

e We then propose an inclusive-exclusive broadcast encryption scheme which can simul-
taneously work both as a broadcast encryption and a revocation scheme, as it has the
flexibility to specify either the target set or the revoked set at the time of encryption. The
time complexity (in encryption and in decryption) can be made proportional to the size
of the target set or to the size of the revoked set. The ciphertext and the secret key still
contain respectively two and one group elements. We need to add one group element per
user to the already linear size public key of the BGW scheme though.

e Finally, we show that it is possible to prove the adaptive CCA security of our scheme under
generalised versions of existing assumptions. In particular, we propose generalised versions
of the BDHE and the knowledge-of-exponent (KEA) assumptions, and prove that both
hold in the generic group model. Under these assumptions which are reasonable generali-
sations of accepted assumptions, we can achieve the highest level of security with highly-
efficient parameters. Namely, OurBE is provably adaptive CCA secure with constant-size
ciphertexts and secret keys, and it is the first scheme to achieve such properties.

Comparison. Table[3.I]summarises our comparison between the broadcast encryption schemes
that that are at least adaptive CPA or selective CCA secure in the full collusion model. The
schemes in the literature with constant-size ciphertexts include a selective CCA secure scheme
from [BGWO05], and three adaptive CPA (ACPA) secure ones from [GW09] and [Wat09]. The
schemes that do not have constant-size ciphertexts include adaptive CPA secure schemes from
[DF02], [GWQ9] (identity-based) and [LSW10] (revocation scheme), and adaptive CCA (ACCA)
secure schemes from [PPS12al.

We list plain and identity-based (IB) broadcast encryption (BE) and revocation (R) schemes.
The schemes from [DF02] and [PPS12a] are generic schemes based on (hierarchical) identity-
based encryption ((H)IBE), and encryption schemes (implemented under DDH), respectively.
Since (H)IBE can be based on various assumptions, we simply use it in parentheses in the table.
All other schemes are explicit proposals based on various bilinear Diffie-Hellman assumptions,
sometimes relying upon extra assumptions such as strong unforgeability (SUF), pseudo-random
functions (PRF), and the random oracle model (ROM).

For further details on parameters, we would refer to [DDG13] where our scheme has been
implemented and suggested for a standardisation.

3.3.2 BGW in Multi-Channel setting [PPT13]

The context. We focus on the pay-TV scenario, in which users own decoders to decode only
the channels they have subscribed to. In this context, the broadcaster sends several channels at
the same time to different groups of users or target sets.

Unfortunately, previous broadcast encryption models only dealt with a single content and
a single target set at a time. This was a reasonable goal but not quite suitable for pay-TV in
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Scheme O(|sk;|) O(|H|) Security  Assumption
[DF02] BE logn rlog® ACCA1 (IBE)

BE log'™n L ACCAl1 (HIBE)
[BGW05] BE 1 1 SCCA  n-BDHE, SUF
[GW09] BE 1 1 ACPA  n-BDHES, PRF, ROM
BE 1 s ACPA  n-BDHES, PRF
IBBE 1 1 ACPA  n-BDHES, PRF, ROM
IBBE 1 s ACPA  n-BDHES, PRF
[Wat09] BE n 1 ACPA  dBDH, dLin
[LSW10] R 1 r ACPA  dBDH, dLin
[PPS12a] BE 1 rlog  ACCA DDH
BE 1 r ACCA DDH
OuwrBE BE 1 1 SCCA  n-BDHE, UOWHF

ACCA n-OBDHE, GKEA, UOWHF

O(] - |): order of size, n,s,r: number of total, targeted, revoked users.

Table 3.1: Comparison of adaptive or CCA secure broadcast encryption schemes

practice. In fact, television systems contain many channels with different sets of privileged users.
One could argue that this scenario is covered by the usual systems via the use of independent
broadcast encryption schemes for each channel. However, this results in a very inefficient scheme:
the bandwidth or header size grows linearly in the number of channels, which could be very large;
when the users zaps to another channel, one has to start from scratch and wait for the reception
of the new appropriate header, which can take some time unless the decoder stores all the
headers all the time.

These two problems of the limited bandwidth and limited zapping time lead to new efficiency
criteria with a common solution: a broadcast encryption with a short global header. Our new
primitive MCBE (Multi-Channel Broadcast Encryption) addresses these problems. In the fol-
lowing, we show that it is possible to achieve this goal in an optimal way by proposing a scheme
with constant-size global header, independently of the number of channels.

The technique. In the BGW scheme, we recall that each channel can be interpreted as slots
in a line and each user owns one of the slots and the user can decrypt if he/she can move the
hole so that a ball falls in the hole. The trivial solution for multi-channel problem consist in
making many parallel lines, each corresponding to a channel and we can encrypt line by line
for each channel. Then, because the lines are independently treated, each user of a channel can
move the hole in the corresponding line. However this increases the ciphertext size linearly to
the number of channels. We propose a method to combine all the lines together and this reduces
the ciphertext size. The main idea is that, during decryption, each user can cancel out all the
balls in all lines except in the line that corresponds to the channel he/she would like to decrypt.
This implicitly reduces the multi-channel framework to a single-channel one while preserving
the constant ciphertext size.

Due to constraints between the various target sets, we introduce the dummy-helper technique
that helps proving security. We eventually propose two constructions derived from the BGW
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scheme. They are private broadcast encryption schemes with the following properties:

e The first construction is, asymptotically, very competitive with the BGW scheme. In
fact, it achieves constant-size headers, while the private decryption key size remains linear
in the number of the channels that a user has subscribed to. In addition, it is fully
collusion resistant against basic selective adversaries, 7.e. the adversaries who can only
ask corruption queries to get the decryption keys of users in the selective security model
(the challenge target set is announced before the setup of the global parameters). This is
also the security level that the original BGW scheme achieves and our security proof holds
under the standard assumption n — BDHE, as in the original BGW scheme.

e The second construction is an improvement of the previous one in order to resist strong
selective adversaries who have the power of basic selective adversaries plus unlimited access
to encryption and decryption queries, while keeping the parameter sizes and computational
assumptions unchanged. To this aim, we introduce the dummy-helper technique and make
use of a random oracle [BR93]. Our scheme is more efficient than the CCA version of the
BGW scheme but our dummy-helper technique actually works in the random oracle model
only.

Dummy-helper technique. In the multi-channel setting, because the session keys of all chan-
nels are compacted in only one ciphertext, there exists an implicit relationship between the
session keys of the channels which could be known by the simulator without the entire knowl-
edge of the master key. By introducing the dummy-helper technique, which consists of adding a
new channel for one additional dummy user, we get the following interesting properties:

1. it gives our simulator the possibility to decrypt this channel and get the corresponding
session key which is sufficient for the simulator to derive the other session keys and suc-
cessfully answer any decryption queries.

2. by eventually publishing the decryption key of the dummy user, the center introduces a
channel that can be decoded by all the users registered in the system (to send the program
or ads).

We implement this dummy-helper technique in the random oracle model. It is worth noting
that, despite the more complex setting of multi-channel broadcast encryption, the security is
achieved under the standard assumption n — BDHE as in the BGW scheme.

3.4 Lattice-based Approach: /-LWE and Projective Sampling
[LPSS14]

Since the pioneering work of Ajtai [Ajt96D], there have been a number of proposals of cryp-
tographic schemes with security relying on the worst-case hardness of standard lattice prob-
lems, such as the decision Gap Shortest Vector Problem with polynomial gap (see the sur-
veys [MRO9l [Regl0]). These schemes enjoy unmatched security guarantees: security relies on
worst-case hardness assumptions for problems expected to be exponentially hard to be solved
(with respect to the lattice dimension n), even with quantum computers. At the same time, they
often enjoy great asymptotic efficiency, as the basic operations are matrix-vector multiplications
in dimension O(n) over a ring of cardinality < Poly(n). A breakthrough result in that field is
the introduction of the Learning With Errors problem by Regev [Reg05] Reg09], who shows it
to be at least as hard as worst-case lattice problems and exploited it to derive an elementary
encryption scheme. Gentry et al. shows in [GPV08] that Regev’s scheme may be adapted so
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that a center can generate a large number of secret keys for the same public key. As a result, the
latter encryption scheme, called dual-Regev, can be naturally extended into a multi-receiver en-
cryption scheme. We build traitor tracing schemes from this dual-Regev LWE-based encryption
scheme which also enjoys public traceability. To show that we can trace the traitors, we extend
the LWE problem and introduce the k-LWE problem, in which & hint vectors (the leaked keys)
are given out.

The k-LWE problem. We extensively use g-ary lattices. The g-ary lattice associated to A €
Zyg™" is defined as AS(A) ={Z ez : & A= 0modg}. It has dimension m, and a basis
can be computed in polynomial-time from A. For @ € Zj', we define Aé(A) as the coset
{#eZ™: 7 A= mod q} of AL (A).

The k-LWE problem can be interpreted as a dual of the k-SIS problem introduced by Boneh
and Freeman [BF1I]. Intuitively, in both A-LWE and k-SIS, it is given as input A € Z"*" along
with k small hints #1,..., 2, € Z™ s.t A =0 mod ¢. The k-SIS solver is required to output a
new vector Z, linearly independent from #, ..., & such that A = 0 mod ¢, while the k-LWE
solver is required to distinguish between

1
61] : U(Im(A)) + v and (1] : U(Spanigk (:E'Z) ) + v
where Im(A) = {As": 5§ € Zy} C Z', U(X) denotes the uniform distribution over X, Span(X)
denotes the set of all linear combinations of elements of X, v, denotes the one-dimensional
Gaussian distribution with standard deviation .

These problems look hard and their hardness will be discussed latter. At the first glance, we
see that one can linearly combine the hints to get a new hint and the k-SIS essentially says that
this is the only way the adversary can get a new solution for the SIS problem. Regarding the
k-LWE, once these hint vectors are revealed, it becomes easy to distinguish the left distribution
from the uniform distribution: take one of the vectors Z;, get a challenge sample ¢ and com-
pute (Z;, 7); if ¥ is a sample from the left distribution, then the centered residue is expected to
be of small size which is < 1 for standard parameter settings; on the other hand, if ¥ is sampled
from the uniform distribution, then (&, %) should be uniform. The definition of k~-LWE handles
this issue by replacing U(Z}") by U (Span,<;,(Z3)*).

The Scheme. The scheme is designed for a given security parameter n, a number of users N
and a collusions of maximum size t. It then involves several parameters ¢, m,«a,S. These
parameters are set so that the scheme is correct (decryption works properly on honestly generated
ciphertexts) and secure (semantically secure encryption and possibility to trace traitors). In
particular, we set S = Diag(c,...,0,0',...,0") € R™*™ where ¢/ > o and their respective
numbers of iterations are set so that t-LWE is hard to solve.

Setup. The trusted authority applies the algorithm in [AP11] to generate a pair (A4,T) €
Zyg™ x Z™*™ such that A € Zg**"™ and T' € Z™*™ such that the distribution of A is within
statistical distance 27 from U(Zq*"); the rows of T form a basis of A+ (A); each row of T
has norm < 3mgq"™/™. We additionally sample @ uniformly in Zg. Matrix T' will be part of the
tracing key tk, whereas the public key is pk = (4, u).

Each user U; for i« < N obtains a secret key sk; from the trusted authority, as follows. The
authority executes the GPV algorithm using the basis of A+ (A) which consists of the rows of T,

and the standard deviation matrix S. The authority obtains a sample Z; from D AL _(4),5" The

standard deviations o’ > o may be chosen as small as 3mg™™ /(2m + 4) /7. The user secret
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key is #; € Z™. Using the Gaussian tail bound and the union bound, we have ||Z;|| < \/mo’ for
all i < N, with probability > 1 — N - 2=2(m),

The tracing key tk consists of the matrix 7" and all pairs (U, sk;).
Encrypt. The encryption algorithm is exactly the 1-bit encryption scheme from [GPV0S, Se. 7.1],
which we recall, for readabilityH The plaintext and ciphertext domains are P = {0,1} and C =
271 respectively, and:

it M- |q/2

(note that we use (A|B) or A to denote the horizontal concatenation of A and B).

B
As explained in [GPVO08], this scheme is semantically secure under chosen plaintext attacks
(IND-CPA), under the assumption that LWE is hard to solve.

Decrypt. To decrypt a ciphertext ¢ € Z’q"H, user U; uses its secret key &; and evaluates the
following function Dec from Z{"*! to {0,1}: Map ¢ to 0 if ((1]|#;), ) mod ¢ is closer to 0 than
+1q/2).

If ¢ is a honestly generated ciphertext of a plaintext M € {0,1}, we have ((1]|Z;),é) =
((1]|7), €) + M - |q/2] mod g, where € = |vaq]™ L. It can be shown that the latter has magni-
tude < 2/magq||(1]|#;)|| with probability 1 —2~*(") over the randomness of & This is < 3mago’
for all i, with probability > 1 — N - 2= To ensure the correctness of the scheme, it suffices
to set ¢ > 4maqo’. Note that other constraints will be added to enable tracing.

3.4.1 Tracing traitors

We now present a black-box confirmation algorithm TraceE| It is given access to an oracle OP
that provides black-box access to a decryption device D. It takes as inputs the tracing key tk =
(T, (U, (1]|Z;))i<n) and a set of suspect users {U;,, ..., U;, } of cardinality k < ¢, where ¢ is the
a priori bound on any collusion size. Wlog, we may consider that k =t and i; = j for all 7 < k.

Algorithm Trace gathers information about which keys have been used to build decoder D
by feeding different carefully designed distributions to oracle OP. We consider the following
t+ 1 distributions T'ro, ..., Try over C = Z"+1:

Try = U (Span((12)...... (UIE))") + Lrag] ™.

The first distribution 7T'rg is the uniform distribution, whereas the last distribution T'r; is
meant to be computationally indistinguishable from Enc(0). We define po, as the probabil-
ity Pr[OP (¢, M) = 1] that the decoder can decrypt the ciphertexts, over the randomness of
M <« U({0,1}) and & <= Enc(M). We define p; as the probability the decoder decrypts the
signals in T'r;, for i € [0, ¢]:

pi = Pr [OD <E+ M- 1a/2) ],M>:1].
6(—’T’r¢ 0
M+ U({0,1})

A gap between p;_1 and p; is meant to indicate that U; is a traitor. The tracing works if the
pirate can not distinguish between T'r;_; and T'r;, unless the user i is a traitor. This condition
directly comes from the hardness of the k-LWE which we will now discuss.

! As usual, the encryption algorithm may be used to encapsulate session keys which are then fed into an efficient
data encapsulation mechanism to encrypt the data.

2Note that minimal access is equivalent to standard access in our context: since the plaintext domain is small,
plaintext messages can be tested exhaustively.
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3.4.2 Hardness of .--LWE

We will briefly explain the main idea to show that the security of traitor tracing relies on
the hardness of LWE, which is known to be at least as hard as standard worst-case lattice

problems [Reg09, Pei09, BLP*13].

3.4.3 Hardness proof of Boneh-Freeman with exponential loss

The general framework for a hardness proof is a transformation from a SIS or LWE instance to
a k-SIS or k-LWE instance. More precisely, the main steps are:

e Input: SIS or LWE instance corresponding to A
e From A, construct A* along with k hints for A*
e Give A* and k hints to a k-SIS or k-LWE solver

e Based on a k-SIS or k-LWE solution for A*, derive a SIS or LWE solution for A

In the Boneh-Freeman approach, by extending the LWE matrix A (by k& lines) to a larger
matrix A*, one can sample k hint vectors &7, ..., % (which forms the matrix X* in the above
figure) in the g-ary lattice AL(A*) = {b : B’A* = Omod ¢}. The simulator then receives a
solution from k-SIS solver &* = (h || g) s.t &* x A* =0 mod ¢ and Z* is linearly independent to
Z7,..., 4}, it can derive a solution & for the SIS problem: £x A =0 mod g, i.e., (Z || 0)xA* =0
mod ¢ which can be computed as

(@11 0) = (h || g) det(G) — (H || G)(det(G)G™")g

Unfortunately, with this approach, the reduction involves a multiplication by the cofactor
matrix det(G) - G~! over Z of a k x k full-rank submatrix G of the hint vectors matrix. Even
though the entries of G are small, the entries of its cofactor matrix are almost as large as det G,
which is exponential in k. The Boneh-Freeman reduction also applies to the k-LWE case but the
transformation from a LWE sample with respect to A to a k-LWE sample with respect to A*
also involves a multiplication by the cofactor matrix det(G)-G~!. This leads to an “exponential
noise blowup” which restrains the applicability range to k < 6(1) if one wants to rely on the
hardness of LWE with noise rate 1/a < Poly(n) (otherwise, LWE is not exponentially hard to
solve).



3.4. Lattice-based Approach: (-LWE and Projective Sampling [LPSS14]

3.4.4 Our reduction with polynomial loss

We do not directly extend the matrix A but rather introduce a small transformation matrix 7'
such that it is easy to generate a Gaussian X* (k hints matrix): X* x T = 0. We can thus
transform LWE(A, As+€) into k—LWE(T' A, T'(A54€)). We consequently avoid the “exponential
noise blowup” because T'¢ is of polynomial size in é.

Y
=0 = A*

The main step in constructing such a transformation matrix is via the sampling of a Gaussian
X with a small basis of ker(X). It consists of sampling a k x m Gaussian matrix X along with
a small unimodular matrix U such that X x U = I} || 0. We notice that X is the first k rows of
U~!. This tool (which is explained in details in the paper will allow us to define the matrix
T and X™* as required:

1. Sampling a Gaussian matrix V'

2. Define X* as the first k rows of V || U™!, i.e., the first k rows of V concatenated with X.

~——
Gaussian V

3.4.5 Public traceability

The full functionality of black-box tracing in both the Boneh-Franklin scheme and our scheme are
of high complexity as both schemes rely on the black-box confirmation: given a superset of the
traitors, it is guaranteed to find at least one traitor and no innocent user is incriminated. Boneh
and Franklin leave the improvement of the black-box tracing as an interesting open problem.
We showed that in lattice setting, the black-box tracing can be accelerated by running the
tracing procedure in parallel on untrusted machines. This is a direct consequence of the public
traceability property, i.e., the possibility to run the tracing procedure on public information, that
our scheme enjoys. We note that almost all traitor tracing systems require the tracing key to be

kept secret. Some schemes BZ14] achieve public traceability and
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some others achieve an even stronger security notion, namely the non-repudation. However, the
setup in these schemes require some interactive protocols between the center and each user: a
secure 2-party computation protocol in [Pfi96], a commitment protocol in [PW97] or an oblivious
polynomial evaluation in [WHIOT, KWHI01, [KY02a].

_Span(11I%)*

In order to obtain public traceability and inspired from the notion of projective hash fam-
ily [CS02], we introduce a new notion of projective sampling family in which each sampling
function is keyed and, with a projection of the key on a well chosen space, one can simulate
the sampling function in a computationally indistinguishable way. The construction of a set of
projective sampling families from k-LWE allows us to publicly sample the tracing signals.

The main idea is to associate a public matrix G; (which is characterised by a projection of
#; on a hyper plan H) to each secret key ;. It is then hard to distinguish U(Span(1]|Z;)~+) + v/
from Im(Gy,) + v and we can publicly sample a signal in U(Span(1|7;)*) + v/ from pubic
information G;. We finally show that it is hard to distinguish U(Span]_,(1[#;)*) + v/ from
Im(G1) N...NIm(G;) + v}, for anyl < j < k and therefore, we can publicly sample tracing
signals from Gy, ...,Gg

3.5 Optimal transmission rate in Traitor tracing

3.5.1 Constant Transmission Rate in Traitor Tracing

All algebraic proposals mentioned so far result in schemes that are not quite communication-
efficient: the length of each ciphertext is (at least) ¢ times or /N longer than the embedded
plaintext.

As pointed out by Kiayias and Yung in [KY02¢], an important problem in designing practical
traitor tracing schemes is to ensure a low transmission rate, defined as the asymptotic ratio of
the size of ciphertexts over the size of plaintexts, while at the same time minimize the secret-key
and the public-storage rates, similarly defined as the asymptotic ratio of the size of user-keys
and of public-keys over the size of plaintexts. Under this terminology, the transmission rate of
all the above mentioned solutions is linear w.r.t. the maximal number ¢ of traitors or sub-linear
in the number of users, whereas in [KY02c| Kiayias and Yung show that if the plaintexts to be
distributed are large (which is the case in most traitor tracing applications such as distribution
of multimedia content), then it is possible to obtain ciphertexts with constant expansion rate.

In addition to the clear benefit in terms of communication efficiency, schemes with constant
transmission rate also enjoy efficient black-box traceability, while schemes with linear transmis-
sion rate are inherently more limited in this regard [KY0lc| (e.g. the black-box traitor tracing
of [BE99D] takes time proportional to (})).

Depending on the specific application, one may decide to use a scheme with constant trans-
mission rate or a scheme with linear/sub-linear transmission rate: if one wants to directly
distribute large messages, the first category is much more suitable; however if one simply wants
to exchange a session key of is relatively small size, the second category enjoys better efficiency
parameters.
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One could think that traitor tracing schemes with linear transmission rate (e.g. [BF99D])
could easily be turned into schemes with constant transmission rate by means of hybrid en-
cryption: to send a large message, pick a random session key, encrypt it with the given traitor
tracing scheme, and append a symmetric encryption of the message under the chosen anony-
mous session key. This approach suffers however from a simple yet severe untraceable pirate
strategy: decrypt the session key and make it available to the “customers” on the black market,
e.g. via anonymous e-mail, or via text-messaging from a pre-paid cellphone. Clearly, when a
traitor tracing scheme is directly used to encrypt the content, this “re-broadcasting” strategy
becomes much less appealing for would-be pirates, because of the higher costs and exposure risk
associated with running a high-bandwidth darknet.

The technique. The solution of Kiayias and Yung is to integrate combinatoric with alge-
braic methods: first construct an algebraic traitor tracing sub-scheme for two users then use
collusion-secure fingerprint codes [BS98| [Tar03|] to combine I-sub schemes, where [ is the length
of codewords. The message is then decomposed into [ sub-messages and each of them is en-
crypted by a sub-scheme. Tracing in the resulting multi-user scheme can then be performed
iteratively as a sequence of [ stages. In each stage, the pirate decoder is queried with cipher-
texts that are valid in all [ components, except for one which is crafted according to the tracing
algorithm of the 2-user construction. In this way, if the decoder does not have both sub-keys for
the component currently being tested, it will be unable to tell that the ciphertext is invalid, and
so the tracing procedure of the 2-user subscheme will determine which of the two sub-keys the
decoder holds for that component. The tracer can thus get the pirate codeword and identify a
traitor from the tracing property of the embedded collusion-secure fingerprint code. In order to
prevent the adversary to replay some parts of the message, Kiayias and Yung propose to apply
an all-or-nothing-transform (AONT) to all the sub-messages. We propose two new techniques
to optimise the transmission rate and to make the schemes of this type more practical:

o We first introduce in [ENPO7b] a technique to reduce the transmission rate from 3 in
Kiayias and Yung to 1 (thus optimal). However, we still need to use an AONT.

e We then propose in [PPS12b] a method to avoid AONT while preserving the optimal
transmission rate. The use of AONT has some shortcomings due to the receiver having to
keep the whole bunk of sub-ciphertexts to launch the decryption procedure. By avoiding
AONT, the proposed scheme can be used for message tracing. Our technique requires an
efficient construction of a 2-user anonymous broadcast encryption.

3.5.2 Optimal Transmission Rate [FNPO0O7b]

As mentioned above, a common approach to extending a 2-user construction to a multi-user
setting is to concatenate several instantiations (say, v) of the basic 2-user scheme. In Kiayias-
Yung scheme, since tracing requires the ability to set up each component of the ciphertext to be
independent from all the others, it may seem necessary to use completely unrelated instantia-
tions of the 2-user sub-scheme for each component. Having independent components, however,
clearly leads to a multi-user scheme with the same transmission rate as the underlying basic
2-user scheme, and so it would not help us attaining optimal transmission rate. In fact, our
scheme at Eurocrypt '05 [CPP05a] manages to get transmission rate 1 by sacrificing component
independence, and by using component-instances all very closely related to each other instead
but the resulting scheme does not support black-box traceability.

To resolve the tension between transmission rate and black-box traceability, we move from
the observation that, at each stage, it is sufficient that a single component can be appropriately
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and independently set up from the rest; the remaining v — 1 can all be closely related to each
other. Therefore, ciphertexts in our construction include a “special” position £, where encryption
is performed with the instance of our 2-user scheme that is specific to the /-th component; the
remaining (v — 1) positions, instead, are encrypted using a “shared” 2-user scheme.

To prevent pirate decoders from selectively ignoring the “special” position (which is the only
part of the ciphertext that encodes tracing information), we follow the approach proposed in
[KY02c| by which the encryption algorithm preliminarily processes the plaintext with an AONT
[Riv97, Boy99, ICDH™00]. This will force decoders to decrypt all blocks of the ciphertext, ig-
noring even a single one would result in missing at least one block of the AONT-transformed
plaintext, so that, by the properties of AONT’s, such decoders would fail to recover any infor-
mation about the original plaintext being transmitted. The scheme is described in Appendix

3.5.3 Message Tracing with Optimal Transmission Rate [PPS12b]

We propose the term “message-based traitor tracing” as a generic term that subsumes earlier
variants and emphasize on the fact that we do not trace from pirate decoders but from the infor-
mation embedded in the content. Fiat and Tassa are the first to consider message-based traitor
tracing in [FT99], they develop dynamic traitor tracing to deal with pirates that rebroadcast
decrypted content. They assume that there is a real-time feedback from the broadcast content
to the center, so that the watermarks can be adapted to the feedback. Safavi-Naini and Wang
[SNWO03a] note that in this setting, dynamic TT can be prevented by delaying the rebroad-
casting of the content. To take this counter-measure into account, they proposed sequential
traitor tracing, where the mark allocation is precomputed, but users are removed according to
the feedback received. They constructed a sequential T'T scheme by combining error-correcting
codes and watermarking. Jin and Lotspiech [JLOT] claim that protection should not increase
the bandwidth by more than 10 %. To solve this problem, they proposed to extend the tracing
procedure over several movies (using “inner” and “outer” codes) and assumed that the pirates
will not drop any block. Their sequence key block scheme permits the revocation of users after
they have been traced through the rebroadcasted messages. Kiayias and Pehlivanoglu [KP09]
show that the sequence key block scheme only allowed to trace and to revoke a limited number
of users, and proposed a message-trace-and-revoke scheme without this limitation.

We remark that, without aiming to optimize the ciphertext rate, the use of AONT can
be avoided by using robust collusion-secure code which allows the pirate to drop a fraction of
the positions. This is used in [Sir07al, [BP0S, BNO8D] to reduce the ciphertext size.However, in
order to get optimal ciphertext rate in [FNPO7b], AONT is compulsory, otherwise the pirate
could simply drop the particular block to defeat the tracing procedure. We also notice that in
all the above methods for classical tracing, each user finally gets the same plaintext and if a
user redistributes this plaintext, we have no way to trace back the traitor from the distributed
message. Therefore, the necessary condition for message tracing is that each user receives a
different (marked) version of the plaintext. However, when the plaintext is different for each
user, one cannot apply AONT for a whole fixed plaintext, otherwise all but at most one user
can decrypt. The use of AONT for message tracing is thus irrelevant. Fortunately, we can
still use the method of doubling one particular block by finding a way to hide this block. Our
method consists in using a 2-user anonymous broadcast encryption scheme and then randomly
permutting the blocks. With a 2-user anonymous broadcast encryption scheme, the pirate
cannot detect any difference between an encryption for both users (which is used for all blocks
but the particular block) and an encryption for one of the two users that is used for the particular
protected block. Combining with the permutation of the blocks, we can show that the pirate is
prevented from detecting the particular protected block. Moreover, beyond the optimisation of
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Figure 3.3: Hiding a mark at position 5 in a sequence of 7 blocks.

the ciphertext rate, by not using AONT, our scheme also enjoys the property of the sequential
decryption via robust collusion secure codes as in [BP0OS, BNO8b|: the user can sequentially
decrypt the sub-ciphertexts, and does not need to wait to receive the whole ciphertext and to
apply the AONT transform to start the decryption procedure.

We describe a generic construction that accomplishes this by encrypting a message consisting
of n sequences of £ blocks, each in such a way that in sequence ¢, £ — 1 blocks can be decrypted
by both users; these blocks are not used for tracing. The remaining block is duplicated using
different marks and encrypted at two positions vg[i], vy [i], each time for one key only: the message
at position v;[i] can only be decrypted by users with key 0, and the message at position vg|i]
only by users with key 1. By doing this, the ciphertext will have a length of (1 4 1/1)-times the
length of the message, plus the overhead for encryption.

3.5.4 2-user Anonymous Broadcast Encryption

We first remark that the naive way to construct a message tracing scheme is to use a PKE
scheme IT and assign user keys according to the codewords of the collusion-secure code 7. If the
codewords have length n, we need 2n instances of the PKE scheme. The main disadvantage of
the PKE-based construction is the length of the user keys, which must contain one PKE key for
each block. To achieve shorter keys, we use a primitive that allows encryption to either of the
two users or to both of them: 2-user broadcast encryption.

Our message-traceable encryption scheme makes use of codes where the bits of the codewords
are embedded in a message by doubling some parts of it, the so-called protected blocks. Because
we do not want the adversary to learn which parts of the message contain bits of the codeword,
we need a broadcast encryption scheme where a user cannot tell whether a block is destined
only for his key or for both keys, a 2-user anonymous broadcast encryption (2ABE).

This requires the symmetric cipher used with this construction to be weakly robust [ABN10],
since one of the decapsulated keys will be either L or an unusable key. The construction uses
one instance of the 2ABE scheme IT per bit of the codeword, encrypting £+ 1 messages at a time
in one sequence, with the target sets determined by the positions v, w where the watermarks
are embedded. In this construction, the lengths of the EK and USK are n times that of II, and
to encrypt a sequence of £ blocks we need ¢ + 1 II key-encapsulations plus £ + 1 symmetrically
encrypted message blocks.

A 2-user Anonymous Broadcast Encryption Scheme. We consider the 2-key
1-copyrighted public-key encryption scheme of Kiayias and Yung [KY02c] as a 2-user 1-collusion-
secure anonymous broadcast encryption scheme (2ABE). For clarity of exposition, we model the
scheme as a KEM.

Let G be a group of prime order ¢, with a generator g. The public parameters consist of
(G, q,9g). Since we consider the 2-user case, we drop the N parameter:
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e Setup(1”) picks a, & Zy. For the two user-keys, one chooses dy,d; € Z,, and sets

usk, & (dy = a—d, - 3,d),), for u = 0,1. The encryption key is ek def {(f =9 h=
9”), upko = ho, upk; = hd,l}-

e Encaps(ek, S;7) where r € Zj
—if $={0,1} then ¢ = (¢",h"), K = f"
— else if S = {u} then 7’/ & Zy,and c = (g", h""), K = (f/upk,)” x upk’

e Decaps(usk,, ¢) computes K = cg“c‘f“. This is equal to g"% x h"'% = (f/upk,)” x h"". In
the latter encryption case, one gets the same session key. In the former encryption case,
since 7’/ = r, one also gets f7.

This is a broadcast encryption, because when S = {u} user 1 — u decapsulates differently.
Anonymity comes from the fact that a ciphertext is either a Diffie-Hellman pair when S = {0, 1},
or a random pair in the other case.

The security analysis of our 2ABE and traitor tracing are referred to the appendix [E] We
note that the construction of an efficient anonymous BE in the general case remains an open
problem.



Chapter 4

Discussions and Perspectives

Provable Security remains a young branch of research in cryptography. It often happens that
the formalised security notions do not capture all the scenarios. In some cases, new security
models need to be formalised to deal with new attacks and in some other cases, new primitives
need to be introduced to better address practical demands.

In Chapter [2| and Chapter (3| we have dealt with constructions of BE/TT schemes. In this
final chapter, we discuss further security models and generalisations of the BE/TT. We conclude
the thesis with perspectives for further works.

4.1 Extended Attack Models

In encryption, the standard security notion is semantic security against chosen-ciphertext attacks
in which the secret key is assumed to be totally hidden from adversaries’ view. This assumption
is not realistic in many scenarios, especially in the presence of side-channel attacks. Therefore,
new security models have been proposed, namely key-leakage resilience. Since then, there have
been a lot of works devoted to this new model and new methods have been proposed for proving
the security under this attack model.

The same situation occurs in broadcast encryption and traitor tracing. There are new
attack models that go beyond the standard formalisations and that have impacts in practice, in
particular Pirate Evolution [KP07] and Pirates 2.0. Pirate evolution [KP07] is an attack concept
against a trace&revoke scheme that exploits the combined properties of the functionalities of
tracing and revocation in a tree-based scheme. By using a set of users’ keys, the pirate produces
an initial pirate decoder and then, whenever this pirate decoder is seized, the pirate evolves
the decoder to a new one which can successfully decrypt ciphertexts. The same step can be
repeated again and again, allowing to produce more and more decoders. This kind of attack
has real impact on NNL schemes, which forces the designer to downgrade the efficiency of the
original schemes to avoid them.

Pirates 2.0. We introduce a new concept of attacks against traitor tracing schemes [BP09].
We call attacks of this type Pirates 2.0 as they result from traitors collaborating together in a
public way. In other words, traitors do not secretly collude but display part of their secret keys
in a public place; pirate decoders are then built from this public information. The distinguishing
property of Pirates 2.0 attacks is that traitors only contribute partial information about their
secret key material, which suffices to produce (possibly imperfect) pirate decoders while allow-
ing them to remain anonymous. The side-effect is that traitors can publish their contributed
information without the risk of being traced; giving strong incentives to some of the legitimate
users to become traitors. This allows coalitions to attain very large sizes, this scenario has been
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Figure 4.1: Compairison between Asano’s method and our method.

deemed unrealistic in some previously considered models of coalitions.

We propose a generic model to deal with this new threat, which we use to assess the secu-
rity of some of the most practical traitor tracing schemes, namely tree-based and code-based
schemes. We exhibit several Pirates 2.0 attacks against these schemes, providing new theoret-
ical insights with respect to their security. We also describe practical attacks against various
instances of these schemes. The main characteristics of our new Pirates 2.0 threat are as follows:

e Anonymity Guarantee: traitors who participate in a Pirates 2.0 attack are provided with
a guarantee (through the exhibition of a mathematical proof) that they cannot be traced
by the authority.

e Partial Contributions: Traitors never need to reveal their whole secret key.

e Public Collusions: Traitors operate in a public environment, they publish secret data from
their decoders.

e Large Coalitions: Traitors take part in unusually large coalitions.

e Dynamic Coalitions: Traitors can come into action only when necessary.

Counter-measures for Pirate Evolution and Pirates 2.0 [PT11,[PT13]. Several meth-
ods have been proposed to limit the impacts of Pirate Evolution and Pirates 2.0. [JL09] proposes
a new method of protection against pirate evolution attacks in the subset cover framework and
[ZZ11], [Dd11] propose some methods to deal with Pirates 2.0 but their methods significantly
decrease the efficiency of the original schemes. We also propose in [PT11] a method to deal with
both types of attack. The main idea is to perform in two steps: the first step is to combine
all the sub-keys into a unique key which is based on the idea of Asano in [Asa02] (which has
then been extended in [AKO05]); the second step is to make the user key undecomposible which
is not achieved in Asano’s scheme but we can achieve this feature with the help of Wildcarded
WIBE (WIBE) [ABC™11], via a mechanism of delegating ciphertexts to the suitable leaf where
the user has the key to decrypt. Our method can be seen thus as a top-down method while
Asano’s method can be seen as a bottom-up method (a key at a leaf can be used to derive a key
at a higher node to decrypt the corresponding ciphertext and therefore when the intermediate
key is leaked, it is un traceable), see Figure All these methods can however deal with par-
ticular forms of Pirates 2.0. A step forward dealing with the general form of Pirates 2.0 is via
key-leakage resilience that we propose in [PT13].

4.2 Generalised Primitives

In recent years, more and more generalised primitives for encryption have been introduced, the
most general one being Functional Encryption. At first, it may seem a redundant direction
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because we already have Multi-Party Computation (MPC) [Yao82] protocols allowing users to
compute and learn arbitrary functions of their joint messages without revealing anything except
for the final answer. However, multi-party computation is normally an interactive protocol
while one of the advantages of a typical encryption scheme is that it is non-interactive. In fact,
functional encryption combines the benefits of the two worlds: define any kind of access control
to the data while optimise low communication round complexity.

The same situation can be observed when comparing Functional Encryption and Broadcast
Encryption. While Broadcast Encryption is formally a particular case of Functional Encryption,
it plays an independent role because it has its own practical impacts and because the general
solution for Functional Encryption becomes inefficient when one simplifies it to fit the broadcast
encryption framework. An interesting step would be to generalise Broadcast Encryption to some
new primitives that have practical impact and that are not too general to loose efficiency. In
this direction, we proposed the Multi-channel BE that has been described in Chapter [3| and
Decentralised model for Broadcast Encryption.

Decentralised Dynamic Broadcast Encryption [PPS12a]. A broadcast encryption sys-
tem generally involves three types of entities: the group manager that manages the membership,
the encryptor that encrypts the data to the registered users according to a specific policy (the
target set), and the users that decrypt the data if they are authorized by the policy. Public-key
broadcast encryption can be seen as removing the special role of the encryptor by allowing any-
body to send encrypted data. We go a step further in the decentralisation process by removing
the group manager: the initial setup of the group, as well as the addition of further members
to the system, do not require any central authority. Our construction makes use of well-known
primitives and can be considered as an extension of the subset-cover framework. It allows for
efficient concrete instantiations with parameter sizes that match those of the subset-cover con-
structions, while at the same time achieving the highest security level in the standard model
under the DDH assumption.

4.3 Some Remarks and Open Problems

On Full Collusion in TT As mentioned, there is currently no efficient fully collusion resistant
traitor tracing, even with the minimal one-wanness security level. Very recently, Boneh and
Zhandry [BZ14] have proposed a scheme with poly-log size parameters. This scheme relies
on indistinguishability obfuscation |GGH"13c| of which the security foundation remains
to be studied and practicality remains to be investigated. An efficient construction of a
fully collusion resistant traitor tracing scheme remains one of the main open problems in
multi-user cryptography.

On Full Collusion in BE In Section we propose an efficient fully collusion resistant
broadcast encryption scheme which is a variant of the BGW scheme. The sizes of the secret
keys and ciphertexts in this scheme are asymptotically optimal, i.e., constant. Considering
only the standard assumptions, our scheme provides shorter ciphertexts than the known
CCA secure schemes. Considering the extended assumptions, our scheme is the first scheme
to achieve constant size secret keys and ciphertexts along side with adaptive CCA security,
see Table However, the problem of designing adaptive CCA schemes that achieve
constant size secret keys and ciphertexts under standard assumptions remains open.

On Lattice-based Schemes The proposed lattice-based traitor tracing scheme resists Chosen
Plaintext Attacks. It seems quite challenging to devise such an CCA-secure scheme under
lattice hardness assumptions. Intuitively, in a traitor tracing scheme the users own parts
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of a master secret (e.g., each user owns a short vector in a shared lattice, or a discrete log
representation with respect to a shared set of group elements), and we attempt to prevent
traitors from gaining knowledge of more than their share of the secret information. This
requirement seems to be in opposition with the underlying design of all known lattice-
based CCA-secure encryption schemes [Pei09, [PWO0S8, [CHKP10, [ABB10al [ABB10b], as
the receiver uses the full secret information (a short basis of lattice) to verify the well-
formedness of the ciphertext it decrypts.

Our scheme can be directly adapted to broadcast to a small group of users (the tracing
signals may be used for sending messages to users who own one of these keys, as if they
were suspect keys). This possibility of broadcasting to a small set of the sub-keys can then
be combined with the complete subtree framework in [NNLOI| to deal with revocation (in
which each tree node is associated with a sub-key #; and the key of each user is a set
of sub-keys on the path from the root to the user). However, this leads to an inefficient
scheme that can only handle a small set of the revoked users (while maintaining security).
An algebraic construction of a lattice-based trace and revoke scheme is a challenging open
problem.

On Additional Features The construction of an efficient Decentralised BE with constant
round complexity interaction or of an efficient anonymous BE remains open problems.

4.4 Perspectives

Our objective is to deepen and broaden the subject of this HAR to the more general case of
multi-user communications. We will continue to work in part on encryption but also to focus on
group signature, functional encryption, distributed cryptography and applications that combine
different primitives, in particular electronic voting. The main directions are:

Security versus efficiency: Sometimes we have to sacrifice the effectiveness of a scheme in
favour of its security level. The first objective of our project is to consider a balance
between security and efficiency according to the requirements of practical applications.
Firstly, we study the trade-off between security and efficiency in new attack models and
security notions which might not reach the maximum level of security but would reflect the
practical requirements. Secondly, we continue to improve the effectiveness of the schemes
with a high level of security, in particular by using some recently developed tools being
non-committing encryption techniques and lossy trapdoor functions. Finally, we continue
the work started in the master thesis of Manh Cuong Ngo to propose a scheme of electronic
voting which would better meet the practical requirements by minimising the intervention
of the authorities (via the introduction of a new concept of traceability in electronic voting).

Security against quantum attacks: The ultimate implementation of quantum machine would
make many cryptographic schemes vulnerable. For cryptographic propose, there are ac-
tually some algorithmic problems which remain unresolved by quantum machines, e.g.
decoding of linear codes, problems on Euclidean networks and the LWE problem. The
efficiency of the schemes that are based on those problems is still quite limited. Many
interesting directions have been explored to improve the efficiency of these schemes. For
example, an interesting direction, initiated by Lyubashevsky-Peikert-Regev, is to consider
the LWE problem in a ring of integers of cyclotomic extensions (Ring-LWE). One of our
objectives is to improve the efficiency of our lattice based traitor tracing scheme (described
in Chapter [3) by adapting it into Ring-LWE setting. This is a challenge in itself because
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in the multi-user case in particular, the pirate is strengthened when we work in Ring set-
ting. Indeed, once the pirate gets a key, it can generate several other keys via the ring
automorphisms. Another objective we are working on is to consider the difficulty of the
LWE problem in other algebraic extensions than the cyclotomic extension.

Relationship between the primitives: Relationship between primitives is an important area
that helps us to better understand the challenge of designing these primitives. Regarding
the multi-receiver encryption, it is shown that a construction of a traitor tracing scheme
generically leads to a group signature [KY03|] and a traitor tracing scheme can be gener-
ically constructed from a collusion secure code and a symmetric encryption, as described
in Chapter [2 The opposite cases are however neither disproved nor confirmed. It is also
interesting to note that relationships exist not only between multi-user communication
schemes but also between a multi-user scheme and a “one-to-one” scheme. Our goal is to
study in more details the relationships between the multi-user primitives and those be-
tween these primitives and other more traditional primitives such as encryption, signature
and identification.
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INPP13] with Hung Q. Ngo and David Pointcheval

Abstract : We address the problem of designing an efficient broadcast encryption scheme which
s also capable of tracing traitors. We introduce a code framework to formalize the problem.
Then, we give a probabilistic construction of a code which supports both traceability and revoca-
tion. Given N users with at most r revoked users and at most t traitors, our code construction
gives rise to a Trace€Revoke system with private keys of size O((r+1t)log N) (which can also be
reduced to constant size based on an additional computational assumption), ciphertexts of size
O((r+1t)log N), and O(1) decryption time. Our scheme can deal with certain classes of pirate
decoders, which we believe are sufficiently powerful to capture practical pirate strategies.

In particular, our code construction is based on a combinatorial object called (v, s)-disjunct ma-
triz, which is designed to capture both the classic traceability notion of disjunct matriz and the
new requirement of revocation capability. We then probabilistically construct (r, s)-disjunct ma-
trices which help design efficient Black-Box Trace & Revoke systems. For dealing with “smart”
pirates, we introduce a tracing technique called “shadow group testing” that uses (close to) legit-
imate broadcast signals for tracing. Along the way, we also proved several bounds on the number
of queries needed for black-box tracing under different assumptions about the pirate’s strategies.

A.1 Introduction

In many real-world applications such as Pay-TV, satellite radio, and the distribution of copyright-
protected materials, a content provider needs to broadcast digital information to a specific set
of users (e.g., subscribers) who were given key(s) for decrypting the content. Two natural re-
quirements arise in such setting. First, the broadcast system should be able to painlessly revoke
the receiving rights of an arbitrary subset of subscribers, probably because they unsubscribed
from the service or violated some rules. This is the essence of the broadcast encryption prob-
lem [Ber91l, [FN93|. Second, some users might collude to build a pirate decoder and distribute
it, for a fee or not. Or, a pirate might achieve similar effects via hacking accounts of legitimate
users. Either way, such users are called traitors. It is thus desirable for the system to be able to
trace (and then revoke) at least one traitor by examining the pirate decoder. This is the traitor
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tracing problem [CEN94b]. All in all, broadcast encryption systems which are capable of both
tracing and revoking would be widely useful.

Many existing works studied the two problems separately, leading to inefficiency when ap-
plying the solution to one problem to cope with the other. For example, collusion-secure codes
[BS95] provide a powerful tool against the illegal distribution of fingerprinted material in set-
tings satisfying the so-called Marking Assumption [BS95, [Tar03]. Though designed for finger-
printing large digital objects, these codes have been widely applied in the context of multi-
user encryption for tracing traitor, motivated by the work of Kiayias and Yung [KY02c| in
which a black-box tracing scheme with constant ciphertext rate was proposed. The schemes
in [ENPO7D!, [Sir07al, BNOSD, BP08|] belong to this class.

A drawback of employing collusion-secure codes for multi-user encryption is the resulting
relatively large key size. For the marking assumption to be valid, each user — characterized
by a codeword — should be assigned one out of two (or one out of many, with larger alphabet
such as in IPP codes [SSWO00]) keys for each position of the codeword. Indeed, the lower bound
established in [Tar03] shows that the code length must be Q(t?1log(N/e)) for a system of N
users with at most ¢ traitors and with the failure probability € of the tracing procedure. This
means the private key sizes of users cannot be improved beyond this bound. The construction
in [Tar03] has a code length of about 100¢? log(NN/¢), making the schemes inefficient for general
practical usage.

Due to the quadratic dependency on the number of traitors, code-based schemes are only
suitable for applications where the number of traitors is relatively small, say ¢ = O(log N).
For example, in the Pay-TV application the users’ secret keys are stored in tamper-resistant
smartcards, making it difficult and time-consuming to recover a key: recovering one key in a
tamper-resistant smartcard does not necessarily help speed up the recover of another key in
another tamper-resistant smartcard. In such applications, it is probably reasonable to assume
a small value of . However, even when the number of traitors is small, collusion-secure codes
can still be quite inefficient. For instance, for a system of four millions users and at most ¢ = 22
traitors, Tardos’ code induces a system where each user’s private key is composed of more than
one million sub-keys.

Recently, schemes based on collusion-secure codes allowing erasure have been made more
practical in terms of ciphertext size (as small as a constant, as shown in [BNO8b, BP0g]|).
However, in this case the code length and thus the private key size should be even longer.

A relatively small number of proposed systems, called trace&revoke systems [NP0OO, NNLOT,
BWOG6D], do address both traitor tracing and broadcast encryption. These schemes can roughly
be classified into three categories: schemes based on some forms of polynomial interpola-
tion [NPOO, DF03], schemes in the tree-based subset-cover framework [NNLOI1, [HS02, DF02],
and pairing-based schemes that support full collusion [BW06D].

However, there are still fundamental shortcomings. The schemes in [NP0OO, [DF03] have to
fix an a-priori bound of the size of the collusion and as soon as the pirate could collect more
than this bound of keys, from traitors or revoked users, it can totally break the schemes (by
reconstructing the master secret key). The schemes [NNLO1, [DF02] are rather efficient but they
can only deal with a non-standard notion of traitor tracing where the tracer can either identify
a traitor or render pirate decoder useless (this is mentioned in [NNLO1]). The scheme [BWQGD]
can deal with full collusion but with a large ciphertext size of O(v/N) even when there is no
traitor in the system.

The major objective of our paper is to propose a new code-based framework for constructing
black-box Trace&Revoke systems which have small private key and ciphertext sizes. We will
deal with black-box tracing, which means the traitors are traced by simple interactions with the
pirate decoder. The decoder can be reset as many times as we want, i.e. it is stateless.
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Contributions and paper outline. Section formalizes the notion of revocable codes,
and efficient conjunction revocable codes in particular. The Complete-Subtree scheme [NNLO1]
is a type of conjunction revocable code. The decoding possibility of a user (i.e. a codeword) is
captured by a predicate, which is a binary relation indicating whether a codeword is capable of
decrypting a signal.

Section formalizes the traceability of codes. We introduce two notions in order to
formalize the capability and the strategy of pirate decoders:

e Each pirate decoder, produced by a collusion C, is associated to a word in a Useful Feasible
Set of C. Roughly, this set is defined such that if a signal can be decrypted by every
member of C' then it can also be decrypted by a word in the useful feasible set. This notion
formalizes useful pirate decoders because the pirate decoder should assure the “minimum"
capability of the collusion: when all members in the collusion can decrypt a signal, the
pirate decoder should also be able to decrypt that same signal. However, Useful Feasible
Set alone does not capture “smart" decoders in the sense that it does not use any strategy:
whenever it can decrypt, it will decrypt.

e The pirate decoder could of course choose an anti-tracing strategy by refusing to decrypt
signals that it considers abnormal or coming from a tracing procedure. We introduce the
notion of qualified signals to formalize the anti-tracing strategies of pirates.

We borrow the notion of useful feasible set from collusion-secure codes to formalize the capability
of the colluders. We note that, in collusion-secure codes, a word in the feasible set is also
associated to a perfect decoder and in order to deal with smarter pirate decoders, one should
use a collusion-secure code with an all-or-nothing transform [KY02c| or one should use a robust
collusion-secure codes that allow erasure [Sir07al, [BP08, BNO8b]. In our setting, the pirate’s
strategy is formalized by the notion of qualified signals.

In Section we also indicate a simple connection between traceability of codes with the
so-called disjunct matrices, a classic combinatorial object which has “built-in" tracing capability.

The problem with disjunct matrices is that they have no “built-in" efficient revocation ca-
pability. Indeed, disjunct matrices or equivalently cover-free families have been used for traitor
tracing in [TSNO6]. However, by following the tracing framework of [BF99b| it cannot be used
for revocation. We deal with this problem in Section by introducing a new combinatorial
object called (r, s)-disjunct matrices, which retains the tracing-capability of disjunct matrices
while also supports revocation. As disjunct matrices have applications in diversely many areas
[DHOQ], we believe that the new and stronger notion of (r, s)-disjunct matrices will be widely
applicable as well.

Section is the heart of the paper, where we present a method for constructing good (7, s)-
disjunct matrices which allow for tracing and efficient revocation. The resulting code yields a
Trace&Revoke scheme with private key size and ciphertext length O((t + r)log(N/(t + r))) for
N users, at most r revoked users and at most t traitors. The constants hidden in the big-O are
small (< 8). This randomized construction yields a key assignment scheme where users pick their
keys independently from the same distribution and all keys have the same role. Thus, unlike
the complete-subtree method which leads to a highly asymmetric key assignment making it not
suitable for tracing smart pirate decoders, our code has better “built-in" support for traceability
against non-trivial pirate strategies.

Rigorously, we deal with non-trivial pirates (that are characterized by some qualified pred-
icates). For a probabilistic code where codewords are picked independently from the same
distribution and all keys used in encryption have the same role, a non-trivial pirate can estimate
the number of keys used in a normal encryption and can refuse to decrypt a ciphertext that
contains too few or too many keys that lies outside its estimated interval. This strategy of pirate,
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called weight-limited pirate, is formalized under interval qualified predicate. To cope with this
strategy of pirate decoder, we introduce a tracing technique called shadow group testing that
uses (close to) legitimate broadcast signals for tracing. In particular, in one setting, we con-
sider general pirate decoders that can used any strategy. We show that the problem of deciding
whether a given signal is a legitimate broadcast signal (here, broadcast signal is a ciphertext
targeted to all users) or a tracing signal is NP-hard. We thus establish that the shadow group
testing technique can be used in conjunction with our code to construct revocable codes that are
traceable against non-trivial pirates (modulo the computational hardness), in the conventional
stateless setting where the pirate decoder could be resettable. This does not show that our
trace&revoke code can be used to deal with any pirate decoder but it can be seen as a step
toward this goal.

For tracing a particular type of pirate decoder which only decrypts signals of certain weights,
we prove upper and lower bounds on the number of tests needed for a variant of group testing
where each test must consist of a given number of items.

Last but not least, we prove upper- and lower-bounds for the number of black-box queries
necessary in the information-theoretic limit when the pirate only decrypts signals which are legiti-
mate broadcast signals (and when it has the keys). This result applies to arbitrary Trace&Revoke
system, not just code-based ones like ours, as long as the pirate decryption assumption is valid.

Section discusses the questions of how to optimize code lengths (using multi-user tracing
families), private key size (down to a constant using Asano’ method [Asa02]), and how to deal
with unbounded number of traitors/revoked users.

A.2 Revocable Codes

A.2.1 General settings

Broadcast encryption (BE) schemes enable the sender of a message to specify a subset of the
users the message will be sent to, called the target set or the privileged set. The complement
of the target set is called the revoked set. To revoke the receiving rights of some desired subset
of users, a BE scheme typically generates three pieces of data: (a) the Id Header, which is a
bit-string that unambiguously identifies the target set/revoked set; (b) the Key Header, which
encapsulates a session key for the privileged users; and (c) the Message Body, which contains
the payload encrypted with the session key.

In what follows, we describe a BE scheme based on codes. Roughly speaking, each user is
associated with a “codeword” which determines the private key(s) assigned to that user. To
revoke a subset of users, a code-based BE scheme generates a “signal” ¢ which is a word (not
necessarily a codeword) from which the Key Header will be constructed. The signal ¢ will
have to be “compatible” with the codewords assigned to privileged users and “incompatible”
with revoked users so that only privileged users can decode. The notation of compatibility is
captured by a Boolean predicate associated with the code. The formal definitions of broadcast
encapsulation, public-key encryption and secret sharing schemes are given in Appendix

Definition A.2.1 [(¢, N)-Code] Given a finite alphabet ¥, and positive integers ¢ and N, an
(¢,N)-code T' is an N-subset of ¥¢, namely I' C Xf and |I'| = N. Members of % are called
words. Members of I' are called codewords. The quantity ¢ is called the length, and N the size
of the code.

In order to build a BE scheme, we associate a codeword w to each user. Henceforth, without
loss of generality we use codewords to identify users. Given a set R C I' of revoked users, the
code-based BE scheme broadcasts by first generates a signal ¢ € ©¢ which is not necessarily a
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codeword. The signal will be used to generate the session key for broadcasting. A user w is
“compatible” with a signal w iff a corresponding predicate is true:

Definition A.2.2 [Predicate] We associate a code I' with a predicate D : ¥ x ¥ — {0,1}.
The boolean value D(w, ¢) indicates whether the word/user w is compatible with the signal c.
The practical semantic is that user w is able to recover the content associated with the signal ¢
iff D(w,c) = 1.

Given signal ¢, the predicate D specifies the target set (the set {w | w € T' A D(w,c) = 1}),
or equivalently the revoked set. A subset of revoked users might somehow be able to collude,
and combine their keys to recover the content. By combining their codewords, the colluders can
generate new words (not necessarily codewords) which potentially can be used to decode signals
which were not meant to be decodable by any one of them. We formalize this capability of a
collusion by the following notion.

Definition A.2.3 [Feasible Set] A collusion C' of users can produce new words from their own
codewords. This derivation of new words depends on the structure of the code. The set of words
that can be derived from a subset C of codewords is called the feasible set, and is denoted by
F(C;T'). When there is no ambiguity, we omit I" and use F(C') to denote the feasible set.

We can now define the notion of revocable code which is a basic building block for BE
schemes.

Definition A.2.4 [(Efficiently) Revocable Code] Let T' = {w?,--- ,w”"} be an (¢, N)-code. The
code I is called r-revocable if there is a predicate D such that for all R C I" of size |R| < r,
there exists a signal ¢ € X! satisfying the following conditions: Yu € T' — R : D(u,¢) = 1 and
Vv € F(R) : D(v,¢) = 0. If, in addition, there is a poly-time algorithm Rev that, given R, outputs
a signal c satisfying the above condition, then the code is said to be efficiently r-revocable.

A.2.2 Conjunction Codes and Broadcast Encryption

In order to clarify the above formalism, we now present a specific family of binary revocable
codes called k-conjunction codes and a BE scheme based on this family. For any two vectors
u,c € {0,1}¢, let u A c (resp. uV ¢) denote the bitwise AND (resp. OR) of two vectors u and c.
Let wg(c) denote the Hamming weight of any word ¢ € {0, 1}

Let k < ¢ be a positive integer, a k-conjunction code is a subset of {0, 1}€ with the following
associated predicate and feasible set.

Definition A.2.5 [Predicate for k-Conjunction Codes] For any u,c € {0, 1}8, the predicate
Di(u,c) := (Wi (u A c) > k) is called the k-conjunction predicate.

Definition A.2.6 [Feasible Set for k-Conjunction Codes] For any set C = {u!, .- ju¢} C T.
Define

F(C) = F(C;T) = {w € {0,1}" st Vie[l],w e {0}u O{ug}}.
j=1

Each word w = (w;)%_; € {0,1}* can be thought of as a subset of [¢]: the subset of indices
i for which w; = 1. Then, the above definitions can be translated as: Dy(u,c) = 1 iff the
intersection of u and ¢ has size at least k, and F'(C) is the collection of all subsets of the union

UCGC c.
The notion of revocable codes can now be made more precise for this family.
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Definition A.2.7 [(Efficiently) Revocable k-Conjunction Code] A binary (¢, N)-code I is called
(r, s)-Revocable k-Conjunction if for all R C T and |R| < r, there exists a signal ¢ € {0,1}¢,
with wg(c) < s satisfying the following conditions: Yu € T' — R : Di(u,c¢) = 1 and Vv € F(R) :
Di(v,c) = 0. If in addition there is a polynomial time algorithm Rev that computes ¢ given R,
then the code is said to be efficiently revocable.

Example A.2.8 [The Complete-subtree scheme as a 1-conjunctive code] The Complete-Subtree
scheme [NNLOI] can be roughly described as follows. Imagine a full binary tree 7 with N
nodes. Each user is associated with a leaf of the three. To each tree node there corresponds a
distinguished encryption key. A user is given the set of keys corresponding to all the internal
nodes from the leaf to the root of the tree. To revoke a subset R of users (i.e. leaves of the tree),
we first construct a minimal subtree 7’ of T that spans R and the root. Let K be the set of
nodes of 7 that are “hanging off” of 7’. Then, it is easy to see that each non-revoked user has
some key in the set K, and no revoked user has any key in the set K. The system can then use
the set K of keys to encrypt the broadcast message, whose length will be proportional to | K|,
which can be shown to be O(|R|log(N/|R))).

The above key assignment scheme can be casted in terms of a 1-conjunction code as follows.
There is a codeword for each leaf of the N-leaf full binary tree 7. The code length is ¢ = 2N —1,
each position (i.e. coordinate) of the code corresponds to a node of the tree. For each codeword
w, there is a 1 in a position if the corresponding node is on the path from w to the root. We
will refer to this code the CS-code.

Following the results in [NNLO1] and our brief description above, the following proposition
is straightforward.

Proposition A.2.9 For any r € [N], the CS-Code is a 1-conjunction (r,rlog(N/r))-revocable
(2N — 1, N)-code.

We now present a broadcast encryption scheme that implements our above predicate for a
general k-conjunction binary code. The new trick is to combine the secret sharing with the k-
conjunction code such that only legitimate users possesses sufficient shares to be able to decrypt.
This is a generalization of the previous schemes [NNLO1] where the secret sharing is not involved.
In fact, under our construction, the previous schemes [NNLO1] correspond to the case k = 1 and
the 1-out-of-m secret sharing becomes trivial.

Definition A.2.10 [BE from Conjunction Codes] Let us be given a generator of Efficiently
(r, s)-Revocable k-Conjunction binary (¢, N)-Codes, a secret sharing scheme SSS, and a secure
public-key encryption scheme PKE. We build a BE scheme II that can revoke up to r users in
the following way.

e Setup(1},N)
1. Run the code generating algorithm on (NN, k, r) to obtain an Efficiently (r, s)-Revocable
k-Conjunction (¢, N)-Code I'.
2. Run PKE.Setup(11) to get the public parameters param for the encryption scheme;

3. For i = 1,...,¢, run the key generation algorithm PKE.KeyGen(param) to get the
pair (dkl, ekz)
4. Set MSK = (T", {dk;}), and EK = {ek;}.

5. For i = 1,..., N, the user i is associated with the codeword w’ € T, we write w® =
wi ... wy and set usk; «— {dk;/w; =1,7=1,...,(}.



A.3. Traceable Codes

e Encaps(EK, R):

1. For a revoked set R of size at most r, since the code I' is efficiently (r, s)-revocable, one
can find out a signal ¢ of weight at most s, such that Dy (u,c) = 0, for any u € F(R),
and D(u,c) =1 for any u € [N] — R. We denote by m = wg(c) this weight;

2. Denote by i1, ...,%, the positions of m 1-bits in ¢, i.e., ¢;; =1, for j =1,...,m;
3. Call Share(k, k,m), a k-out-of-m secret sharing scheme of a k-bit secret.

The Share(k, k, m) algorithm outputs a secret K & {0,1}* and m shares sq,... Sm;
4. Set ¢;; = PICS.Enc(pki]_,sj), for j=1,...,m.
5. Output K and H = (c, (e;;),j =1,...,m).

e Decaps(usk;, R, H):

1. If j is in [N] — R, then Dy (w?,c) = 1. This means wg (w’ A ¢) > k.
2. Denote by i1, ..., the positions of the first & 1-bit in w’ A c.

3. Compute s; = PKE.Dec(sk;;,e;;), for j = 1,... k. With the Combine algorithm on
these k shares, reconstruct K.

The case kK = 1 is the simplest case: the secret sharing scheme simply consists in choosing a
random K & {0,1}", and then to set s; = K for all i.

A.3 Traceable Codes

Traitors are users who collude to build (and distribute) a pirate decoder. The goal of traitor
tracing schemes is to allow an authority to trace back, from a pirate decoder, at least one
codeword which was used and thus at least one traitor. More precisely, let T C %¢ denote the
set of (codewords of) at most ¢ traitors. From this set of codewords the “pirate” produces a
pirate decoder D that efficiently decrypts some broadcast signals ¢ € {0, 1}5. We view D as
boolean function on predicates ¢ € {0,1}*: D(c) = 1 means D correctly decrypts ¢, and D(c) = 0
otherwise.

The main task of the traitor tracing scheme is to identify at least one codeword in T (i.e.
one traitor) by “examining” the pirate decoder. In this paper we are only concerned with the
commonly used “blackbox tracing” model, where the tracer can only query the decoder function
D [CEN94b, [KY02c|. In reality, querying D is roughly equivalent to the act of sending a
broadcast signal to the physical decoding device, examining its output (whether it decrypts the
content correctly), and then resetting the device. While it is true that some devices may not be
stateless (say, some data is stored in a ROM), the blackbox tracing model is still a reasonably
practical model.

Our plan is as follows. We first define the notion of a traceable code. The code is designed
such that from a word w belonging to the “useful feasible set” of words, the code allows us to
trace back at least one traitor. Recall that the feasible set F(T') is the set of all words that the
traitors can derive. (We can roughly think of F(7) as the set of decryption keys that the traitors
can derive from their private keys.) The useful feasible set UF(T') is a subset of the feasible
set, whose meaning is define below. Then, we give a specific family of 1-conjunction traceable
codes based on disjunct matrices. Finally, we describe how we might possibly get a hold of a
word from the UF(T"). This task is highly dependent on the “anti-tracing” strategy used by the
pirate, and thus we will model the anti-tracing strategy with the notion of “qualified signals.”
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A.3.1 Traceable Codes

The feasible set models the collection of all words which can be “constructed” by the traitors
from their codewords. A word in the feasible set F(7") may or may not be useful for decrypting
broadcast contents. We consider a word w from a collusion T" useful if it satisfies the following
condition: for any signal, if every user in T is able to decrypt it, then w should be also able to
decrypt it.

Definition A.3.1 [Useful Feasible Set] The useful feasible set, denoted by UF(T;T") (or
UF(T)) from a collusion T is the subset of words w in F(T) such that, for any signal ¢ € X¢, if
D(u,c) = 1,Vu € T, then D(w, c) = 1.

It follows from the definition that 77 C T implies UF(T") C UF(T'). To see this, consider a
word w € UF(T") C F(T) and an arbitrary signal ¢. If D(u,c¢) = 1Vu € T, then D(u,c) = 1Vu €
T’, which in turns implies D(w, ¢) = 1. Hence, w € UF(T'). Roughly, adding more traitors to a
traitor set leads to more useful words. Intuitively, the pirate should at least be able to decrypt
signals that all traitors are able of decrypting. Hence, the above definition is in some sense the
weakest requirement of being useful.

Useful Feasible Set of 1-conjunction codes To illustrate the concept of useful feasible
set, let us characterize the useful feasible sets of 1-conjunction codes. Let I' be a 1-conjunction
(¢, N)-code, and T' C I" be an arbitrary set of traitors. Recall that the alphabet is binary in this
case. Each word w = (w;)¢_; € {0,1} can naturally be viewed as a subset of [{]: the set of all
positions i € [¢] for which w; = 1. This way, the intersection and union of words are also words
in {0,1}¢. Also, we can write w C v for two words w,v € {0, 1}* without ambiguity.

Proposition A.3.2 Let T C I" be an arbitrary non-empty set of codewords of a 1-conjunction
(¢, N)-code. Then,
UF(T) ={weFT)| ucCcT,uCw}.

In words, a word w in the feasible set F(T") is useful if w contains some member of T'.

Proof: The fact that {w € F(T) | 3u C T,u C w} C UF(T) is straightforward from definitions.
We prove the converse. Assume to the contrary that there is some w € UF(T') what does not
contain any u € T. Let ¢ be a signal, viewed as a subset of [{], constructed by collecting
arbitrarily one member from each of the set u \ w for each u € T. Then, D;(u,c) = 1 for all
u € T yet Di(w,c) =0 because w N ¢ = (). This is a contradiction. |

We are now ready to formalize the notion of traceable codes.

Definition A.3.3 [(Efficiently) Traceable Code] An (¢, N)-code I is t-traceable if from any
collusion T C T of size at most ¢, and any word w in the useful feasible set UF(T’), there is an
algorithm that on input w outputs a codeword in 7. This algorithm is a tracing algorithm. If
there is a polynomial time tracing algorithm, then the code is said to be efficiently traceable.

We have not specified how one might be able to construct a traceable code, efficiently or not,
even in the 1-conjunction code case. Given a generic 1-conjunction code, and a word w € UF(T),
we can construct a set T, of candidate codewords which are all codewords « which contains w.
However, we can not be sure which of the words in T, belong to the traitor set T'. We will enlist
the help of disjunct matrices to construct 1-conjunction traceable codes.
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A.3.2 Traceable codes from disjunct matrices

The classic combinatorial structure allowing for a very common type of tracing is the so-called
disjunct matrices [DHOQ]. Roughly speaking, an r-disjunct matrix is a binary matrix satisfying
the following property: given the (boolean) union of at most » unknown columns of the matrix
we can identify all the unknown columns in time linear in the size of the matrix. Disjunct
matrices turn out to be very useful in constructing efficiently traceable 1-conjunction codes, so
we formally define and discuss their properties next.

Let M be an £ x N binary matrix. As in the previous section, we will also view each column
of M as a subset of [¢], In particular, the set of columns of M is a family of subsets of [¢].
Similarly, the rows of M form a family of subsets of [N].

Definition A.3.4 [r-Disjunct Matrix] An ¢ x N binary matrix M is said to be r-disjunct if
no column (viewed as a subset of [¢]) is contained in the union of any r other columns.

This concept is equivalent to the notion of r-cover-free set family [EFF85]. Disjunct matrices
are used to design non-adaptive group tests in the following sense. There is a set of at most r
positive items in a population of N items. The rest of the items are negatives. We must identify
the positives using as few non-adaptive “tests" as possible. Each test is a subset of items. A
test returns positive iff at least one positive item is contained in the test. In the original group
testing application [Dor43], each item is a blood sample, and a test is a pool of blood samples
which indicates if any sample in the pool is positive for syphilis. That application explains the
“positive” and “negative" terms.

Associate each column of an £ x N binary matrix M with an item. Each row of M represents
a test, which consists of all columns with a 1 on the row. The test outcome vector is precisely
the union of the positive columns, where 1 represents positive test outcome and 0 negative.
It is well-known [DHO0] that, if M is r-disjunct, then there is a O(¢N)-time algorithm that
identifies all the positives given the test outcome vector. The algorithm eliminates all items
that participate in a negative test. The remaining items are identified as positives. The matrix
is r-disjunct if and only if this elimination procedure returns the correct positive set, for an
arbitrary set of at most r positives.

The following proposition explains a slightly stronger capability of disjunct matrices. The
proposition allows for a disjunct matrix to identify a subset of positives when the outcome vector
which is not necessarily an exact union of some positives.

Proposition A.3.5 Let M be an r-disjunct matrix with dimension ¢ x N. Let M) denote the
jth column of M. Let T be any (unknown) subset of at most r columns of M. Let ) #S C T
and w € {0,1} be a vector such that Ujes M) Cw C Ujer M), Then, from the vector w
we can identify a set of columns U in time O(¢/N) such that S CU C T

Proof: Let M = (m;;), and w = (w;){_;. Remove any column j such that m;; = 1 and w; = 0
for some ¢ € [¢]. Let U be the set of remaining columns. We claim that S C U C T. First,
consider any column j ¢ T'. By the definition of r-disjunctness, column M) is not contained in
the union of columns in 7. In particular, M) is not contained in w. Thus, there is some row
i € [¢] such that m;; = 1 and w; = 0. Column j is thus removed by the algorithm. We conclude
that U C T. Next, consider any column j € S. Since MU) C w column j is not removed.
Consequently, S C U as desired. 1

We can also think of an ¢ x N binary matrix as an (¢, N)-code where the codewords are
defined to be the columns of the matrix. The following corollary follows from Propositions
and
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Corollary A.3.6 Let I' be the collection of columns of an £ x N t-disjunct matrix. Then, I is
an efficiently ¢-traceable 1-conjunction code.

A.3.3 Black-box Traceability and Decoders’ Strategies

So far, we have defined traceable codes and specified how to obtain efficiently traceable 1-
conjunction codes from disjunct matrices. Traceable codes allow us to pin-point at least one
traitor from any given useful feasible word. So the remaining question is how to get a hold of a
useful feasible word.

Our ability to identify a useful feasible word depends intimately on the “anti-tracing” strategy
adopted by the pirate (decoder). The anti-tracing strategy attempts to decrypt some signal
while ignores others. We call the set of signals that the pirate (decoder) attempts to decrypt
the “qualified signals,” and this set is modeled with a relation as in the following definition.

Definition A.3.7 [Qualified signals] Let 7" C I" be the set of traitors. Let Q to be the binary
relation Q@ over T C T' and signals ¢ € {0,1}* defined by Q(T,c) = 1 if the pirate decoder
attempts to decrypt broadcast messages associated with the signal ¢, and Q(T', ¢) = 0 otherwise.

Recall that D denotes the pirate decoder, which is a boolean function, where D(c) = 1 iff the
decoder successfully decode signal ¢. For any subset T' of words, define D(T, ¢) = AyerD(u,c).
We certainly can not hope to trace pirate decoders that do not decode any signal at all. Our aim
is to be able to trace decoders which decode signals that it aims to decode with a non-negligible
probability.

Definition A.3.8 [Effective Decoder] A pirate decoder D is called (Q, p)-effective if for any
signal ¢ € Xf, Pr[D(c) = 1 | D(T,¢) = 1 and Q(T,c) = 1] > p, where T is the set of codewords
(traitors) used to build the decoder.

We will consider black-box tracing procedures, which trace traitors by simple interactions
with the pirate decoder. We assume that the decoder can be reset as many time as one wants,
thus is it stateless and can be modeled with the function ID as described earlier. However, the
decoder can have a specific strategy Q. The only thing that is going for us is that the pirate
decoder has to be (Q, p)-effective.

Definition A.3.9 [Black-box (Efficiently) Traceable Code] An (¢, N)-code T is

(Q,p,0)-blackbox t-traceable if there exists a tracing algorithm Trace such that, for any
collusion T of size at most ¢, and any (Q, p)-effective decoder D, the tracing algorithm Trace?,
with oracle access to the decoder, outputs a traitor in T with probability at least §. If there is
a tracing algorithm which runs in time poly(NV), then the code is said to be (Q,p,)-blackbox
efficiently t-traceable code. In particular, such an algorithm can only issue poly(IN) queries to

the decoder.
To illustrate the above concepts, let us consider several anti-tracing strategies.

Example A.3.10 [Naive Decoder| We first consider the case when the pirate has no strategy
at all. The following decoder was called a “perfect decoder" in [BNO8b|. A naive decoder is a
decoder that tries to decrypt any word ¢ with no strategy: Q(T,¢) = 1 for any collusion T" and
any signal c.

This is of course the weakest adversary for a tracing algorithm. For example, the CS-
Code |[NNLOI] described in Example and the disjunct matrix-based code described in
Corollary are both black-box efficiently traceable. Assuming the decoder D is naive, the
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tracing algorithm works as follows. It queries the decoder D with all weight-1 signals ¢ € {0, 1}
These are the signals with 1 in some coordinate and Os elsewhere. By repeating the queries
many times, we can amplify the success probability (to be more than 4, see Lemma
below) of identifying the set of positions i € [¢] at which some codeword in 7" has a 1. From
these positions, we obtain a useful feasible word w for which u C w for every codeword u € T
This useful feasible word w is precisely the union of the traitor codewords. Hence, the set of all
traitors can be traced if the code is based on a t-disjunct matrix.

For the CS-code, we apply the tracing algorithm described in [NNLOI]. Recall that in the CS-
code codewords are constructed from leaves of a full binary tree with N leaves. Each codeword
is of length £ = 2N — 1, one position for each node in the tree. A codeword has 1s in the positions
corresponding to the nodes from the associated leaf up to the root. Now, from the feasible word
w above, we know of all the paths from the traitors to the root and thus we can easily identify
the traitors.

The following simple lemma shows us how to amplify the success probability of a tracing
procedure. Each query to a pirate decoder is some signal ¢, and we would like to know whether
D(c) =1 or 0 with high confidence.

Lemma A.3.11 Consider a probabilistic pirate decoder that, for each query ¢, if it is able to
decrypt ¢ then it gives the correct answer D(c) = 1 with probability at least p, and if it cannot
decrypt c then it always outputs D(c) = 0. Suppose we want to issue ¢ different queries ¢y, - - - , ¢4

In( —2-

to this pirate decoder. Then, by repeating each query O <12E115§
-p

correct answers with probability more than §. (If p = 1 then each query is issued once only, for

a total of ¢ queries.)

) times, we will obtain all ¢

Proof: Suppose we repeat each query m times, and outputs 1 only if at least one of the m
copies of the query returns D(c) = 1. Then, we will be wrong with probability at most (1 —p)™.

Hence, for ¢ different queries cq,---, ¢, we will be wrong on some of them with probability at
In( —2-

most ¢(1 — p)™ by the union bound. By picking m = O (1221;5;> we then can ensure that the
1-p

probability that we are wrong is less than 1 — 9. |

We have been relatively brief in the above description on the naive decoder because the
decoder is too simple to spend much space on. In practice, we certainly cannot assume that a
decoder will accept to decrypt any signal, even if it could. For example, against the CS-code
the pirate decoder can employ the following strategy: it does not decrypt any weight-1 signal
where the 1 is in the position of a traitor leaf node. Under this strategy, the CS-Code is not
blackbox-traceable, unless with error probability greater the 1/2 because no tracing algorithm
can distinguish between a traitor (a leaf node) and its sibling in the full binary tree. Note that
the sibling may very well be a non-traitor. The CS-Code cannot deal with this type of pirate’s
strategy because the code has a rigid structure where each position in the code plays a specific
role and corresponds to a subset of users of different sizes. For probabilistic constructions of
codes where all the code positions have the same role, the strategy of refusing to decrypt some
position has no significant impact on the tracing algorithm. Our probabilistic constructions,
described in the next sections, can deal with the above pirate’s strategy against CS-Code for
that reason.

However, the pirate’s strategy can certainly be smarter than rejecting some position(s) of the
code. For example, for a probabilistic code where the codewords are chosen independently from
the same distribution and all positions play the same role, a non-trivial pirate can estimate the
(Hamming) weight of signals used in broadcast encryption and can refuse to decrypt a ciphertext
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that correspond to a signal containing too few or too many 1s. This strategy of pirate, called
the “weight-limited pirate," is formalized as follow:

Definition A.3.12 [Weight-Limited Decoder] A Weight-Limited Decoder is a decoder that
only decrypts signals ¢ with Hamming weight in an interval [a,b]: Q(T\,¢) := (wg(c) € [a,b]).

If the tracing algorithm works for a weight-limited decoder with interval [a,a], then it a
fortiori works for a weight-limited decoder with interval [u, v], for any v < a < v. Therefore, the
most interesting case is a singleton interval. We will denote Q, the Weight-Limited Strategy Q
for the singleton interval [a, a]. The following simple proposition should help clarify the concepts
of weight-limited decoder and blackbox efficiently traceable codes.

Proposition A.3.13 The column set of a t-disjunct £ x N matrix is a 1-conjunction code which

is (Q1,p,d)-blackbox efficiently ¢-traceable code, where the number of queries the tracer issues
4

to the decoder is O (Ellngll“; )
"\1=p

Proof: We issue /¢ different weight-1 queries (with repetitions) to a (Qi, p)-effective decoder D.

In( -
From Lemma [A.3.11} the total number of queries issued is O <€ 122116§>' From the results of
1—p
these queries, we will be able to recover a useful feasible word w which is the boolean union of all
the traitors participated in constructing the decoder. From Proposition we can identify

all the traitors in O(¢/N) time. |

A.4 Trace&Revoke Codes

A.4.1 1-Conjunction Trace&Revoke Codes and (r, s)-disjunct matrices

Sections and defined and presented basic examples of revocable and traceable codes.
This section defines traceéfrevoke codes which are capable of both revoking users and tracing
traitors. Roughly, in a trace and revoke code, one can still trace traitors even after revoking a
set of users. The codes we discuss from this section on will be 1-conjunction codes.

As usual, we interchangeably think of w € {0,1} as a subset of [¢]. In particular, for any
position j € [¢], we write j € w iff w; = 1 and j ¢ w otherwise. Let I" be an (¢, N)-code. For
any subset P C [{], let Tp C X denote the restrictions of all codewords in T' onto positions in
P; namely I'p = {w|p : w €T}, where w|p denotes the projection of w onto positions in P.

Let R C T be any set of codewords, then P(R) denotes the positions i € [¢] for which w; =1
for some w € R. Let P(R) = [¢(] — R. Then, define I'g = (T' — R)p(r)- In words, I';, is the set
of all codewords not in R restricted to the positions not in P(R). We can think of I'; as I" with
R being “modded out.”

Definition A.4.1 [1-Conjunction Trace&Revoke Code] An (¢, N)-code I is called an (efficient)
1-conjunction (r, s, t)-trace&revoke if:

1. T'is a 1-conjunction (efficiently) (r, s)-revocable code;

2. For any subset R € I" of at most r codewords, the code I'j is a (efficiently) ¢-traceable
code.
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The main intuition behind the definition should be clear: after revoking users in R, the
remaining codewords form a t-traceable code so that we can trace after revoke. But how do we
construct (r, s,t)-trace&revoke codes? We will impose an extra constraint on disjunct matrices
to add revoking capability to disjunct matrices.

In Section we motivated the use of disjunct matrix for tracing. However, general
disjunct matrices do not necessarily have efficient revocation capability. For example, the iden-
tity matrix is r-disjunct for any r, but it would represent a horrible 1-conjunction revoke code
because a broadcast signal must have weight Q(N) leading to large broadcast messages.

This section introduces “(r,s)-disjunct matrices” that retain the traceability of disjunct
matrices yet also attain efficient revocation capability. Constructions of good (r, s)-disjunct
matrices are presented in Section

Let R C [N] be a non-empty subset of columns of a binary matrix M with ¢ rows and N
columns. A row set I C [{] is said to eliminate R if the union of the rows in I is precisely
[N] — R.

Definition A.4.2 [(r, s)-disjunct] An ¢ x N matrix M is said to be (r, s)-disjunct if it satisfies
the following property. Given an arbitrary set R of up to r columns of M, there is a set I C [/]
of at most s rows which eliminates R.

Finally, we show how the new notion of disjunct matrices leads to 1-conjunction trace and
revoke codes.

Theorem A.4.3 For any (r + ¢, s)-disjunct matrix M with ¢ rows and N columns. Then, the
set of columns of M forms a 1-conjunction (r, s, t)-trace&revoke code.

Proof: Let I' denote the set of columns of M. Let R be any subset of columns of M with size
|R| < r < r+t. Then, there is a subset I C [¢] of at most s rows that eliminates R because M
is (r 4+ t, s)-disjunct. Let ¢ € {0,1}¢ be the characteristic vector of I, i.e. ¢; = 1 for i € I and
¢; =0 for i € [¢{] — I. Then, c is a signal for which D;(c,w) =0 for all w € R and Dy (c,w) =1
for all w ¢ R. Furthermore, the Hamming weight of ¢ is at most s. Consequently, I" is an
(r, s)-revocable code.

Next, we show that for any set R of at most 7 columns of M, I'j is ¢-traceable. Let M denote
the matrix obtained from M by removing all columns in R and all rows in P(R). Then, by
Corollary it is sufficient to show that My is t-disjunct. Let 7" be an arbitrary set of at
most ¢ columns of Mg, which by extension is also a set of at most ¢ columns of M. Let w be
a column of M not in T'. If w — as a column of Mp is contained in the union of columns in
T, then w — as a column of M — is contained in the union of all columns in R U T because all
positions in P(R) are covered by columns in R. This means M is not (r + ¢)-disjunct; and in
particular M is not (r + ¢, s)-disjunct, a contradiction! |

A.4.2 Trace&revoke schemes from 1-conjunction blackbox trace&revoke codes

Finally, we incorporate the notion of blackbox tracing and pirate strategy Q into the code
definition.

Definition A.4.4 [Black-box 1-Conjunction Trace&Revoke Code| An (¢, N)-code T' is
(r,s,Q,p,0,t)-blackbox (efficient) trace&revoke if

1. T is a 1-conjunction (efficient) (r, s)-revocable code, and
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2. For any set R of at most r codewords, the code I'j is a 1-conjunction (Q, p, §)-blackbox
(efficiently) t¢-traceable code.

Given such a blackbox trace and revoke code, we can transform it into a trace and revoke
system in a similar fashion to the the one from a revocable code to a broadcast encryption in
Definition The details (definition of a trace&revoke scheme and the transformation) can
be found in Appendix (Definitions [A.7.2) and |A.7.6).

A.5 Constructions of black-box Trace and Revoke with (r,s)-
disjunct matrices

We have shown that (r, s)-disjunct matrices give rise to trace and revoke codes. In this section
we first show how to construct (r,s)-disjunct matrices probabilistically. Then, we use these
matrices to construct blackbox trace and revoke codes.

A.5.1 Constructions of 1-Conjunction (r,s,t)-trace&revoke codes
A distribution of binary matrices.

Let N,b,n be arbitrary positive integers. Let ¢ = nb, and M(N,b,n) denote the distribution of
¢ x N binary matrices generated as follows. Partition the set [¢] into n parts, each part has b
“bins." The parts are P, = {1,--- ,b}, ---, P, ={(n—1)b+1,--- ,nb}.

To generate a matrix M € M(N, b, n) with £ = bn rows and N columns, we generate columns
of M independently in the following way. Each column of M, viewed as a subset of [¢], is chosen
by picking uniformly (with probability 1/b) exactly one bin from each part. In particular, each
column of M has exactly n elements.

We can think of each column as a “ball," and each part is a collection of b bins. The distri-
bution M(N,b,n) is defined by throwing N balls to b bins belonging to a part, and repeat that
experiment n times, one for each part. This type of matrix distribution is used in construct-
ing compressed sensing matrices. The resulting random matrix can also be thought of as the
incidence matrix of concatenating a random code of length n with the identity code [NPR12].

Construction of (r, s)-disjunct matrices.

Given two integer parameters 1 < r < N, our goal is to (randomly) construct a ¢ x N binary
matrix M which is (r, s)-disjunct with s as small as possible. The idea is to choose a matrix
M at random from M (N, b,n) with suitably chosen parameters n and b, and show that M is
(r, s)-disjunct with high probability.

Theorem A.5.1 Let 1 < r < N be given positive integers. Let z,b,n be positive integers such
that » < b and z | n. Let M be a matrix chosen from the distribution M(N,b,n). (Recall that
M has ¢ = nb rows and N columns. And, each column of M has weight exactly n.) Then, with

probability at least
Ne\"
1- (:) N™2(7 /)"

the matrix M satisfies both of the following conditions:

(i) let R be an arbitrary set of at most r columns of M. Then there is a set I of rows which
eliminates R, where |I| < zband I C {zb(i — 1) +1,---,zbi} for some i € {1,--- ,n/z}.
In particular, M is (r, zb)-disjunct.
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(ii) finding I given R takes time at most O(¢N).

Proof: Recall that [¢] is partitioned into n parts, each part has b “bins": P; = {(j — 1)b +
1,---,jb}, j € [n]. Fix a set R of at most r columns of M. Let R C [¢] be the union of columns
in R. Define

I=PU---UP,\R.

In other words, [ is the set of bins in the first z parts which contain none of the columns in R. In
each of the first z parts, the columns in R can be in at most r bins. Hence, z(b — ) < |I| < zb.

We bound the probability that I does not eliminate R, which happens if some column in [N]— R
belongs to no bin in I. A fixed column in [N] — R belongs to no bin in I with probability at
most (r/b)?. Hence, by the union bound the probability that some column in [N] — R belongs
to no bin in [ is at most (N —r)(r/b)* < N(r/b)*. In other words, I does not eliminate R with
probability at most N (r/b)>.

Now, if we define I to be
I=P,1U---UP,, \ R,

then by the same reasoning the probability that I does not eliminate R is also at most N(r/b)?.
The same conclusion holds for the next group of z parts, and so forth. Since n parts can be
partitioned in to n/z groups of z parts each, and they are all independent, the probability that
R cannot be eliminated by any one of these I is at most (N (r/b)?)"* = N"/Z(r/b)".

Finally, by the union bound over all choices of R (including R = )) we conclude that M does
not satisfy property (i) with probability at most

)y (N> N (5 by < (ﬁ‘z)rm/zwb)n_

=0 \/

Property (i) follows straightforwardly from the above analysis, because we can simply check
each block of z consecutive parts, one by one, and verify if I satisfies the desired property. 1

Corollary A.5.2 [Concrete parameters for an (7, s, t)-trace&revoke code| For any 1 < r+t < N,
there exists an efficient 1-conjunction (r, s, t)-trace&revoke (¢, N)-code of length £ = 2(2(r+t)?+
r 4+ t)(logg N + 1), where s = (4r + 4t + 2)(logy N + 1).

The above corollary was obtain from Theorem [A:4.3] and Theorem by setting n =
(r+t)logy(N2%e/(r+1t)), b=2(r+t)+1, and z = n/(r +t). However, the corollary only shows
the existence of such codes, it does not give an efficient strategy for constructing such codes.
There are several directions one can take.

e Deterministically, in exponential time we can easily construct a matrix satisfying all con-
ditions in the theorem with the parameters in the corollary because the theorem shows
that such a matrix exists.

e Probabilistically, by slightly worsen some parameters, the theorem implies that we can
construct probabilistically a good (r, s)-disjunct matrix with overwhelmingly large proba-
bility. For example, by setting n = (r+t)logy(N2e/(r+t)), b = 4(r+t), and z = n/(r+t),
the probability that a random matrix from M(N,b,n) satisfies all properties in the the-

(r+t)
NZ2e

an efficient 1-conjunction (r + ¢, 8(r + t)(logy IV + 1))-revocable code of size N and length
¢ =8(r+1t)*(logy N + 1).

+t
orem is at least 1 — ( )r . In this case, we obtain with extremely high probability
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e If desired, we can obtain a deterministic construction with a Las Vegas algorithm by
repeating the above experiment independently multiple times. In each iteration, we can
check in time O(NO( 1)) whether the randomly selected matrix satisfies the properties.

A.5.2 Combinatorial Group Testing with Prescribed-Weight Tests

From Corollary we knows how to construct a trace and revoke code where after revoking
at most r users R, we can identify at least one out of ¢ traitors if we have access to a useful
feasible word of the code I's. The identification of a useful feasible word, of course, depends
intimately on the anti-tracing strategy of the pirate decoder. In this section, we develop the
shadow group testing technique for identifying a useful feasible word when the pirate decoder is a
limited-weight decoder (recall Definition . As we have observed earlier, it is sufficient to
deal with constant-weight decoder strategy Q,. To describe the shadow group testing technique,
we first derive some results regarding group testing where all pools have the same given size.

The non-adaptive case. Given positive integers r, z, N where r + z < N, the following gives
upper and lower bounds the optimal number of non-adaptive tests for identifying < r unknown
items from the population of NV items, where each test must have weight exactly z. Furthermore,
the proof also presents two methods for constructing the tests achieving the upper-bound, one
deterministic and the other randomized.

Theorem A.5.3 Let M be an £ x N matrix which is r-disjunct with a uniform row weight of
z. Then,

0> N2 ey (A1)

- z
Given parameters 7+ z < N, there is a deterministic algorithm which constructs a ¢ x N matrix
which is r-disjunct with a uniform row weight of z, where

N — rz N —
! = emv=ram <1—|—1"—|—lnz—|—rln <(Z)>) (A.2)
z r

Furthermore, by choosing weight-z rows uniformly at random, we can also construct such a
matrix with success probability > 1 — ¢, for any given € € (0,1), where

{=0 (ern (N> eN:ZzH) . (A.3)

z €r

Proof: Let X be the set of all pairs (j, A) where A C [N] is an r-subset of [N], and j € [N] — A.
Note that | X| = (JX)(N —r =N"1).

T

To prove the lower bound (A.1]), fix an ¢ x N r-disjunct matrix M = (m;;) with constant row
weight z. A row i of M is said to mask a member (5, A) € X if row i “intersects" column j
(i.e. my; = 1) and does not intersect any column j' € A (i.e. m;y = 0,Vj’ € A). In order for
M = (my;) to be r-disjunct, every member of X must be masked by some row. A weight-z row

masks exactly z(™V . ©) members of X. Thus,

P N-7(") N-r N N-1 N-—r+1
= Z(NT_Z) oz N—z2 N—z—1 N-z—7r+1
- N —r ( N )’"N—r 1 >N—r /N

z N—-z) 2z (1—2z/N)r z
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We next derive an upperbound, we present two methods of constructing constant row-weight
disjunct matrices, one deterministic and one probabilistic.

The deterministic construction works by casting the problem as an instance of the SET COVER
problem and using the well-known greedy algorithm for SET COVER. The construction problem
can be viewed as a set cover instance as follows. The universe to be covered is X. Each “set"
is represented by a weight-z row s. The elements in the universe that belong to the set s are
precisely the members of X which s masks. Thus, each “set" s contains exactly z(N - ) elements.
A member (j,A) € X is covered by exactly (NZ__TI_ 1) sets. A classic result by Lovasz [Lov75)
(and independently by Chvatal [Chv79]) implies that the greedy algorithm finds a set cover for

X of size at most

= g (o)
- Nz_r ' NA_TT ' N]\—[;il N]\i;i;ril <1+ln <Z<N;Z>>>

< N—r( N—-z+1 )Z(l—l—lnz—i—rln(e(]\:n_z)))

z N—-r—z+1

- N_T<1+ - ) (1+T+lnz+rln(w_z))>
z N—-r—z+1 r

N — rz N —
< Tem (1+r+lnz+rln<(z))>.
z r

This fact can also be seen from the dual-fitting analysis of the greedy algorithm for SET COVER.
This set cover is exactly the set of rows of the r-disjunct matrix we are looking for. The final
expression might seem a little unwieldy. Note, however, that compared to the lower bound
(A1), we are only off by a factor of about O(r In(N/r)). For most meaningful ranges of z and r,
the factor (1 +r4+Inz+rln (M» can safely be thought of as O(rIn(NN/r)). Last but not

T
least, if rz = O(N) then eN T — O(1) and the number of rows [ is not exponential. Also,
when 72 = O(N) the overall cost is | = O(r?log(N/r)), matching the best known bound for
disjunct matrices. This optimality only applies when we are free to choose z in terms of N and
r; in particular, when we have this freedom we will pick z = ©O(N/r).

The probabilistic construction works as follows. We think of members of X as “coupons' and

the weight-z row vectors as boxes of coupons. Each box has precisely z(N - ) different coupons

in it. We want to collect as few boxes as possible to have a complete coupon collection. Let’s
pick the boxes uniformly at random, one by one. The probability that a given coupon is chosen

N—r—1
in each round is ( 2ol ) Hence, by the union bound, after ¢ rounds the probability that at

least one coupon is not collected is at most
) —r—1

N—r—1 _ (Nz—l )
!X!<1—(‘(ZN;)> gN(N*)eE o

r

z

This is an upper bound on our failure probability. If we want a guarantee of at most ¢ < 1
failure probability, then we can simply choose £ such that

N—r—l)

(O
N(N_1>e (%) <e.

r
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Similar to the above analysis,

=0 (X (X vt
z €r

is sufficient. 1

The adaptive case. One might hope that adaptive tests may help overcome the Q(e"z/ Ny
barrier. Unfortunately, such is not the case.

Theorem A.5.4 Any adaptive group testing strategies for a population of N items with less
than r positives in which each test has weight z must use Q(em/ N tests. Furthermore, there
exists a randomized testing strategy which uses, in expectation, e"#/(V=") 4 N — 2 tests.

Proof: We will show that if there are ¢ < %e”z/ N adaptive tests, then there are at least two
different sets of positive items which give identical (adaptive) test results and thus the adaptive
tests cannot distinguish between these two sets of positive items.

Each adaptive test is a z-subset F; C [N]. Consider any sequence of ¢ adaptive tests Fy,--- , Fy,
where £ < %em/ N We will show that there are two different 7-sets of items S and T such that S
intersects all of the F; and T also intersects all of the F;. Thus, if S were the set of positives then
all of the tests return positive. And, if T" were the set of positives then all of the tests also return
positive. Consequently, ¢ tests are not sufficient to distinguish between S and 7. (Remark: to
be a little more rigorous, we could model the adaptive test strategy as a binary tree, where each
node represents a z-subset, and the two children of a node correspond to whether a test turns
positive or not. Here, the sequence F7, - - - , F; corresponds to the all-positive branch of the tree.)

We use the probabilistic method. We pick a subset S of size r of [IN] uniformly at random, and
show that the probability that S intersects all of the Fj is at least 2/ (];f), which would establish
the claim.

For a fixed F;, we have

N G
PriSOF =0] = ™M - N TN-1 TN-rt1 N

N—
) N-z N-z-1 Nzr+1<(Nz>T<ezr/N‘

By the union bound,

1
Pr[SNF; =0, for some i] < ¢ - e AN < 7
Thus,
1 2

For the upper-bound, we can pick a random test T' (of size z) until the test returns negative.
Let S be the set of positive items, then

)
()

Pr[T returns negative| = Pr[SNT = 0] >

Hence, the expected number of random tests we need is at most

) N N—-z+1 ro\? _
2 _ < (1 < e/ (N=1).
Ny N-—r N—r—z—i—l_( * —r) =

z

After the negative test 1" is obtained, we can then construct new tests by replacing a negative
item in T with an item outside of it one at a time until we found all of the positive items. I
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A.5.3 The shadow group testing technique and 1-Conjunction Q,-blackbox
trace&revoke codes

When the pirate decoder only answers queries with weight a (this is the meaning of the Q,
qualified signals), we will only use weight-a queries to trace because other signals do not give
reliable answers. The following theorem explains how we can trace such pirate decoders.

Theorem A.5.5 [Q, tracing with shadow group tests| Let 1 < ¢ < N and /¢ be integers, and
let I' be the 1-conjunction code formed by the columns of a t-disjunct matrix with £ rows and
N columns. Additionally, suppose the union of any t codewords has weight at most D. Then,
the code I is also a (Qg, 1, 1,t)-traceable code where the number of queries the tracer issues to

the decoder is at most O (ngog (%) ebDDfﬂHl).

Proof: Thanks to Proposition instead of identifying a traitor, we can just identify a
vector w € {0,1}¢ that is contained in the union of all traitors’ codewords and that contains at
least one traitor’s codeword. Such a vector is in the useful feasible set (see Proposition [A.3.2)
of the code.

Identifying w = (w1, ,wy) is equivalent to identifying all the coordinates i of w for which
w; = 1. Thus, there is a subset U C [{] of at most D unknown coordinates that we want to
identify. We need to query the pirate decoder with weight-a signals ¢ to identify U. Each query
c is the characteristic vector of a subset of size a of [¢]. So we think of each query as an a-subset
A of [¢]. The decoder is able to decrypt query A if and only if there is at least one traitor whose
codeword intersects A. In other words, each query A is a group test for the “positives” U in the
population [¢]. We thus have a group testing problem “inside” another group testing problem.
We refer to the “inner” group tests as the shadow tests, because they are not used to identify
the traitors directly; rather, they are used to identify the shadow U of the traitors.

Finally, we directly apply Theorem [A.5.3|and use the non-adaptive (but deterministic) construc-
tion in the theorem (equation (A.2)) to attain the desired number of queries. 1

Now, we incorporate the shadow group testing technique to construct blackbox trace and
revoke codes. From Corollary and the discussion after that we know how to construct a
1-conjunction (r, s, t)-trace&revoke code I'. This code can easily be turned into a trace&revoke
system as described in Section Let R be any set of at most r traitors, we know that
I';; is a 1-conjunction t-traceable code. In fact, from the construction of the (r + ¢, s)-disjunct
matrix that leads to the (7, s, t)-trace&revoke code, we know that the Hamming weight of each
codeword is n = O((r + t) log(N/(r + t))); hence, the Hamming weight of the union of at most
t columns is D = tn = O(t(r + t)log(N/(r + t))). Now, if the pirate decoder applies the Q,
anti-tracing strategy, then we will only trace with weight-a signals using the shadow group
test technique from Theorem [A5.5] The number of queries the tracer needs is going to be
q=0 (ngog (f) ef—DDfaaH)

The question is, which value of weight a makes the most sense to the pirate? The answer to
this question depends on how we broadcast after revoking the users in R. Looking back at the
proof of Theorem we chose a subset I that eliminates R where the size of I is at most bz.
In fact, once I eliminates R we can add more elements to I so that |I| = bz. We use the set I to
construct a broadcast signal ¢; I is the support set of ¢. Hence, all broadcast signals will have
weight s = bz (before or after revoking R). In other words, it will only make sense for the pirate
decoder with the anti-tracing strategy Q, to set a = s = O((r + ¢)log(N/(r +t))). Also recall
that £ = ©((r +t)?log(N/(r +t))). Hence, {/a = O(r +t), and eTD T = O((N/(r +1))°W).
Combining with Lemma we obtain the following corollary.
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Corollary A.5.6 For any 1 < r+t < N, there exists an (r, s, Qs, p, 0, t)-blackbox trace&revoke
code T', where s = O((r +t)log N) is the weight of broadcast signals, and the number of queries

In( -2
issued to the pirate decoder is O (q . n(lf) >, where

in(1)

r 210 r o(t)
q:O(t(t+7“)210g(N/(r+t))log<( +1) lg(t<N/( +t))>'<r]it> )

A.5.4 Toward Traceability Against Arbitrary Pirate Decoders

We now discuss the case of arbitrary pirate decoders. Our goal is to be able to deal with any
qualified predicate Q. We propose a slightly modified version of the main scheme described in
Corollary[A.5.6]for this aim. However, we have to introduce an additional assumption: the pirate
decoder should decrypt (with non-negligible probability) broadcast signals that correspond to
the case of non-revocation, i.e., when R = (). The tracing process in our Trace&Revoke scheme
is thus not in the standard model but it seems still practical as it requires the pirate decoder to
be able to decrypt ciphertexts in the most usual case (at least in some applications) where there
is no detected malicious users in the system. Anyway, our scheme satisfies both the definition
of a traitor tracing scheme (in which the revoked set is by definition an empty set) for arbitrary
pirate decoders and the definition of a revoke system (in which the scheme can revoke users and
does not require a tracing procedure).

As shown in Theorem we can ask random queries to the pirate decoder, the number
of queries is asymptotically similar to the deterministic case. Each random query consists of a
set of B4r rows randomly chosen from ¢ rows of the matrix M. In our code based trace&revoke
scheme (Definition in Appendix , the number of chosen rows in a ciphertext (the
weight of the signal ¢) varies from 4r (when there is no revoked users, 4r rows from any block
cover all users) to 8rlog(N/r) (when there are r revoked users).

Assume the pirate knows our strategy of choosing rows in the encapsulation and if it can
detect whether a query — though corresponding to an encapsulation for some R — cannot be an
output of the Encaps(EK, R), then it will not decrypt. The key point here is to issue (random)
tracing queries so that it is computationally hard for the pirate to distinguish between a given
tracing query and an output of Encaps(EK, ) (i.e. broadcast signals in the non-revoke mode).

We now described the modified scheme. To impose the computational hardness on the
pirate, we first permute randomly the rows of the matrix M to obtain a matrix M*. We will
use the matrix M* as the code, instead of M, as the (¢, N)—code in our encryption in Definition
(appendix [A.7]). We also slightly change the Encaps(EK, R) in Definition [A.7.6| when there
is no revoked users, i.e., R = (). In this case, 4r rows from a block cover all users and the
Encaps(EK, 0)) procedure will normally use these rows for encryption. However, in this case, we
will add (8 — 1)4r more random rows and let Encaps(EK, () procedure uses the total 84r rows
for encryption. Note that the (5 — 1)4r additional rows have no impact on the validity of the
broadcast because the original 4r rows already covered all users.

We argue that no pirate decoder can distinguish a broadcast signal and a signal in the tracing
procedure. In fact, in order to distinguish between a broadcast signal constructed this way and
a random set of B4r rows, the pirate must be able to tell whether a given set A of S4r rows
contains a subset B C A of 4r rows which might come from the same row block. We next argue
that, even if the pirate has as many as b = 4r = w(t) codewords, it is computationally hard to
detect whether a given set of S4r rows contains 4r rows from the same block.

Consider the case where the matrix M* is not public and the pirate decoder is resettable,
thus can be reset to the initial state after each query. The pirate has a set T" of b = 4r codewords
(each codeword is a column of the matrix M* = (m;;)). Each row i in the set A of 5b rows of
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the random query corresponds to a subset of the set T": the subset of traitors j in 1" for which
mj; = 1. The problem of detecting whether there are b rows of A belonging to the same block
thus becomes precisely an instance of the NP-hard EXACT COVER problem [GJ79] which is like
SET COVER but each element in the universe is to be covered exactly once. To cover b columns
we do not need more than b rows, and hence a solution to the EXACT COVER problem with
additional empty rows will be a solution to the pirate’s problem. Conversely, a solution to the
pirate’s problem obviously is a solution to the EXACT COVER instance. It is not hard to derive
a reduction from 3-SAT to EXACT COVER. (See, e.g., [BMO0S8].) Furthermore, if we start from
3-sAT-5 (known to be NP-hard [Fei98]) where each clause has at most 3 literals and each literals
appear in at most 5 clauses, then we obtain instances of EXACT COVER where the number of
sets is bounded by a constant (f in our case) times the size of the universe. Therefore, there is
no known algorithm in polynomial time of b = 4r that can solve this problem, even when  is a
constant (about 15 or so).

We should however notice that our assumption requires in fact the average case hardness.
On the other hand, we also notice that the pirate possesses only ¢ users’ keys but not b keys,
and b = 4r = w(t). Therefore, we believe that our assumption is reasonable.

A.5.5 Trace&Revoke in the Information-Theoretic Limit

In the tracing procedure of our scheme, as well as in the tracing procedures of almost all known
schemes in the literature, we rely on the fact that the pirate accepts to decrypt the tracing
queries, as it is hard to distinguish a query in tracing mode and a normal ciphertext. A natural
question is, without any computational assumption about the pirate, can we still trace?

To be concrete, assume the pirate can always verify whether a query comes from Encaps(EK, R),
for some R, and that the pirate decoder only decrypts if and only if this is indeed the case. We
can prove that, for this powerful pirate, the number of queries can no longer be poly(N) for
most reasonable values of 7 and ¢. In particular, with ¢ < (]X )(1 = %)/(}) queries it is not
possible to always identify correctly at least one traitor. Moreover, in this model of pirate, we
present a randomized tracing strategy that matches this bound in expectation. Note that our
lower-bounds apply to any Trace&Revoke systems given the powerful pirate assumption.

Considering a trace&revoke schemes against the pirates who decrypt, if possible, a ciphertext
if and only if this ciphertext is an output of the algorithm Encaps(EK, R) for some R. We then
have a lower bound of the number of queries for the tracing algorithm.

Theorem A.5.7 Let t < r < N such that ¢t +r < N. If we pose at most g < ((];]) - 2) /(})
queries, then it is not possible to always identify correctly the entire traitor set T'. If we pose

()

at most q < @) (1-— %) queries, then it is not possible to always identify correctly at least one
t

traitor.

Proof: Let ¢ = Encaps(EK, R) for some R. Let T be the set of traitors. If 7" C R then no
traitor can decode c. If T'\ R # (), then some traitor will be able to decode. Thus, the blackbox
query can be represented by subsets R C [N], |R| < r. A query returns YES if T'\ R # ) and NO
otherwise.

Let us first consider the case when we want to identify all traitors in T, |T'| < t. Suppose we
pose q adaptive (!) black-box queries Fi, - - - , F,. Recall that each query can be represented by a

N f—
set F; C [N], where |F;| < r. We will prove that if ¢ < (’(2) 2, then there are two distinct traitor

t
sets 11 and 75 such that the series of queries F71,--- , F, all return YES, and thus no algorithm
can distinguish between T7 and T5.



Chapter A. Black-box Trace&Revoke Codes

To this end, fix arbitrary F1,--- ,F, and pick a set T' C [N] of size t uniformly at random. For
each i € [q], Pr[T C F;] < ((fv))
t
()

q(];,) Put it another way,

. Thus, by the union bound Prr[some query F; returns NO| <

(1) o 2

Prlall queries F; return YES] > 1 — g3 > —5-
T ()~ ()
Thus, there exist two different sets 717, T such that all queries return YES.

Next, we consider the case when at least one traitor in 7" need to be identified. Our strategy is to
show that, for an arbitrary query sequence Fi, - - - , Fy, there are potential traitor sets T4, - - - , T,
all of size t, satisfying the following conditions: (i) for each T, all queries F; returns YES, (ii)
there is no single user that belongs to all the T;. Thus, the identification of some user in some
T; will be wrong for some other Tj.

To guarantee (ii), we simply pick k = (]X:ll) + 1. Because (];[:11) is the maximum number

of t-subsets of [N] which contain a given element. To guarantee (ii), we use the probabilistic
argument as above: pick 71" uniformly at random.
O ot G5
P;r[all queries F; return YES] > 1 — gt .

()

>

= N
NoB)

()

(+)

totically as good as the above lower-bounds for most practically meaningful ranges of r and ¢.

However, it is an upper-bound in expectation only.

The last inequality holds because ¢ < (1-— %) I The following upper-bound is asymp-

Theorem A.5.8 Let t <r < N such that t+r < N. There is an adaptive strategy which uses
)
(1)

on average at most ¢ = + N — r queries.

Proof: We pose random “queries" R of size r to the blackbox decoder. (In reality, the queries
are actually Encaps(EK, R)) until the answer is no. The expected number of such queries is the
inverse of the probability that R contains the traitor set 1T', which is

N N
() NN-1 N-t+1_(})

T —_

NH =1 r—t+1 ()

r—t

After some R containing T is found, we can test each j € R individually as follows. Fix
j € [N]—RLet R = R—{j}U{j'}. If the answer to query R’ is YES then j € T'. This way,
we will be able to identify all members of T' with an additional N — r queries. |

A.6 Discussions

Optimization of the Code Length.

Given N and r < N, we presented a randomized construction of £ x N (r, s)-disjunct matrices
with s = O(rlog(N/r) and £ = O(r?log(N/r). Note that, even for r-disjunct matrices which do
not address revocation, no other known construction, including randomized ones, has asymptot-
ically smaller number of rows. It is also known that £ = Q(r?log, N) for any 7-disjunct matrix.
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Hence, if we use this matrix for broadcasting then the broadcaster’s key size (or the total number
of keys that will be attributed to users) is O(r2log(N/r)). In this setting, we can trace back all
“active” traitors (the traitors included in the pirate’s codeword).

We can reduce the broadcaster’s key size by using a related notion called multiple user
tracing (MUT) families. Given positive integers u < r, an (r,u)-MUT family is a non-adaptive
group testing matrix which, given the test outcomes imposed by an arbitrary set of v < r
positives, there is a decoding algorithm that outputs at least min(u, v) out of the v positives. It is
known [AAQ7] that, given N,7,u, an £x N (r,u)-MUT matrix exists with £ = O ((r + u?)log N).
There is a method for constructing the MUT matrix so that even sublinear-time decoding is
also reachable. Hence, we can use MUT families to design broadcast codes which can be used
for tracing (assuming the naive pirate) up to /r of the traitors while keeping the broadcaster’s
key size O(rlog N). Note that in Complete Subtree, the broadcaster’s key size is 2N — 1.

Optimization of the Private Key Size.

In the above construction, the users’ private key size is linear in the weight of its associated
codeword. We can optimize this, for the case of 1—conjunction revocable code, by using Asano’s
method [Asa02]. The users’ private key size then becomes constant. In this case, the security
should also be based on a computational assumption that the RSA inversion is hard. This

optimization is described in Appendix (Definition [A.7.5)).

On the a priori-Bounds of Revoked Users and Traitors.

Our scheme assumed an a priori-bounds r,¢ of revoked users and traitors. If the bound is
unknown, a natural way to get around the problem is to “stack" on top of each other (r,s)-
disjunct matrices for different values of r. This way, the resulting matrix will serve as (r, s)-
codes for different r. The sacrifice is in code length. In the encryption mode, depending on the
number of revoked users, we can use the appropriate matrix.
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A.7 Appendix: Basic Definitions

Definition A.7.1 [Broadcast Encapsulation] A broadcast encapsulation scheme is a 3-tuple of
algorithms DBE = (Setup, Encaps, Decaps):

e Setup(1¥, V), where k is the security parameter, and N the number of users, it generates
the global parameters param of the system (omitted in the following); and returns a master
secret key MSK and an encryption key EK. It also generates users’ keys upk;, for i =
1 N.

gy

e Encaps(EK, R) takes as input a revoked set R and outputs a key header H and a session
key K € {0, 1}k

o Decaps(usk;, R, H) takes as input the revoked set R and a user secret key. If i € [N] — R,
outputs the session key K.
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The correctness requirement is that for any revoked set R and for any user i € [N] — R then the
decapsulation algorithm gives back the ephemeral session key.

Definition A.7.2 [Trace&Revoke Encapsulation] A trace&revoke encapsulation scheme is a
broadcast encapsulation scheme with an additional tracing algorithm TraceD(RD, pk, msk): the
traitor tracing algorithm interacts in a black-box manner with a pirate decoder D that is built
from a certain set T' of traitors. The algorithm takes as input a subset Rp C [N] (could be
adversarially chosen), the public key pk, the master key msk and outputs a set T C [V].

More precisely, under the conditions:

e there are at most t traitors: |T'| < ¢;

e The minimal revoked set does not contain all the traitors: T' € Rp, or equivalently Sp =
(IN] — Rp) contains at least a traitor;

e D is “efficient” to decrypt ciphertexts (i.e., decrypts with some non-negligible probability)
for some revoked sets R that include the minimal revoked set Rp but do not contain all
the traitors (Rp C R but T ¢ R);

then the tracing algorithm outputs at least a traitor in Sp, i.e., : ) # Tp € T'N Sp.

Definition A.7.3 [Public-Key Encryption Scheme] PKXE = (Setup, KeyGen, Enc, Dec):

e Setup(1¥), where k is the security parameter, generates the global parameters param of the
system;

e KeyGen(param) generates a pair of keys, the public (encryption) key ek and the associated
private (decryption) key dk;

e Enc(ek,m;r) produces a ciphertext ¢ on the input message m and the public key ek, using
the random coins r (we may omit » when the notation is obvious);

e Dec(dk, ¢) decrypts the ciphertext ¢ under the private key dk. It outputs the plaintext, or
L if the ciphertext is invalid.

Definition A.7.4 [Secret Sharing Scheme| SSS = (Share, Combine):

e Share(k,m,n), outputs a secret bit string K of length k, as well as n shares s1, ..., sy, so
that any m of them will allow to recover K.

e Combine({(4,s;)}), from m pairs (i, s;), it recovers the bit string K.

The correctness requirement is that from any m-subset of {(4,s;)} generated by Share(k,m,n),
the Combine algorithm outputs the bit string K generated by Share. Furthermore, the bit string
K must be perfectly uniformly distributed.

Definition A.7.5 [Constant Size Private Key] Suppose there exists an algorithm that generates
1—Conjunction (r, s)—Revocable (¢, N)—Code.We build a BE scheme II that can revoke up to
r users in the following way.

e Setup(1},N)

1. Run the Code generating algorithm on (N,r,d) to obtain a 1—Conjunction (r,s)
Revocable (¢, N)—Code T.

2. Generate two large primes of the same size p,q and publish M = pq
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3. Generate ¢ pairs (dk;,ek;),i =1,...,¢ such that exd; = 1( mod (p—1)(¢ — 1));

4. Choose a random X i VAY:

D.

Set MSK = (T, X, {dk;}), EK = (V, {ek;}), and Reg = 0.

e Extract(MSK, 1)

1.

2.

The user i is associated with the codeword w’ € T.

k3

T, k.’ . .
Set usk; «— X11i=1""7 ;upk; < i; Reg <— RegU {i}.

e Encaps(EK, R):

1.
2.

The revoked set R should contain at most r users;

Because I' is 1—conjunction (r,s)—revocable, one can find out an word ¢ such that
Di(R,c) =0 and Dy(u,c) =1 for any u € [N] — R, and m = H(c) < d.

Denote by i1, ..., %, the positions of m bits 1 in ¢, i.e., ¢;; =1, for j=1,...,m

Set e;; :Xdkij, forj=1,...,m.

5. Output K¢ and Header = (c, (e;;),j = 1,...,m).

o Decaps(usk;, R, Header):

1.

2.

If j is in [N] — R, then Dy(w/,c) = 1. There exists thus an index 1 < z < m such
that ¢;, = w] =1

L wi
H -~ ek, ®
Compute s;, = uskj s=Ls#iz 77 From the S;,, reconstruct ICo

Definition A.7.6 [Trace&Revoke System from 1-Conjunction Trace&Revoke Codes| Let us be
given a generator of (r,s, Q,p,d,t, 7)-blackbox Trace&Revoke 1-Conjunction (¢, N)-Codes, and
a secure public-key encryption scheme PKE. We build a Trace&Revoke encapsulation scheme
IT that can revoke up to r users, and tracing traitor for a pirate decoder having up to ¢ traitors’
keys, in the following way.

e Setup(1*, N)

1.

Run the code generating algorithm on (Q, N, k,r,t,s) to obtain an (r, s, Q,p,d,t,7)-
blackbox Trace&Revoke 1-Conjunction (¢, N)-Codes.

2. Run PKE.Setup(11) to get the public parameters param for the encryption scheme;

3. For i = 1,...,¢, run the key generation algorithm PKE.KeyGen(param) to get the
pair (dkz, ekz)

4. Set MSK = (T, {dk;}), and EK = {ek;}.

5. For i = 1,..., N, the user i is associated with the codeword w’ € I': we set usk; <

{dkj/wi=1,j=1,...,0}.

e Encaps(EK, R):

1.

For a revoked set R of size at most r, since the code I' is efficiently (r, s)-revocable, one
can find out a signal ¢ of weight at most s, such that D;(u,c) = 0, for any u € F(R),
and Dj(u,c) =1 for any u € [N] — R. We denote by m = wg(c) this weight;

Denote by i1, ...,%y, the positions of m 1-bits in ¢, i.e., ¢;; =1, for j=1,...,m;
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3. Choose a random session key K & {0,1}*.
4. Set e;; = PKE.Enc(pk;;, K), for j =1,...,m.
5. Output K and H = (c, (e;;),j =1,...,m).

e Decaps(usk;, R, H):

1. If j is in [N] — R, then D (w’,c) = 1. This means wy(w’ A ¢) > 1 and there exists
thus i; in w’ Ac
2. Compute K = PKE.Enc(sky;, e;;).

e TraceP (Rp, pk, msk): Running the tracing algorithm for the code, each time the tracer asks
a qualified query ¢ to the pirate decoder, we do as follows: run Encaps(EK, R) but directly
use the signal ¢ (in fact, the revoked set R in this case corresponds to the set of the users
that cannot decrypt c¢) and query the pirate decoder on the R, H. If the pirate decoder
exactly recovers the session key K, we return 1 to the tracer for the code, and otherwise
we return 0.

It is straightforward that if the pirate decoder Rp answers all ciphertexts constructed from
qualified signal ¢ for Q, then the tracing procedure can be directly reduced to the tracing for
the code, and thus we can identify traitors, as in the (r, s, Q,p, d, t, 7)-blackbox Trace&Revoke.

In the particular case of @), the fact that the pirate decoder Rp answers all ciphertexts
constructed from qualified signal ¢ for Q, implies that the pirate decoder decrypts all ciphertext
with a header H containing a encapsulations of the session key, each is encrypted by a key at a
row of the matrix.
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Traitor Tracing with Optimal
Transmission Rate
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[ENPO7h] with Nelly Fazio, and Antonio Nicolosi

Abstract :  We present the first traitor tracing scheme with efficient black-box traitor tracing
in which the ratio of the ciphertext and plaintext lengths (the transmission rate) is asymptot-
ically 1, which is optimal. Previous constructions in this setting either obtained constant (but
not optimal) transmission rate [KY02d], or did not support black-box tracing [CPP05d)].

Our treatment improves the standard modeling of black-box tracing by additionally accounting for
pirate strategies that attempt to escape tracing by purposedly rendering the transmitted content
at lower quality.

Our construction relies on the decisional bilinear Diffie-Hellman assumption, and attains the
same features of public traceability as (a repaired variant of) [CPP05d), which is less efficient
and requires non-standard assumptions for bilinear groups.

B.1 Introduction

Traitor tracing schemes constitute a very useful tool against piracy in the context of digital
content distribution. They are multi-recipient encryption schemes that can be employed by
content providers that wish to deliver copyrighted material to an exclusive set of users. Each
user holds a decryption key that is fingerprinted and bound to his identity. If a group of
subscribers (the traitors) collude to construct an illegal device (the pirate decoder), the security
manager can run a specialized traitor tracing algorithm to uncover the source of the leakage.
Therefore, a traitor tracing scheme deters subscribers of a distribution system from leaking
information by the mere fact that the identities of the leaking entities can then be revealed.
The first formal definition of traitor tracing scheme appears in Chor et al. [CFN94b|
CEFNPO0], whose construction requires storage and decryption complexity O(t?log?tlog(n/t))
and communication complexity O (3 log?t log(n/t)), where n is the size of the universe of users
and t is an upper bound on the number of traitors. Stinson and Wei later suggested in [SW98al
explicit combinatorial construction that achieve better efficiency for small values of ¢ and n.
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The work of [NP98, [CFNPO0] introduced the notion of threshold traitor tracing scheme,
where the tracing algorithm is only required to guarantee exposure of the traitors’ identities for
pirate decoders whose decryption probability is better than a given threshold 5. The scheme
of [NP9§| achieves storage complexity O(t/flog(t/e)), where ¢ is the probability of successfully
tracing one of the traitors. Moreover, the scheme has communication complexity linear in ¢ and
constant decryption complexity.

In [BF99D], Boneh and Franklin present an efficient public-key traitor tracing scheme with
deterministic t-tracing based on an algebraic approach. Its communication, storage and decryp-
tion complexities are all O(t). The authors also introduce the notion of non-black-box traceability:
given a “valid” key extracted from a pirate device (constructed using the keys of at most ¢ users),
recover the identity of at least one traitor. This is in contrast with the notion of black-box trac-
ing (on which we focus in this paper), where the traitor’s identity can be uncovered by just
observing the pirate decoder’s replies on “well crafted” ciphertexts. More recently, Boneh et
al. [BSWO06b, BWOG6D|] proposed traitor tracing schemes that withstand any number of traitors
(full traceability), while requiring a sub-linear ciphertext length (O(y/n)). In [Pfi96], Pfitzmann
introduces the notion of asymmetric traitor tracing. In this model, tracing uncovers some secret
information about the traitor that was a priori unknown to the system manager. Thus, the
result of the tracing algorithm provides actual evidence of the treachery. Further results in this
direction are in [KD98b] [KY02d, KY02a.

Alternative traitor tracing solutions [F'T01, BPS00, [SW03] have also been proposed to fight
leakage of the decrypted content, rather then leakage of the decryption capabilities.

As originally observed in [GSY99], traitor tracing scheme are most useful when combined with
a revocation scheme; such trace-and-revoke approach consists in first uncovering the compro-
mised decryption keys and then revoking their decryption capabilities, thus rendering the corre-
sponding pirate decoder useless [NP0O, TT01, NNLO1, [DF02, DF03), KHLO3, DFKY05, BW0O6h].
Constant Transmission Rate. All proposals mentioned so far result into schemes that are
not quite communication-efficient: the length of each ciphertext is (at least) ¢ times longer than
the embedded plaintext. As pointed out by Kiayias and Yung in [KY02¢], an important problem
in designing practical traitor tracing schemes is to ensure a low transmission rate, defined as
the asymptotic ratio of the size of ciphertexts over the size of plaintexts, while at the same time
minimize the secret- and the public-storage rates, similarly defined as the asymptotic ratio of
the size of user-keys and of public-keys over the size of plaintextsE] Under this terminology, the
transmission rate of all the above mentioned solutions is linear w.r.t. the maximal number ¢ of
traitors, whereas in [KY02c], Kiayias and Yung show that if the plaintexts to be distributed are
large (which is the case for most applications of traitor tracing, such as distribution of multimedia
content), then it is possible to obtain ciphertexts with constant expansion rate. Their solution
is based on collusion-secure fingerprint codes [BS98| [Tar(03] and its parameters are summarized
in Figure |B.1

Besides the clear benefit in terms of communication efficiency, schemes with constant trans-
mission rate also enjoy efficient black-box traceability, while schemes with linear transmission
rate are inherently more limited in this regard [KYQlc| (e.g., the black-box traitor tracing of
[BE9ID] takes time proportional to (%)).

In [CPP05a], Chabanne et al. extend the setting of [KY02c] with the notion of public
traceability: Whereas traditional tracing algorithms require knowledge of the system’s secret
information, in a scheme with public traceability everyone can run the tracing algorithm. In this

We adopt a terminology slightly different from the one of [KY02d], which uses the term ciphertest/user-
key/public-key rates, for what we called transmission/secret-storage/public-storage rates. Moreover, in [KY02c]
transmission rate refers to the sum of the all the three rates. Our choice is of course mostly a matter of taste:
we prefer the terminology of this paper as it makes more evident the role played by each quantity in a concrete
implementation of the system.
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Trans. | S-Storage | P-Storage BB Public Hardness
Rate Rate Rate Tracing | Traceability | Assumption
BF[BF99b] 2t+1 2t 2t+1 X X DDH
KY[KY02(] 3 2 4 V* X DDH
CPP[CPPO5b] 1 2 1 X X DBDHZ-E
ADBDH'-M
PST[PSNTOG6C] 7 1 1 Vv full DDH
Repaired CPP 3 Vv local DBDH%-E
ADBDH'-M
Our Scheme 1 2 10 Vv local DBDH

Figure B.1: Comparison of rates (transmission, secret- and public-storage rates) and tracing features (black-
box tracing and public traceability) between existing schemes and our construction. The “*” in the row labeled
“[KY02c]” refers to the fact that the scheme of [KY02c] can support black-box tracing using the tracing algorithm
that we describe in Appendix[B.7.3] The row labeled “[PSNTO6b]” refers to instantiating their generic construction
with ternary IPP codes and ElGamal-style encryption. The row labeled “Repaired [CPP05a]” refers to the variant
of the scheme of [CPP05a] that we suggest in Appendix to support black-box tracing.

paper, we also consider local public traceability, whereby public information suffices to carry out
the preliminary phase of tracing, which requires interaction with the pirate decoder, and results
in an encoding of the traitor’s identity that can be decoded with a master key. This separation
of tasks ensures that the system’s secret information is only needed for off-line operations (i.e.,
user registration and possibly the final phase of tracing), thus improving the overall security of
the system by allowing for safer storage solutions.

The work of [PSNTOGb| describes a traitor tracing scheme with constant (but not optimal)
transmission rate and (full) public traceability based on Identifiable Parent Property (IPP)
codes. Figure also reports on these two schemes. One could think that traitor tracing
schemes with linear transmission rate (e.g. [BF99b|) could easily be turned into schemes with
constant transmission rate by means of hybrid encryption: To send a large message, pick a
random session key, encrypt it with the given traitor tracing scheme, and append a symmetric
encryption of the message under the chosen anonymous session key. This approach, however,
suffers from a simple yet severe untraceable pirate strategy: Just decrypt the session key and
make it available to the “customers” on the black market, e.g., via anonymous e-mail, or via
text-messaging from a pre-paid cellphone. Clearly, when a traitor tracing scheme is used to
encrypt the content directly, this “re-broadcasting” strategy becomes much less appealing for

would-be pirates, because of the higher costs and exposure risks associated with running a
high-bandwidth darknet.

Our Contributions. We present the first public-key traitor tracing scheme with efficient black-
box traitor tracing and local public traceability in which the transmission rate is asymptotically
1, which is optimal. Encryption involves the same amount of computation as in [CPP05al;
decryption is twice as fast. We also considerably simplify the computational hardness require-
ments, relying just on the DBDH assumption—much weaker and more widely accepted than the
non-standard bilinear assumptions employed in [CPP05a].

Our treatment improves the standard modeling of black-box tracing by additionally account-
ing for pirate strategies that attempt to escape tracing by purposedly rendering the transmitted
content at lower quality (e.g. by dropping every other frame from the decrypted video-clip, or
skipping few seconds from the original audio file).

As additional contribution, we point out and resolve an issue in the black-box tracing
of [KY02¢] (which was also independently addressed in a revised version of their work [KY06]).
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We then show that [CPP05al, which extends [KY02¢] and inherits its tracing mechanism, inherits
in fact the above-mentioned problem, too. In this case, however, fixing the black-box function-
ality requires changes that intrinsically conflict with the optimizations put up by [CPP05a]
to achieve optimal transmission rate. In other words, |[CPP05a] can either provide optimal
transmission rate with only non-black-box tracing, or support local public traceability with
sub-optimal transmission rate, but cannot achieve both at the same time.

Organization. Section[B.2]introduces the tools needed for our construction. Section[B.3|defines
the syntactic, security, and traceability properties of traitor tracing schemes. We present our
new traitor tracing scheme and its security analysis in Section and Section discusses a
concrete choice of parameters. In the Appendix, we point out a flaw in the tracing algorithms
of [KY02¢] and [CPP05a] and propose fixes.

B.2 Preliminaries

The security properties of our construction hinge upon the decisional bilinear Diffie-Hellman
assumption (DBDH) for (Gi,G2). We refer the reader to Appendix for the relevant
definitions.

Collusion-Secure Codes. Collusion-secure codes [BS98| provide a powerful tool against illegal
redistribution of fingerprinted material in settings satisfying the following Marking Assumption:
1) it is possible to introduce small changes to the content at some discrete set of locations (the
marks), while preserving the “quality” of the content being distributed; but 2) it is infeasible to
apport changes to a mark without rendering the entire content “useless” unless one possesses
two copies of the content that differ at that mark. Below, we include a formalization of the
notion of collusion-secure codes, adapted from [BS98].

Definition B.2.1 Let ¥ be a finite alphabet, and n,v € Z> 0. An (n,v)-code over ¥ is a set
of n v-tuples of symbols of ¥: € = {w®, ..., w™} C ¥

Definition B.2.2 Let T be a subset of indices in [1,n]. The set of undetectable positions for
Tis: Rp = {f € [1,0] | (Vi,j € T).[wl” = wP]}.

Notice that for each i € T, the projection of each codeword w(® over the undetectable
positions for 7" is the same; we denote this common projected sub-word as w)g,.. By the Marking
Assumption, any “useful” copy of the content created by the collusion of the users in 7" must
result in a tuple w whose projection over Ry is also w|g,.. This is captured by the following:

Definition B.2.3 The set of feasible codewords for T'is: Frr = {w € (BU{?})" | O|r, = WR, }-

Definition B.2.4 Let ¢ > 0 and t € Z> 0. C is an (e,t,n,v)-collusion-secure code over ¥
if there exists a probabilistic polynomial-time algorithm 7 such that for all " C [1,n] of size
| T |< t, and for all © € Fr, it holds that: Pr[T (r¢c,w) € T] > (1 — ¢), where the probability
is over the random coins r¢ used in the construction of the (n,v)-code C, and over the random
coins of 7.

B.3 Public-Key Traitor Tracing Scheme with Public Traceabil-
ity
Definition B.3.1 [Public-Key Traitor Tracing Scheme] A public-key traitor tracing scheme is a

5-tuple of probabilistic polynomial-time algorithms (Setup, KeyDer, Encaps, Decaps, Trace),
where:
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Setup: On input a security parameter 1%, a collusion threshold 1¢, and a bound n on the max-
imum number of users, returns a public key pk along with some master secret information
msk (¢f. KeyDer and Trace);

KeyDer: Given msk and a user index i € [1,n], outputs a “fingerprinted” user key skiﬂ

Encaps: On input key pk and a message m (from the appropriate message space M, implicitly
described by pk), returns a (randomized) ciphertext ;

Decaps: On input a user key sk; and a ciphertext 1, recovers the message encrypted within ;

Trace: Given the master secret key msk, the public key pk, and black-box access to a “pirate”
decoder capable of inverting the Encaps(pk,-) functionality, returns the user index of one
of the traitors that contributed his/her user key for the realization of the pirate decoder,
or the special user index 0 upon failure.

For correctness, decryption with any user key output by KeyDer should “undo” encryption:

(pk, msk) & Setup(1%,1t,n),m & M,

Pr | Decaps(sk;, Encaps(pk,m)) = m
' i & [1,n], sk; & KeyDer(msk, u)

=1,

where the probability is over the random coins of Setup, KeyDer, Encaps, Decaps, and over
the random selection of m from M and of i from [1,n].

Definition B.3.2 [Full/Local Public Traceability] A public-key traitor tracing scheme is said
to support: 1) public traceability if the Trace algorithm can be implemented without the master
secret key msk; or 2) local public traceability if the Trace algorithm can be split in an on-line
phase, in which the pirate decoder can be queried without knowledge of the secret key, and an
off-line phase, without access to the pirate decoder, that can retrieve the identity of the traitor
from the master secret key and the output of the publicly executable on-line phase.

Requirements on the Encryption Functionality. For security, encryption of distinct mes-
sages under a traitor tracing scheme should look indistinguishable to any efficient algorithm
that is allowed to pick the two messages based on the public key of the system, but without
knowledge of any user key:

Definition B.3.3 [Indistinguishability under Chosen-Plaintext Attack] A public-key traitor
tracing scheme satisfies ej,q-indistinguishability if, for any pair of probabilistic polynomial-time
algorithms (Aj, Asz), it holds that:

(pk, msk) & Setup(1%,1%,n), )
Pr | Ay(state, ¢*) = b (mo, m, state) & Ai(pk), < B + €ind,
b & {0,1}, " & Encaps(pk, mp+)

where the probability is over b*, and the random coins of A;, Ao, Setup, and Encaps.

Requirements on the Tracing Functionality. Existing literature usually models black-
box traceability as the ability to “extract” the identity of (at least) one traitor from pirate
decoders that correctly invert the decryption algorithm (under appropriate efficiency and success
probability constraints). This approach, however, is often criticized because it leaves the way

2Equivalently, we can think of Setup as outputting a vector of user keys, one per each user in the system; we
will refer to either formalization interchangeably.
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open for pirate decoders that decrypt ciphertexts into plaintexts that closely resemble (but are
not identical to) the original plaintexts. For example, in the context of media distribution, the
pirate could purposedly remove few frames from the original video clip, or play the correct audio
file at a lower sampling rate. Such pirates could still attract a share of the black market, and
since they actually do not correctly invert the encryption functionality, the scheme’s traceability
guarantees often would do not apply to them. To account for pirate strategies of this sort, we
allow traitors to specify a notion of “resemblance” in the form of a polynomial-time reflexive,
symmetric binary relation R over plaintexts, with R(m,m’) = 1 if customers would accept
m’ as a reasonable replacement for mE] The only semantic constraint on R is that it shall
not be so lax as to deem randonﬁ plaintexts similar to fixed ones, i.e., the quantity pr =
maxmepm Pr[R(m,m') =1 | m/ & M{] shall be negligible (otherwise tracing is impossible, since
a keyless decoder could simply output a random plaintext as a “reasonable” decryption of any
ciphertext). Similarly, tracing needs only be effective against efficient decoders D whose success

probability pp = Pr[R(m, D(Encaps(pk,m))) =1|m & M] is non-negligible.

Definition B.3.4 A public-key traitor tracing scheme is e ac-traceable if for any probabilistic
polynomial-time traitor strategy A, it holds that:

(pk, msk) & Setup(1%, 1%, n),

D(")
Pr | Trace™"’(pk, msk) ¢ T (D’R)ﬁA(pk)KeyDer(msk,-)

S Etrac

where M is the message space, T' C [1,n] is the set of up to ¢ indices on which A queried the
KeyDer(msk, -) oracle, D and R both run in probabilistic polynomial-time and are such that pp
is non-negligible and pr is negligible, and the probability is over the coins of Setup, KeyDer,
A, D and Trace.

Notice that Definition subsumes the case that the traitor strategy A only produces a
“good” pirate decoder D with a low (but non-negligible) probability: indeed, any such strategy
can be “boosted” by simply keeping executing .4 on fresh random coins, until the pirate decoder
D that A outputs is a good one (which can be efficiently tested by estimating D’s decryption
capability on the encryption of a random plaintext).

B.4 Public-Key Traitor Tracing with Public Traceability, Black-
Box Tracing and Optimal Transmission Rate

Similarly to the schemes of [KY02c] and |[CPP05al, our construction is based on the use of an
(g,t,n,v)-collusion-secure code C over the alphabet {0,1} (¢f. Definition [B.2.4). At a high
level, the idea is to first define a two-user sub-scheme resilient against a single traitor, and
then “concatenate” v instantiations of this sub-scheme according to the code C; in particular,
each user i € [1,n| is associated to a codeword w® in C, and given decryption key sk; =

(K1 JROTERES Kv w(i)), where wj(»i) is the j-th bit of the codeword w®, and Ko, Kj are the keys
Phadil "o

for the j-th instantiation of the basic two-user sub-scheme. Although the overall architecture

that we follow is well-known, achieving optimal transmission rate along these lines requires

solving a number of technical problems, on which we elaborate in Section [B.4.4]

3 Alternatively, the resemblance relation R could be specified as a parameter of the scheme in the definition of
the Trace algorithm.

4For the sake of simplicity, in this paper we discuss only the case of random sampling from M, but the
treatment generalizes to the case of other plaintext distribution with high min-entropy.
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B.4.1 Owur Two-User Sub-Scheme

Setup: Given a security parameter 1%, the algorithm works as follows:

Step 1: Generate a k-bit prime ¢, two groups G; and Go of order ¢, and an admissible
bilinear map e : Gy x G; — Go. Choose an arbitrary generator P € Gy.

Step 2: Pick random elements a,b,c € Z*q, and set Q = aP,R = bP,h = e(P,cP).
Compute two linearly independent vectors (v, o) and (a1, 1) in Z4 such that ba, +
af, = cmod g, for o € {0,1}. The private key of the security manager is set to be
msk = (a7 b: aq, ﬁO, aq, Bl)

Step 3: For o € {0,1}, let A, = a,R and B, = 3,P. Choose a universal hash function
H : Gy — {0,1}", and set the public key of the scheme to be the tuple

pk = (q’ le GQv e, H, P, Qa R, AOa By, A17 Bl)ﬁ
The associated message space is M = {0, 1}".

KeyDer: For o € {0,1}, the secret key of user o is set to be sk, = «a,. Notice that cP =
asR + p,Q and hence h = e(P,cP) = e(P,a,R) - e(Q, ,P) = e(P, As) - e(Q, By), for
o€ {0,1}.

Encaps: Given pk, anybody can encrypt a message m € M by first selecting a random k € Z,
and then creating the ciphertext ¢ = (U, V,W) € G x G; x M where

U=e¢P,RF, V=kQ, W=mae&H(®H"

Decaps: Given a ciphertext ¢ = (U, V, W), user o computes h¥ = U® - ¢(V, B,) and recovers
m =W @ H(h*). Correctness of the decryption algorithm is clear by inspection.

Trace: To trace a decoder D with resemblance relation, feed D with the “illegal” ciphertext
O = (e(P,R)¥ , kQ,m @ H(e(P, A,)¥ e(Q, By)¥)), for random o € {0,1}, k, k' € Z,, 1 €
M. If the output m* of D satisfies R(m, m*) = 1, then return o as the traitor’s identity;
otherwise, pick fresh random o € {0,1},k, k' € Zq, 1 € M and repeat.

Before moving on to the security and traceability of our two-user scheme in the sense of
Definitions [B.3.3|and [B.3.4] (¢f. Section[B.J), we remark that Trace does not require knowledge
of the master secret key msk, and thus it supports full public traceability (cf. Definition .
Also, notice that decryption requires only one pairing computation.

B.4.2 Indistinguishability under Chosen-Plaintext Attack

Theorem B.4.1 Under the DBDH assumption for (Gj,Gz2), the scheme in Section is
secure w.r.t. indistinguishability under chosen-plaintext attack (c¢f. Definition and Defini-

tion .

Proof: To a contradiction, let us assume that the scheme does not satisfy Definition |[B.3.3|i.e.,
there is an adversary A = (Aj,.A2) that, given the public key

5Note that there is no need to explicitly include h in the public key, as it can be derived as h = e(P, As) -
e(Q, B,). Caching the value of h, however, is recommendable when public storage is not at a premium, as that
would save two pairing computations during encryption.
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pk = (¢,G1,Ga,e,H, P,Q, R, Ay, By, A1, B1), can break the scheme with non-negligible advan-
tage €ing. We then construct an algorithm B (whose running time is polynomially related to
A’s) that breaks the DBDH assumption with probability epgpH = €ind.

Algorithm B is given as input an instance (P, x P, yP’, 2P’  h') of the DBDH problem in (G1, Gs);
its task is to determine whether h' = e(P’, P')*¥* or h' is a random element in Gs. B proceeds
as follows:

Setup: B sets P = P’ and Q = P’. Then, B picks r & Z*q, and sets R = rQ. B now
chooses fy, £1 & Z*q and computes By = BgP and By = $1P. Then, B sets Ay = zP’
and h = e(P, Ap) - e(Q,By). Finally, B sets 41 = Ay + 5@ — £1Q, so that in fact
h=e(P,A,) - e(Q, By), for o € {0,1}, as required.

B can now set pk = (¢, G1,Go, e, H, P,Q, R, Ay, By, A1, B1) and send it to Aj;.

Challenge: A; outputs two messages mg, m; on which it wishes to be challenged, along with
some state state to be passed to Ay. To prepare the ciphertext, B picks random b* € {0,1},
and sets

U =e(P,yP')" (= e(P,R)Y),V = yP' (=yQ), W =my & H(I - e(yP',xP")").

(Notice that this implicitly defines & = y.) Then, B sends A the challenge ciphertext
Y* = (U, V,W), along with the state information state.

Guess: Algorithm As outputs a guess V' € {0,1}. B returns 1 if b’ = b* and 0 otherwise.

If b = e(P’, P')™% then A, gets a valid encryption of my«, since (as we verify below) in this
case the input to the hash function in the computation of W is just h*:
B e(yP aP)® = e(P', Py - e(yP’, fo(wP")) = e(wP', 2P'Y - (P, fo(P'))?
= e(P, Ag)? - e(Q, Bo)? = [e(P, Ao) - e(Q, Bo)]Y = h¥ = h*,
as required by the encryption algorithm. Therefore, in this case A will successfully guess b’ = b*
with probability ej,q + 1/2.

On the other hand, when A’ is a random element of Gg, the input to H is a random value,
independent of any other information in the adversary’s view. Since H is chosen from a universal
hash function family, its output is also (almost) uniformly random in {0, 1}", so that the value
of W (and hence the whole challenge ciphertext ¢*) is completely independent from my«. Thus,
in this case b’ = b* holds with probability 1/2.

It follows that adversary B breaks the DBDH assumption with non-negligible advantage epgpy =
€ind, contradicting our hardness assumption. 1

B.4.3 Traceability

To assess the effectiveness of the Trace algorithm from Section we start with some
observations about the illegal ciphertexts that Trace uses in querying the decoder D:

Definition B.4.2 [Valid and Probe Ciphertexts] Let o € {0,1}, 7 € M,AU € Gy, V € Go,
W=m&HU*e(V,B,)), and ¢ = (U,V,W). We say that the ciphertext v is:

e valid, if U = e(P,R)*, V = kQ, for some k € Zyg;
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e o-probe, if U = e(P, R)k/, V = kQ, for distinct k, k' € Zq.

Lemma B.4.3 [Indistinguishability of Valid vs. Probe Ciphertexts] Under the DBDH assump-
tion for (Gi1,Gz), given the public key pk = (q,G1,Go, e, H, P,Q, R, Ay, By, A1, B1) and the
secret key sk, = a; of user 7 € {0,1} (where A; = «a,R), it is infeasible to distinguish a valid
ciphertext from a 7-probe.

Proof: For simplicity, assume 7 = 0. We proceed by contradiction: assume there is an adversary
A that, given the public key pk = (¢, G1,Ga, e, H, P,Q, R, Ay, By, A1, B1) and the secret key ag
of user 0, can distinguish valid ciphertexts from probes with probability . We then construct
an algorithm B (whose running time is polynomially related to A’s) that breaks the DBDH
assumption with probability epgpy = €.

Algorithm B is given as input an instance (P, x P, yP’, 2P’  h') of the DBDH problem in (G1, G2);
its task is to determine whether h' = e(P’, P")*¥# or b’ is a random element in Go. B proceeds
as follows:

Setup: Blets P = zP', Q = P', R = yP’, chooses ay, fo, /1 & Z*q and computes Ag = agR,
By = pBoP and By = 1 P. B also sets A1 = Ag + [oQ — $1Q, which implicitly defines
h =e(P,Ay) - e(Q,By) = e(P, A1) - e(Q, By). B now defines pk = (¢, G1, Go, e, H, P, Q,
R, Ay, By, Ay, By). Then, B prepares a challenge ciphertext ) = <U, v, W) by setting
U =MW,V = 2P'(= 2Q, thus implicitly defining k¥ = z) and W = m & H(U*e(V, By)),
for 77 &~ M. At this point, B feeds A with pk, %, and aq.

Attack: A returns her guess to whether v is a valid ciphertext or a probe (w.r.t. the public key
pk).

Break: B outputs yes or no accordingly.

If b = e(P’, P')"™* then A gets a valid ciphertext since h' = e(xP’,yP’")* = e(P, R)?, consis-
tently with the value of V = 2Q, as required by the encryption algorithm. Otherwise, A is a
random value in Gg, of the form b/ = e(P, R)k/, for some k' totally independent from k = z,
and thus 1/3 is a 0-probe. Therefore, B breaks the DBDH assumption with the same advantage
as A’s i.e., epppH = €. |

An important consequence of Lemma is that pirate decoders created by user 7 reply
to T-probes with an m* such that R (7, m*) = 1 with non-negligible probability pp:

Corollary B.4.4 Let D, R be the pirate decoder and resemblance relation output by a traitor
strategy A based on the user key a,, such that pp is non-negligible and pr is negligible (cf.

Definition [B.3.4). Let 1[} be a T-probe for a message m & M. Under the DBDH assumption,

A

pp = Pr[R(m,m*) = 1| m* < D(v)] is non-negligible.

Proof: To a contradiction, assume pp to be negligible. We then construct an efficient algorithm
B that, given pk and the secret key «a, of a single user, distinguishes valid ciphertexts from 7-
probes as follows: on input a ciphertext ¢ = (U,V, W), B computes m = W@H(Uo‘f e(V,B;))
from «, and 1/; Notice that this value m is correct regardless of whether 1ﬁ is a valid ciphertext
or a 7-probe. Then, B feeds D with @Z, getting back a value m*. If R(m,m*) = 1, then B
concludes that 1[1 must be valid; otherwise, B concludes that 1& is a T-probe. In other words, B
“interpolates” between the experiment defining probabilities pp and pp, so that B’s advantage
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in discerning valid ciphertext from 7-probes is clearly pp — pp. But if pp were negligible, such
algorithm B would violate the statement of Lemma [B.4.3, proving our argument. 1

The next lemma addresses the case of pirate decoders fed with probes of the “wrong type”:

Lemma B.4.5 Replacing ¢ with a (1—7)-probe in the setting of Corollary Pr[R(m,m*) =
1] is negligible.

Proof: We start with the observation that if we could somehow remove the message m from
the pirate decoder’s view, then our thesis would follow immediately, since m would then be
independent from the message m* output by D, and hence, by definition of pgr, R(m,m*) =1
would hold with probability pr, which is negligible.

In fact, i occurs in D’s view only in the third component of the (1—7)-probe ¢ = (U, V, W), as

W =m® HU*e(V,B;_,)), so it suffices to show that U*—e(V, B;_,) is 1nd1st1ngulshable
from random in D’s view. Since By, Bi both appear in the public key pk of the system,
this boils down to proving that D cannot distinguish U~ from random. It also holds that
U = e(P,R)¥*1— = ¢(P, A1_;)¥ | so that the task faced by D is to tell e(P, A;_,)¥ apart
from random, given e(P, R), e(P, A;_,), and U = e(P, R)¥. But this is just the DDH problem
for group Go, whose hardness is implied by the DBDH assumption.

The above argument can be easily rephrased along the lines of the reductions described in the
proofs of Theorem and Lemma, we refrain from doing so due to space limitations. |

Theorem B.4.6 Under the DBDH assumption for (G1,Gs2), our Trace algorithm has a negli-
gible traceability error.

Proof: Let D, R be the pirate decoder and resemblance relation on which the Trace algorithm
is being run, and let 7 be the traitor index. Corollary [B.4.4] guarantees that Trace will on
average terminate after 2/pp queries to D. Upon termination, Trace’s output will be wrong
only if it happens that D replies to a (1 — 7)-probe ¢ with an m* satisfying R(r,m*) =1, i.e.,
Pr[TraceD(')(pk, L) ¢T] = Pr[i) is a (1 — 7)-probe | R(m, m*) = 1], which by Corollary |B.4.4
Lemma, and Bayes’ theorem is easily seen to equal pg/(pp + pr), which is negligible. |

B.4.4 Owur Multi-User Scheme

As mentioned at the beginning of Section B.4] a common approach to extending a two-user
construction to the multi-user setting is to concatenate several instantiations (say, v) of the basic
two-user scheme. Tracing in the resulting multi-user scheme can then be performed iteratively
as a sequence of v stages; in each stage, the pirate decoder is queried with ciphertexts that
are valid in all v components, except for one, which instead is crafted according to the Trace
algorithm of the two-user construction. In this way, if the decoder does not have both sub-keys
for the component currently under testing, it will be unable to tell that the ciphertext is invalid,
and so the tracing procedure of the two-user subscheme will determine which of the two sub-keys
the decoder holds for that component.

Since tracing requires the ability to set up each component of the ciphertext independently of
all the others, it may seem necessary to use completely unrelated instantiations of the two-user
sub-scheme for each component. This is done, for example, in [KY02c]. (¢f. Appendix [B.7.2)).
Having independent components, however, clearly leads to a multi-user scheme with the same
transmission rate as the underlying basic two-user scheme, and so it would not help us attaining



B.4. Public-Key Traitor Tracing with Public Traceability, Black-Box 'Tracing and Optimal
Transmission Rate

optimal transmission rate. In fact, the scheme of [CPP05a] (¢f. Appendix manages to
get transmission rate 1 by sacrificing component independence, and instead using component-
instances all very closely related to each other. As we show in Appendix though, their
scheme does not support black-box traceability.

To solve this tension between transmission rate and black-box traceability, we move from
the observation that, at each stage, it suffices that a single component can be appropriately set
up independently from the rest; the remaining v — 1 can all be closely related to each other.
Therefore, ciphertexts in our construction include a “special” position ¢, where encryption is
performed with instance of our two-user scheme that is specific to the /-th component; the
remaining (v — 1) positions, instead, are encrypted using a “shared” two-user scheme.

To prevent pirate decoders from selectively ignoring the “special” position (which is the only
part of the ciphertext that encodes tracing information), we follow the approach proposed in
[KY02c|, by which the encryption algorithm preliminarily processes the plaintext with an All-
Or-Nothing transform (AONT) [Riv97, Boy99, (CDH™T00]. This will force decoders to decrypt
all blocks of the ciphertext, since ignoring even a single one would result in missing at least one
block of the AONT-transformed plaintext, so that, by the properties of AONT’s, such decoders
would fail to recover any information about the original plaintext being transmitted. We remark
that reliance on AONT’s to force the pirate to include (at least) one key for each component
was suggested in [KY02c], but later dismissed by the authors in [KY06] as ineffective for the
black-box setting, since it cannot prevent cropping of the plaintext once it has been decrypted.
However, we believe their critique to be misleading, since traitor strategies in which the pirate
decoder tampers with the decrypted plaintexts are dealt with the use of the resemblance relation
R (see discussion in Section, while AONT’s prevent the pirate from learning anything about
the plaintext if even a single block cannot be decrypted.

For the sake of clarity, we first describe the scheme without explicitly mentioning the AONT
pre-processing, and later discuss the details regarding the use of AONT’s.

Setup: Given the security parameters 1%, 1* and ¢, the algorithm works as follows:

Step 1: Generate a k-bit prime ¢, two groups G; and Go of order ¢, and an admissible
bilinear map e : G; x G; — Ga. Generate an (e, t,n,v)-collusion-secure code C =
{w® W,

Step 2a: Generate v independent copies of the 2-user scheme described in Section

(call these copies the special schemes). In particular, for j = 1,...,v, let P; be a
generator of Gi; pick random elements aj,bj,c; € Zy, and set Q; = a;P;, R; =
biP;, hj = e(Pj,c;Pj). Also, for j =1,...,v, compute linearly independent vectors

(@0, Bj0)s (j1,B1) € Zg* such that bja o + a;Bj, = ¢; mod g, for o € {0,1}.
Step 2b: Generate one more independent copy of the 2-user scheme of Section in

which we additionally select v values for h (call this the shared scheme). At a high

level, the shared scheme can be thought of as v parallel copies of the 2-user scheme

of Section sharing the same values P, ) and R. More precisely, draw P & G1,
a,b & Z*q, and set () = aP, and R = bP; then, for each j =1,...,v, select ¢; € Z;
and set h; = e(P,c;P). Also, for each j =1,...,v, compute two linearly independent
vectors (o, Bj,o), (@1, Bj,l) in Zg? such that bdj,g+aﬁj7g = ¢; mod ¢, for o € {0,1}.

Step 2c: The master secret key msk of the security manager is set to be:
((aj, b5, (5,0, 5,05 45,1, B1,1) )j=1,....00 @5 b, (0.0, B0y @51, Bj1)j=1.,...0)

Step 3: For j =1,...,v and 0 € {0,1}, let A;, = a;,R;, Bjo = Bjob;, Ajo = aj.R

and Bj, = fj,P. Choose a universal hash function H : Gy — {0,1}", and set pk
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to@
(H,(Pj,Qj,Rj,Ajo,Bjo,Aj1,Bj1), P,Q, R, (Ajo, Bjo, Bj1))

for all j =1,...,v. The associated message space is M = ({0, 1}")".

KeyDer: For each user i, the security manager first retrieves the corresponding codeword
w; € C and sets his/her secret key to: sk; = ((aj @)=L, (@, )j=1,...0). Notice that,
Wy

W,
for j =1,...,v, it holds that:
ciPj = Ozj’w](_i) R; + ﬁjwﬁi)Q]’ and hence h; =e(Pj, A w;i)) . 6(Qj’Bj,w§i))’

’ j7
cjP = Oﬁéj.ﬂj(_i)R + BJ}w(-i)Q and hence iLj =e(P, f_le(l)) ce(Q, Bj ))-

(z
j s 7wj

Encaps: Given pk, anybody can encrypt a message m = (m|| ... |m®) € M as follows:

First, select ¢ & {1,...,v} and ky & Zgq, and compute the special component of the
ciphertext (Ug, Vy, Wy) € Go x Gy x {0,1}%, where U, = e(Py, R))*, V = kyQ, and
Wy =m© @ H(hj").

Then, select k & Zgq, and compute the remaining pieces of the ciphertext as:

(U V,Wh,... . Wiy, Wega,..., W), where U = e(P, R)*, V = kQ, and W; = mUW@H(hF),
forj=1,...,v, 7 # £. The ciphertext is set to be the tuple ¢ = (¢, U, Vo, U, V, W1, ..., W,).

Decaps: Given a ciphertext 1 = (¢, Uy, Vo, U, V, W1, ..., W,) € Z x (G x G1)? x M, u; computes
foreach j=1,...,v,5 # ¢:

a )

a () = il =
hie = (Uy) -e(Vg,Bewy)) and  hY = (U) " -e(V, B, o)
) g

recovers m(t) = Wg@H(hlgé) and mU) = W; @H(ﬁ?) (for j € {1,...,v}\ {¢}) and outputs
m = (mO|...||m®).

A

Trace: Given pk, anybody can extract the “traitor codeword” & = (w(l), .. ,&)(”)) e {0,1}"
from a decoder D by making O(v) queries to D. At a high level, the idea is to itera-
tively derive each @ by feeding D with an invalid ciphertext that looks valid in the
“shared” components, but is actually a probe (in the sense of Section on the /-th
“special” component. In this way, if D contains only one of the two user-keys for the
(-th “special” two-user component (say, O%T(z)), its reply will reveal the value of @,
More in detail, to extract 7¥) from D, Trace queries D with ciphertexts of the form
b0 = 0,0,V uO, vO W WO W), where ky, k), kO & Zg, m® = ),

. me) is drawn at random from M, ¢ is a random bit, Wj(ﬁ) = my) o H (h;?(g)) for
each j=1,...,v,5 #{, and

k(0

Uy =e(P, R Vi=kQ, UY=e(PR) v =x0Q

W = i) © H(e(Pr, A o) - eV By ).
Let m*(©) = (m’lk(g) Il .. ||mz(£)) be the plaintext output by D when fed with the ciphertext

0O, 1f RO, m*®) = 1, then set &) = ¢(®); otherwise, pick fresh random k@,kz,k(‘))
from Zg, m® from M, ¢ from {0,1}, and repeat, until either R(m(z),m*(@) =1, or

5The shared scheme is not used for tracing, so A;1 can be safely omitted (A, is included only so that h; can
be computed.)



B.4. Public-Key Traitor Tracing with Public Traceability, Black-Box 'Tracing and Optimal
Transmission Rate

the iteration has failed some fixed polynomial number of time, in which case oW is set
arbitrarily.

After this process has been repeated for £ = 1,...,v, the resulting “traitor codeword” @
is handed to the tracer, who (knowing the random coins 7¢ used in generating C) can run
it through the tracing algorithm 7 (r¢,-) of the collusion-secure code C, thus obtaining a
value in {1,...,n,0}, which is the output of Trace.

Remark B.4.7 Since the Trace algorithm needs msk only in the off-line phase, which does
not access the pirate decoder and is much less computation—intensivem our multi-user scheme
supports local public traceability.

Remark B.4.8 We bound the number of trials that Trace performs to extract each bit &®
because a pirate decoder holding both keys for position ¢ could cause the test R(m(@, m*(g)) =1
to fail with probability 1. A suitable value for this bound is O(1/pp), where pp is the success
probability (over random valid ciphertexts) of the decoder under tracing, which can be efficiently
estimated using Chernoff bounds.

Remark B.4.9 Notice that the size of the message blocks can be shrunk to any ' < k, by
choosing a universal hash function H : Go — {0, 1}”,. This is possible as long as ' > logv +
log(1/e) = O(logt+loglog(n/e) +log(1/e)), which ensures that, during tracing, the probability
of a hash collision in any of the v components of the scheme is bounded by . For a typical
choice of parameters (n = 230, ¢ = 273% ¢ = 30), &’ can be chosen as low as 64 bits.

Pre-Processing Messages with AONT’s.

An AONT is an efficient, unkeyed, randomized transformation, with the property that it is hard
to invert unless the entire output is known. (For a formal definition, see [Boy99, ICDH™00].) As
for specific instantiations, Boyko showed in [Boy99] that the Optimal Asymmetric Encryption
Padding (OAEP)[BR94] can be proven secure as an AONT in the Random Oracle Model. In
[CDH™00], Canetti et al. described constructions in the standard model based on the notion of
Ezxposure-Resilient Functions.

For our purposes, it suffices to think of an AONT as a length-preserving algorithm AONT (m;r),
where m € ({0,1}%)~! is the message to be processed and r is an additional random value, of the
same length as each message block i.e., |r| = k. In what follows, we denote by M & AONT(m)
the process of selecting a random r from {0, 1}* and setting M <— AONT(m;r). The resulting
AONT-transformed message M = (My,..., M,) is an element of ({0,1}*)", so that it can be
encrypted with the Encaps algorithm described above. We can thus define a multi-user scheme
with AONT pre-processing by modifying the Encaps and Decaps algorithms as:

Encaps’(m) = Encaps(AONT(m)) Decaps’(¢)) = AONT ! (Decaps(v)))

Notice that the use of AONT pre-processing in the full-blown scheme implies an expansion in
the message size by roughly a factor 1 + 1/v, which still results in an asymptotical unitary
ciphertext-to-plaintext ratio.

B.4.5 Indistinguishability under Chosen-Plaintext Attack

In this section, we assess the security of the multi-user scheme of Section (For lack of
space, we defer all proofs for this section to Appendix m)
We start by verifying the intuition that AONT pre-processing does not hurt security:

"For the scheme of [Tar03], for example, such computation consists just of a matrix-vector multiplication.
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Lemma B.4.10 If the multi-user scheme without AONT pre-processing is secure w.r.t. in-
distinguishability under chosen-plaintext attack, then the multi-user scheme with AONT pre-
processing is secure w.r.t. the same notion.

Next, we observe that the security of the multi-user scheme from Section [B.4.4] can be reduced
(via a hybrid argument) to the security of the two-user scheme from Section

Lemma B.4.11 If our two-user scheme is secure w.r.t. indistinguishability under chosen-plaintext
attack, then our multi-user scheme without AONT pre-processing is secure w.r.t. the same no-
tion.

In light of Theorem our main security theorem follows immediately from Lemmas
B.4.10 and BA1Tt

Theorem B.4.12 Under the DBDH assumption for (G, Gz), the scheme in Section is
secure w.r.t. indistinguishability under chosen-plaintext attack.

B.4.6 Traceability

Similarly to the case of the 2-user scheme of Section the traceability of our multi-user
scheme (with AONT pre-processing) is based on the notions of valid and probe ciphertexts:

Definition B.4.13 Let ¢ € [1,0], 0 € {0,1}, 1 € M, M = (M,...,M,) & AONT(m),
U € Gy, Vi € Gy, k € Zy, U =e(P,R), V =kQ, W; = MjGBH(h?) (J=1,...,0, 5 #40),

Wy = My, ® H(U;""e(Vy, Be)), and o = (£, U, Vo, U, V,W1,..., Wy, ..., W,). We say that the
ciphertext QZJ is:

o valid, if Uy = e(Py, Ry)*, Vi = kiQy, for some ky € Z;
e (¢,0)-probe, if Uy = e( Py, Rg)kf.’, Vi = keQy, for distinct ky, ky € Zg.

Our analysis is organized as follows. Let T denote the set of indices of the ¢ traitors.
Lemma proves the computational indistinguishability of valid ciphertexts vs. (£, 7°)-
probes when only the 7¢ subkey is known for position £. It follows (Corollary that pirate
decoders must decrypt such (¢, 7)-probes correctly (w.r.t. the chosen resemblance relation).
Lemma then shows that instead (¢,1 — 7%)-probes cannot be properly decrypted, and
Lemma combines Corollary and Lemma to argue that the chances that
the ¢-th stage of tracing fails to extract the correct bit @¥) = 7¢ from D are negligible, which
implies the overall traceability of our scheme (Theorem .

Lemma B.4.14 [Indistinguishability of Valid vs. Probe Ciphertexts] Under the DBDH as-
sumption for (G1,Gg), given the public key pk = (g, G1, Go, e, H, P;,Qj,Rj, (Ajo, Bjpo,

A1, Bj1)j=1,.0 P.Q,R, (Ajo, Bjo, Bj1)j=1,.,) and the secret keys sk; = ((Oéjw(n)j:l,...,v,
“j
(dj ,@)j=1,...0) for each i € T’ it is infeasible to distinguish valid ciphertexts from (¢, 7%)-probes,
g
if the codewords of all traitors in 7" have bit 7¢ at position .

Proof: Since the ¢-th “special” sub-schemes is completely independent from the rest of our
construction, the thesis follows as a simple reduction to Lemma |
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Corollary B.4.15 Let D, R be the pirate decoder and resemblance relation output by a traitor
strategy A based on the user keys of the traitors in 7', such that pp is non-negligible and pg is
negligible (cf. Definition [B.3.4). Assume the codewords of all the traitors in T have bit 7¢ at

position £, and let 1& be an (¢, 1%)-probe for a message 1m & M. Under the DBDH assumption,

pp = Pr[R(m,m*) = 1| m* < D(v)] is non-negligible.
Proof: Reduces to Lemma |B.4.14| exactly as Corollary reduces to Lemma |

Lemma B.4.16 Replacing ¢ with an (¢,1 — 7%)-probe in the setting of Corollary [B.4.15
Pr[R(m, m*) = 1] is negligible, if the AONT employed in the system is secure.

Proof: The argument described in the proof of Lemma|B.4.5implies that the AONT-transformed
message block Mg is computationally hidden from the pirate decoder’s view. By the properties
of AONT’s, the whole original message 1 is then also computationally hidden from D, so that in
fact 7 is just a random message independent from the output m* of D, and hence R (7, m*) = 1
holds with probability pr, which is negligible. I

Lemma B.4.17 Consider the /-th stage of the Trace algorithm, when the tracer queries the
decoder D with (¢, 0)-probes for random o € {0,1}. If all codewords of the traitors in 7" have
bit 7¢ in the ¢-th position, then the /-th stage will terminate setting &’ = 1 — 7¢ with negligible
probability.

Proof: The assumption that D does not contain both keys for position ¢ implies, by Corol-
lary that the ¢-th stage of Trace will on average terminate after 2/pp queries to D. Upon
termination, Trace’s output will be wrong only if it happens that D replies to an (¢,1 — 7¢)-
probe 1) with an m* satisfying R(r, m*) = 1, which by Corollary Lemma and

Bayes’ theorem is easily seen to equal pr/(pp + pr), which is negligible. 1

Theorem B.4.18 Under the DBDH assumption for (Gi,Gz), the multi-user Trace algorithm
from Section [B.4.4] has a negligible traceability error.

Proof: Let © = (d)(l), . ,dJ(”)) be the “traitor codeword” recovered at the end of the publicly
traceable phase of Trace (c¢f. Section . By the union bound, Lemma implies that
@ will be correct in all positions £ where all traitors show the same bit, except with negligible
probability. By the collusion resistance of the code C underlying the key assignment of Setup,
the codeword-tracing algorithm 7 (c¢f. Definition will then be able to tie such traitor
codeword @ to the identity of one of the traitors in 7' (except with negligible probability ¢), as
required. 1

Remark B.4.19 As noted above, by employing AONT’s, the security and tracing capabilities
of our multi-user scheme follow almost directly from those of the embedded “special” sub-
scheme. In fact, even if we were to suppress the shared sub-scheme (e.g., by setting W; = M;;,
for j =1,...,v,5 # {), the multi-user scheme would still be secure and tracing would still be
possible (thanks also to the random rotation of the special position ¢ between 1 and v). Using
the shared sub-scheme, however, reinforces the semantic security of the scheme, though at the
cost of a greater computational load, due to the larger number of pairing computations needed
for encryption and decryption.
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B.5 Space and Time Parameters in a Concrete Instantiation

Existing constructions of constant-rate traitor tracing schemes (including ours) are based on
the use of collusion-secure fingerprint codesﬂ IBS98, [Tar03], and in particular are applicable for
messages of size proportional to the length of the code, which in the case of the optimal codes due
to Tardos [Tar03] is O(t?(log n+log %)) For a typical choice of parameters, e.g. user population
n = 230 tracing error probability e = 273" and traceable threshold ¢t = 30, the resulting code
length is about 5 million bits. Instantiating our construction with such codes yields a scheme
with plaintext and ciphertext of size 41 MBytes. (The ciphertext size is equal to the plaintext
size, as the additive overhead is less than 1 KByte.) These values are well within the range of
multimedia applications, since 41 MBytes roughly corresponds to 33 seconds of DVD-quality
(high-resolution) video, 4 minutes of VCD-quality (low-resolution) video and 25-50 minutes
of audio. The resulting public and secret keys roughly require respectively 1.5GByte and 206
MBytes. Although quite large, such a public key could be stored in commodity hardware (e.g.,
it would fit in the hard disk of an iPod), whereas user secret keys could be kept in Secure Digital
memory cards, like those commonly available for PDAs.

Another important issue for a concrete instantiation is the rate at which encrypted content
can be processed. In our scheme, decryption requires one paring per 1024 bits of content, which,
using the PBC Library [Lyn] on a desktop PC, takes approximately 16 msec. However, in
our context, the pairings to be computed all have one of their two input-points in common:
as reported in [BLS04], pre-processing in similar settings more than halves the computation
time, so that one easily gets in the order of 128 pairings/sec, corresponding to a near-CD-
quality audio rate of 128 Kbits/sec. More specialized software implementations [BGhCS04]
of the pairing operation can further reduce its computational cost to around 3 msec; whereas
hardware implementations, even under conservative assumptions on the hardware architecture
[KMPBO05], can obtain running time below 1 msec, attaining the 1Mbits/sec data rate needed
for VCD-quality video.

B.6 Conclusion

We present the first public-key traitor tracing scheme with efficient black-box tracing and op-
timal transmission rate. Our treatment improves the standard modeling of black-box tracing
by additionally accounting for pirate strategies that attempt to escape tracing by purposedly
rendering the transmitted content at lower quality (e.g. by dropping every other frame from the
decrypted video-clip, or skipping few seconds from the original audio file). We also point out and
resolve an issue in the black-box traitor tracing mechanism of both the previous schemes in this
setting [KY02¢, [CPP05a]. Our construction is based on the decisional bilinear Diffie-Hellman
assumption, and additionally provides the same features of public traceability as (a repaired
version of) [CPP05al, which is less efficient and requires non-standard assumptions for bilinear
groups.

8[PSNT06b] actually employs IPP codes, but similar considerations on code length and message size apply to
such codes as well.
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B.7 Appendix

B.7.1 Bilinear Maps and Intractability Assumptions
Bilinear Maps

Let G; and G2 be two groups of order ¢, for some large prime g. In our construction, we will
make use of a bilinear map e : Gy x G; — Gy, satisfying the following properties:

Bilinearity: e(aP,bQ) = e(P,Q)™ for all P,Q € Gy and all a,b € Zg;
Non-degeneracy: The map does not send all pairs in Gy x G1 to the unit in Go;
Computable: There is an efficient algorithm to compute e(P, Q) for any elements P, Q € G.

A Dbilinear map satisfying the three above properties is said to be an admissible bilinear map.
Throughout the paper, we view G as an additive group and Go as a multiplicative group. We
remark that since G1, Gy are groups of prime order and e is non-degenerated, e(P, P) generates
Gg whenever P generates Gi. It follows that e(P, ) is an isomorphism from G into G,. Typical
examples of constructions of admissible bilinear maps satisfying the above properties are based
on the modified Weil and Tate pairings (cf. e.g., [BF99b]).

Assumptions for Our Scheme

DBDH (the decisional bilinear Diffie-Hellman problem in (G1,Gz2)):
Given (P,aP,bP,cP,h) for random P € Gy, a,b,c € Zq and h € Gg, output yes if h =
e(P, P)¢ and no otherwise.

Definition B.7.1 [DBDH Assumption] The DBDH problem is epgpy-hard in (G1, G2) if, for all
probabilistic polynomial-time algorithms A, we have
| Pr[A(P,aP,bP,cP,h) = yes | P & Gi,a,b,c & Zq,h = e(P, P)*)—
Pr[A(P,aP,bP,cP,h) = yes | P & G1,a,b,c & Zq, h & Ga2]| < epBDH

where the probability is over the random selection of P from Gy, of a, b, ¢ from Zgq, and over A’s
random coins.

Assumption for the Schemes of [KY02c]|

DDH (the decisional Diffie-Hellman problem in G):
Given (P,aP,bP,S) for random P € G, a,b € Zq and S € G, output yes if S = abP and
no otherwise.

Assumptions for the Schemes of [CPP05a]

DBDH2-E (the extended decisional bilinear Diffie-Hellman problem):
Given (P,aP,bP,cP,ab*P, h) for random P € Gy, a,b,c € Zq and h € Gy, output yes if
h = e(P, P)®" and no otherwise.

DBDH!-M (the modified decisional bilinear Diffie-Hellman problem in Gy):
Given(P,aP,bP,S) for random P € Gy, a,b € Zq and S € Gy, output yes if S = ab?>P and
no otherwise.

— 103 —



Chapter B. Traitor Tracing with Optimal Transmission Rate

B.7.2 The Public-Key Traitor Tracing Schemes of [KY02c] and [CPP05a)
The Two-User Sub-Scheme of [KY02c]

Setup: Given a security parameter 1%, the algorithm works as follows:

Step 1: Generate a x-bit prime g and a group G of order ¢ in which the DDH problem is
difficult. Let P be a generator of G

Step 2: Pick random elements a,c € Zg, and set Q = aP, Z = cP. The private key of
the security manager is set to be the pair msk = (a, ).

Step 3: Choose a universal hash function H : G — {0,1}", and set the public key as
pk = (¢, G, H, P, @, Z). The message space is M = {0,1}".

KeyDer: The security manager selects two linearly independent vectors (ay, 5o), (a1, 51) € Zg
such that a, + af, = cmod ¢, for o € {0,1}. This implies: Z = ¢P = a,P + ,Q, for
o € {0,1}. The secret key of user o is then set to be sk, = (ay, 85), for o € {0,1}.

Encaps: Given pk, anybody can encrypt a message m € M by first selecting a random k € Z,
and then creating the ciphertext ¢ = (U, V, W) € G? x M where

U=kP, V=kQ, W=meH(kZ)

Decaps: Given a ciphertext ¢ = (U, V, W) € G? x M, user o computes kZ = a,U + 3,V and
recovers m =W & H(kZ).

Trace: To trace a decoder D back to the identity of the traitor, the security manager picks two
distinct random values k, k" € Z,, along with a random m € M, and feeds D with the
“illegal” ciphertext ¢ = (k'P, kQ, ). If the output of D is 1 & H(k'agP + kfB,Q), then

the algorithm returns the identity o as the traitor; otherwise it outputs 0.

In [KY02c], the authors show that the above two-user scheme is secure and traceable (for

up to 1 traitor) in the sense of Definitions and under the DDH assumption (cf.
Appendix [B.7.1)).

The Multi-User Scheme of [KY02c|

Setup: Given security parameters 1%, 1* and ¢, the algorithm works as follows:

Step 1: Generate a k-bit prime ¢ and a group G in which the DDH problem is diﬁﬁcultF_U]
Generate an (e, t, n, v)-collusion-secure code C = {w®, ... w™} over {0,1}.

Step 2: For each j =1,...,v, let P; be a generator of G, pick random aj, ¢; € Zg, and set
Qj = a;Pj, Zj = cjP;. For each j =1,...,v, compute two linearly independent vec-
tors (a0, B5.0), (1, 8j1) in Zg? such that aj ,+afBj, = ¢; mod g, for o € {0,1}. The
private key of the security manager is set to be msk = (a;, 0, 55,0, 0.1, Bj1)j=1,...0-

Step 3: Choose a universal hash function H : G — {0,1}", and set the public key to
pk = (q7 G7 Ha (Ph Qla Zl): Y (Pva Q”Ua ZU)) The message space is M = ({Oa 1}&)’0'

9Even though [KY02c] used the multiplicative notation, we use here the additive notation for the sake of
consistency with the rest of the paper (cf. Footnote .

"Fven though [KY02c] used the multiplicative notation, we use here the additive notation for the sake of
consistency with the rest of the paper. Notice, however, that G should not be identified with the group G; used
elsewhere in this paper, and in particular G should not be equipped with a bilinear map, for that would violate
the required hardness of the DDH problem in G.
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KeyDer: For each user i, the security manager first retrieves the corresponding codeword
w® e ¢, and then, for each j = L,...,v, gives u; one of the two pairs (a0, 0j,0) or
(01, B5,1), according to the value of W' (the j-th bit of the codeword w(?). The secret

J
key of user 7 is then set to be sk; = (ozjw@, B. @))j=1,.- Notice that, for j =1,...,v,
i

W
Zi= by =a; 0P+ 8,00

Encaps: Given pk, anybody can encrypt a message m = (m(]||...||m")) € M by first selecting
random ki, ..., k, € Z, and then creating a ciphertext ¢ = ((Uy, Vi, W1), ..., (Uy, Voo, W) €
(G? x {0,1}*)” where U; = k; P}, V; = k;Q; and W; =mU) @ H(k;Z;), j =1,...,v.

Decaps: Given a ciphertext ¢ = ((Uy, Vi, Wh), ..., (Uy, Vi, Wy,)), user i computes k; Z; = a; o U+
Wi

,8j7w§i)‘/}‘ and recovers mY) = W; @ H(k;Z;), for j = 1,...,v.

Trace: To trace a decoder D back to the identity of one of the traitors, the security manager
prepares an illegal ciphertext ¢¥» = (¢1,...,,), where each 1); is constructed as in the

tracing algorithm from Appendix |B.7.2| (i.e., 1[1]' = (k}Pj, k;Qj,m;), for random kj, k:; &

T = (m® (@) i
Zq and 1n; < {0,1}%). Let m = (m(M| ... ||m{)) be the plaintext output by D when fed

~

with the ciphertext .

The security manager forms a “traitor codeword” & = (@™, ..., &™) € {0,1,?’}¥, where
each @) is derived from m() as in the tracing algorithm for the two-user scheme (i.e.,
O = g it ml) = 1 O H (K00, Pj+kjBj0;Q;) (for o = {0,1}), or &U) = < otherwise).
At this point, the “traitor codeword” & is run through the tracing algorithm 7 (r¢,-) of
the collusion-secure code C (where r¢ are the random coins used by the security manager
in generating C). Finally, Trace outputs whichever value in {1,...,n,0} returned by

T(re, ).

The Two-User Sub-Scheme of [CPP05a]

Setup: Given a security parameter 1%, the algorithm works as follows:

Step 1: Generate a k-bit prime ¢, two groups G; and Gy of order ¢, and an admissible
bilinear map e : G; x G; — Gg. Let P be a generator of Gy and set g = e(P, P).

Step 2: Pick random elements a,c € Zg, and set Q = aP’, h = g°. The private key of the
security manager is set to be the pair msk = (a, c).

Step 3: The security manager selects two linearly independent vectors (ay, 5p) and (o, 51)
in Zg such that o, + af, = cmod ¢, for o € {0,1}. It chooses a universal hash func-
tion H : Gy — {0,1}", and set the public key of the scheme to be the tuple pk =
(¢,G1,Ga,e,H, g, P,Q, h,anP, BoP,a1 P, 51 P). The message space is M = {0, 1}".

KeyDer: The secret key of user o is set to be sk, = (a,). Notice that: ¢cP = a,P + 5,Q and
hence e(P,cP) = e(P,a,P) - e(Q, 5, P) = e(P, A;) - e(Q, B,), for o € {0,1}.

Encaps: Given pk, anybody can encrypt a message m € M by first selecting a random k € Z,
and then creating the ciphertext 1 = (U, V, W) € G? x M where

U=kP, V=kQ, W=maHH")

Decaps: Given a ciphertext ¢ = (U, V, W), user o computes RF = e(U,a,U) - e(V,B,) and
recovers m = W @ H(hk2).
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Trace: To trace a decoder D back to the identity of the traitor, the tracer picks two distinct
random values k, k' € Z,, along with a random m € M, and feeds D with the “illegal”
ciphertext 1& = (K'P,k*Q,m). If the output of D is m @& H(e(a, P, P)k/2 - e(BsP, Q)kQ),
then the algorithm returns the identity o as the traitor; otherwise it outputs 0.

In [CPPO05al, the above two-user scheme is proven secure and traceable (for up to 1 traitor)
in the sense of Definitions [B.3.3] and [B.3.4] under two non-standard assumptions for bilinear
groups, respectively called DBDH?-E and DBDH!-M in [CPP05a] (cf. Appendix [B.7.1)).

The Multi-User Scheme of [CPP05a]

We now describe the multi-user scheme{ﬂ of [CPP05al, which is based on the use of bilinear
maps. The key difference from the multi-user scheme of [KY02c| is the idea of prozy quantity:
the security manager selects the master secret key roughly as in [KY02c|, but now some secret
information is removed from the users’ secret keys and a derived value (the proxy quantity) is
lifted to the public key.

These public proxy quantities are sufficient to decrypt and contain less information about
the master secret key. This makes it (seemingly) safe to reuse the same parameters P and Q
(in the public key) and the same randomness k (in the ciphertext) for all v components of the
multi-user scheme. This (seemingly) results in a significant bonus, as it allows for considerably
shorter public keys and ciphertexts.

Setup: Given the security parameters 1%, 1* and ¢, the algorithm works as follows:

Step 1: Generate a k-bit prime ¢, two groups G; and Go of order ¢, and an admissible
bilinear map e : G; x G; — Gg. Let P be a generator of G; and set g = e(P, P).
Generate an (g, t, n, v)-collusion-secure code C = {w™M), ... w™} over {0,1}.

Step 2: Pick random elements a,c; € Z; (j = 1,...,v), and set Q = aP, h; = g%, j =
1,...,v. For each j =1,...,v, compute two linearly independent vectors (o0, 8j,0),
(@j1,Bj1) in Zg? such that a;, + afj, = ¢; mod g, for o € {0,1}. The private key
of the security manager is set to be msk = (a, (a0, 85,0, .1, 8j,1)j=1,...v)-

Step 3: For j = 1,...,vand o € {0,1}, let A;, = a;,P and Bj, = f3;,P. Choose a
universal hash function H : Go — {0,1}", and set the public key to: pk = (¢, G1, G2,
e, H, P, Q, (hj, Ajo, Bjo, Aj1, Bj1)j=1,..v). The message space is M = ({0, 1}")".

KeyDer: For each user 4, the security manager retrieves the corresponding codeword w® e C,
and sets the secret key of user ¢ to be: sk; = (ozj N )j=1,...0- Notice that, for j =1,...,v,
Wi
P = aj’wy)P + ,8j7w§i)Q and hence, h; = e(P,¢;P) = e(P, aj7w§¢>P) -e(Q,ij;i)P) =
G(P, Ajij('i)) ’ S(Q, B] )

Encaps: Given pk, anybody can encrypt a message m = (mM]|...||m(®)) € M by first selecting
a random k € Z, and then creating a ciphertext ¢ = (U, V,(Wy,...,W,)) € G x M,
where U = kP, V = k?Q and W; =mW & H(RE), j =1,...,v.

Decaps: Given a ciphertext ¢ = (U, V,(Wy,...,W,)) € G? x M, user i computes (for j =
1,...,v) the mask h?z = e(U, a w(“U) e(V, Bj w(i)) and then recovers each m) as m) =
wj wj

W, & H(hE).

"1n [CPPO05a), the authors present two schemes with the same parameters. For conciseness, here we only report
the second scheme, which was claimed to also support local public traceability.
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Trace: Although [CPP05a] present a tracing algorithm only for their two-user scheme, the
authors suggested therein that their multi-user scheme inherits the tracing capabilities of
[KY02¢]. In particular, we sketch here the obvious necessary modifications to the Trace al-
gorithm in Appendix the illegal ciphertext has the form 1) = (K'P,k2Q, (M, . .. ,17,)),

where k, &k’ & Zq, and each 7 is random in {0,1}"; and the “traitor codeword” & =
(@M, ...,&™), is constructed from D’s response m = (mM)]|...|jm®)) by defining each

&) € {0,1,?’} as in the tracing for the two-user scheme (i.e., @) = o; if m\) =
m; @ H(e(ajq; P, P)¥*. e(Bj0; P, Q)¥*) (for oj =1{0,1}), or &U) = 2" otherwise).

B.7.3 On the Query Complexity of Black-Box Tracing in [KY02c]
Appendix reports the multi-user scheme of [KY02c|, which includes a black-box tracing

algorithm making a single query to the pirate decoder D. Below we show that such algorithm
is broken, and we present a simple traitor strategy that allows a coalition of just 2 < t users
to escape tracing with probability 1. We also propose a variation of their black-box tracing
algorithm, which requires v queries but is successful in tracing up to the desired threshold of
traitors, thus suggesting that the query complexity of black-box tracing in [KY02c| is higher
than what claimed therein.

A Simple Untraceable Traitor Strategy

Consider the coalition of 2 users, which for simplicity we will suppose associated with the first
two codewords w), w® of C. Since w® #£ w? | they must differ in at least one of their v bits,
say the first bit.

This means that by pooling their secret keys, the two traitors can construct a pirate decoder
D containing both user-keys (1,0, 81,0), (1,1, 51,1) for the two-user sub-scheme associated to
index 1, plus at least one user-key for each of the remaining (v — 1) components. When given a
ciphertext ¢ = (¢1,...,1,), D starts by decrypting v twice: once using (a0, 81,0), and then
again using (aq,1,01,1). If the two resulting plaintexts coincide, then D decrypts the rest of ¢
and output the resulting message; otherwise, D can conclude that it is being traced, and can
just output a predetermined message (e.g., the all-zero message).

Notice that D perfectly decrypts ciphertext distributed according to Encaps(pk,-) since, by
correctness of decryption, D’s “integrity” check will always pass on a valid ciphertext. Moreover,
D escapes tracing with probability 1, since the Trace algorithm of [KY02c] prepares the invalid
ciphertext @ZA) by concatenating invalid ciphertexts ﬂj for each of the v components of the scheme.
This will result in different decryptions of 1[11 under (aq,0,51,0) and (0,1, 51,1), and thus D will
reply with a plaintext containing no information about the identities of the traitors.

The Fix

The problem with the Trace algorithm of [KY02c| is that it implicitly assumed that pirate
decoders would decrypt each component of the ciphertext independently from each other, which
clearly does not need to be the case. Bearing this in mind, the fix is immediate: it suffices for
Trace to iteratively query the decoder with v ciphertexts, each constructed to be invalid in just
one component, but valid elsewhere. Now, the independence of the v component sub-schemes
implies that D will be unable to tell valid and invalid ciphertexts apart, unless it possesses
both user-keys for the single sub-scheme “under testing.” As a consequence, Trace will end up
extracting a traitor codeword from D with at most ¢t unreadable marks ‘?’, and thus the tracing
algorithm 7 (-, -) of the collusion-secure code C will successfully recover the identity of one of the
traitor (with probability 1 — ¢).

— 107 —



Chapter B. Traitor Tracing with Optimal Transmission Rate

Consequences for the Multi-User Scheme of [CPP05a]|

Being based on the techniques of [KY02¢c|, the multi-user scheme of [CPP05al] inherits the
problem pointed out in Appendix As it turns out, however, in this case the consequences
are more severe. In particular, the easy fix that we proposed for the scheme of [KY02c| in
Appendix does not apply: interestingly, the higher correlation between the parameters
used in the v components of the scheme of [CPP05a], which proved crucial to attain optimal
transmission rate, at the same time poses a serious impediment to black-box tracing.

Indeed, ciphertexts in the multi-user scheme of [CPP05a] (¢f. Appendix have the
form ¢ = (kP, k*Q, (Wi, ..., W,)), in which the same “randomization” values kP, k%Q are
used for all the v two-user sub-schemes. Hence, it is not possible to make the ciphertext invalid
in just one component, while preserving its validity in the remaining (v — 1) ones (which was
the idea behind our fix in Appendix [B.7.3). Therefore, it seems that the scheme of [CPP05al,
as given, does not support black-box tracing. Since the notion of local public traceability is
only meaningful in the black-box setting, this also voids the claimed traceability features of the
multi-user scheme of [CPP05al.

To salvage black-box tracing and local public traceability, one could modify the scheme of
[CPP05a] and revert to the “parallel” composition of sub-schemes (exactly as in [KY02c]), thus
“undoing” the optimization that enabled short ciphertexts. The resulting scheme, however,
would just be a variant of [KY02c] with the same parameters, but with the additional need of
bilinear maps and reliance on non-standard bilinear-related assumptions.

As a result, it seems appropriate to regard the multi-user scheme of [CPP05a] as a scheme
with optimal transmission rate, but with only non-black-box tracing and no public traceability
features.

B.7.4 Proofs from Section [B.4.5]
Proof of Lemma [B.4.10]

Lemma. If the multi-user scheme without AONT pre-processing is secure w.r.t. indistinguisha-
bility under chosen-plaintext attack (¢f. Theorem[B.4.1]), then the multi-user scheme with AONT
pre-processing is secure w.r.t. the same notion.

Proof: The proof is by a straightforward reduction argument: given any efficient adversary
A = (A, Ag), having advantage ¢ in attacking the multi-user scheme with AONT pre-processing,
we construct an adversary B, with essentially the same running time as A’s, having the same
advantage € in attacking the multi-user scheme without AONT pre-processing.

Adversary B just forwards A; the public key for the scheme that it wants to attack. Ay will reply
with two messages my = (m[()l), e 7m(()v)) and mp = (mgl), e ,mgv)) on which to be challenged.
Then B applies the all-or-nothing transform to both messages, obtaining my, & AONT(myp) and
mj & AONT(mq). B then submits m( and m) to its challenger, and gets back a challenge
ciphertext ¢*. Notice that ¥* is also a valid challenge ciphertext for A, and so B directly
forwards it to Ay as challenge (along with any state information that .4; might have output).
Finally, B outputs whichever bit &’ is returned by b.

Since B perfectly simulates the attack game that adversary A expects, B’s advantage against
the scheme without AONT pre-processing equals €, completing the proof. |
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Proof of Lemma [B.4.11]

Lemma. If the two-user scheme in Section is secure w.r.t. indistinguishability under
chosen-plaintext attack (¢f. Theorem [B.4.1), then the multi-user scheme in Section is
secure w.r.t. the same notion. Proof: For the sake of clarity, in the security proof, we will follow

the structural approach advocated in [Sho0O4]. Starting from the actual attack scenario (as
defined in Definition , we consider a sequence of hypothetical games, all defined over the
same underlying probability space. In each game, the adversary’s view is obtained in a slightly
different way, but its distribution is maintained (computationally) indistinguishable across the
games. In the last game, it will be clear that the adversary has (at most) a negligible advantage;
by the indistinguishability of any two consecutive games, it will follow that also in the original
game the adversary’s advantage is negligible.

Fix any efficient adversary A = (A1, A2), along with its random tape. Fix also the randomness
used by the challenger in the execution of the Setup and Encaps algorithms, and the random
bit b* used in creating the challenge ciphertext ¥*. In each game G;, the goal of adversary is
to guess such bit b*. Let b’ be the random variable denoting the bit output by As at the end of
the game, and denote with S; the event that ¥’ = b* in game G;.

Game Gg. Define G to be the original game as described in Definition

Game G;. This game is identical to game Game Gy, except that the Encaps algorithm in G;
is modified so that the “special component” of the ciphertext is computed as follows:

ke & 2y, Up < e(Pr, R)™, Vo < keQy, |Wy & {0,1}%

In other words, rather than being set as W, + ml(ﬁ) b H (hlgé), in game G1 Wy is a random k-bit
value.

Claim B.7.2 [1] | Pr[So]—Pr[S1]| < 2¢™), where () is the advantage of some efficient adversary
attacking the security of the 2-user scheme from Section

The proof of this is by a standard reduction argument, by which any non-negligible difference
in behavior between game G and G; can be used to construct an efficient adversary B()
successfully attacking the security of the 2-user scheme from Section More precisely, B
gets in input a 2-user public key (P, Q, R, Ay, By, A1, B1), and proceeds as follows:

Setup: To create the public key for the multi-user scheme to be fed to A, B® proceeds exactly
according to the corresponding key generation algorithm, except that, for the parameters
corresponding to the ¢-th special component BM uses the values from the public key
that it received as its own input:

Py P, Qu+ Q, Ry« R, Agg + Ay, Beo <+ Bo, Avy + A1, Beg < By

BW then sends A; the resulting multi-user public key.

Challenge: A; outputs two messages mg = (mgl)H e ||m(()v)), my = (mgl)H e ngv)) on which

it wishes to be challenged, along with some state 7 to be passed to As. Now B®)| in turn,

12Notice that the value of ¢ is fixed within this proof, since we fixed the randomness for Encaps across the
games.
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has to choose two messages, mg and my, for its own challenge. So B() chooses b* € {0,1}
at random, sets my« = ml()é), and picks 7711 _p= & {0,1}*. At this point, B is given a
challenge ciphertext ¢ = (U, V, W), where U = ¢(P, R)’;, V =kQ, h=-e(P,Ap)-e(Q,By)
and W = ﬁ”LE@H(izf“). Recall that B(1)’s job is to guess the bit b that was used to create its
challenge. To this end, B! prepares a Challenge ciphertext 1* for As by faithfully running
the Encaps algorithm on the message mp- = mb*)H Hm(v)) except that, for the special
component rather than choosing a random k¢ and properly encrypting the message block
mb*, BM uses the values contained in its own challenge ¥:

U =U, V=V, Wy =W.

Then, BM sends Aj the challenge ciphertext ¢* = (¢,Uy, V;,U,V,W1y,...,W,) so com-
puted, along with the state information 7.

Guess: Algorithm As outputs a guess b € {0,1}, which BW also gives in output as its own
guess to b.

It should be clear by inspection that adversary BW ‘interpolates’ between games Gg and Gq
for A, in the sense that if b* = b, then the view of adversary A is computed exactly as in G,
whereas if b* = 1 — b, then the computation proceeds according to Gi. Thus, it holds that:

Pr[So) = Pr[t/ =b* | b* =b] and  Pr[S)|=Pr[t/ =b* |b* =1-1].

Now, let e(1) be adversary BM1)’s advantage in guessing b: (1) = | Pr[b’ = b] — 1/2|. Splitting the
probability according to the event space partition (b* = b) V (b* =1-10), we get
Pr[t) =0 = Pr[t) =b|b* =0 -Pr[b* =0+ Pr[t/ =b|b*=1—-0]-Pr[p* =1
1
= 5( r[t) =b|b* =b]+Pr[t) =b|b*=1-10))
1 . . . -
= 5(Pr[b’=b|b*:b]+1—Pr[b’:1—b|b*:l—b])
1 1 / * * 7 / * * 7
= 3 5( r[fb =0 | 0" =0 —Pr[b =b" | b* =1-b))
1 1
= 3 Q(Pr[SO] Pr[S1])

It thus follows that | Pr[Sp] — Pr[Si]| = 2| Pr[b = b] — 1/2] = 2¢(D, as claimed.

Game G;, 2 < ¢ < £. This game is identical to game Game (;_1, except that the Encaps
algorithm in G;_1 is modified so that W,_1, rather than properly encrypting the message block
(i—1)

my« ~, is chosen as a random k-bit value:

Wi_1 & {0,1}"

Claim B.7.3 [i] |Pr[S;_1] — Pr[S;]| < 26, where () is the advantage of some efficient adver-
sary attacking the security of the 2-user scheme from Section

Again, we will prove the claim by showing how any non-negligible difference in behavior between
game G,_; and G; can be used to construct an efficient adversary B successfully attacking
the security of the 2-user scheme from Section

— 110 —



B.7. Appendix

More precisely, B gets in input a 2-user public key (]5 Q, R, Ay, By, Ar, Bl), and proceeds as
follows:

Setup: To create the public key for the multi-user scheme to be fed to A;, B® proceeds exactly
according to the corresponding key generation algorithm, except that for the parameters
corresponding to the “shared scheme,” B bases its computations on the values included
in the 2-user public key that it received as its own input:

P+ P, Q<—Q,R<—R

A10<_A07 Bio + By, Aiy + Ay, Biy + By
530%2117 Bjo < BioP  (G=1,...,v, j#1)
a]0<_an Ajo < ajoR (]—13---7%]7&)
Bin & Ly, By Bl (G=1,...,0, 5 #1)
A],1<_Aj,0+ﬁj,0Q_ﬁj,lQ (]_]—a"'avaj# )

(Notice that the last set of positions guarantee that, for all values of j, it holds that:
e(P, Ajo) - e(Q, Bjp) = e(P, Aj1) - e(Q, Bj1),

so that in fact we can define ﬁj = e(P, /_lj,g) . e(Q,Bj,g), for o € {0,1},7=1,...,v,as in
the actual Setup algorithm for the multi-user scheme (cf. Section [B.4.4)).)

BM then sends A; the resulting multi-user public key.

Challenge: A; outputs two messages my = (my () Il.. ||m0U)), mi = (m 1 || Hm1 ) on which
it wishes to be challenged, along with some state T to be passed to Az Now BM | in turn,
has to choose two messages, mg and my, for its own challenge. So B(Y) chooses b* € {0,1}

at random, sets Mmy+ = ml()i_l), and picks mq_p+ & {0,1}*. At this point, B is given a
challenge ciphertext ¢ = (U, V, W), where U = ¢(P, R)T“, V =kQ, h=-e(P,Ap)-e(Q,By)
and W = my, & H(ﬁ’%) Recall that B(M)’s job is to guess the bit b that was used to create
its challenge. To this end, B() prepares a challenge ciphertext ¢* for Ay as follows:

ke & Zqg, Uy e(Po, Re)™, Vi + keQq, Wy & {0,1}
U~U, V&V, W1 W

Wy & {0,135, (=1,...,i—2)

Wy myl) @ H(T%0 - e(V, Bjo)),  (j=1,...,v, j #0)

Notice that, for j =¢,...,v,j # £, the W} values computed by B are proper encryptions
of the corresponding ml()j*), since:
Wj — m,()l) o H Uaio . 6(‘7, Bjjo))

= m,()l) ®©H

12Clarify that ¢ has been fixed when we fixed the randomness for Encaps across the games.
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At this point, B® sends Ay the challenge ciphertext o* = (¢, Uy, V;, U, V, W1, ..., W,) so
computed, along with the state information 7.

Guess: Algorithm As outputs a guess ' € {0,1}, which BW also gives in output as its own
guess to b.

Before arguing about the success probability of B, notice that, by the definitions of games
G;_1 and Gy, the challenge ciphertexts that adversary A is given in both games have the same
overall structure: they are completely random in the first few 1W; components (as well as in the
special component Wy), whereas they are properly formed in the last few WW; components, j # .
The only difference is in the position where such “transition” from “random W;” to “properly
formed W;” takes place: between indices (i — 2,7 — 1), in the case of game G;_;; and between
indices (i — 1, z)H in the case of game G;_1.

It should then be clear, by the way adversary B® prepares the challenge ciphetext 9* for
adversary A, that B effectively ‘interpolates’ between games G,;_; and G; for A, in the sense
that: if b* = b, then W;_; is properly formed, and the view of adversary A is computed exactly
as in game G;_1; whereas if b* =1 — b, then W;_; is completely random, so that A’s view is
distributed as in game G1. It thus follows that:

Pr[S; 1] =Pr[t/ =b* |b* =0 and  Pr[S;]=Pr[t) =b* | b* =1-b].

Now, let ¢ be adversary B()’s advantage in guessing l~7:~€(i) = |Pr[t/ = B] — 1/2|. Splitting the
probability according to the event space partition (b* = b) V (b* =1 —b), we get

Pr[t) =b] = Pr[t) =b|b* =0 -Pr[b* =b] +Pr[t) =b|b* =1—b]-Pr[p* =1 — b

1 - - - -

= S(Prt =b|b* =b]+Prft =b|b" =1-1))
1 - - - .

= S(Pi =b| b =0 +1—Prltf =1-b|b"=1-1b])
1 1 / * * T / * * T

— §+§(Pr[b =0 | " =b] —Pr[t) =b" | b =1-1)])

= 14—1(P1“[S~ | — Pr[Si])

- 2 2 i—1 %

It thus follows that | Pr[S;_ ] — Pr[S;]| = 2| Pr[t/ = b] — 1/2| = 26, as claimed.

Game G;, £/ + 1 < i <w. This game is identical to game Game G;_1, except that the Encaps
algorithm in G;_; is modified so that W;, rather than properly encrypting the message block

A . N
ml()*), is chosen as a random k-bit value:

Wi & {0,1}%

Claim B.7.4 [i] |Pr[S;_1] — Pr[S;]| < 26, where () is the advantage of some efficient adver-
sary attacking the security of the 2-user scheme from Section [B.4.1]

The proof of this is by a reduction argument completely analogous to the one used in proving
the claims for the cases 2 < i < ¢, the only difference being a notational one, since now the

3For i = £, the transition is actually between indices (£ — 1,£ + 1), since we are dealing with the special
component W, separately.
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reduction will embed the challenge from the 2-user scheme into the component W; (rather than

W) [H]

To conclude the proof, observe that, in game Gy, all the W; components in the challenge
ciphertext v* = (¢,Uy, Vy, U, V,W1,...,W,) are just drawn at random from {0,1}", so that
no information about the random bit b* is present in adversary A’s view. It follows that the
probability of a correct guess b’ = b* by A in game G, is just 1/2, i.e.:

Combining the last equation with the intermediate results from Claims 1-v, we can conclude
that

1
Pr[So] < 5 + 20e53,
where 5121135‘* is an upper bound on the advantage of any efficient adversary attacking the security
of the 2-user scheme from Section which is negligible by the hypothesis of the lemma,
completing the proof.l

B.7.5 A Comparison with [BSW06b, BWO06b]

Recently, Boneh et al. [BSW06D, BWO0G6D| proposed traitor tracing schemes that withstand any
number of traitors (full traceability), while requiring a sub-linear ciphertext length (O(y/n)).
While the schemes of [BSW06b, BWO06bh] are the most efficient ones supporting full collusion,
they are not well suited for the more practical case of small number of traitors (say, logarithmic
in the size of the entire user population). Indeed, in this case, the ciphertext in these schemes
still contains O(y/n) elements. In our scheme, assuming the number of traitors ¢ is logarithmic
in the number of users n, the ciphertext has poly-logarithmic length v = O(t?(logn + log %)) =
O(log®n), which is asymptotically superior to the O(y/n)-ciphertexts of [BSW06H, BWOGhH].

More importantly, the tracing algorithms of [BSWO06b, BW06b] require O(n?) decryption
queries to the pirate decoder, whereas our scheme employs O(v) = O(log® n) decryption queries,
and is completely parallelizable.

In brief, the schemes of [BSW06b, BW06bh] are preferable in case of full collusions, whereas
our scheme has advantages in term of efficiency and of complexity of black-box tracing when
the number of traitors is logarithmic.

The reason for this notational change is just to “jump” over the special component ¢, which is treated
separately in game Gi.
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Hardness of .-LWE and Applications
in Traitor Tracing

CRYPTO 2014

[LPSS14] with San Ling, Damien Stahlé and Ron Steinfeld

Abstract :  We introduce the k-LWE problem, a Learning With Errors variant of the k-SIS
problem. The Boneh-Freeman reduction from SIS to k-SIS suffers from an exponential loss in k.
We improve and extend it to an LWE to k-LWE reduction with a polynomial loss in k, by relying
on a new technique involving trapdoors for random integer kernel lattices. Based on this hardness
result, we present the first algebraic construction of a traitor tracing scheme whose security relies
on the worst-case hardness of standard lattice problems. The proposed LWE traitor tracing is
almost as efficient as the LWE encryption. Further, it achieves public traceability, i.e., allows
the authority to delegate the tracing capability to “untrusted” parties. To this aim, we introduce
the notion of projective sampling family in which each sampling function is keyed and, with
a projection of the key on a well chosen space, one can simulate the sampling function in a
computationally indistinguishable way. The construction of a projective sampling family from
k-LWE allows us to achieve public traceability, by publishing the projected keys of the users. We
believe that the new lattice tools and the projective sampling family are quite general that they
may have applications in other areas.

C.1 Introduction

Since the pioneering work of Ajtai [Ajt96a], there have been a number of proposals of crypto-
graphic schemes with security provably relying on the worst-case hardness of standard lattice
problems, such as the decision Gap Shortest Vector Problem with polynomial gap (see the sur-
veys [MRO9L Regl0]). These schemes enjoy unmatched security guarantees: Security relies on
worst-case hardness assumptions for problems expected to be exponentially hard to solve (with
respect to the lattice dimension n), even with quantum computers. At the same time, they often
enjoy great asymptotic efficiency, as the basic operations are matrix-vector multiplications in
dimension O(n) over a ring of cardinality < Poly(n). A breakthrough result in that field was
the introduction of the Learning With Errors problem (LWE) by Regev [Reg05, Reg09], who
showed it to be at least as hard as worst-case lattice problems and exploited it to devise an
elementary encryption scheme. Gentry et al. showed in [GPVO0§| that Regev’s scheme may be
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adapted so that a master can generate a large number of secret keys for the same public key.
As a result, the latter encryption scheme, called dual-Regev, can be naturally extended into a
multi-receiver encryption scheme. In the present work, we build traitor tracing schemes from
this dual-Regev LWE-based encryption scheme.

TRAITOR TRACING. A traitor tracing scheme is a multi-receiver encryption scheme where mali-
cious receiver coalitions aiming at building pirate decryption devices are deterred by the existence
of a tracing algorithm: Using the pirate decryption device, the tracing algorithm can recover
at least one member of the malicious coalition. Such schemes are particularly well suited for
fighting copyright infringement in the context of commercial content distribution (e.g., Pay-TV,
subscription news websites, etc). Since their introduction by Chor et al. [CEN94al, much work
has been devoted to devising efficient and secure traitor tracing schemes. The most desirable
schemes are fully collusion resistant: they can deal with arbitrarily large malicious coalitions.
But, unsurprisingly, the most efficient schemes are in the bounded collusion model where the
number of malicious users is limited. The first non-trivial fully collusion resistant scheme was
proposed by Boneh et al. [BSW06h]. However, its ciphertext size is still large (Q(v/N), where
N is the total number of users) and it relies on pairing groups of composite order. Very re-
cently, Boneh and Zhandry [BZ14] proposed a fully collusion resistant scheme with poly-log
size parameters. It relies on indistinguishability obfuscation [GGH™'13b], whose security foun-
dation remains to be studied, and whose practicality remains to be exhibited. In this paper,
we focus on the bounded collusion model. The Boneh-Franklin scheme [BEF99a)] is one of the
earliest algebraic constructions but it can still be considered as the reference algebraic trans-
formation from the standard ElGamal public key encryption into traitor tracing. This trans-
formation induces a linear loss in efficiency, with respect to the maximum number of traitors.
The known transformations from encryption to traitor tracing in the bounded collusion model
present at least a linear loss in efficiency, either in the ciphertext size or in the private key
size [BEF99al, INP0OO, KY02¢, [Sir07b, BP0S, BNO8b|]. We refer to [KP10| for a detailed introduc-
tion to this rich topic. Also, in Appendix we give a short overview of traitor tracing
schemes with their properties, in particular the public traceability.

OUR CONTRIBUTIONS. We describe the first algebraic construction of a public-key lattice-based
traitor tracing scheme. It is semantically secure and enjoys public traceability. The security
relies on the hardness of LWE, which is known to be at least as hard as standard worst-case
lattice problems [Reg09, Pei09, BLP™13].

The scheme is the extension, described above, of the dual-Regev LWE-based encryption
scheme from [GPV0S8] to a multi-receiver encryption scheme, where each user has a different
secret key. In the case of traitor tracing, several keys may be leaked to a traitor coalition. To
show that we can trace the traitors, we extend the LWE problem and introduce the k-LWE
problem, in which & hint vectors (the leaked keys) are given out.

Intuitively, k-LWE asks to distinguish between a random vector ¢ close to a given lattice A
and a random vector ¢ close to the orthogonal subspace of the span of k given short vectors
belonging to the dual A* of that lattice. Even if we are given (l;f)zgk small in A*, computing the
inner products <gj, f} will not help in solving this problem, since they are small and distributed
identically in both cases. The k-LWE problem can be interpreted as a dual of the k-SIS prob-
lem introduced by Boneh and Freeman [BE11], which intuitively requests to find a short vector
in A* that is linearly independent with the k given short vectors of A*. Their reduction from SIS
to k-SIS can be adapted to the LWE setup, but the hardness loss incurred by the reduction is
gigantic. We propose a significantly sharper reduction from LWE, to k-LWE,. This improved
reduction requires a new lattice technique: the equivalent for kernel lattices of Ajtai’s simul-
taneous sampling of a random g-ary lattice with a short basis [Ajt99] (see also Lemma [C.2.2).
We adapt the Micciancio-Peikert framework from [MP12] to sampling a Gaussian X € Z"™*"
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along with a short basis for the lattice ker(X) = {b € Z™ : b'X = 0}. Kernel lattices also play
an important role in the re-randomization analysis of the recent lattice-based multilinear map
scheme of Garg et al. [GGH13al, and we believe that our new trapdoor generation tool for such
lattices is likely find additional applications in future. We also remark that our technique can
be adapted to the SIS to k-SIS reduction. We thus solve the open question left by Boneh and
Freeman of improving their reduction [BE11]: from an exponential loss in k to a polynomial
loss in k. Consequently, their linearly homomorphic signatures and ordinary signature schemes
enjoy much better efficiency/security trade-offs.

Our construction of a traitor tracing scheme from k-LWE can be seen as an additive and
noisy variant of the (black-box) Boneh-Franklin traitor tracing scheme [BF99a]. While the
Boneh-Franklin scheme is transformed from the ElGamal encryption with a linear loss (in the
maximum number of traitors) in efficiency, our scheme is almost as efficient as standard LWE-
based encryption, as long as the maximum number of traitors is bounded below n/(clogn),
where n is the LWE dimension determined by the security parameter, and c is a constant. The
full functionality of black-box tracing in both the Boneh-Franklin scheme and ours are of high
complexity as they both rely on the black-box confirmation: given a superset of the traitors,
it is guaranteed to find at least one traitor and no innocent suspect is incriminated. Boneh
and Franklin left the improvement of the black-box tracing as an interesting open problem. We
show that in lattice setting, the black-box tracing can be accelerated by running the tracing
procedure in parallel on untrusted machines. This is a direct consequence of the property of
public traceability, i.e., the possibility of running tracing procedure on public information, that
our scheme enjoys. We note that almost all traitor tracing systems require that the tracing
key must be kept secret. Some schemes [CPP05al, [PSNT06al, BW06al BZ14] achieve public
traceability and some others achieve a stronger notion than public traceability, namely the non-
repudation, but the setup in these schemes require some interactive protocol between the center
and each user such as a secure 2-party computation protocol in [Pfi96], a commitment protocol
in [PW97], an oblivious polynomial evaluation in [WHIOI, [KWHIOT, KY02a].

To obtain public traceability and inspired from the notion of projective hash family [CS02],
we introduce a new notion of projective sampling family in which each sampling function is keyed
and, with a projection of the key on a well chosen space, one can simulate the sampling function
in a computationally indistinguishable way. The construction of a set of projective sampling
families from k-LWE allows us to publicly sample the tracing signals.

Independently, our new lattice tools may have applications in other areas. The k-LWE
problem has a similar flavour to the Extended-LWE problem from [OPWII1]. It would be
interesting to exhibit reductions between these problems. On a closely-related topic, it seems
our sampling of a random Gaussian integer matrix X together with a short basis of ker(X) is
compatible with the hardness proof of Extended-LWE from [BLP'13|. In particular, it should
be possible to use it as an alternative to [BLPT 13, Def 4.5] in the proof of [BLPT13, Le 4.7], to
show that Extended-LWE remains hard with many hints independently sampled from discrete
Gaussians.

C.2 Preliminaries

If z is a real number, then |z] is the closest integer to x (with any deterministic rule in case x
is half an odd integer). All vectors will be denoted in bold. By default, our vectors are column
vectors. We let (-,-) denote the canonical inner product. For ¢ prime, we let Z, denote the field
of integers modulo ¢. For two matrices A, B of compatible dimensions, we let (A|B) and (A||B)
respectively denote the horizontal and vertical concatenations of A and B. For A € Z™*"™, we
define Im(A) = {A5: § € Zy} C Zy'. For X C Zi*, we let Span(X) denote the set of all
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linear combinations of elements of X. We let X+ denote the linear subspace {5 € Ly :VC €

X, (b,& = 0}. For a matrix S € R™" we let ||S|| denote the norm of its longest column. If S
is full column-rank, we let 01(S) > ... > 0,(5) denote its singular values. We let T denote the
additive group R/Z.

If Dy and D; are distributions over a countable set X, their statistical distance 3 3", x |D1(z)—
Dy(z)| will be denoted by A(D1, Dy). The statistical distance is defined similarly if X is mea-
surable. If X is of finite weight, we let U(X) denote the uniform distribution over X. For
any invertible S € R™*™ and ¢ € R™, we define the function ps,g(g) = exp(—7||S~L(b — )|]2).
For S = sI,,, we write p, z, and we omit the subscripts S and ¢ when S = I;;, and ¢ = 0. We let
v, denote the one-dimensional Gaussian distribution with standard deviation «.

C.2.1 Euclidean lattices and discrete Gaussian distributions

A lattice is a set of the form {3, ziby : x; € Z} where the bis are linearly independent

vectors in R™. In this situation, the bi’s are said to form a basis of the n-dimensional lattice.
The n-th minimum A, (L) of an n-dimensional lattice L is defined as the smallest r such that
the n-dimensional closed hyperball of radius r centered in 0 contains n linearly independent
vectors of L. The smoothing parameter of L is defined as n.(L) = min{r > 0: p; /T(IAL \ 0) < ¢}
for any e € (0,1), where L = {¢ € Span(L) : & - L C Z} is the dual lattice of L. It was proved
in [MRO7, Le. 3.3] that n.(L) < v/In(2n(1 + 1/¢))/m - Ap(L) for all € € (0,1) and n-dimensional
lattices L.

For a lattice L C R™, a vector ¢ € R™ and an invertible S € R™*™  we define the Gaussian
distribution of parameters L, ¢ and S by DL7S75(5) ~ ps,g(g) = exp(—7||S~H(b—@)||?) for all b € L.
When S = o - I;,, we simply write Dy, ,z Note that Dy gz= S*- Dg-t1,1 g-tz- Sometimes, for
convenience, we use the notation Dy zg as a shorthand for ¢4 Dy, g _z Gentry et al. [GPVO0S]
gave an algorithm, referred to as GPV algorithm, to sample from Dy, gz when given as input a

basis (b;); of L such that \/In(2n + 4) /7 - max; ||S~b;|| < 1 (see Lemma .

We extensively use g-ary lattices. The g-ary lattice associated to A € Zy"*" is defined

as AL(A) = {f € 2™ : - A= 0mod ¢}. It has dimension m, and a basis can be computed in
polynomial-time from A. For @ € Z7", we define A7 (A) as the coset {Z € Z™ : #- A = @' mod ¢}
of AL(A).

C.2.2 Random lattices

We consider the following random lattices, called g-ary Ajtai lattices. They are obtained by
sampling A <= U(Z7") and considering A+(A). The following lemma provides a probabilistic
bound on the smoothing parameter of A(A).

Lemma C.2.1 [Adapted from |[GPVO0S§|, Le. 5.3]] Let g be prime and m, n integers with m > 2n
and ¢ > 0, then 7.(A+(A)) < 4¢m /log(2m(1 + 1/¢))/x, for all except a fraction 2~ of
A 6 men

g "

It is possible to efficiently sample a close to uniform A along with a short basis of A*(A)
(see [Ajt99, [AP11l [Peil(, MP12]).

Lemma C.2.2 [Adapted from [AP11], Th. 3.1]] There exists a ppt algorithm that given n, m,q >
2 as inputs samples two matrices A € Zg**" and T' € Z™*™ such that: the distribution of A is
within statistical distance 2~ from U (Zg*™); the rows of T' form a basis of A+(A); each row

of T" has norm < 3mg
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For A € Zy”*", S € R™™ invertible, ¢ € R™ and @ € Zy, we define the distribu-
tion DA%(A),S,@ as ¢ + DAJ-(A) 5_&re Where ¢ is any vector of Z™ such that & - A = 4" mod q.
A sample & from D AL(4),5 can be obtained using the GPV algorithm along with the short ba-

sis of A+(A) provided by Lemma Boneh and Freeman [BET11] showed how to efficiently
obtain the residual distribution of (A, ¥) without relying on Lemma

Theorem C.2.3 [Adapted from [BF11, Th. 4.3]] Let n,m,q > 2, k > 0 and S € R™*™ be such

that m > 2n, ¢ is prime with ¢ > 01(S)-\/21Iog(4m), and 0,,(S) = ¢ -max(Q(y/nlogm), 201(5)%).
Let dy, ..., Uy € Zy and ¢, . .., G € R™ be arbitrary. Then the residual distributions of the tuple

(A, #q, ..., 7)) obtained with the following two experiments are within statistical distance 2—%n),

Exp, : A= UZg™"); Vigk‘:fi@DA%_(A)’Sa

,Ci
Exp;: Vi<k:Z; <> Dgmgs; AU (Z;”X”]W <k:it- A=l mod q) .

This statement generalizes [BE11, Th. 4.3] in three ways. First, the latter corresponds to
the special case corresponding to taking all the @;’s and &’s equal to 0. This generalization
does not add any extra complication in the proof of [BF11, Th. 4.3], but is important for our
constructions. Second, the condition on m is less restrictive (the corresponding assumption
in [BF11l Th. 4.3] is that m > max(2nlog g, 2k)). To allow for such small values of m, we refine
the bound on the smoothing parameter of the A+(A) lattice (namely, we use Lemma .
Third, we allow for a non-spherical Gaussian distribution, which seems needed in our generalized
Micciancio-Peikert trapdoor gadget used in the reduction from LWE to k-LWE in Section

We also use the following result on the probability of the Gaussian vectors #; from Theo-
rem [C.2.3) being linearly independent over Z,.

Lemma C.2.4 [Adapted from [BF11l Le. 4.5]] With the notations and assumptions of Theo-
rem the k vectors &y, ..., 2} sampled in Exp, and Exp; are linearly independent over Z,,
except with probability 2—9(n)

C.2.3 Rényi Divergence

We use Rényi Divergence (RD) in our analysis, relying on techniques developed in [LPRI3|
[.SS14al [LSS14b]. For any two probability distributions P and @ such that the support of P
is a subset of the support of @) over a countable domain X, we define the RD (of order 2) by
R(P||Q) =>,cx %, with the convention that the fraction is zero when both numerator and
denominator are zero. We recall that the RD between two offset discrete Gaussians is bounded

as follows.

Lemma C.2.5 [[LSS14al Le. 4.2]] For any n-dimensional lattice L C R™ and invertible matrix

S,set P = Dy, g4 and Q = Dy, g > for some fixed o, 2 € R". If W, Z € L, let ¢ = 0. Otherwise, fix
2

e € (0,1) and assume that 0,,(S) > n-(L). Then R(P||Q) < (%) -exp (27w — 2% /on(S)?).

We use this bound and the fact that the RD between the parameter distributions of two distin-

guishing problems can be used to relate their hardness, if they satisfy a certain public sampla-
bility property.

Lemma C.2.6 [[LSS14b]] Let ®, @' denote two distributions, and Dy(r) and D;(r) denote two
distributions determined by some parameter r. Let P, P’ be two decision problems defined as
follows:
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e P: Assess whether input z is sampled from distribution X or X7, where
Xo={z:r< x> Do(r)}, Xi ={x:r < &,z < Di(r)}.

e P’: Assess whether input z is sampled from distribution X, or X|, where
Xo=Ax:r+ ¥ 2+ Dy(r)}, X;i={x:r< d x> Di(r)}.

Assume that Dgy(-) and D1 (-) have the following public samplability property: there exists a
sampling algorithm S with run-time T's such that for all r, b, given any sample z from Dy(r) we
have:

e S(0,x) outputs a sample distributed as Dy(r) over the randomness of S.
e S(1,x) outputs a sample distributed as D;(r) over the randomness of S.

If there exists a T-time distinguisher A for problem P with advantage ¢, then, for every
A > 0, there exists an O(\e™2 - (Ts + T'))-time distinguisher A’ for problem P’ with advantage

3 _
5/ Z WH(}M)—O(Q )\).

C.2.4 Learning with errors

Let 8 € Zy and a > 0. We define the distribution Az, as follows: Take @ <= U(Zg;) and e <= vq,
and return (a, %(EL’, 8) +e) € Zy x T. The Learning With Errors problem LWE,, introduced by
Regev in [Reg05} [Reg09], consists in assessing whether an oracle produces samples from U(Zg xT)
or Ag, for some constant § <> U(Zy;). Regev [Reg09] showed that for ¢ < Poly(n) prime

and a € (\2/—?, 1), LWE is (quantumly) not easier than standard worst-case lattice problems in
dimension n with approximation factors Poly(n)/a. This hardness proof was partly dequantized
in [Pei09, BLP'13|, and the requirements that ¢ should be prime and Poly(n) were waived.

In this work, we consider a variant LWE where the number of oracle samples that the
distinguisher requests is a priori bounded. If m denotes that bound, then we will refer to this
restriction as LWE, ;,,. In this situation, the hardness assumption can be restated in terms of
linear algebra over Z,: Given A < U(Zg‘xn), the goal is to distinguish between the distributions
(over T™)

1 1

—U (Im(A)) + v and =U () + v

q q
Under the assumption that ag > Q(y/n), the right hand side distribution is indeed within sta-
tistical distance 2= to U(T™) (see, e.g., [MROT, Le. 4.1]). The hardness assumption states
that by adding to them a small Gaussian noise, the linear spaces Im(A) and Z* become compu-
tationally indistinguishable. This rephrasing in terms of linear algebra is helpful in the security
proof of the traitor tracing scheme. Note that by a standard hybrid argument, distinguishing
between the two distributions given one sample from either, and distinguishing between them
given ) samples (from the same distribution), are computationally equivalent problems, up to
a loss of a factor ) in the distinguishing advantage.

Finally, we will also use a variant of LWE where the noise distribution v, is replaced
by D,-1z 4, and where U(T) is replaced by U(T,) with T, being ¢~ 'Z with addition mod 1.
This variant, denoted by LWE', was proved in [Peil(] to be no easier than standard LWE (up
to a constant factor increase in «).
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C.3 New lattice tools

The security of our constructions relies on the hardness of a new variant of LWE, which may be
seen as the dual of the k-SIS problem from [BF11].

Definition C.3.1 Let k < m, S € R™*™ invertible and C = (&y|| - - - |Gx) € R¥*™. The (k, S, C)-
LWEq, 1, problem (or (k,S)-LWE if C' = 0) is as follows: Given A <> U(Z;"*"), <> U(Zy) and
Ty <= Dyt ()5 for i <k, the goal is to distinguish between the distributions (over T+

it 1
; . U(Im(uj)) + ™ and c1] . U(Spanigk, (%) ) 4y

The classical LWE problem consists in distinguishing the left distribution from uniform,
without the hint vectors & = (1|;). These hint vectors correspond to the secret keys obtained
by the malicious coalition in the traitor tracing scheme. Once these hint vectors are revealed,
it becomes easy to distinguish the left distribution from the uniform distribution: take one of
the vectors 7}, get a challenge sample i and compute (#; %) € T; if § is a sample from the left
distribution, then the centered residue is expected to be of size ~ « - (v/mo1(S) + ||&]|), which
is < 1 for standard parameter settings; on the other hand, if  is sampled from the uniform
distribution, then (¥, #) should be uniform. The definition of (k, S)-LWE handles this issue by
replacing U (Z7"1) by U(Span; <, (Z;)*).

Sampling & from D L((@"]|A)),S,¢, may seem more natural than imposing that the first coordi-
nate of each :i"’f is 1. Looking ahead, this constraint will prove convenient to ensure correctness
of our cryptographic primitives. Theorem below and its proof can be readily adapted
to this hint distribution. They may also be adapted to improve the SIS to k-SIS reduction
from [BE11]. Setting C' = 0 is also more natural, but for technical reasons, our reduction from
LWE to (k, S, C)-LWE works with unit vectors ¢;. However, we show that for small |||, there
exist polynomial time reductions between (k, S, C')-LWE and (k, S)-LWE.

In the proof of the hardness of (k,S)-LWE problem, we rely on a gadget integral matrix G
that has the following properties: its first rows have Gaussian distributions, it is unimodular
and its inverse is small. Before going to this proof, we shall build such a gadget matrix by
extending Ajtai’s simultaneous sampling of a random g¢-ary lattice with a short basis [Ajt99]
(see also Lemma to kernel lattices. More precisely, we adapt the Micciancio-Peikert
framework [MP12] to sampling a Gaussian X € Z™*" along with a short basis for the lat-
tice ker(X) = {b € Z™ : b'X = 0}.

C.3.1 Sampling a Gaussian X with a small basis of ker(X)

The Micciancio-Peikert construction [MP12] relies on a leftover hash lemma stating that with
overwhelming probability over A <= U(Z;**") and for a sufficiently large o, the distribution
of A'- Dym , mod q is statistically close to U (Z;‘). We use a similar result over the integers,
starting from a Gaussian X € Z™*" instead of a uniform A € Z7**". The proof of the following
lemma relies on [AR13], which improves over a similar result from [AGHS13]. The result would
be neater with o9 = o1, but, unfortunately, we do not know how to achieve it. The impact of
this drawback on our results and constructions is mostly cosmetic.

Lemma C.3.2 Let m > n > 100 and 01,02 > 0 satisfying o7 > Q(v/mnlogm), m >
Q(nlog(o1n)) and oy > Q(n®2/mo?log*?(mo1)). Let X Dy'7". There exists a ppt al-
gorithm that takes n,m,o1,09,X and ¢ € Z" as inputs and returns £ € Z"™, 7 € Z™ such
that & = @+ X'7 with ||7]| < O(o3/01), with probability 1 — 272 and

A((X,3), Dy % D gy ) <278,

y02,C

— 121 —



Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

We now adapt the trapdoor construction from [MPI12] to kernel lattices.
Theorem C.3.3 Let n,mi,01,09 be as above, and ms > my bounded as nOM) . There exists
a ppt algorithm that given n,my, my (in unary), o1 and o9, returns Xy € Z™*" X, € Zm2*"
and U € Z™*™ with m = my + mo, such that:

e the distribution of (X7, X3) is within statistical distance 2~ of the distribution Dyt %
(D = XX D

N Z™M2,02,01 Zm2 09,5,
ith coordinate is 1 and whose remaining coordinates are 0.

), where 5; denotes the ith canonical unit vector in Z™2 whose

e we have |detU|=1and U - X = ([,]|0) with X = (X[ X2),

e every row of U has norm < O(y/nmqo2) with probability > 1 — 2—%(n),
The second statement implies that the last m — n rows of U form a basis of the random
lattice ker(X).

Proof: We first sample X1 from Dmlxn using the GPV algorithm. We run mo times the

algorithm from Lemma on the 1nput n,miy, 01,09, X1 and ¢ running through the columns
of C' = [1n]0px (my—n))- Thls gives Xy € Z™2*" and R € Z™*™2 such that X} = [I,, 105 (1m0 —n)] +
X! R. One can then see that U - X = [I,,]|0], where

U _ 6 ‘ Im2 _ . Im1 ‘ 6 — _Rt . ‘ Img _ X — Xl
I, | —(X1]0) —R" | I, I, + (X1]0)R! | —(X1]0) |’ X5 |-

The result then follows from Gaussian tail bounds (to bound the norms of the rows of X;) and

elementary computations. |
Our gadget matrix G is U~'. In the following corollary, we summarize the properties we will

use.

Corollary C.3.4 Let n,mj,ma, m,o01,02 be as in Theorem[C.3.3] There exists a ppt algorithm
that given n,myi, mo (in unary), and o1, 09 as inputs, returns G € Z™*™ such that:

e the top n x m submatrix of G is within statistical distance 2-%(") of D7 (D
-x D

zm2 702agl X

- )t
7Zm2,09,6n7 7

e we have |det G| = 1 and ||G~!|| < O(\/mimzoy), with probability 1 — 2-%(),

C.3.2 Hardness of k.-LWE

The following result shows that this LWE variant, with S a specific diagonal matrix, is no easier
than LWE.

Theorem C.3.5 There exists ¢ > 0 such that the following holds for & = n/(clogn). Let
m,q,o,0' be such that ¢ > Q(n), o/ > Qn3c?/logn), ¢ > Q(o’\/Ilogm) is prime, and
m > Q(nlogq) (e.g., ¢ = O(n), o’ = O(n°/logn), ¢ = O(n°) and m = O(nlogn)). Then
there exists a probabilistic polynomial-time reduction from LWE,, 1  in dimension n to (k, S)-
LWE,, 420 in dimension 4n, with o/ = Q(mn/%00’a) and S = [ Ay } More con-
cretely, using a (k, S)-LWE,, 9, o algorithm with run-time 7" and advantage ¢, the reduction
gives an LWE, 41 o algorithm with run-time 7" = O(Poly(m)- (¢ —2~ 2/ 1087)) =2 (T 1 Poly(m))
and advantage ¢/ = Q((e — 2~/ logn))3) _ O(277).
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The reduction takes an LWE instance and extends it to a related k-LWE instance for which
the additional hint vectors (Z;);<x are known. The major difficulty in this extension is to restrain
the noise increase, as a function of k.

The existing approach for this reduction (that we improve below) is the technique used in
the SIS to k-SIS reduction from [BEF11]. In the latter approach, the hint vectors are chosen
independently from a small discrete Gaussian distribution, and then the LWE matrix A is
extended to a larger matrix A’ under the constraint that the hint vectors are in the g-ary
lattice AL(A’) = {b: B*A’ = 0 mod ¢}. Unfortunately, with this approach, the transformation
from an LWE sample with respect to A, to a k-LWE sample with respect to A’, involves a
multiplication by the cofactor matrix det(G) -G~ over Z of a k x k full-rank submatrix G of the
hint vectors matrix. Although the entries of G are small, the entries of its cofactor matrix are
almost as large as det G, which is exponential in k. This leads to an “exponential noise blowup,”
restraining the applicability range to k < 6(1) if one wants to rely on the hardness of LWE with
noise rate 1/a < Poly(n) (otherwise, LWE is not exponentially hard to solve). To restrain the
noise increase for large k, we use the gadget of Corollary Ignoring several technicalities,
the core idea underlying our reduction is that the latter gadget allows us to sample a small
matrix Xo with X, " also small, which we can then use to transform the given LWE matrix

AT = (@A) € ngﬂ)xn into a taller k-LWE matrix A’ = T - AT, using a transformation

matrix T of the form
T= ||

Xy X,

for some small independently sampled matrix X; = [I|X]. We can accordingly transform the
given LWE sample vector b = AT 5+ & for matrix AT into an LWE sample &/ = Tbh = A'*§+ T¢€
for matrix A’ by multiplying the given sample by T. Since [X|X5] - T = 0, it follows that
[X1]|Xs] - A’ = 0, so we can use k small rows of [X;|X5] as the k-LWE hints #; for the new
matrix A", while, at same time, the smallness of T keeps the transformed noise & = T'¢ small.

Proof: For a technical reason related to the non-zero centers 5; in the distribution of the
hint vectors produced by our gadget from Corollary we decompose our reduction from
LWE 41,4 to (k,S)-LWE into two subreductions. The first subreduction (outlined above) re-
duces LWE,, 11, in dimension n to (k, S, C)-LWE,, ;2 o in dimension 4n, where the ith row of

C is the unit vector & = (0™1"]6;) € R™*2" for i = 1,..., k. The second subreduction reduces
(k,S,C)-LWE,, 125, o in dimension 4n to (k,S)-LWE,, 2, o in dimension 4n. We first describe
and analyze the first subreduction, and then explain the second subreduction.

Description of the first subreduction. Let (A*,b) with AT = (@||A) denote the given
LWEq,, m+1 input instance, where AT < U(ngﬂ)xn), and b € T™ comes from either the
“LWE distribution” %U (Im(A™)) + v+ or the “Uniform distribution” %U (Z;”‘H) + ymtL,
The reduction maps (A*,b) to (A, @, X, V) with A’ € ng+2n)X4n and U € Zg" independent
and uniform, X € ZF*X(m+2n) with its ith row Z; independently sampled from DAfa/ (4,8 for
i <k, and b € T™420 coming from either the “k-LWE distribution” %U (Im(A'T)) 4 ymritan
if b is from the “LWE distribution,” or the “k-Uniform distribution” %U (Spanigk(fj)J—) if b

is from the “Uniform distribution.” Here A" = (i"||4’), and ¥ denotes the vector (1||%;)
for 7 < k. The reduction is as follows.

ZQnXQn

1. Sample gadget Xo € using Corollary |C.3.4] (with parameters n,mj, ma, 01 and oy

respectively set to k,n,n, o and ¢’), and sample X1 <> D3, Define T = [ _Y;Iﬁti\il) } €
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Z(mlt2n)x(m+1) where T is the all-1 vector. Let X € Zk*(m+2n) denote the matrix made
of the top k rows of (X1|X3).

2. Sample C* € Z((Im+1+2n)><3n with independent columns uniform orthogonally to Im((1]X))
modulo q. Let @4 € Zg” be the top row of C*, and C € ngwn)xgn denote its remaining

m + 2n rows.

3. Compute ¥ = o' - Ijnt149n — T - T* and VS such that VX - \/ft = 3J; if X is not positive
definite, abort.

4. Compute A" = (T- A¥|CF) and ¥/ = T+ 1C* - & + VSe/, with & <> U(Z3") and & =
Y et (@)t = (dl]|dc)t € Z3" be the top row of At

5. Return (A", ', X, b').

Step 1 aims at building a transformation matrix T that sends A" to the left n columns of A'*.
Two properties are required from this transformation. First, it must be a linear map with small
coefficients, so that when we map the LWE right hand side to the k-LWE right hand side, the
noise component does not blow up. Second, it must contain some vectors (1||Z;) in its (left)
kernel, with &; normally distributed. These vectors are to be used as k-LWE hints. For this, we
use the gadget of the previous subsection. This ensures that the Z;’s are (almost) distributed
as independent Gaussian samples from Dgzn , X Dzn 5, and that the matrix T' is integral with
small coefficients. We define B € Z2"*" by [AT||B] = TA*, so that we have:

S R L+t L
[1|X1’X2:| . [ B ‘| = |:1‘X1|X2] . [ —Yz_l- (1‘?1) ] -AT™ = 0 mod q.

This means each row of (Yl ]72) belongs to AL _(A”), where A” = [A?|B]".

At this stage, it is tempting to define the k-LWE matrix as A” and give away the k-LWE
hint vectors ¥; € Afﬁ(A” ) making up the matrix X. However, this approach does not quite
work: we have extended A by 2n rows, but we give only k hint vectors (we cannot output them
all, as the bottom rows of X3 may not be normally distributed). This creates a difficulty for
mapping “Uniform” to “k-Uniform” in the reduction. Step 2 circumvents the above difficulty by
sampling extra column vectors C* & ng+1+2n)xgn that are uniform in the subspace orthogonal
to the hint vectors & modulo ¢. When the parameters are properly set, the columns of [T|C™]
span the full subspace orthogonal to the #;’s mod ¢, with overwhelming probability. We finally

set A'T = [% Cﬂ.

It remains to see how to map “LWE” to “k-LWE.” The main problem, when multiplying b by T,
is that the LWE noise gets skewed. If its covariance matrix was of the form o? - I, 1, then it
becomes o>T - T*. To compensate for that, in Step 3, we add to T - b an independent Gaussian
noise with well-chosen covariance ¥ = o/ - I, 4119, — &?>T - T'. We set o large enough to ensure
that this symmetric matrix is positive definite. This noise unskewing technique was adapted to
discrete Gaussians and used in cryptography in [Peil()].

Analysis of the first subreduction. All steps of the reduction can be implemented in
polynomial time. Its correctness follows from the following three lemmas. The proofs can
be found in the appendix.
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Lemma C.3.6 The tuple (A’, @', X) is within statistical distance 9—n/logn) f the distribution
in which A" € ng+2n)X4n and @ € Zj" are independent and uniform, and the rows of X €
ZkX(m+2n) are from D AL (A7),5,5+ Where ¢ = (0"””‘]5;-) € R™*27 and §; denotes the ith canonical

unit vector in Z™ for i =1,... k.

Next, we assume that (A'", X) is fixed and consider the distribution of b in the two cases of
the distribution of b. First we consider the “LWE” to “k-LWE” distribution mapping.

Lemma C.3.7 The following holds with probability 1 — 2~(/1087) gyer the choice of X and
X,. If b € T™ is sampled from 1U (ImA) + v then Y € T™H1+2" is within statistical

distance 2~ of qU (ImA™) + y&’?““”,
Finally, we consider the “Uniform” to “k-Uniform” distribution mapping.

Lemma C.3.8 The following holds with probability 1 — 27(/1087) gyer the choice of X1 and
X,. If b is sampled from %U (Z;”H) + v then b is within statistical distance 2% of

%U (Spanigk(fj)J‘> + it

Overall, we have described a reduction that maps the “LWE distribution” to the “k-LWE dis-
tribution,” and the “Uniform distribution” to the “k-Uniform distribution,” up to statistical
distance 2~(n/logn)

Second subreduction. It remains to reduce the (k, S, C')-LWE with non-zero centers for the
hint distribution, to (k,S)-LWE with zero-centered hints. For this, we use Lemma to
obtain the following.

Lemma C.3.9 Let m' = m + 2n, n’ = 4n, and assume that o,,/(S) > w(y/n). If there exists
a distinguisher against (k,S)-LWE,,/ o in dimension n’ with run-time 7" and advantage ¢, then
there exists a distinguisher against (k,S,C)-LWE,, o with run-time 7" = O(Poly(m’) - (e —
2-U"))=2. T) and advantage ¢’ = Q((e — O(27™))3/R — O(2™")), where R = exp(O(k - (27" +
ICI2/0me (8)2))).

The main idea of the proof of Lemma given in the appendix, is to apply Lemma[C.2.6] with
P, P’ being the (k, S)-LWE and (k, S, C)-LWE problems respectively, which have instances of
the form x = (7, y), where r = (A, 4, {Z;}i<) and the hints Z; for ¢ < k sampled from either the
zero-centered distribution <= D, L ()50 (distribution ® of r, in (k,S)-LWE) or the non-zero

center distribution <= D1 () gz (distribution @' of 7, in (k,S,C)-LWE), and i € T™*! is a
sample from either the distribution

i) = v )

or the distribution
_ 1 1 L m+1
Dy(r) = h U(Spanigk (—fl ) ) + v

Given x = (r,7), is possible to efficiently sample ¢ from either Dy(r) or Di(r), so the public-
samplability property assumed by Lemma is satisfied. This Lemma gives the desired
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reduction between (k,S)-LWE and (k, S,C)-LWE, as long as the RD R(®|®’) between the
distribution of r in the two problems is polynomially bounded. The latter reduces to obtaining
a bound on the RD between a Gaussian distribution and a small offset thereof, which is given

by Lemma

In our application of Lemma the (k, S, C)-LWE problem resulting from the first subre-
duction has ||C|| = 1, and 0,,/(S) = o, so that R = exp(O(k - (27" + 1/0?))) = O(1) using
o =Q(n) and k < n. This shows that the second subreduction is probabilistic polynomial time.

Our technique can be applied to improve the Boneh-Freeman reduction from SIS to k-SIS,
from an exponential loss in k to a polynomial loss in k. In fact, we map A to A” in the same
way (except that we do not use and add @ on top of the matrix A) and then also use the top k
rows of (X1|X52) as the k-SIS hints for the new matrix A”. Then, whenever the adversary
can output a short vector zi||#3 that is orthogonal to A”, we can also output a short vector
(21 — 23 Y; 1Y1) which is orthogonal to A. As the rows of X are distributed as independent
Gaussian samples and the adversary is only given its first k rows, it can be shown that, if 27 |25
is linearly independent from the k-SIS hints, then the vector (2] — 2% - Xo 1Y1) is null with a
negligible probability. RD may also be used to reduce k-SIS with non-zero-centered hints (with
small centers) to k-SIS with zero-centered hints.

C.4 A lattice-based public-key traitor tracing scheme

In this section, we describe and analyze our basic traitor tracing scheme. First, we give the
underlying multi-user public-key encryption scheme. We then explain how to implement black-
box confirmation tracing.

C.4.1 A multi-user encryption scheme

The scheme is designed for a given security parameter n, a number of users N and a maximum
malicious coalition size t. It then involves several parameters g, m, «, S. These are set so that
the scheme is correct (decryption works properly on honestly generated ciphertexts) and secure
(semantically secure encryption and possibility to trace members of malicious coalitions). In
particular, we set S = Diag(o,...,0,0',...,0") € R™™ where ¢’ > o and their respective
numbers of iterations are set so that (¢, S)-LWE,, 11 o is hard to solve.

Setup. The trusted authority generates a master key pair using the algorithm from Lemma[C.2.2]
Let (A,T') € Zg**" x Z™*™ be the output. We additionally sample # uniformly in Zj. Matrix T'
will be part of the tracing key tk, whereas the public key is pk = AT, with AT = (@'|| A).

Fach user U; for ¢ < N obtains a secret key sk; from the trusted authority, as follows.
The authority executes the GPV algorithm using the basis of A~(A) consisting of the rows
of T', and the standard deviation matrix S. The authority obtains a sample Z; from D AL_(A),S"

The standard deviations o’ > ¢ may be chosen as small as 3mgq™/™ /(2m + 4)/7. The user
secret key is @ = (1)|Z;) € Z™*l. Using the Gaussian tail bound and the union bound, we
have || ;]| < v/mo’ for all i < N, with probability > 1 — N - 279%™,

The tracing key tk consists of the matrix 7" and all pairs (U, sk;).
Encrypt. The encryption algorithm is exactly the 1-bit encryption scheme from [GPV08, Se. 7.1],
which we recall, for readabilityﬂ The plaintext and ciphertext domains are P = {0,1} and C =

! As usual, the encryption algorithm may be used to encapsulate session keys which are then fed into an efficient
data encapsulation mechanism to encrypt the data.
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271 respectively, and:

=t .
Enc : M [Zl F4E+ [Lgﬂ] , where § < U(ZZ) and €< Ll/aq—|m+1.

As explained in [GPV08], this scheme is semantically secure under chosen plaintext attacks
(IND-CPA), under the assumption that LWE,,, 1 o is hard to solve.
Decrypt. To decrypt a ciphertext ¢ € Zg”l, user U; uses its secret key :ET and evaluates the
following function Dec from Z;”“ to {0,1}: Map & to 0 if (Z;,&) mod ¢ is closer to 0 than
+1g/2).

If ¢is an honestly generated ciphertext of a plaintext M € {0, 1}, we have (&}, ¢) = (Z], &) +
M - [q/2] mod q, where € <= |vaq]™!. It can be shown that the latter has magnitude <
2y/maq||Z; || with probability 1 — 27" over the randomness of & This is < 3mago’ for
all i, with probability > 1 — N - 272%™ To ensure the correctness of the scheme, it suffices to
set ¢ > 4maqo’. Note that other constraints will be added to enable tracing.

Theorem C.4.1 Let m,n,qand N be integers such that ¢ is prime and N < 2°") Let o, 0, 0" >
0 such that ¢’ > o > Q(mg™/™\/logm) and o < 1/(4mo’). Then the scheme described above is
IND-CPA under the assumption that LWE,, 1 o is hard. Further, the decryption algorithm is
correct:

VM € {0,1},Vi < N : Dec (Enc(M,pk), sk;) = M

holds with probability > 1 — 2~ over the randomness used in Setup and Enc.

C.4.2 'Tracing traitors

We now present a black-box confirmation algorithm TraceE| It is given access to an oracle O
that provides black-box access to a decryption device D. It takes as inputs the tracing key tk =
(T, (Us, % )i<n) and a set of suspect users {U;,,...,U;, } of cardinality k < t, where t is the a
priori bound on any coalition size. Wlog, we may consider that k =t and i; = j for all j < k.

Algorithm Trace gathers information about which keys have been used to build decoder D,
by feeding different carefully designed distributions to oracle OP. We consider the following
t 41 distributions T'ro, ..., Tr, over C = ZJ:

Tri=U (Span(ff, . ,f;r)J‘) + [ Vag | ™
The first distribution 7T'rg is the uniform distribution, whereas the last distribution T'r; is
meant to be computationally indistinguishable from Enc(0). We define p, as the probabil-
ity Pr[OP (¢, M) = 1] that the decoder can decrypt the ciphertexts, over the randomness of
M < U({0,1}) and & <= Enc(M). We define p; as the probability the decoder decrypts the
signals in T'r;, for i € [0,¢]:

o ety [P ) -]
¢« Tr; 0
M+ U({0,1})

A gap between p;_1 and p; is meant to indicate that U; is a traitor.
The confirmation and soundness properties are proved in the full version. We now concen-
trate on a new feature of our scheme: public traceability.

2Note that in our context, minimal access is equivalent to standard access: since the plaintext domain is small,
plaintext messages can be tested exhaustively.
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C.5 Projective sampling and public traceability

We now modify the scheme of the Section[C.4]so that the tracing signals can be publicly sampled.
For this purpose, we introduce the concept of projective sampling family.

C.5.1 Projective sampling

Inspired from the notion of projective hash family [CS02], we propose the notion of projective
sampling family in which each sampling function is keyed and, with a projected key, one can
simulate the sampling function in a computationally indistinguishable way. Let X be a finite
non-empty set. Let F' = (Fi)rex be a collection of sampling functions indexed by K, so that
Fi is a sampling function over X, for every k € K. We call Sam = (F, K, X) a sampling family.
We now introduce the concept of projective sampling.

Definition C.5.1 [Projective Sampling] Let Sam = (F, K, X) be a sampling family. Let J be
a finite, non-empty set, and let 7 : K — J be a (probabilistic) function. Let also P = (P;);cs
be a collection of sampling functions over X, and D be a distribution over K. Then PSam =
(F,K,X,P,J,m, D) is called a projective sampling family if, with overwhelming probability over
the choice of k, k' <= D, and given the secret key k and its projected key 7(k), 1) the distributions
obtained using Fy and Py are computationally indistinguishable, and 2) the distributions
obtained using Fj and P ;) can be efficiently distinguished.

The first condition means that for k <= D, the value 7(k) “encodes” the sampling distribution
of Fi, so that when 7(k) is made public, the sampled signal Fj can be publicly simulated
by Pr). The security requirement is very strong because the adversary is not only given the
projected key, as in projective hashing, but also the secret key k. We require that sampling
signals from the secret key and from its projected key are indistinguishable for the insiders who
know the secret key. This is relevant for traitor tracing, as the traitors are system insiders and
they possess secret data. The second condition (that we actually do not directly use in our
cryptographic application) allows to prevent the trivial solution consisting in setting P, as an
eﬂicil%nt sampling function that is independent of k: the simulation signal P ;) must be specific
to k

C.5.2 Projective sampling from k-LWE

We construct a set of projective sampling families (PSam;)o<;<;. The parameters are almost iden-
tical to the parameters in the Setup of the multi-user scheme of Section|[C.4l A further difference,
required for simulation purposes in the security proof, is that ¢’ > o must be set fNZ(\/nTn +mq).

We let A <> U(Zy*") and 4 <> U(Zy) be public parameters. For each i, we define K; =

(Zg")" and D; as the distribution on Kj; that samples k = ()< with @ <= D1 (4, for
all 7 <+i. The sampling function F; j is defined as U(Spanjgi(fj)ﬂ + | Vaq]™ ", The projected
key m;(k) is defined as follows:
e Sample H € Z;nx(m_n) uniformly, conditioned on Im(A4) C Im(H).
e For each j < i, define E; =7 - H.
o Finally, set J = Zg""" ™™ x (Z")i and set m;(k) = (H, (h)<i)-
We now define the sampling P; - () with projected key m;(k) = (H, (ﬁj)jgi), as follows:
o Set H; = (k4| H) € "™ ™. We have #!* - H; = 0 and Im(A*) C Im(H;).

3 Another trivial situation occurs when 7(k) = k: the projected key leaks the full information about the original
key and one cannot safely publish the projected key.
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o Set P vy = U (Nj<idm(Hj)) 4 |[Vag]™ !, with Nj<olm(H;) = Z7"*! by convention. Note
i)

that ﬂjgilm( T)

C Span; (&
Theorem C.5.2 For each i =0, ...,t, PSam; is a projective sampling family. Concretely, under
the (i, 5)-LWE, ;, hardness assumptions, given the uniformly sampled public parameters (A, @),
the secret key k = (Z})j<; <= D; and its projected key m;(k) = (H, (ﬁj)jgi), the distributions F; j,
and P; -, ) are indistinguishable. Moreover, they are both indistinguishable from U (Im(A™)) +
|Vag|™ . Finally, with overwhelming probability, the distributions F;; and P; (k) can be
efficiently distinguished, when £’ is independently sampled from D;.

Proof: For the last statement, observe that with overwhelming probability, the secret key &k’
contains an iL‘ € Zy' that does not belong to Span;,; () (by Lemmau In that case, taking
the inner product of all &’s of k' with a sample from P; 1, ) gives small residues modulo g,
whereas one of the inner products of the & _’; 's with a sample from with a sample from F;; will
be uniform modulo q.

We now consider the first statement. From the hardness of (i, 5)-LWE,, o, given k, the distri-
butions

Fip = U(Spanjgi(a_c?)L) + [Vag]™™ and U(Im(A1)) + |[Vag]™ !

are indistinguishable. Further, given k = (Z;);<;, the projected key m;(k) = (H, (Ej)jgi) can be
sampled from D;. Therefore, given both k and m;(k), the distributions F; ; and U(Im(A™)) +
|Vag]™ 1! remain indistinguishable.

Now, we have Im(A™) C Nj<;Im(H;) C (Spanjéi(fj))J—. Hence:

Um(A")) + U(Nj<iIm(H;)) = U(Nj<iIm(Hy)),
U(Spanjgi(f;—)L) +U(Nj<ilm(Hj)) = U(Spanjgi(fj)L)'
We note that given ﬁl, e ﬁi, one can efficiently sample from U(Nj<;Im(H;)). Therefore, under

the hardness of (i, 5)-LWE,, , this shows that F g, P; k) and U(Im(AT)) + |vae]™ " are
indistinguishable. 1

C.5.3 Public traceability from projective sampling

In the scheme of Section the tracing key tk = (T, (Us, Z;)i<n) must be kept secret, as it would
o+

reveal the secret keys of the users. The tracing signals are samples from U(Span;,(Z] ) +
Lyaq]m“, which exactly matches F; ;. By publishing the projected key 7;(k), anyone can use
the projective sampling P; . ): by Theorem given (k,m;(k)), Fix and P; . () are indistin-
guishable and they are both indistinguishable from the original sampling U (Im(A™))+ |vaq]™ .
We are thus almost done with public traceability.

However, a subtle point is that we have to use all the projective samplings (P; r,(x)) for
transforming the secret tracing to the public tracing: all the projected keys (ﬁ]) j<n should be
published. Because the keys k in F;; are not independent, it could occur that the adversary
exploits a projected key m;(k) for distinguishing Pir x., (k) from the original signals. To handle
this, we prove that, given (Z;);<; and all the keys (ﬁj)jg ~, the adversary cannot distinguish
P; r,(k) from the original signals. For this purpose, we exploit a technique from [GKV10] to

simulate (h )i<j<n from the public information.
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Theorem C.5.3 Set i < ¢. Under the (i, 5)-LWE, ,, and the LWE;’m hardness assumptions,
given the secret key k = (;),<; and the projected keys (H, (ﬁj)jgN)7 the following two distri-
butions are indistinguishable

P; alk) = U(ﬁjgilm(Hj)) + {Vaq-lm+1 and U(Im(A+)) + I_I/aq—lerl.

)

Proof:
Assume a ppt attacker is given (Z;),<; (with the Z;’s independently sampled from D, LAy, ,) and

all the projected keys (i_ij)jgN)). We are to prove that, under the (i, S)-LWE,,,, and LWE[, ,,
hardness assumptions, it cannot distinguish between the distributions (over Z;"H)

U(Im(AF)) + [vag]™ ™ and Py = U(Nj<idm(H;)) + [vag] ™

We proceed by a sequence of games.

Game Gy: This is the above distinguishing game. We let ¢y denote the adversary’s distin-
guishing advantage. The goal is to show that g is negligible.

Game G: In this second game, we sample Z1,...,Z; from DAfﬁ(A),g as in Gamey, but

the Z;’s for j > i are sampled uniformly in Zy, conditioned on :E’; - A= —i'. The i_ij’s for j >
¢ are modified accordingly, but the rest is as in Gameg. We let £; denote the adversary’s

distinguishing advantage.

The main point is that in Game;, no secret information is required for sampling the projected
keys h;’s for j > i. The proof of the following lemma may be found in the full version.

Lemma C.5.4 Under the LWE;M hardness assumption, the quantity |e1 — g¢| is negligible.

We note that, in Game;, the Hj’s can be sampled publicly from the available data. There-
fore, from Theorem under the (i, 5)-LWE, ,,, hardness assumptions, the advantage ¢ is
negligible.l

Semantic security of the updated scheme. We modify the public information of the
scheme of Section so that we can use the set of projective sampling families described
above. For this aim, we simply add the projected key (H, (l_iz)zg ~) to the public key. The scheme
becomes publicly traceable because the tracing signals can be sampled from the projected keys,
as explained above. Finally, as the public key has been modified, we should prove that the
knowledge of these projected keys provides no significant advantage for an adversary towards
breaking the semantic security of the encryption scheme. Fortunately, the semantic security

directly follows from Theorem for the particular case of i = 0.

C.6 Appendix
C.7 Traitor Tracing

C.7.1 A short overview

COMBINATORIAL SCHEMES VERSUS ALGEBRAIC SCHEMES. There are two main approaches for
devising a traitor tracing encryption scheme. Many constructions are combinatorial in nature
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(see [CEN94al [SWI8D, [CENPOQ, [SSWO0Ial PSNT06a, BP08, BN08a], among others): They
typically combine an arbitrary encryption scheme with a collusion-resistant fingerprinting code.
The most interesting property in combinatorial schemes is the capacity of dealing with black-
box tracing. However, the efficiency of these traitor tracing schemes is curbed by the large
parameters induced by even the best construction of such codes [Tar08a]: To resist coalitions of
up to ¢t malicious users among N users, the code length is £ = O(t?log N). Lower bounds with
the same dependence with respect to ¢ have been given in [PSS03| [Tar08al, leaving little hope
of significant improvements.

An alternative approach was initiated by Kurosawa and Desmedt in [KD98a] (whose con-
struction was shown insecure in [SW98c|), and by Boneh and Franklin [BF99a]: The tracing
functionality directly stems from the algebraic properties of the encryption scheme. As opposed
to the combinatorial approach, this algebraic approach is not generic and requires designing ad
hoc encryption schemes. We will concentrate on the algebraic approach in this paper. Prior to
this work, all known algebraic traitor tracing schemes relied on variants of the Discrete Logarithm
Problem: For instance, the earlier constructions (including [KD98al BF99a, KY02c, KY02d])
rely on the assumed hardness of the Decision Diffie Hellman problem (DDH), whereas oth-
ers (including [CPP05a, BSW06a, BW06a, IADML™T07a, [FNPO7al) rely on variants of DDH on
groups admitting pairings. The former provide strong security when instantiating with groups
for which DDH is expected to be very hard (such as generic elliptic curves over prime fields),
whereas the latter achieve improved functionalities while lowering the performance (as a function
of the security level).

PUBLIC TRACEABILITY. An important problem on traitor tracing is to handle the case where the
tracer is not trusted. In this scenario, the tracing procedure must be run in a way that enables
verification of the traitor implication, by a system outsider. The strongest notion for this is non-
repudiation: the tracing procedure must produce an undeniable proof of the traitors implication.
However, a necessary condition for achieving non-repudiation is that the setup involves some
interactive protocol between the center and each user. Indeed, if the center generates all the
parameters for the users, then any pirate decoder produced by a collusion of traitors can also be
produced by the center and there is no way for the center to trustworthily prove the culpability
of the traitors. All the existing schemes enjoying non-repudiation involve complex interactive
proofs: a secure 2-party computation protocol in [Pfi96], a commitment protocol in [PW97], an
oblivious polynomial evaluation in [WHIOI, KWHI01, [KY02a].

When considering the standard setting of non-interactive setup, we cannot get the full
strength of non-repudiation, but we can still achieve a weaker but very useful property: pub-
lic traceability. This notion allows anyone to perform the tracing from the public parameters
only and hence the traitors implication can be publicly verified. Moreover, public traceabil-
ity implies the capacity of delegating the tracing procedure: the tracer can run the tracing
procedure in parallel on untrusted machines without leaking any secret information. This
can prove crucial for the schemes with high tracing complexity. In fact, there are very few
(non-interactive) schemes that achieve this property [PSNT06al, BW06a] (some schemes, such
as [CPPO05al, BP08, [BNO8a], partially achieve: some parts of the tracing procedure can be run
publicly). The scheme [PSNT06a] is generic, based on IPP-codes, and is thus quite impractical.
The Boneh-Waters scheme [BW06a| achieves resistance against unbounded coalitions, but has
a large ciphertext size of @(v/N) group elements. All known efficient algebraic schemes are in
the bounded collusion model and so far, none of them enjoys public traceability. In this paper,
we achieve public traceability without downgrading the efficiency of the proposed sheme.

— 131 —



Chapter C. Hardness of k-LWE and Applications in Traitor Tracing

C.7.2 Public key traitor tracing encryption

A public-key traitor tracing scheme consists of four probabilistic algorithms Setup, Enc, Dec
and Trace.

e Algorithm Setup is run by a trusted authority. It takes as inputs a security parameter A,
a list of users (U;)i<n and a bound ¢ on the size of traitor coalitions. It computes a public
key pk, descriptions of the plaintext and ciphertext domains P and C, secret keys (sk;)i<n,
and a tracing key tk (which may contain the sk;’s and additional data). It publishes pk, P
and C, and sends sk; to user U; for all i < V.

e Algorithm Enc can be run by any party. It takes as inputs a public key pk and a plaintext
message M € P. It computes a ciphertext C € C.

e Algorithm Dec can be run by any user. It takes as inputs a secret key sk; and a ciphertext
message C' € C. It computes a plaintext P € P.

e Algorithm Trace is explained below. If the input of Trace, i.e., the tracing key tk, is
public then we say that the scheme supports public traceability.

We require that Setup, Enc and Dec run in polynomial time, and that with overwhelming
probability over the randomness used by the algorithms, we have

VM € P,¥i < N : Dec(sk;,Enc(pk, M)) = M,

where pk and the sk;’s are sampled from Setup. We also require the encryption scheme to be
IND-CPA.

Algorithm Trace aims at deterring coalitions of malicious users (traitors) from building an
unauthorized decryption device. It takes as input tk and has access to a decryption device D.
Trace aims at disclosing the identity of at least one user that participated in building D.

We consider the minimal black-box access model [BEF99al]. In this model, the tracing au-
thority has access to an oracle OP that itself internally uses D. Oracle O behaves as follows:
It takes as input any pair (C, M) € C x P and returns 1 if D(C') = M and 0 otherwise; the
oracle only tells whether the decoder decrypts C' to M or not. We assume that if M is sampled
from U(P) and C is the output of algorithm Enc given pk and M as inputs, then the decryption
device decrypts correctly with probability significantly more than 1/|P]:

1 1
P OP( . M)y=1|> — + —
MH{](P) [ (C, M) }_|P|+>\C’
C + Enc(M)

for some constant ¢ > 0. This assumption is justified by the fact that otherwise the decryption
device is not very useful. Alternatively, we may force the correct decryption probability to be
non-negligibly close to 1, by using an all-or-nothing transform (see [KY02c]). We also assume
that the decoder D is stateless/resettable, i.e., it cannot see and adapt to it being tested and
replies independently to successive queries. Handling stateful pirate boxes has been investigated
in [KY01bl KY01a].

In our scheme, algorithm Trace will only be a confirmation algorithm. It takes as input a
set of (suspect) users (U;;); of cardinality & < ¢, and must satisfy the following two properties:

e CONFIRMATION. If the traitors are all in the set of suspects (U;;);j<k, then it returns
“User Uy, is guilty” for some jo < k;

— 132 —



C.7. Traitor Tracing

e SOUNDNEsS. If it returns “User U;; is guilty” for some jo < k, then user U, should
indeed be a traitor.

The confirmation algorithm should run in polynomial-time. It may be converted into a (costly)
full-fledge tracing algorithm by calling it on all subsets of users of cardinality .

C.7.3 Confirmation and soundness of the proposed traitor tracing

We define the usefulness of the decoder as € := ps — ﬁ = Poo — % It can be estimated to within

a factor 2 with probability > 1 — 272" via the Chernoff bound.
We can now formally describe algorithm Trace. It proceeds in three steps, as follows.

1. It computes an estimate € of the usefulness € of the decoder to within a multiplicative
factor of 2, which holds with probability > 1 — 27", This can be obtained via Chernoff’s
bound, and costs O(e~2n).

2. For i from 0 to ¢, algorithm Trace computes an approximation p; of p; to within an absolute
error < 15, which holds with probability > 1 — 27" (also using Chernoff’s bound).

3. If p; — pi—1 > 8% for some ¢ < t, then Trace returns “User U; is guilty.” Otherwise, it
returns “1.7

Note that we are implicitly using the fact that D is stateless/resettable. Also, if € is n™¢ for
some constant ¢, then Trace runs in polynomial time.
We start with the confirmation property.

Theorem C.7.1 Assume that decoder D was built using {sk;, }j<x € {ski}i<t- Under the

assumption that (t,5)-LWE,,;1, is hard, algorithm Trace returns “User U; is guilty” for
some ¢ < t.

Proof: Wlog we may assume that the traitors in the coalition know all the secret keys sk, ..., sk;.
The hardness of (t,S5)-LWE,,11 o implies that the distributions Enc(0) and 7r; are computa-
tionally indistinguishable. As a consequence, we have that p; is negligibly close to pso (the
rounding to nearest of the samples from v,4 can be performed directly on the challenge samples,
obliviously to any secret data, as in the proof of semantic security of Section [C.4.1]).

On the other hand, the acceptance probability pg is < % As py —po > § and |p; — p;| < § for
all 4, we must have p; —po > 7 > g, with probability exponentially close to 1. As a consequence,
there must exist ¢ < ¢ such that p; —p;—1 > g;, and algorithm Trace returns “User U; is guilty.”

Proving the soundness property is more involved. We exploit the hardness of (¢, S)-LWE
and rely on Theorem several times.

Theorem C.7.2 Assume that decoder D was built using {sk;, };j<r. Under the parameter
assumptions of Theorem with (k,n) in Theorem set to (t+ 1,n+ ¢+ 1), and the
computational assumption that (¢+1, S)-LWE,, 1 o is hard: if algorithm Trace returns “User U,
is guilty”, then iy € {ij}jgk.

Proof: Assume (by contradiction) that the traitors {U;, }j<x with k <t succeed in having Trace
incriminate an innocent user U;, (with i9 & {4;};<x). We show that the algorithm 7 the traitors
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use to build the pirate decoder may be exploited for solving (¢t + 1, 5)-LWE,, 11 . First, note
that algorithm T provides an algorithm 4 that wins the following game.

Gameg. The game consists of three steps, as follows:
e Initializep: Sample A <> U(Zy""), i <> U(Zy) and &; <> DAfg(ALS for i <t41.
e Inputg: Send A" = (@'[|A) and (Z;)i<t41,i2i, t0 A
e Challengep: Sample b <= U({0,1}). Send to A arbitrarily many samples from
U (Spaniciy—1p(F )" ) + [vag ™.
We say that A wins Gamey if it finds the value of b with non-negligible advantage.

Algorithm A can be obtained from algorithm 7 by sampling plaintext M uniformly in {0,1},
and giving (¢+ (M|0%)!, M) as input to OF, where ¢ is any sample from Challengeg. We now
introduce two variations of Gameg, which differ in the Initialize and Challenge steps.

Game;. The game consists of three steps, as follows:

e Initialize;: Sample A <= U(Zg"™"), u > U(Zy), Ti <> Dy1 (4 (A)o for i < t+ 1, and
b+ > U(Span,;, (Z])*) for j <t —ig+2.

. Input1 Send At = (a@'||A) and (Z;)i<t+1,i2i, t0 A

e Challenge;: Sample b <= U({0,1}). If b = 0, then send to A arbitrarily many samples from
U (SpanKZO (fﬂl) + [Vag ™", If b= 1, then send to A arbitrarily many samples from:

U (tm [A*[BF ][5 y0]) + Lvagl ™

As in Gameg, algorithm A wins Game; if it guesses b with non-negligible advantage.

Game] is as Gamey, except that if b = 0 in the challenge step, then the samples sent to A are from
the distribution U (Spanl<m(_’+)l) + [ Vag]™ L. (The b s are sampled from U (Span;_,, (7))
in both cases.)

Note that A’s inputs in Gamey, Game; and Game] are identical (only the distributions of the
Challenge steps vary). By the triangle inequality, if A wins Gamey with some non-negligible
advantage, then it may be used to win either Game; or Game) with non-negligible advantage. In

our use of A to solve (t+1,5)-LWE, we may guess in which situation we are. We now consider
the two situations separately.

First situation: Algorithm A wins Game; with non-negligible advantage. Then it may be used
to solve (t + 1,5)-LWE. Indeed, assume we have a (t + 1, 5)-LWE input (A, @, (Z;)i<¢+1), and
that we aim at distinguishing between the following distributions over Zg”l:

U (Im(A+)) + VO’ZI'H and U (Spanigtﬂ(fj)L) + V;'ffl.

To solve this problem instance, we sample gj for j <t—ip+2asin Initialize;. Then we add a

uniform Z4-linear combination of the gj’s to the (t+ 1, 5)-LWE input samples. Since m > t+mn,
these (t—io—+2) vectors are linearly independent and none of them belongs to Span; <;<;1(Z;)*,

with probability > 1—2"%(")_ In that case, the transformation maps U (Spanl<t+1( ) )—H/”H

toU (SpanKl0 (zhH)* )—i—VmH and maps U (Im(A1))+v21 to U(Im[A* 6] ... |6 iot2)) Vot
We then round the samples to the nearest integer vectors, and Algorithm A distinguishes between
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the resulting distributions, and its output is forwarded as output to the initial (¢t + 1,5)-LWE
instance.

Second situation: Algorithm A wins Game) with non-negligible advantage. It seems quite similar
to the first situation, but the following observation hints why its handling is somewhat more
complex. In the first situation, the domains of the noiseless variants of the distributions to be
distinguished are contained into one another: Im([A*|by]. .. lgt_i0+2]) C Span,;, (Z)*. In the
second situation, no such inclusion holds. The purpose of the sequence of games below is to
map Game) to recover such an inclusion setting.

Let us define Gamey as being the same as Game/, but with the following updated first step:

o Initializes: Sample A <> U(Z/"), @ <> U(ZL), b; < U(Z™) and v; « U(Z,) for j <
t—ig+2, & <= Dyr gy g fori >ig and @ <= Dy1 (4 g for i <ip, with

A = AR [Brigra] and @ = (@]vr]] - [origsa)-

We show that the residual distributions at the end of Initialize; and Initializes are essen-
tially the same. For that, we use Theorem [C.2.3] twice. First, starting from Initialize;, we
swap the samplings of A and @ with those of (Z;);<;,. This ensures that the residual distribu-
tion of Initialize; is within statistical distance 272" from the residual distribution of the
following experiment: Sample #; <> Dzm g for i < ig, AT = (d'[|A) + U(Z((]mﬂ)xn) conditioned
on Zt- At =0 for all i < ig, Z; < Dyt (a5 for i € [ip,t + 1], and Bj > U(Span,;, (Z)4)
for j <t —ig+ 2. The samplings of the last a‘:’j ’s and those of the I;;”s being independent,
their order can be exchanged. We can now apply Theorem a second time, to postpone
the samplings of (Z;)i<;, after those of the b;”s. This gives us that the residual distributions of

the above experiment and that of Initializes are within statistical distance 272 Overall,

we have shown that the residual distributions of (A, , (b;);, (vj);, (Z;)i) after Initialize; and
Initializes are within exponentially small statistical distance. Hence algorithm A wins Games
with non-negligible advantage.

Now, consider Gamegs, which differs from Games only in that &, is also sampled from D . (A8

e Initialize3: Sample A > U(Zy™"), i < U(Zy), 5} + U(Zy') and v; < U(Zg) for
j <t-— 'L'O + 2, fz — DAJ_‘_.(A),S for i > Z.O and :L_:’L — DAJ‘Q,(A/),S for 4 < ?:0

As %, is not given to A at step Inputg and as it is not involved in the challenge distributions
U (Spankio (:i"’j‘)l> + | Vag )™ and U(Im[At|by] .. . |br_ig+2]) 4 [Vag]™ !, this modification does
not alter the winning probability of A: algorithm A also wins Games with non-negligible ad-
vantage. Now, we again use Theorem twice, but with (Z;)i<i,: once for swapping the
samplings of these #;’s with AT and the bj’s, and once for swapping the samplings of AT and
these #;’s. This shows that algorithm A4 wins Game4 with non-negligible advantage, where Gamey
differs from Games only in its first step, as follows.

o Initialize;: Sample A > U(ZI™™"), i <> U(ZD), % > Dy1 (g for i < ¢, and bf «
U(Span,;, (Z;)*) for j <t —io+ 2.

The situation we are in now is very similar to that in the first situation, where A was sup-
posed to win Game;. The arguments used in the first situation readily carry over here (up to
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replacing Span fj and Span-Ziij by Span

i Z} and Span,.; @, respectively). |

<10 1<ig 7

C.8 Basic results on lattices

Gentry et al. [GPVO08| showed that Klein’s algorithm [Kle00] can be used to sample from Dy, gz
This discrete Gaussian sampler was later refined in [BLPT13].

Lemma C.8.1 [[BLPT13, Le. 2.3]] There exists a ppt algorithm that, given a basis (b;); of
an n-dimensional lattice L, ¢ € Span(L) and S € R™*™ invertible satisfying \/In(2n +4)/ -
max; ||S7'b;|| < 1, returns a sample from Dy, g z.

The following basic results on lattice Gaussians are usually stated for full-rank lattices. As
we consider lattices that are not full-rank, we adapt them. The proofs can be modified readily to
handle this more general setup, by relying on an isometry from Span(L) to R™ with n = dim L.

Lemma C.8.2 [Adapted from [AGHS13| Le. 3]] For any n-dimensional lattice L C R™, ¢ €
Span(L) and S € R™*™ invertible satisfying 0,,(S) > n.(L) with ¢ € (0,1/2), we have
Prsp, =2 2 01(8) - v < 272

Lemma C.8.3 [Adapted from [MROT7, Le. 4.4]] For any lattice L C R™, & € Span(L) and S €
R™*™ invertible satisfying o,,(S) > n.(L) with € € (0,1/2), we have pgz(L) € (i—;‘;, 1) - ps(L).
Lemma C.8.4 [Special case of [Peil(, Th. 3.1]] Let S1,S2 € R™*™ invertible, ¢ € R™,
and Ay, Ay C R™ be full-rank lattices. Assume that 1 > n.(S;'A;) and

1> 775(\/(515’{)_1—1—(5255)—1 - Ag) for some ¢ € (0,1/2). If @ <> D, g 5 and 71 «
Dy, s, .#—a,, then the residual distribution of #; is within statistical distance 8¢ of Dy, g4,

with § = /5,5 + S,5%.

Lemma C.8.5 [[ARI3, Th. 5.1]] Let n > 100, ¢ € (0,1/1000), o > 9y/In(2n(1 + 1/¢))/x
and m > 30nlog(on). Let ¢ € R™ and X « Dyx". Let S € R™™ with 0, (S) >
10no log?’/z(nma/s). Then, with probability > 1—27" over the choice of X, we have X' Z"™ = 7"
and A(Xt . Dzmﬁ,g, DZ",SX,StE) S 2e.

Lemma C.8.6 [[AGHS13| Le. 8]] Let n > 1, m > 2n, and 0 > C - y/n for some absolute
constant C'. Let X <> D7'*". Then, except with probability 27" we have 0,,(X) > Q(o/m).

C.9 Missing proofs of Section

Proof of Lemma

We apply Lemma [C.8.5] with S invertible chosen so that SX = o2, for some oy > o1, thus
obtaining an unskewed Gaussian distribution Dz» ,,. The scaling o3 is chosen sufficiently large
so that the assumptions of Lemmas [C.8.5] and [C.8.6] hold.

We first sample X from Dgf:l”, using Lemma By Lemma (that we use with e =
27™), its row Z-span is Z"™ with probability > 1 — 27™: we now assume that we are in this
situation. Then we sample 7 from Dzm g, using Lemma again, for some invertible ma-
trix S € R™*™ chosen as described below. Finally, we set £ = ¢+ X' - 7. If the assumptions of
Lemma are satisfied, we know that, except with probability < 27" over X, the distribution
of 7 is, conditioned on X, within statistical distance 2¢ of Dzn gx ¢
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We build S using the singular value decomposition X = Ux-Diag((0;(X))i<n)-Vx, where Ux €
R™*™ and Vx € R™™ are orthogonal matrices. We define S = Ug - Diag((s;)i<m) - Vs as fol-

lows: we set UL = { Vé( s 07 } and V& = [Uy|Ux], where Us is an orthonormal basis for the

orthogonal of Ux - R™; we also set s; = 02/0;(X) for i <n and s; = 0,(S) for i > n. This leads
to SX = o9 - I,,, as required.

To check that the assumptions of Lemma [C.8.5] are satisfied, note that the smallest singular
value of S is o, (S) = s1 = 02/01(X). Hence the assumption o,,,(S) > 10n0 log®/?(nmao /¢) is
satisfied if oo > 01(X) - 10no; log3/2(nm01/€). The latter holds by the choice of o2, using the
fact that o1(X) < || X|| < /m-0o1. The second inequality holds with probability > 1 —n2~"+2,
using the union bound and Lemma [C:8:2]

Finally, the bound on ||7]| follows from Lemma and the facts that 01(S) = o2/0,(X)
and 0,,(X) > Q(o14/m) except with probability 27(™) by Lemma

Proof of Lemma

Let Dy denote the desired distribution for (A’, @', X). We first apply Theorem (with the
theorem parameters m,n, k, 01(95), 0,,(S) having the values m + 2n, 3n, n/(clogn), ¢’ and o,
respectively) to show that Dy is within statistical distance 272"} of the distribution D; on
tuples (A’, @, X) defined as follows: @' € ZZ’" is sampled uniformly, X € Z#*(m+27) hag its ith

row Z; independently sampled from Dgzm+2n gz, and A’ € Zémﬂn)xgn is sampled uniformly from
the set of solutions to 7% - A" = —@'"* mod g. Indeed, the assumptions of the theorem are satisfied
by our choice of parameters.
A
Next, let A' = (—5-|C'|, where A € 27", B € 22" and C € Zim IS Note that

in the distribution Dy, all of A’ is chosen uniformly from the set of solutions to X - A’ =
U’ mod q (where U’ € Z’;X?)” consists of k copies of ). We now show that D; is within
statistical distance 279 to the distribution Dy that is defined as D, except that in Ds, the
submatrix A € Zy"*" is chosen independently uniformly at random, and then B, are chosen
uniformly from the set of solutions to X - A" = U’ mod ¢q. The distribution of (C, o, X) is the
same in D and Da, by definition. The condition on (A, B) in Dy is X1 - A+ X2 B = U mod g,
where X; € ZF*™ and X, € ZF*?" are the left and right submatrices of X, respectively,
and U € Z’;X” consists of the n left columns of U’. If X5 has full rank k over Zy, then for every
choice of A € Z;"*", the latter equation has the same number of solutions for B € Zg"xn (namely
¢?"=F)m) Hence, conditioned on X3 having rank k, the distribution of (A, B) is the same in D;
and Dy. Therefore, the statistical distance A(Dq, Ds) is 2-92n) if the probability that Xo has
rank k in Dy is 279, The latter holds by Lemma and our choice of parameters.

Finally, let D3 denote the distribution of (A’, @', X) in the reduction. We show below that
A(Dg, D3) < 2-n/logn) " which completes the proof.

First, we consider the distribution of X. By Corollary we have that, in distribu-
tion Ds, the last 2n columns of X are within statistical distance 1 = 9—SUn/logn) of D%XU” X
kxm

Dy 15 ... ”DZJ’,&' Since the first m columns of X are independently distributed as Dy’
in both Dy and Djs, it follows that the distribution of X in Ds is within statistical distance
1 = 272/ 18n) of jts distribution Dgm+en g in Do.

Next, we consider the distribution of A’ given some fixed (@, X). Observe that the only
difference between these conditional distributions in Dy and Dj3 is that in Dg, matrix B is defined
as the unique solution to (1|X7) - (@*||A) + X2 - B = 0 mod ¢, whereas in Do, matrix B is chosen
uniformly among the solutions to (1/X1) - (u!||A) + X3+ B = 0 mod ¢, where X1, X5 are the top k
rows of X1, Xs, respectively. We show that these conditional distributions are within statistical
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distance g5 = 27 which immediately implies that A(Dg,D3) < &1 +¢e9 = 9—SUn/logn) og
required.

To see this, let X], X’ denote the bottom 2n—k rows of X1, X o, respectively. Fix X1, Xo, X}, @
A, with A such that ny—n(AL(A)) = O(v/nlogm) - ¢m. By Lemma this condition holds
with probability 1 — 279 over the uniform choice of A. Let B* denote any solution to
(1]X7) - (@'|A) + X2 - B = 0mod ¢q. Let p(B*) denote the probability that B = B* in dis-
tribution D3, conditioned on X7, Xo, X} i, A. We show that p(B*) is of the form (1 +¢ep+) - K
for any such B*, for eg- < 274" and some normalization constant K independent of B*. From
this it follows immediately that, in Ds, the conditional distribution of B is within distance
22" of the uniform distribution on the set of solutions to (1|X1) - (@A) + X5 - B = 0 mod ¢,
which is the conditional distribution of B in D5, and our claim follows immediately. The proba-
bility p(B*) is the probability that X] - A+ X} - B = U mod ¢, conditioned on Xy, Xy, X5, 4, A.
Let ) ; € Z™ and 15 ; € Z°" denote the ith rows of X and X}, respectively, for i < 2n — k.
Observe that the set of solutions for & ; € Z™ to &, - A+ &4, - B* = —u’ mod q is the coset

Afﬁ_ » .p+(A) and, since 7 ; is independently distributed as DZmp- for each i, it follows that
2,4 ’

H DZm,J(AJ__ﬁ_f'Qti.B* H pgcl AJ_ )/pa(Zm)

i<2n—k ' i<2n—k

for some ¢ € Z7* such that & - A = @' + 74, - B* mod ¢. By Lemma using the choice of

o> Ny-n (AL(A)) O(\/nlog m) - gm, we have pgz(A+(A)) = (1 4+ lg.) - po(AL(A)) for some
el < 2790 Tt follows that p(B*) ~ 14 ep- for some e+ < n2~"

Proof of Lemma

In our proof, we need to use a bound on the probability that a collection of vectors 1, . .. ,Fd+w
uniformly and independently sampled from a linear subspace X of dimension d over Z,, spans X.
This is given by the following proposition.

Proposition C.9.1 Let d,w,q > 0 with ¢ prime. Let X denote a d-dimensional Z,-linear space.
Let f1,...,t440 € X be independently sampled from U(X). Then we have Spanigdw(t_;) =X,
with probability > 1 — 24+ /gw+1,

Proof: For i < d+4 w, let x; denote the Bernoulli random variable that is 0 if #; € Span; <Z(t3)
and 1 else. Let r; denote the rank of Spanjgi(fj). Since r; = i1+ x4, we have rg1,, = Zfilw

Let S denote the set of binary vectors of length d +w and weight < d. Then it suffices to bound
the probability that X = (x1,...,Xd+w) € S. To do so, let X' = (X7, Xipw) € {0, 1}+w
denote any fixed vector in S. Note that for any i < d + w, we have Pr[x; = 0|x; = xj for j <

i| = qzi@X;/qd < 1/q, since X' € S. It follows that Pr[¥ = \’] < 1/¢%, where z denotes the
number of zero entries in x’. Since the weight of Y’ is < d, we have z > d + w — d = w, so
Pr[X = X'] < 1/¢¥*!. Taking a union bound over all ¥’ € S, and using |S| < 297% completes
the proof. |
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We now prove the lemma. We have b= %A* .54 €€ T+ with € sampled from v7*! and

§ from U(Zg), so

- L1 o
V = T-b+-CT.3+V2.¢
q

1 1 -
= “TATY.3+-CT.§+T-¢+VE- €
q q
1, |5 . -
= AT +T-E+VY- €.
q

Now, since § and § are uniform and independent, we have %A“r - [8]|8"] is uniformly distributed

in Im(A’"). Moreover, the vector T - € is normally distributed with covariance matrix o? - TT?,
while VX&' is independent and normally distributed with covariance matrix ¥ = o/21,, 1 140n —
a®TT? (we show below that ¥ is indeed a valid covariance matrix, i.e., is positive definite, so
that VT exists, except with probability 2"/ 1Og")). Therefore, the vector T' - € + VEé has
distribution VZTH“”, as required.

It remains to show that > = a/2[m+1+2n — a2TT? is a positive definite matrix, with over-
whelming probability over the choice of X1 and X5. By definition, the singular values of ¥ are
of the form o/? — a?0;(T)?, where the o;(T)’s are the singular values of T. It therefore suffices

to show that o/ > a201(T)?, where o1(T) is the largest singular value of T. We have o1 (T) <

vm + 1||T|| (by Schwarz’s inequality). Each column of T" has norm < \/1 + (m+ 1)|\Y;1|]2t2,
where t denotes the maximum column norm of the matrix (1|X;). Since the columns of X
are sampled from Dyzn ,, we have by Lemma that ¢ < o - v/2n, and by Corollary |C.3.4

that HY;IH = O(0'n), with both bounds holding with probability > 1 — 2-(/1987) Tt follows
that o1(T) = O(mn??00’), and hence the assumption that o/ = Q(mn’/200’a) allows us to
complete the proof.

Proof of Lemma

We have b = %gj’—l— € € T™*! with € sampled from ! and ¢ from U(Z;”H), S)

- 1 1 y
b’:gT-37+60+-§’+T-€+\/fé': [T|C+]-[§y,, +T -4+ VEe.

1
q

Now, since i and § are uniform and independent, we have that é[T|C’+] - [7]|§] is uniform
in Im([T'|C*)).
By construction of 7' and C, we have that Im([T'|C*]) is a subspace of X+ = (Spanigk(fj)L)

We claim that in fact Im([T'|C*]) = X, except with probability 2-%("/1987) over the choice
of the Z;’s and CT. Indeed, by Lemmas [C.3.6| and [C.2.4] with probability > 1 — 2~%(n/logn),
the vectors &7, ..., :Z";Cr are linearly independent over Z, and hence the subspace X + has dimen-
sion m+ 1+ 2n —k. Now, the m+ 1 columns of T" are linearly independent. Hence, it suffices to
show that the 3n projections of the columns of C* on the orthogonal complement of Im(7T) C X+
span that (2n — k)-dimensional space. As these projections are uniform, we can apply Proposi-
tion which tells us this is the case with probability > 1 — 237 /¢g"TF+1 > 1 — 2—n),

We have showed that %[T|C’+] -[7]18] is within statistical distance < 27" of %U(XL)7 with
probability > 1 —2-%"/1087) gyer the choice of X. As shown in Lemma we also have that
the noise term T'- €+ \/567 is within statistical distance 2~ of the distribution 1/2”1””, as
required.
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Proof of Lemma

Consider the following sequence of games.

Let Gameg denote the original (k, S)-LWE game, in which the distinguisher B receives an in-
stance of the form (r, %), where r = (A, 4, {Z; }i<x) with A < U(Z;”’X”’), TR U(Z:}/) and Z;
D, L (A),80 for i <k, and § € T+ is a sample from either the distribution

Do(r) = ; : U(Im(f‘;)) 4y

or the distribution

1 /
Di(r) = ; : U(Spanigk( ;@ ) ) 4y

Let £9(B) = ¢ denote the advantage of B in distinguishing between these distributions in
Gamey. Similarly, in the following, we let €;(B) denote the corresponding attacker advantage in
Game;.

Let Game; denote a modification of Gamey in which we change the distribution of A by
rejection sampling as follows: we sample A uniformly from ZZ”/X”/, but reject and resample A
if y-n(A) > 4¢"/™ \/log(2m/(1 + 27))/x = O(y/n). By Lemma the rejection probability
is 27U and therefore, the distinguishing advantage e1(B) satisfies e1(B) > go(B) — 279,

Let Gamey denote a modification of Game; in which we change the distribution of the hint
Z;’s in r from the zero-centered distribution DAfﬁ(A),S,G of (k,S)-LWE to the non-zero centered

distribution DAfa(ALS@' of (k, S,C)-LWE. We observe that, since given r = (A, @, {Z; }i<k), one
can efficiently sample a vector ¥ from either distribution Dgy(r) or D;(r), the (k,S,C)-LWE
problem has the public samplability property needed to apply Lemma [C:2.6] It follows that
there exists a distinguisher B’ in Gamey with run-time 7" = O(Poly(m’) - 1(B)~2 - T) and
advantage e2(B') > Q((e1(B) —O0(27))3/R), where R = R(®1]|®3) denotes the RD between the
distributions ®; and ®5 of r in Game; and Games, respectively. Since the Z;’s are independent,

and conditioning on @ and A, we have, from the multiplicative property of the RD, that

R < max HR(DAfﬂ(A%s,a‘DALE(A),S,EJ

— /
ueLy i<k

< max JTR (D sl Dusaysive)

The latter can be bounded from above by applying Lemma [C.2.5] The smoothing condition of
the lemma holds since ,,/(S) > w(y/n), so we have by the rejection step of the previous game
that 0,/ (S) > n9-n(A). This leads to

R < [[exp(27"" + 27(|&|1* /o (5)%) < exp(k - (27" + 27| C|1% /o (5)?)).
i<k

Finally, let Games denote a modification of Games, in which we undo the rejection sampling
of A introduced in Game;, sampling it uniformly instead. By the same argument as in the
change from Gamey to Game;, the advantage of B’ in Games satisfies e3(B') > ey(B') — 279,
Note that the instance distribution in Games is identical to that of the (k, S, C')-LWE game, so
B’ has advantage e3(B') against (k, S, C')-LWE, as required.
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C.10 Missing proof of Section

Proof of Lemma

Our aim is to reduce LWE’a’m 41 to distinguishing Game; and Gamey. Assume we have the
following multiple LWE' input (B, %11, ...,%x) where B < U(Zg™"), and y; = B3j + €; with
§j <= U(Zy) and either €; <= U(Zy") for all j, or €j <= Dzm oq for all j. Our goal is to exploit
a distinguisher between Gamey and Game; to decide whether the €;’s are Gaussian or uniform.
We simulate Game; and Gamey as follows (depending on the nature of €;):

e Sample A € Z"*" and T' € Z™*™ such that A is uniform conditioned on Bt-A=0and T
is a full-rank basis of A (A) satisfying || T|| < O(v/mnlogqlogm). This can be performed
in ppt using [GKV10, Le. 4].

e Define H as a randomized basis of the kernel of B. Tt is m x (m —n) with probability 2",
The distribution of the pair (A, H) is within statistical distance 2-2(") of its distribution
in Gameg and Game;.

e Sample @ <> U(Zy) and sample the keys 71,...,7; < DAfﬁ(A),S by using the trapdoor

matrix 7' (this is why ¢’ must be set sufficiently large). Compute ﬁ; = —fz» - H for j <.

e Using linear algebra, find ¢ such that & - A = @', For each j € [i + 1, N|:

— Compute ﬁ; = gjﬁ - A. Since y; = B - §; + €}, we have ﬁ_’; = éﬁ- - A (although we would
prefer @' =&, - A).

Sample €; <= &—j+ D1 (a) 5, g, Where So = \/SS! — a?q?L,, (these are diagonal

matrices), using 7. Since 7; — &; € AL(A), we can rewrite the latter as &

€= &+ Davr(a).s,-are-
— Compute Z; = ¢ + €;. We now have (¢} +¢&f)- A=2- A=c-A=d"

Pt Pt _(zt ot
— Set hj = —Zz; - H. Note that h; = —(e} +¢€7) - H.

—

e Return A, 4, H, (7});<; and (hy;);j<n-

We observe that for each j € [i + 1, N], we have Zj = j; + &; = B - s; + (€; + €;). We consider

two cases.

e When € <= Dzm o4, the residual distribution of Dy1 (4 g, —z1e, 18 within negligible sta-
tistical distance to Dp1 () g g this is provided by Lemma whose assumptions are
satisfied (thanks to the second lower bound on ¢’) and to Lemma consequently, the
residual distribution of €; + é'j is negligibly close to the distribution ¢+ Dy 1 (4 g s and
hence the distribution of Z; is statistically close to D AL(A),5" Overall, the data available
to the adversary follows the same distributions as in Gamey, up to negligible statistical
distance.

e When €; <> U(Zy"), the residual distribution of Zj is uniform (by adapting the argument
above). The data available follows the same distributions as in Game;, up to negligible
statistical distance.

This completes the proof of the lemma.
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Adaptive CCA Broadcast
Encryption with Constant-Size

Secret Keys and Ciphertexts

Journal of Information Security 2013
[PPSS13] with David Pointcheval, Siamak F. Shahandashti, and
Mario Streflerr

Abstract : We consider designing public-key broadcast encryption schemes with constant-size
secret keys and ciphertexts, achieving chosen-ciphertext security. We first argue that known
CPA-to-CCA transforms currently do not yield such schemes. We then propose a scheme, mod-
ifying a previous selective CPA secure proposal by Boneh, Gentry, and Waters. Our scheme has
constant-size secret keys and ciphertexts and we prove that it is selective chosen-ciphertext secure
based on standard assumptions. Our scheme has ciphertexts that are shorter than those of the
previous CCA secure proposals. Then we propose a second scheme that provides the functionality
of both broadcast encryption and revocation schemes simultaneously using the same set of pa-
rameters. Finally we show that it is possible to prove our first scheme adaptive chosen-ciphertext
secure under reasonable extensions of the bilinear Diffie-Hellman exponent and the knowledge of
exponent assumptions. We prove both of these extended assumptions in the generic group model.
Hence, our scheme becomes the first to achieve constant-size secret keys and ciphertexts (both
asymptotically optimal) and adaptive chosen-ciphertext security at the same time.

D.1 Introduction

A broadcast encryption is a cryptographic scheme that enables encryption of broadcast content
such that only a set of target users, selected at the time of encryption, can decrypt the content.
Apparent applications include group communication, pay TV, content protection, file system
access control, and geolocation.

A crucial aspect of any cryptographic scheme, which arguably decides its fate of being used in
practice, is its efficiency. Since one of the most prominent applications of broadcast encryption is
real-time broadcasting, ciphertext size is at the heart of efficiency measures for such schemes, and
constructions with constant-size ciphertexts are desirable. Indeed, if one allows the ciphertext
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size to grow linearly with the number of target users, construction of secure broadcast encryption
becomes trivial. Other important measures of efficiency for broadcast encryption include the
secret and public key sizes and the encryption and decryption times.

A broadcast encryption scheme can be static or dynamic, depending on if the system users
need to be fixed once and for all at the setup stage or if it supports new users joining the
system at an arbitrary time, incurring only incremental parameter changes. Evidently, dynamic
schemes are more flexible and hence more desirable in practical applications.

An important security paradigm for broadcast encryption schemes is that of adaptive security.
This paradigm captures the fact that an adversary might choose to compromise keys in the
system adaptively, based on its acquired knowledge of the system parameters and previously
compromised keys and ciphertexts. Such a definition is widely accepted as the proper notion of
security for broadcast encryption schemes and there are schemes proposed in the literature that
provably achieve security against adaptive adversaries.

On the other hand, security against chosen ciphertext attacks (CCA) is a fundamental notion
of security for any encryption scheme, broadcast encryption included. Although there have been
a number of proposed broadcast encryption schemes that are secure against chosen plaintext
attacks (CPA), the CPA-to-CCA transformations in the literature do not seem to yield CCA
secure broadcast encryption schemes with constant-size ciphertexts.

Adaptive and CCA security, and constant-size ciphertexts, have all three been separately
achieved for broadcast encryption. However, there has not been any proposal that achieves all
three simultaneously. In this paper, we propose a broadcast encryption with constant-size cipher-
texts and prove it adaptive CCA secure under assumptions that are reasonable generalizations
of previous assumptions in the literature.

The literature on broadcast encryption mainly considers two categories of such schemes and
each work usually provides solutions that are efficient only for one of the two cases, depending
on whether the content is broadcast to a very small or a very large proportion of registered users.
The party who encrypts the content, hence either determines their intended set of target users
or that of revoked users, respectively, as an input to the encryption algorithm. Consequently,
the latter category of schemes are sometimes called revocation schemes.

Consider the pay-TV application in which the content of the broadcast consists of several
TV channels. Normally, there are a number of basic channels that are usually bundled together
and provided to most of the customers in different packages, and also there are a number of
more specialized channels (e.g., pay-per-view) that are of the interest of a small proportion
of customers. Hence we face a scenario in which both of the above categories of schemes are
simultaneously needed to broadcast the content. Nevertheless, there has been no proposal in the
literature that provides both functionalities efficiently, and hence the existing efficient solution
to the above scenario is to set up two parallel schemes, each covering part of the broadcast
content. In this paper, we propose a scheme that can handle both cases efficiently, providing
a solution to the above scenario that does not require maintaining two parallel sets of system
parameters.

D.1.1 Related Work

Broadcast encryption was first formalized by Fiat and Naor [FN93|. Their scheme is a private
key scheme and proved secure against an upper bounded number of colluders. Fully collusion
secure (private-key) broadcast encryption was first proposed in [NNLO1], which introduced the
subset cover framework that became the basis for many subsequent proposals, including [DF03]
which proposed the first public key broadcast encryption.

Boneh, Gentry, and Waters [BGW05] were first to propose a fully collusion-resistant public
key broadcast encryption in which the ciphertext size is constant. In all the previous schemes,
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the size of the ciphertext is linear in the size of the target set. In this paper we limit our attention
to such schemes. They proposed two schemes, respectively CPA and CCA secure, both in the
selective model of security. Dynamic broadcast encryption was proposed in [DPP07] where
they designed CPA secure schemes that were only partially adaptive secure. Strictly speaking,
their scheme is a revocation scheme, in which the set of revoked users is selected at the time of
encryption, and in turn, any user outside of the revoked set is able to decrypt. [Del07] proposed
identity-based broadcast encryption and gave a selective CPA secure scheme.

Adaptive security was first proposed by |[GW09] where they gave several schemes achiev-
ing adaptive CPA security, including two broadcast encryption schemes and two identity-based
broadcast encryption (IBBE) schemes, one of each achieving constant-size ciphertexts in the
random oracle model. The schemes proposed in [Wat09] and [LSWI0], respectively a broadcast
encryption scheme and a revocation scheme, are the only schemes secure under static assump-
tions (as opposed to the so called g-based ones). The latter work also proposes an identity-based
revocation scheme which is proved selective CPA secure. Recently, the first adaptive CCA se-
cure schemes were proposed by [PPS12al, although their schemes do not have constant-size
ciphertexts.

D.1.2 Our Contributions

In this paper, we propose an efficient dynamic broadcast encryption scheme (called OurBE)
and prove that it is selective CCA secure assuming the widely-used bilinear Diffie-Hellman
exponent (BDHE) assumption and a universal one-way hash function (UOWHF). The scheme
has constant-size ciphertexts (only two group elements), constant-size secret keys (only one
group element), and a public key which grows linearly with the number of users in the system.
We construct our scheme by modifying a selective CPA secure scheme (dubbed BGW; from now
on) by Boneh, Gentry, and Waters [BGWO05]. Our modification is minimal in the sense that
our scheme has exactly the same ciphertext and secret key sizes as that of BGW, and is proved
secure under the same assumption, plus the comparatively weak UOWHEF assumption. The
minor difference is that our scheme has one extra element in the linearly-growing public key.
The only other CCA secure scheme with constant-size ciphertexts is a modified version of BGW;
by the same authors (dubbed BGW; from now on), which has ciphertexts that are double the
size of our scheme (i.e., four group elements vs. our two). BGW, is proved selective CCA secure
under BDHE, plus the assumption that a signature scheme used in the construction is strongly
unforgeable, which is an assumption of comparable strength as UOWHEF.

We also propose an inclusive-exclusive broadcast encryption scheme which can act as both
a broadcast encryption and a revocation scheme at the same time, as it allows the flexibility to
specify either the target set or the revoked set at the time of encryption. The ciphertext and
the secret key are still only two and one group elements, respectively, but we need to add one
group element per user to the already linearly-growing public key which results in a public key
which is 1.5 times that of BGW;.

Next, we show that it is possible to prove OurBE adaptive CCA secure under generalized
versions of existing assumptions. Particularly, we propose generalized versions of the BDHE and
the knowledge-of-exponent (KEA) assumptions, and prove that both hold in the generic group
model. We argue that both of these are intuitive and reasonable generalizations of accepted
assumptions, and in turn, enable achieving the highest level of security with highly-efficient
parameters. Namely, OurBE is provably adaptive CCA secure with constant-size ciphertexts
and secret keys, and it is the first scheme to achieve such properties.
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D.2 Preliminaries

In this section we review the notation we use, the BDHE and GBDHE assumptions, and the
notions of security for dynamic broadcast encryption and universal one-way hash function.

Notation We use the following typefaces: Roman X for constants, italic X for variables, sans
serif X for algorithms, and calligraphic X for oracles. Let G and Gt be groups of order p, and
e: G x G — Gr be a bilinear map. Let g be a generator of G and gr = e(g, g).

D.2.1 Dynamic Broadcast Encapsulation

Broadcast encryption is conventionally formalized as broadcast encapsulation in which, instead of
a ciphertext, a session key is produced, which is required to be indistinguishable from random.
Such a scheme can provide public encryption functionality in combination with a symmetric
encryption through the hybrid encryption (a.k.a. KEM-DEM) paradigm [CS03]. We hence use
the terms encryption and encapsulation interchangeably.

Following [DPPQ7], we define a (public-key) dynamic broadcast encapsulation scheme as a
tuple of four algorithms BE = (Setup, Join, Encaps, Decaps) where:

e Setup(1*) outputs (msk, ek) containing the master secret key and the (initial) encryption
key;

e Join(msk, i) outputs the key pair (sk;, pk;) for user i, and appends pk; to ek;

e Encaps(ek, S) for a set of users S outputs (H, K) containing a ciphertext (a.k.a. header)
and a session key; and

e Decaps(ek, sk;, S, H) outputs K if i € S and L otherwise.

Adaptive CCA security for BE is defined via the following experiments for b € {0,1} between
the challenger C and the adversary A:

1. Setup: C runs Setup(1¥) and gives ek to A;
2. Query: A arbitrarily issues the following oracle queries:

e join oracle query Join(i): C runs Join(msk, i) and gives pk; to A;
e corruption oracle query Cor(i): C gives sk; to A;
e decapsulation oracle query Dec(i, S, H): C runs

Decaps(ek, sk;, S, H) and gives K to A;

3. Challenge: A outputs a set S* on which it wants to be challenged; C runs Encaps(ek, S*)
and gets (H*, K*), then sets K = K™ if b = 0 or picks a random K if b = 1, and finally
gives (H*, K) to A;

4. Query: A issues further oracle queries as the previous query phase;

5. Guess: A outputs a guess b'. The experiment outputs 1 if ¥’ = b and there is no i* € S*
for which there has been a Cor(i*) or Dec(i*,S*, H*) query. The experiment outputs 0
otherwise.
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For any adversary A, we define its advantage against BE in an adaptive CCA attack to be
the difference between the probability that the above experiment for b = 0 outputs 1 and the
probability that the experiment for b = 1 outputs 1. The scheme is said to be adaptive CCA
secure if for any adversary A its advantage against BE in an adaptive CCA attack is negligible
in k.

Selective security is defined via similar games with the difference that A commits to the set
S* before the setup phase. For CPA security, A does not get to query the decryption oracle.
We sometimes use SCPA, SCCA, ACPA, and ACCA as shorthands referring to selective CPA,
selective CCA, adaptive CPA, and adaptive CCA security.

Note that the above definition (which is based on that of [PPSII][T) is stronger than that of
[BGWO05] since they require that the adversary does not make any decryption oracle query with
i € §* for which H = H*, but we relax the constraint and only require no query with ¢ € S* for
which (S, H) = (S*, H*).

D.2.2 The BDHE and GBDHE Assumptions

Let us define the two sets of polynomials P = (p1,...,ps) and Q = (q1,...,q), with p; =
@1 = 1, and a polynomial f, where Vi,k : p;,qi, f € Fp[X1,...,X,]. Let us also define
g = (g",...,gP*). We say that f is independent of (P,Q) if it cannot be written as f =
Zij:l a; jpip; + Zzzl brqy for constants a; ; and by,.

The generalized decision bilinear Diffie-Hellman exponent (GBDHE) problem is defined in

[BBGOH) as follows: given the input g”’(@1%n) and gg(xl"”’m”) for random choices of x1,...,z, €
Fp, decide between g£(x1""’x”) and a random T € Gp. The GBDHE assumption says that it is

hard to solve the GBDHE problem if f is independent of (P, Q).

The decision bilinear Diffie-Hellman exponent assumption (parameterized by n and de-
noted by n-BDHE), which is an instance of the GBDHE assumption, says that given the input
Otn+1

g, h, {gak}k€{17...72n}\{n+1} for random h € G and « € Zy, it is hard to decide between e(g, h)
and a random T € Gr.

D.2.3 Universal One-Way Hash Function

Consider a keyed hash function H. H is called a universal one-way hash function (UOWHF)E] if
there is no efficient adversary winning the following security game. First, the adversary chooses
a message and outputs it. Then, the challenger chooses a random key for H and gives it to
the adversary. Finally, the adversary outputs a second message and terminates. The adversary
wins if the two messages are different, but their hashes under the chosen key are the same.
This notion was first proposed in [NY89], and is shown to be strictly weaker than collision
resistance [Sim98, [RS04]. In fact, one-way functions are shown to be sufficient for UOWHF
[Rom90], whereas collision resistant hash functions are only known to be constructed from claw-
free permutations [Dam87] or lattice-based assumptions [GGH96].

D.3 CCA from Generic Transforms?

In this section we consider the two types of general standard model CPA-to-CCA transforms,
namely NY-like and CHK-like, and argue that applying these transforms to the proposed broad-
cast encryption schemes in the literature does not give us CCA security and constant-size ci-
phertexts.

!Note that, in comparison with [PPST1], we ignore the Reg parameter here as it can be regarded as part of ek.
2UOWHTF is also known as target collision resistance (TCR).
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NY-like Transforms The Naor-Yung paradigm ([NY90] and [Sah99, DDNO0O, Lin03]) pro-
vides a construction for CCA secure encryption from CPA secure encryption along with non-
interactive zero-knowledge proofs. To apply any NY-like transform to a broadcast encryption,
one needs to make a NIZK proof of a statement containing the session key K. Such proofs
tend to be long and inefficient. Furthermore, all the proposed schemes that have a constant-size
ciphertext are pairing-based, and in all these schemes the session key is a member of the target
set G, but NIZK proofs of statements containing members of Gt are not known. In particular,
Groth-Sahai constructions [GSO08| only provide witness indistinguishable proofs for such state-
ments, whereas zero knowledge, and in particular the ability to simulate proofs without knowing
a witness, seems to be essential to the security proofs of NY-like constructions.

CHK-like Transforms The Canetti-Halevi-Katz paradigm

([CHK04] and [BKO05, [Kil06]) provides a construction for CCA secure encryption from CPA
secure identity-based encryption and an extra authenticating primitive such as signature or
message authentication code (MAC). Essential to the paradigm is that any encryption to an
identity can be decrypted by the secret key generated for the same identity. However, in the
broadcast encryption case, encryptions are made to a set and decryptions are possible by the
secret key of any member of that set. Hence, such transforms are not readily applicable to
identity-based broadcast encryptions.

D.4 An Efficient Selective CCA Broadcast Encryption

Let Hy : G — Z, be a hash family indexed by x. We define a broadcast encryption scheme
OurBE in the following. We describe the system for (at most) n — 1 users to be notationally
consistent with the original scheme of [BGWO05], on which the system is based. The system for
n users can be defined accordingly.

e Setup(1*,n — 1) picks a random generator g € G, two random quantities o,y € 2y, and
a random index x for hash function H, computes v = ¢7, and outputs msk = («a,) and
ek = (g,v, k).

e Join(msk, i) computes g = g(“k) for k=4,i+1,n+1—4,and n+1+14, and d; = g], and
outputs sk; = d; and pk; = (gi, gi+1, Gn+1—i, gn+1+i). The secret key sk; is given to the
user, and ek is updated by appending pk;.

e Encaps(ek, S) picks a random element ¢ € Z, and sets K = e(gnt1,9)", which can be
equivalently computed as K = e(gn11-4,¢;)! for any i, computes H as follows, and outputs
(H,K).

Hy (gt
H=(g" (v g"“) T gns1-)").
jeS

e Decaps(ek, sk;, S, H) parses the header as H = (Cy, C1), checks if the following equation
holds:

e(Ch.g) = e(v- gy @) 11 9ns1-5. Co), (D.1)
jes

and if it does, then calculates the session key as follows:
6(017 gl)

~(C ‘
e(di- g1 T gns1—ssir Co)
jeS\{i}

K =
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In the following we bring a theorem which states that if the hash function H is a universal
one-way hash function, then the proposed scheme satisfies selective CCA security under the same
assumption as that of the original scheme, namely n-BDHE. Intuitively, the main modification

we make in (the encryption algorithm of) the original scheme is the introduction of g'; SR this
element is not present, as it is in the original scheme, given a header H = (Cy, C}) corresponding
to a key K, one can compute the header (Cf,C]) that corresponds to the key K", and hence
the scheme is malleable. We show that a UOWHEF is sufficient to eradicate malleability and
get CCA security. This modification is inspired by a similar technique in [BMWO05] which, in
contrast, was shown to be applicable to an identity-based scheme. Here we show that a similar
idea is applicable to BGW;. The proof of the following theorem can be found in Appendix [D.8.1]
In the proof we use the structure of the keys in the scheme to simulate decryption queries.

Theorem D.4.1 The above scheme is selective CCA secure if the n-BDHE decision problem is
hard and H is a universal one-way hash function.

On Dynamicity Note that the bound on the number of users in OurBE does not prevent the
system from being able to handle more than n — 1 users. That is, as long as the system “jumps
over” the users number n and n + 1 (i.e., after user number n — 1, the next user is numbered
n + 2), the system can handle polynomially many users more than n — 1 and remains secure.
The security of the scheme with more than n — 1 users can be proved based on the following
assumption: given the input &, and {gy = ¢* } for k€ {n+1—m,....n+1+m}\ {n+1}
for random g¢,h € G and « € Z,, it is hard to decide between e(gn41,h) and a random T' € Gr.
It is not hard to see that this assumption is equivalent to the following assumption: given the
input g, h, and {g; = go‘k} for k € {1,...,2m} \ {m} for random h € G and a € Z,, it is hard
to decide between e(gy,, h) and a random 7' € Gp. Here m > n + 2 is the last user number
to join. This assumption is comparable to the m-BDHE assumption. In fact, like the BDHE
assumption, it is an instance of the GBDHE assumption. In view of this observation, OurBE
is a dynamic broadcast encryption in the sense that: (1) the system setup and the ciphertext
size are independent of the upper bound on the number of users; (2) a new user can join
anytime without incurring modification of other user secret keys; and (3) the encryption key is
incrementally updated by an operation of O(1) complexity.

Comparison The only broadcast encryption scheme in the literature that provides CCA se-
curity with constant-size ciphertexts is BGW5. It has similar secret and public key sizes as our
scheme. However, there are differences in terms of security assumptions and ciphertext size.
BGW, uses a signature or a message authentication code (MAC) and is proved secure under
n-BDHE plus the strong unforgeability (SUF) of the signature or the MAC, whereas OurBE
needs n-BDHE plus a universal one-way hash function (UOWHF). In theory, SUF and UOWHF
are equivalent (both are equivalent to one-wayness), but in practice, hash functions are gener-
ally much more efficient than signatures. In terms of ciphertext size, BGW; has a ciphertext
whose size is (about) double that of BGW;’s ciphertext: a BGW; ciphertext consists of a BGW;
ciphertext of two G elements, plus an element in Z, and a signature (or a MAC tag). OurBE
has the same ciphertext size as that of BGW1, i.e., only two G elements. We summarize this
comparison in Table For simplification, we show the total number of elements without the
details of the groups to which each element belongs. Note that although pk; in OurBE includes
four group elements, since there are some repeating values the final ek includes the three initial
values plus only 2n — 1 extra values of g;.
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Table D.1: Comparison of CCA secure schemes with constant-size ciphertexts

Scheme  |sk;| / |ek| |H| Security Assumption
[BGW05] 1/2n+1 4 SCCA n-BDHE, SUF

OurBE 1/2n+2 2 SCCA n-BDHE, UOWHF

| - |: size in number of elements  n: number of users plus one.

D.5 Inclusive-Exclusive Broadcast Encryption

In this section we show that OurBE can be slightly modified to provide both the broadcast
encryption and the revocation functionality simultaneously; that is, we propose a scheme in
which the encrypter may choose to determine either a target set S or a revoked set R of users
at the time of encryption, without the need to set up two parallel systems. The decryption
naturally goes ahead only if the user is either in S or not in R. In the following we (ab)use
the notation “S/R” to indicate “either S or R” as input to the encapsulation and decapsulation
algorithms. In practice this can be implemented using the first bit of the input to indicate the
inclusive or exclusive mode of operation.

e Setup(1*,n — 1) picks random g € G, a,~ € Ly, and k for H, computes v = g7, sets
= gol@"=1/(e=1) "and outputs msk = (a,y) and ek = (g, v, mo, K).

e Join(msk,) computes ¢;, Gi+1, Gn+1—i, gn+i+i, and d; = g, sets m = wgi/gnﬂ, and
outputs sk; = d; and pk; = (i, gi+1, In+1—i» Gn+1+i, 7). Now, sk; is given to the user, and
ek is updated by appending pk;.

e Encaps(ek, S/R) picks a random ¢ € Z, and sets K = e(gn+1,9)", computes H as either of
the following accordingly, and outputs (H, K).

(g" (v- 91 Hgn+1 —j) if S given
H = jes
(¢", (v 91 770/ H gnt1-5)")  if R given
JER

e Decaps(ek, sk;, S/R, H) parses H = (Cy, C1), checks if the either of the following equation
accordingly holds:

e(v- 91HN(CO) : H Gn+1—5,C0) if S given

e Cr , — jES
(“9) e(w- g7 10/ I gn+1-5,Co) if R given
JER

and if it does, then calculates the session key accordingly as follows:

K = " (017 gz) or
e(d 91+Z H In+1—j+i; CO)
jes\{i}

K — e(clvgi)
o HN(CO) )
e(di-gr; " mif 1] gns1-jsir Co)

jER
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Correctness Let N ={1,...,n—1}. We have

WO:HQHH*J' and  m; = H In4+-1—j+i-
JEN JeN\{i}

Hence in the exclusive mode, for any i ¢ R we have:

7To/f[%+1—j: H gn+1—; and

JER JEN\R
i/ H In+1—j+i = H In+1—j+i-
JER JE(NAR)\{i}

Hence, if i ¢ R, the session key the user i calculates in the exclusive mode is effectively the
same as the session key it would have calculated if it were decrypting a ciphertext encrypted to
S = N\ R in the inclusive mode, and therefore the scheme is correct.

Note that the parameters are set in a way that the scheme properly excludes users that join
after the time of encryption from inclusive-mode ciphertexts, and includes such users in the
exclusive-mode ciphertexts. Unfortunately, the system appears to lose full dynamicity.

Efficiency The scheme enjoys similar desirable efficiency measures as the inclusive-only scheme;
that is, the ciphertext and the user secret key sizes are both constant and the public key size is
linear in the number of users.

Security A similar security definition to that of broadcast encryption can be defined for such
schemes, with the difference that the adversary is now allowed to ask decryption oracle queries
for both modes. Naturally exclusive-mode decryption oracle queries Dec(i*, N \ S*, H*) for
i* € S* are also not allowed. It is not hard to see that the security of OurBE translates into the
above scheme satisfying this security definition.

D.6 Achieving Adaptive CCA Security

Since we have a very efficient scheme with asymptotically optimal size secret keys and ciphertexts
which is already proved selective CCA secure based on standard assumptions, in this section
we try to see how further we can achieve in terms of security by considering reasonable gener-
alizations of some standard assumptions, while retaining the same optimally efficient secret key
and ciphertext sizes. We first propose reasonable generalizations of the GBDHE and prove that
they hold in the generic group model; then we prove that OurBE can be proved ACCA secure
under these assumptions; and finally we compare our scheme to existing adaptive or CCA secure
broadcast encryptions.

D.6.1 The OBDHE Assumption

We consider extending the GBDHE problem assuming that an extra resource is also given: the
Diffie-Hellman computation oracle OQE, that takes two inputs u,v € G and outputs w € G
such that e(u,v) = e(g,w). Let us call this the Oracle BDHE problem, or OBDHE for short.
Formally, we define:

The OBDHE Problem: Given the input g” (@) and gg(xl""’x") for random choices of

x1,...,%, € IFp, and access to the O]g:)g oracle, decide between g£(x1""’x") and a random T' € Gr.

Note that the GBDHE assumption implies that the only elements (dependent on z1, ..., z,
and) in G that can be computed are those in the form gz @Pi  Thus, for any O]QDE query

— 151 —



Chapter D. Adaptive CCA Broadcast Encryption with Constant-Size Secret Keys and
Ciphertexts

(dependent on z1, ..., x,) we can assume u = ¢°* and v = ¢°¥, where o, and o, are polynomials.
Then we will have w = Ogg(u,v) = ¢°+%». Hence, by providing access to O?’E, basically a
number of “free multiplications” in the exponent are given. Let us define p’ = o,0,. If we
consider ¢ queries to O?’E, and the output to the i-th query represented as w; = ¢*i, we can
define P’ = (p,...,p;). Our extension of the GBDHE assumption says that it is still hard to
solve the GBDHE problem if these “free multiplications” in the exponent do not help breaking

the independence property. Formally, letting || denote concatenation, we define:

Assumption D.6.1 [OBDHE] It is hard to solve the decision (P, @, f)-OBDHE problem if f
is independent of (P || P/, Q).

In Appendix we prove that the assumption holds in the generic group model [Sho97,
BBGO05]. We prove an upper bound on the success of any generic algorithm trying to solve
the OBDHE problem which is negligible if p, the order of I, is super-polynomial. Leaving
technicalities to the appendix, we prove the following theorem:

Theorem D.6.2 The OBDHE Assumption holds in the generic group model.

In fact, our proof is similar to that of [BBGO05], suggesting that our assumption is a natural
and closely-related extension of GBDHE. It is also worth to note that OBDHE is falsifiable by
simply solving the corresponding (P || P’,Q, f)-GBDHE problem efficiently.

D.6.2 The GKEA Assumption

We propose the generalized knowledge of exponent assumption (GKEA) as follows and prove
that it holds in the generic group model.

In the following we use p to denote a polynomial (suppressing the random variables) and
p(x1,...,x,) to denote the evaluation of p on the input (x1,...,x,). Let the tuple P =
(p1,...,ps) bein F,[X1,..., X,]®. Let the linear span of P, denoted by Span(P), be defined as
the vector space containing all the polynomials in the form Y 7_; arpk.

Assumption D.6.3 [GKEA] Let the tuple P = (p1,...,ps) be in F,[X1,..., X%, where p; =
1. Let A be an algorithm that given gP(a’l""’x") for a random (z1,...,z,), outputs

( (%)2:1’ h, RA(@15Tn) ), such that

S
q(z1, ... xn) = Z arpr (1, ..., Tp).
k=1

Consider the subspace of Span(P) defined as V, = {r | r,rq € Span(P)} and let {r;}}_; be a
basis for V;. Then, there exists an extractor E that given the same input as A outputs

t
(b)), such that dlog,(h) =Y _biri(z1,...,xn).
i=1

This assumption basically says that the only way an adversary can produce pairs of the form
(h,h9) is to pick given pairs of the form (h;, h!) and output (I] h?", [1(h{)) for some known
values of b;.

For P = (1,X) and ¢(X) = X, this becomes the original KEA of [Dam91], which basically
says that given (g, g*) the only way an adversary can produce pairs of the form (h, h*) is to output
(g%, (g%)?) for some known value of b. This assumption is referred to KEA1 in [HHT98, [BP04]
and as Diffie-Hellman Knowledge (DHK) in [Den06]. A similar problem is formalized as strong
Diffie-Hellman (SDH) in [ABRO1].
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Table D.2: Comparison of adaptive or CCA secure broadcast encryption schemes

Scheme O(|ski]) O(|H|) Security  Assumption
[DF02] BE logn  rlog? ACCAl1 (IBE)
BE log!*en L ACCAl1 (HIBE)
[BGW05 BE 1 1 SCCA  n-BDHE, SUF
[GW09] BE 1 1 ACPA n-BDHES, PRF, ROM
BE 1 S ACPA n-BDHES, PRF
IBBE 1 1 ACPA n-BDHES, PRF, ROM
IBBE 1 NG ACPA n-BDHES, PRF
[Wat09] BE n 1 ACPA  dBDH, dLin
[LSWI0 R 1 r ACPA  dBDH, dLin
[PPS12a] BE 1 rlog> ACCA DDH
BE 1 T ACCA DDH
OwBE BE ) ) SCCA  n-BDHE, UOWHF

ACCA n-OBDHE, GKEA, UOWHF

O(] - |): order of size, n,s,r: number of total, targeted, revoked users.

For P = (1,X,Y,YX) and ¢(X,Y) = X, this becomes the KEA3 assumption of [BP04],
which basically says that given (g, g%, f, f*) the only way an adversary can produce pairs of the
form (h, h*) is to output (¢°f¢, (¢%)°(f*)¢) for some known values of b and c. This assumption
is referred to as Extended KEA (XKEA) in [AF07] and as Extended Diffie-Hellman Knowledge
(EDHK) in [DPOS].

The above two instances of the assumption have already been proved to hold in the generic
group model [Den06l [AF07, [DP0§|. In the following we propose a theorem stating the generic

assumption and prove it in Appendix [D.8.3

Theorem D.6.4 The GKEA Assumption holds in the generic group model.

D.6.3 Adaptive CCA Security

In this section we prove OurBE adaptive CCA secure under our generalized versions of the BDHE
and knowledge of exponent assumptions. To prove adaptive CCA security, we basically show
that a decryption query by the adversary that contains a valid ciphertext does not increase
the (cryptographic) ‘knowledge’ of the adversary. Also note that since ciphertext validity is
publicly verifiable, a decryption query that contains an invalid ciphertext does not increase the
adversary’s knowledge either. Hence we basically show that a CCA attack against the system
is equivalent to a CPA attack, under the GKEA assumption and the hash function being a
UOWHEF. Furthermore, the access to (’)g? enables answering adaptive corruption queries.
Formally, we prove adaptive CCA security assuming that the OBDHE and the GKEA as-
sumptions hold and H is a UOWHEF. Intuitively, selective CPA security stems from the BDHE
assumption underlying the OBDHE assumption along with the hash function being a UOWHF;
the Diffie-Hellman oracle enables adaptive security; and the CCA security is achieved from the
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GKEA assumption along with the hash function being a UOWHF. The following theorem is
proved in Appendix

Theorem D.6.5 OurBE is adaptive CCA secure if the OBDHE and the GKEA assumptions
hold and H is a universal one-way hash function.

We note that we prove CCA security based on the GKEA assumption, an assumption which
is much weaker than the generic model itself (and instances of it are shown to be falsifiable
[BP04]), and in fact, proving the equivalence of CPA and CCA security is trivial if the generic
group model is used directly, since on a decryption query with a first element ¢*, we may assume
that t is known.

D.6.4 Comparison

Since our scheme is the first to achieve adaptive CCA security with constant-size ciphertexts,
we compare our scheme with those from the literature that are adaptive CPA or selective CCA
secure. We do not consider schemes that are not fully collusion resistant. The schemes in the
literature with constant-size ciphertexts include a selective CCA secure scheme from [BGWO05],
and three adaptive CPA secure schemes from [GW09] and [Wat09]. The schemes in the literature
that do not have constant-size ciphertexts include adaptive CPA secure schemes from [DF02],
[GW09] (identity-based) and [LSWI0] (revocation scheme), and recent adaptive CCA secure
schemes from [PPS12a]. Table summarizes our comparison. We consider plain and identity-
based (IB) broadcast encryption (BE) and revocation (R) schemes. Among these, schemes
from [DF02] and [PPS12a] are generic schemes based on (hierarchical) identity-based encryption
((H)IBE), and encryption schemes (implemented under DDH), respectively. Since (H)IBE can
be based on various assumption, we simply use it in parentheses in the table. All other schemes
are explicit proposals based on various bilinear Diffie-Hellman assumptions, in some cases plus
extra assumptions such as strong unforgeability (SUF) of signatures, pseudo-random functions
(PRF), and the random oracle model (ROM). To accommodate more information, we omit the
O notation and write O(f(n,s,r)) as f(n,s,r). Comparatively more desirable quantities are
highlighted in boldface.

D.7 Concluding Remarks

We proposed a very efficient broadcast encryption scheme. The sizes of the secret keys and ci-
phertexts in the scheme are asymptotically optimal, i.e., constant. We showed that the scheme
can be proved selective CCA secure assuming BDHE and a universal one-way hash function.
Furthermore, we showed that proving adaptive CCA security is possible if we consider extended
versions of the GBDHE and knowledge of exponent assumptions. Considering only the standard
assumptions, our scheme provides shorter ciphertexts than the only other known CCA secure
scheme. Considering the extended assumptions, our scheme is the first scheme to achieve con-
stant size secret keys and ciphertexts and adaptive CCA security at the same time. The problem
of designing schemes that achieve such properties under standard assumptions remains open.
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D.8 Appendix

D.8.1 Proof of Theorem [D.4.1]

Proof: Suppose there exist a selective CCA adversary A that is able to distinguish the above
scheme’s keys from random elements. We construct an algorithm B that either outputs a collision
for a given key k or solves the n-BDHE decision problem.

Let B be given an n-BDHE challenge (g, h,{gi}ic{1,...2n)\{n+1}, ) and has to decide whether
T = e(gn+1, h) or it is random. B runs A and receives a set S* of honest users on which it wishes
to be challenged. As a UOWHF adversary, B also gives out h as the first message on which it
wishes to be challenged and receives a key x for the hash function. B chooses a random 8 € Z,,,
calculates v as follows, and gives ek = (g, v, k) to A.

—Hw(h _
v = 95 "0 ). H gn-il-l—j' (D.2)
jES*

On any join query for user ¢ made by the adversary, B gives pk; = (i, gn+1—i» gn+1+:) to A.

On any private key query for user i made by A (note that i ¢ S*), B calculates the private key
as follows and gives it to A.

d; —gz 91+z H gn+1fj+i‘
JES*

Note that d; is properly simulated since we have d; = v

On a decryption query (i, 5, (Co,C1)) by A (note that S C S* and i € S), B first checks the
validity of the ciphertext using Equation If the ciphertext is valid then it checks whether
H,(h) = H,(Cp) which in case of validity provides a collision for the hash function H,, and hence
B can output Cj as the second message and break the UOWHEF property.

If Equation holds and Hy(h) # H.(Cop), then let § = H,(Cop) — Hi(h). B calculates the key
as follows:
e(C1.g-gi°)

é 1/6 — '
e(g? 'gg/ ‘9(13' H (gn+1-; '927/z+17j) la Co)

jESH\S
Now since Equation holds, the ciphertext is in the form
(gt ’ K(g H In+1— ]

jES

for some (unknown) t. Hence, the above calculated K will be as follows:

e((w- g I gns1-)'s 9 - 9%

_ j€S
B/é 1/ _
eo? -9 gl 11 (gn+1—j-ngz+1_j) gh)
JES*\S

)
e(g® g0 I 9ty 9%

B < jes=\s )
- 5 1/6 _
eg? 97" gl ] (gn+l—j‘927/1+lfj) '9)
jesH\s

t
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e(g® a0 T gty g t")

t
_ JES*\S )
B n - a™/§
JESH\S

n t
_ (e(gf,g”“ %)

3 ) =e(g91,9)"" = e(gn+1,9)"
e(99,9)

and hence it is properly simulated. In the above, we have substituted v from Equation and
used the fact that Vk : g4 = gg‘n.

At some point, A declares that it is ready to receive the challenge. B calculates the challenge
ciphertext as C' = (h, h?) and gives C along with K = T to A. First, note that from Equation

we have
H,(h)
v- gt T gngaes = 67,

JeES*
and hence C is a valid ciphertext satisfying Equation Furthermore, assuming that h = g°
for some ¢, we have

hﬁ = (gﬁ)t U 91 H In+1— ] ’
JjES*

which means that if T = e(gyt+1,h) = e(gns1,9)!, then K is the key corresponding to the
ciphertext C, and if T' is random, then K is a random key.

In the second phase of the attack, B answers A’s queries as in the first phase.

At the end, A outputs its guess b. B outputs b as its decision for the n-BDHE challenge. Based
on the above discussion, if A is successful in its CCA attack, then either B is able to compute a
collision for H,;, and win the UOWHEF game, or it is able to solve the n-BDHE decision problem
successfully. |

D.8.2 Proof of the OBDHE Assumption

In this section, we prove Theorem [D.6.2] Let dp, dps, dg, and dy be respectively the maximum
degrees of the polynomials in P, P’, @, and f. We prove the following upper bound in the
generic bilinear group model. We consider two random encodings &, ¢ : Z;’ — {0,1}™ and write
G = {&(=)|z € Z}} and G = {¢(z)|z € Z}}. The following theorem is a sufficient condition
for Theorem

Theorem D.8.1 For P, Q, P’ f, &, ¢, G, Gt defined above, let |P| = s, |Q| =t, and £ = s +t.
Let d = max(2dp,dg,dy). If f is independent of (P || P',Q), then for any A making a total of
at most g queries to the oracles computing the group operations and the bilinear pairing, and
at most ¢’ queries to the (’)B? oracle, we have:

T T &IF
p,ﬁ(P(ml,...,xn))7 17"‘}?{ n, Y j2)
Pr A CQ(z1, ..., 7)), =b: b+ {0,1}, ~1
C(to), C(t1); OPE(-, ) ty < fz1,..., 20),
tlfb%y
(q+q + € +2)? - max(2dp:, d)

<
= %
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Proof: Assume that we are given the algorithm A. Consider an algorithm B that interacts with
A as follows. B maintains two lists of pairs:

L={(pi,&):i=1,...,70} and Lp={(¢;¢):i=1,...,71},

such that at step 7 of its interaction with A: 79 + 7 = 7 + ¢ + 2. Here, p; € Fp[Xy,..., X,],
q; S Fp[Xla o 7Xn7 Y07Y1]) and §i7 C’L S {07 1}m

B also maintains a counter 7/, initialized at zero, to count the number of O]g)}j oracle queries,
and a list of polynomials:
P ={p:i=1,...,7}

to store the polynomial output of the (’)g? oracle queries.

At step 7 = 0, B initializes the lists by setting pi,...,ps in L equal to the polynomials in P,
qi,---,q in Lt equal to the polynomials in @, ¢:+1 = Yo, and g2 = Y7. It also chooses £ + 2

random strings in {0,1}™ and initializes {&;}{_; and {¢;}I%.

B then runs A under the input p, {&}5_;, {¢G}_, (+1, and (2. B answers A’s oracle queries
as follows. We are assuming that A’s queries can only be strings obtained from B since B can,
by increasing m, make the strings in G and G arbitrarily hard to guess.

Group operations: For a G operation query (§;,§;), B calculates pr,41 < p; £ p; depending
on whether multiplication or division is requested. If p; 11 = p; for some [ < 7p, then B sets
Ero+1 < &5 otherwise it sets &,41 equal to a new random string different from all the previous
&i. Then it appends the new pair (pry+1,&r+1) to L, replies to A’s query with &,11, and finally
increments the counter 7. Gt operation queries are dealt with analogously by updating the list
Lt and counter 7.

Bilinear pairings: For a pairing query of the form (&;,¢;), B calculates ¢r 41 « p; - p;. If
Gr+1 = qi for some | < 11, then B sets (41 < (;; otherwise it sets (;,+1 equal to a new random
string different from all the previous ;. Then it appends the new pair (g +1,(r+1) to L,
replies to A’s query with (-, 4+1, and finally increments the counter 7.

(9];’? queries: For a (9];’? query (&;,€;), B calculates pry41 < pi - pj. If pryr1 = py for some
I < 19, then B sets & 41 < &; otherwise it sets &;,4+1 equal to a new random string different
from all the previous &. B also sets p/, 41 ¢ DPro+1, appends L 41 to P’, and increments the
counter 7. Then it appends the new pair (pry+1,&r+1) to L, replies to A’s query with & 41,

and finally increments the counter 7.

A terminates after at most q + ¢ queries and returns a guess b'.

Now B chooses x1,...,Z,,¥y & F, and b & {0,1}, and sets yp < f(x1,...,2,) and y1_p < ¥.
Setting X; = z; for alli = 1,...,n, Yy = yo, and Y] = y1, we see that B’s interaction provides
a perfect simulation for A as long as the chosen random values for the random variables do not
result in any equality of the values of the intermediate different polynomials. In other words,
the simulation is perfect unless for some ¢ and j we have one of the following:

L. pi(z1,...,2n) = pj(x1,...,2y,), yet the polynomials p; and p; are not equal, or
2. qi(x1,.. ., Tn,Y0,y1) = ¢ (@1, ..., Tn, Yo, Y1), yet the polynomials ¢; and g; are not equal.
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Let FAIL be the event that one of the above conditions holds. We bound the probability of this
event.

First, if we set Y, = f(X1,..., X, ), this does not raise the probability that FAIL happens. This
is because the above substitution does not create any new equalities between polynomials ¢; and
gj- In general, g; — g; is in the form

/

~

s s s q t
SN akipepi+ DY al pep; + ag pipi + Y buqu + €Yo + dY1.
k=11=1 k=11=1 k=11=1 u=1
Let us define
P* =P P =(pi,...,Perg) = (D1, D5, D15 - - -, Dlyr)-

Now we can write ¢; — ¢; in the form

s+q' s+q’ t

D> arpipi + D bugu + Yo + dY1.

k=1 i=1 u=1
Hence assuming that the substitution Y, = f(Xi,...,X,), does create a new equality, then
¢i — gj, which is in the above form, is a non-zero polynomial, yet setting Y, = f(X1,...,Xy)

makes it zero. Thus, f must be dependent on (P || P’, @), which is a contradiction.

Now that we made the substitution Y, = f(X7,..., X,), our polynomials are only in Xi,..., X,,
and Y7_;. The maximum degree of any polynomial in the form p; — p; or ¢; — g; is

max(2dp, 2dpr,dg,ds) = max(2dp/,d). Hence, for each pair (4, j), the probability that a ran-
dom assignment of the random variables is a root of one of the above polynomials is at most
max(2dps, d)/p. Since there are at most 2(q+q/;£+2) pairs of (p;,p;) and (g;, gj) in total, we have

- q+q +0+2\2max(2dp:,d)
< 9 —
< (¢ + ¢ + £+ 2)?>max(2dpr, d)

< ) .

Pr[FAIL]

Now we would like to bound A’s success probability, i.e., | Pr[b =] — 1|. We know that
Pr[b = V'] = Pr[b = V/|FaIL] - Pr[FAIL] + Pr[b = b'|=FaIL] - Pr[=FAIL].
If FAIL does not happen, then B’s simulation is perfect. In this case, since b is chosen after the

simulation ends, Pr[b = ¥/|~FAIL] = 1. Substituting this and Pr[~FAIL] = 1 — Pr[FAIL] in the
above equation, we get the following after rearrangement:

1 1
Prb=1V] — 3= (Pr[b = b/|FAIL] — 5) - Pr[FaIL].
Hence we have

1 1 1
| Pr[b = b'] — =| = | Pr[b = V/|FaiL] — =| - Pr[FaiL] < = Pr[FAIL],
2 2 2

which gives us the claimed bound and finishes the proof. I
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D.8.3 Proof of Theorem [D.6.4]

Proof: Let dp be the maximum degree of the polynomials in P. We consider a random encoding
£ Z) — {0,1}™ and write G = {{(x)|z € Z} }.

Given an algorithm A we construct the extractor E as follows. E maintains a list L of pairs
(pi, &), initialized with pairs containing the elements of P and random strings, respectively as
the first and second elements.

E runs A on input (&;);_;. Any group operation query (&;, ;) is responded by computing p; + p;
and checking if the resulting polynomial already exists in the list. If it does, E returns the
corresponding encoding, and if not, it chooses a new random string as the encoding to be
returned, and adds p; + p; and the encoding to the list L.

When A terminates and returns (&;,&;) as its output, E finds the corresponding polynomial pair
(pi,p;)- If pj # pig, E outputs L. Otherwise, let {r;}!_; be defined as above. E decomposes p;
as a linear combination of {r;}{_,, that is, it finds coefficients (b;)i_, such that p; = S>¢_; b;r;,
and outputs (b;)!_;.

Assume that A asks o queries. E’s list contains s + ¢ pairs at the end of the execution of

A. All the polynomials in this list are in Span(P). Since both p; and p; are in Span(P),
if p; = piq, then p; € V;, and hence p; can be written as a linear combination of {ri}t_,.

Furthermore, the discrete logarithm of A’s first input &; is equal to p;(x1,...,x,), which in turn
equals ¢ biri(x1,. .., x,). Therefore, E succeeds if its simulation of A’s environment is perfect
and p; = piq.

Note that if A’s environment is simulated perfectly, then it outputs a pair for which we have
pi(x1,...,2n) = pi(z1,...,25)q(z1, ..., xy,), but not necessarily p; = piq.

Let FAIL be the event that E fails. Based on the above discussion, E fails if either it fails to sim-
ulate A’s environment perfectly or if p; # pig but pj(x1,...,2n) = pi(x1, ..., 2n)q(x1, ..., Tp).
E’s simulation of the environment for A is perfect unless a set of random values (z1,...,2,)
result in some equality of the values of the different polynomials in L. Hence, if we add p;q as
the polynomial number s + o + 1 to the list L, E’s overall probability of failure is bounded by
the probability that a set of random values (x1,...,x,) result in some equality of the values of
the different polynomials in the augmented list of s + ¢ + 1 polynomials. Hence we have:

Y

Pr{Fa] < <s +o+ 1) dp _(s+o+1)%dp

— <

2 p p
and the proof is complete. 1

The above proof is in the plain generic group model. It is easy to extend the proof to the
bilinear generic group model. Furhtermore, one can see that the proof still works (with some
natural modifications) in the model where the adversary is allowed to query the oracles on
any encoding, rather than only those it has received before (either as input or as responses to
previous oracle queries).

Another point to note is that, in the bilinear group model, any input to the adversary in the
target group can be disregarded and hence does not change the assumption.

D.8.4 Proof of Theorem [D.6.5
Proof: We make our proof in two stages.
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Stage 1: First, we prove that if H is a UOWHF, then the following specific assumption is an
instance of the OBDHE assumption as per our definition in Section let Ogg be an oracle
that given (x1,x2) outputs y s.t. e(x1,22) = e(g,y). Given the following quantities:

Oék
g, h7 {gk =g }ke{l,...,Qn}\{n—i-l}a v,

and oracle access to (’)g?, it is hard to distinguish e(go‘nH, h) from a random value if the queries

to (’)B? are restricted to the following, where C' NS = @:

(1) |C| queries {O??(gk,v)}keo, and

(2) one query Og?(w, h), where w = vglf“(h) H On+i—j-
JjES

Consider the hash function H, : G — Z, and define the function p(h) = RH=(")In the generic
group model, the input to H, is an encoding representing h, which is considered to be an encoding
that may be chosen independently of h. Therefore, we may assume H,(h) independent of h. Of
course this is true only if the sole way to calculate u(h) is through computing Hy(h) first and
then raising h to the power of the hash output. Otherwise, if u(h) cannot be computed through
group operations, without computing H,(h) separately, then the encoding of h cannot be chosen
independently of h. For a “good” hash function we may assume that p(h) cannot be computed
through group operations, without computing H,(h) separately.

To be more precise, consider Theorem [D.8.1]and its presented proof in Appendix[D.8.2] Assume
that P also includes an extra element which is a multiplication of a polynomial and the function
n(y) = Hx(gY). Now, if the encoding of h = ¢V is chosen independently of h, the proof will still
work, i.e., Pr[FAIL] can be shown to be upper-bounded by a negligible bound, unless for some
considerable portion of possible y’s we have p1(y)n*(y) + p2(y)n(y) + p3(y) = 0, where p1, pa,
and ps3 are polynomials of degree at most max(2dps, d). This condition implies that n(y) can be
calculated for some considerable portion of possible 3’s by solving the above equation.

Formally, let us define a d-good hash family as follows: We say a hash family H, : G — Z,
indexed by k is d-good if for a random k there does not exist polynomials p1, ps, and ps of
degree at most § such that for a non-negligible portion of possible y’s we have: p1(y) H2(g¥) +
p2(y) Hx(g¥) + p3(y) = 0. Now since max(2dpr,d) = 4n, we conclude that if H is at least
4n-good, then its output can be considered independent of the encoding of its input, and hence
we may treat it as a constant.

Now assume that for a given random k and Y, we wish to find a pre-image X, such that
He(X) =Y. Assume X = ¢g*. If H is not a J-good hash family, for a random & there exist
polynomials p1, p2, and p3 of degree at most d such that with a non-negligible probability:
p1(x) Y2 + pa(x) Y + p3(z) = 0. This is a polynomial of order at most §, and its roots can
be found in time which is polynomial in § and logp [Ber70, [Sho90|. For each root z, one can
check whether H,(¢g*) =Y and find the pre-image X with at most § checks. Hence, if H is not
a d-good hash family, then it is not a pre-image resistant (a.k.a. one-way) hash function. Since
UOWHF implies pre-image resistance, we have the following lemma:

Lemma D.8.2 Let H, : G — Z, be hash function for which p is super-polynomial in k. If H
is a universal one-way hash function, then it is J-good (as per our definition above) for all §

polynomial in k.

Hence, if H is a UOWHF, then the following claim proves that the specific assumption above
is an OBDHE assumption as per our definition in Section in which the output of H is
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treated as a constant. Note that alternatively one may make the stronger assumption that H is
modeled as a non-programmable random oracle [BR93|, Nie02]. Also note that since the system
is defined for n — 1 users, S and C are subsets of {1,...,n — 1}.

Claim D.8.3 For the following polynomials and S,C' C {1,...,n — 1}, and for any constant c,
f is independent of (P || P/,Q)if C NS =@.

)

P=(1,y {2"heq, onpfnr1} 2 0, 2y teay+y > a"tT)

. JES
P ={zz'}icc, Q=(1), and  f=ya"t

Proof: We have at most one multiplication of polynomials at our disposal. Let us define

P ={2"}req1,onp\na1},  Peax = {22'}icc, and

Py =P, =zy+tcxy+y Z gt
jeSs

To make f = ya™t!, since there is a y factor, one of our multiplicands needs to be either y
or P,,. Choosing y will not help because we do not have an z"*! to make f, so one of our
multiplicands is definitely Py,. The only choice for a second multiplicand that can give us f is
one from P,. Multiplying these terms gives us terms of the form zya’+cyz'™ 4y 37, g 21771,
which includes yz"+! if i € S, but then we have to be able to produce the term zyz’ for some
i € S to be able to cancel it out.

To get zyz', using only two multiplicands, we have the following four possibilities:

e use y and zz’ to get yza! for some i € C, but since CNS = @ we can not get yzz' for any
ieS.

1

e use z* and P, again, but this cancels out our desired term yz"*! as well since we have to

use the same 7.

e use z and P, to get 22y + cayz + zy >jes 2" T17J which includes zyz’ if n+1—i € S or
if i = 1, but then, in either case, we have to cancel z?y and the only way to get 2%y is to
use the same terms again which cancels our desired term zyz® as well.

e use P, and Py, to get 22a%y + ca*tlyz + 2y Yjes " T1=I+k which includes zyz® if n +
1—i+keSorif k41 =1, but then, in either case, we have to cancel z2z*y and the
only way to get z2z*y is to use the same terms again with the same k which cancels our
desired term zyz® as well.

Hence f is independent of (P || P/, @) and the proof of Claim is complete. 1

Stage 2: Now that we have proved our specific assumption is an OBDHE assumption, we
prove that under this assumption, the GKEA assumption, and the UOWHF assumption OurBE
is adaptive CCA secure.

Let A be an adaptive CCA adversary for OurBE. We construct an adversary B that success-
fully breaks our specific assumption, if A is successful in its attack against OurBE, the GKEA
assumption holds, and H is a UOWHEF.
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First of all, note that, based on Lemma [D.8.2] and a discussion similar to that of Stage 1, as
long as H, is a UOWHEF, it can be indistinguishably simulated independently of its input in
the generic group model, and hence hashed values can be considered constant for this proof.
Jumping ahead, we treat ¢ = H,(Cp) and ¢* = H,(Cj) as constant coefficients for polynomials.

Let B be given the following quantities:

k
g, h, {gk’ :ga }k‘e{l,...,2n}\{n+1}7 v, T,

and (restricted) oracle access to 01,35 as specified by the assumption. It is supposed to distinguish
whether T = e(ganH, h) or T is random. As a UOWHF adversary, B gives out h as the first
message on which it wishes to be challenged and receives a key « for the hash function. B runs
A on input ek = (g, v, k).

On a join query for user ¢ made by the adversary, B gives pk; = (i, gn+1—i» gn+1+:) to A.

On any private key query for user ¢ made by A, B queries the oracle O]QDE (gi,v) and and gives
the oracle output to A. Note that if we assume v = g7, then the oracle output is equal to g;'.

On a decryption oracle query (i, S, H), where H = (Cy, C1), B first checks the ciphertext validity.
If the ciphertext is invalid it replies with L. Let ¢ = H,(Cp). If the ciphertext is valid, then it
is in the following form:

H = (Cy,CY), where ¢=~v+ca+ Z ot (D.3)
JjeS

Let us assume, without loss of generality, that all the potential n — 1 users are initiated. Let C
denote the set of corrupted users by A and N* = {1,...,2n}\ {n+1}. Now A can be viewed as
an algorithm that on input g, v, &, {g; }ien+, and {d; }icc outputs H = (Cy, C{) as above. Note
that the input to A (excluding x ¢ G) can be written as follows:

gP’ where P = ( 1, 7, {ai}iEN*v {/yai}’iec )

To apply the GKEA assumption, note that here Span(P) includes all the elements of the fol-
lowing form:

p=u+axy+ Z yiad + Z za, for random wu, , y;, 2;. (D.4)
iEN* icC

Consider pq for some p and the ¢ defined above, respectively in Equations and For pq
to be in Span(P), we should have x = 0 and Vi € C : z; = 0 because otherwise pg will have
either the factor zv2 or z;v?a’ for some i and would not fall in Span(P). Hence any p satisfying
pq € Span(P) should be in the form

p=u-+ Z yiod, for random wu, y;. (D.5)
iEN™

A basis for such a subspace is the set {1, {a‘};cn+}. Therefore the GKEA assumption guarantees
that there exists an extractor that outputs the values {3, {b; };en+} such that

B+ Z biOzi
Co=g iEN :gﬁ H gfl
IEN*
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Now note that K = e(gn+1,Co). Hence the session key can be calculated based on the known
representation of Cy in terms of g and g;, e.g., as follows:

bi
K = €(9n+1,gﬂ H 9;') = e(gn+1, 9 ﬂ H gn+1jgz
1EN* 1EN*

= e(gn, 91)7e(g2n, 91) " €(gnr2, g2n-1)"" T elgn,gix1)"
1EN*\{n,2n}

At some point, the adversary A terminates the first query phase and outputs a set S* on which
it wants to be challenged. B calculates w = vg'l-i <(R) [Tjes+ gn+1—j, makes the oracle query
Og?(w,h), receives the oracle output A/, sets the challenge ciphertext as H* = (C§,CY) =
(h,h'), and gives H* along with K =T to A. Let ¢* = H,(Cp). Note that, Equation (see
page holds, hence C'is a valid ciphertext, and C} should be equal to Cj raised to a power
of the following form:
y+cta+ > o™t
jES*

Furthermore, if T' = e(gn+1,h), then K is the correct key corresponding to the ciphertext H*,
and if 7" is random, then K is a random key.

In the second phase of the attack, B answers A’s join and corruption oracle queries as in the first
phase, and A’s decryption oracle queries, in a fashion similar to that of prior to the challenge,
as follows.

On a decryption oracle query (7,5, H), where H = (Cy, C1), B first checks its validity, and if
valid, it is in the form of Equation [D-3

Now the input to A can be listed as g, v, k, {gi}tien+, and {d;}icc, plus H* = (Cg,CY). Let
C¢ = g*". The input to A can be written as g©’, where P is as follows (k, Ko, and K; can be
disregarded as they are not in G):

P=(1, v, {}Yiens, {10'}ico, t5, t"(y+cFat+ DY o)),
jes*

Span(P) includes all the linear combinations p of the above terms. Similarly, we argue that p
cannot include any « or va' terms because they would induce v2 or y2a’ terms respectively in
the product pg. Furthermore, p cannot include the last term because it would induce a non-
cancelable t*4? term in the product pg. In addition, note that if p includes the term t*, then pq
would include the term
t*(y + ca+ Z o,
jes

The only way a p including this term can be contained in Span(P) is if ¢* = ¢ (i.e., H.(C§) =
H.(Co)) and S = S* (note that j < n—1, son+1—j > 2), which contradicts H being a UOWHEF.
Therefore, p cannot include the term t*, and again p should be in the form of Equation
and hence the session key can be calculated similarly as before.

At the end, A outputs its guess b. B outputs b as its decision for its received challenge. Based
on the above discussion, if A is successful in its adaptive CCA attack, then B is able to either
contradict H being a UOWHF or distinguish 7' = e(g,,+1, k) from a random element successfully.
Hence the proof of Theorem is complete. 1
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Appendix E

Message Tracing with Optimal
Ciphertext Rate

Latincrypt '12

[PPS12b] with David Pointcheval, and Mario Strefler

Abstract : Traitor tracing is an important tool to discourage defrauders from illegally broad-
casting multimedia content. However, the main techniques consist in tracing the traitors from
the pirate decoders they built from the secret keys of dishonest registered users: with either a
black-box or a white-box tracing procedure on the pirate decoder, one hopes to trace back one of
the traitors who registered in the system. But new techniques for pirates consist either in send-
ing the ephemeral decryption keys to the decoders for real-time decryption, or in making the full
content available on the web for later viewing. This way, the pirate does not send any personal
information. In order to be able to trace the traitors, one should embed some information, or
watermarks, in the multimedia content itself to make it specific to the registered users.

This paper addresses this problem of tracing traitors from the decoded multimedia content or
rebroadcasted keys, without increasing too much the bandwidth requirements. More precisely, we
construct a message-traceable encryption scheme that has an optimal ciphertext rate, i. e. the
ratio of global ciphertext length over message length is arbitrarily close to one.

E.0.5 Introduction

Traitor tracing (TT) [CEN94b| is a cryptographic primitive used to broadcast content only to
a set of authorized users, with an additional tracing property. The two main goals of such a
primitive are

e confidentiality: only the registered users should have access to the broadcast content;

e traceability: if registered users share their secrets to allow unregistered users to access the
content, one should be able to trace back at least some of these traitors.

The former property is guaranteed by an encryption procedure, so that only registered users can
decrypt and access the content. But an encryption scheme does not prevent users from giving
away their secret keys. Even in case several users combine their secret keys in order to make a
decryption box (a “pirate decoder”), it should be possible to identify one of the traitors from
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the code/secrets in the decoder (white-box tracing) or by simply interacting with the decoder
(black-box tracing). The tracing property should indeed guarantee that even if several users
collude to construct a pirate decoder, at least one of the traitors could be found. It should also
guarantee non-frameability: an honest user should not be wrongly declared as a traitor.

To circumvent tracing, pirates might try not to make the decoder available, which excludes
both white-box and black-box tracing. Instead, they could make only the decrypted content
available, or, in case a hybrid encryption scheme is used, the symmetric keys used to encrypt
the content: by message tracing, we aim at tracing traitors from this information only, the
decoded content.

Message tracing. Fiat and Tassa were the first to consider message tracing; in [FT99], they
developed dynamic traitor tracing to deal with pirates that rebroadcast decrypted content. They
assume that there is a real-time feedback from the broadcast content to the center, so that the
watermarks can be adapted to the feedback. Safavi-Naini and Wang [SNWO03a] noted that
in this setting, dynamic TT can be prevented by delaying the rebroadcasting of the content.
To take this counter-measure into account, they proposed sequential traitor tracing, where the
mark allocation is precomputed, but users are removed according to the feedback received. They
construct a sequential TT scheme by combining error-correcting codes and watermarking. Jin
and Lotspiech [JLO7] claimed that protection should not increase the bandwidth by more than
10 %. To solve this problem, they proposed to extend the tracing procedure over several movies
(using “inner” and “outer” codes) and assumed that the pirates will not drop any block. Their
sequence key block scheme permits the revocation of users after they have been traced through
the rebroadcasted messages. Kiayias and Pehlivanoglu [KP09] showed that the sequence key
block scheme allows only to trace and to revoke a limited number of users, and proposed a
message-trace-and-revoke scheme without this limitation.

Optimal ciphertext rate. Contrary to the classical tracing where schemes with optimal
ciphertext rate exist, the problem of constructing a scheme with optimal cipheretxt size for
message tracing is still open. We explain why the solutions for classical tracing fails when
applied to message tracing and we then describe our approach.

Boneh and Franklin [BF99b] developed a traitor tracing scheme with a ciphertext size linear
in the maximal number of colluding users. Kiayias and Yung [KY02c| further integrated a version
of this scheme for two users with a collusion-secure code into the first T'T scheme with a constant
ciphertext rate. This method can be summarized as follows. The sender essentially encrypts
all the blocks twice, so that the recipient can only decrypt one of the two ciphertexts for each
block. The tracing procedure consists in using the decrypted ciphertext or the distributed keys
to extract a word associated to the pirate decoder. Granted the tracing capability of a collusion-
secure code, one can then trace back one of the traitors. Kiayias and Yung’s scheme leads to a
ciphertext three times bigger than the initial content. Fazio, Nicolosi, and Phan [FNP07bh] then
achieved a ciphertext rate asymptotically 1. Their method is to encrypt just one particular block
twice each time and then apply an all-or-nothing transform (AONT), which guarantees that the
pirate cannot drop this particular block because missing just one block makes the pirate unable
to get any information on the plaintext. The use of AONT in [KY02c, [FNPQO7D| is interesting
but quite impractical because the receiver should wait until he has received n blocks (where n is
the code length of the code in use, and thus quite large) to start the decryption procedure. We
note that, without aiming to optimize the ciphertext rate, the use of AONT can be avoided by
using robust collusion-secure code which allows pirate to drop a fraction of the positions. This
is used in [Sir07al BP08, BNO8D] to reduce the ciphertext size. However, in order to get optimal
ciphertext rate in [FNPQO7D], the use of AONT is compulsory, otherwise the pirate could simply
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drop the particular block to defeat the tracing procedure.

Focusing now on message tracing, one natural question is why we do not simply apply the
above method of optimizing the ciphertext rate. We argue that this method cannot work for
message tracing. We first notice that in all the above methods for classical tracing, each user
finally gets the same plaintext and if a user redistributes this plaintext, we have no way to trace
back the traitor from the distributed message. Therefore, the necessary condition for message
tracing is that each user receives a different (marked) version of the plaintext. However, when the
plaintext is different for each user, one cannot apply AONT for a whole fixed plaintext, otherwise
all but at most one user can decrypt. The use of AONT for message tracing is thus irrelevant.
Fortunately, we can still use the method of doubling one particular block by finding out a way to
hide this block. Our method consists in using a 2-user anonymous broadcast encryption scheme
and then randomly permuting the blocks. With a 2-user anonymous broadcast encryption
scheme, the pirate cannot detect any difference between an encryption for both users (which is
used for all blocks but the particular block) and an encryption for one of the two users that is used
for the particular protected block. Combining with the permutation of the blocks, we can show
that the pirate is prevented from detecting the particular protected block. Moreover, beyond
the optimization of ciphertext rate, by not using AONT, our scheme also enjoys the property of
the sequential decryption via the use of robust collusion secure code as in [BP0S, BNO8b]: the
user can sequentially decrypt the sub-ciphertexts, and does not need to wait to have received
the whole ciphertext and to apply the AONT transform to start the decryption procedure.

Our Contribution. Our goal is to improve the technique which consists in distributing two
versions of each message block, but without doubling all the blocks. The naive way, presented in
section indeed consists, for each message block m;, to have two equivalent blocks m? and

1, so that any sequence {m;"'}, whatever w € {0, 1}" is, corresponds to a valid content m. The

m,L 5
9 and m} can be provided by either adding watermarks to the original message

two versions m
block m;, or directly when recording with different angles or distances of the shots [BS9§|. The
blocks, m? or m}, are both sent over the public channel. However, the user secret keys, usk?
or usk}, have been distributed to the users according to codewords in a traceable code. This
means when the authority sees the decoded message m’ or the symmetric keys, from each block

m}, it can tell whether it is m?, m%, or the block has been dropped, and then learns which

decryption key has been used: usk?, uskz-l, or none. From this, it can derive one bit of a word:
0, 1, or ‘erasure’ respectively. Granted the collusion-resistance of the code with erasures, if not
too many traitors colluded, at least one of them can be traced back. We can make the number
of erasures as low as possible. The naive way thus consists in encrypting each pair of blocks
with two keys. Each user owns only one of the two according to the codeword he received from
a traceable code. This results in a ciphertext twice the length of the original message, plus the
cost for two key encapsulations per block.

To reduce the length of the encrypted payload, the only way is to protect only a few blocks,
not all of them (section . However, if an adversary can detect which blocks are protected,
he can drop some of them without impacting too much the quality of the original message (i.e.
a few seconds from a movie). If he knows which blocks are protected, he will simply drop them
after decryption, meaning that the output contains no information about the keys that were
used. We thus propose a way to achieve this partial protection so that the adversary cannot
detect which part is protected or not: even if we protect 1% of the blocks and the adversary
drops 20% of the blocks, it will basically drop 20% of the protected blocks only, and not all of
them.

A second improvement, presented in section can take advantage of some public-key
encryption schemes where we can reuse the randomness in both key encapsulations, as one can
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do with ElGamal: given ¢" and two different public keys Xy = ¢*® and X; = ¢*', one can
derive two sessions keys Yy = Xj = ¢"*° and Y; = X| = ¢"*'. Knowing either g or z; only, a
user can extract one session key only and thus either m? or m} only. It does not cost two key
encapsulations per block, but one only.

This scheme still suffers from long user keys. In section [E.3] we use anonymous BE as a
primitive to achieve shorter key lengths. We first focus on the two-user case (one message block).
A message block either consists of a unique message m; (not protected) or of two versions m{
and m}: in the former case, m; should be encrypted for the two users, whereas in the latter case,
m? has to be encrypted for user 0, and mz1 for user 1. To this aim, we use a 2-user anonymous
broadcast encryption scheme (2ABE). Anonymous broadcast encryption allows the selection of
any subset of the user set that should be able to decrypt the ciphertext, while hiding who is able
to decrypt [LPQ12]. Suppose we have a 2ABE scheme, and we consider ¢ blocks (m,...,my),
among which the k-th block only is protected and thus is provided as a pair (mg,ml). We
encrypt all the unique blocks m; for both users, whereas we encrypt mg for user 0, and m,lC for
user 1. The ciphertexts are thereafter randomly permuted (but we assume that the message
blocks contain indices to reorder them). User 0 and user 1 will both be able to decrypt ¢
ciphertexts among the £ 4+ 1, and after reordering will be able to get the original message. Due
to the anonymity, they have no idea which block the other user cannot decrypt, therefore they
have no idea which block is protected.

The encrypted payload is only (1 + 1/¢)-times as long as the original message, plus the cost
of 2ABE key encapsulations. Viewing the decrypted message, the authority can extract one bit.
To achieve full message tracing, we need to allocate the user secret keys for the 2ABE using
a collusion-secure code [BS98] or a even robust collusion-secure code [BKMI10| if we consider
dropped blocks, and thus erasures.

Organization In section we define the primitives we are going to use and their security
notions. Using these primitives, we then present a black-box construction of a message-tracing
schemewith optimal ciphertext rate in section Section contains concrete constructions
from anonymous BE that has short keys in addition to the optimal ciphertext rate. Section [E.4]
concludes with some efficiency considerations.

E.1 Definitions

In this section, we define message tracing schemes and the building blocks we will use in their
construction. We follow an approach similar to [NSS99] by defining first a two-user primitive
which we then extend to the multi-user case using collusion-secure codes.

We first state the marking assumption, which provides a way to embed a bit in a message
block. This will be applied to blocks we protect, whereas no bit will be embedded in non-
protected blocks. Then, from the decoded message, the authority will be able to extract the bits
involved in the decryption keys in the pirate decoder, unless the decoder drops the protected
blocks. We will thus need the property that nobody can detect which blocks are protected so
that if the pirate decoder decides to drop some blocks, the choice will be independent from the
protection of the blocks. We will show that we can build such a message-traceable encryption
from a 2-user anonymous broadcast encryption scheme. Eventually, from all the bits extracted
from the protected blocks (and erasures in case of dropped blocks), using the tracing algorithm
of a collusion-secure code, we can trace back some of the traitors.
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E.1.1 Primitives

A more formal definition of PKE is given in section of the appendix. A more formal
definition of ABE is given in section of the appendix.

E.1.2 Marking Content

In order to trace from the message content itself, we need to be able to distribute different
versions of a message to different users in an undetectable way. One way is to use watermarks.
Another way could exploit different camera shots (angle and distance) of the same scene in a
movie[BS98|. We abstract away from the concrete way to create versions and use the marking
assumption that has been introduced by [BS98] and has become standard since. In the following
we assume that, given two blocks mg and my,

e we can double my, (for a random b € {0,1}) into two equivalent messages m{ and m;
e when a user receives m{, and m} (such that mj € {mQ, m}} and mj = my, where b=1-0)

one cannot guess b. This essentially means that it is possible to mark a message to protect it,
but it is not possible to tell apart protected and unprotected blocks.

In addition, we also assume robustness with respect to a symmetric, reflexive relation ~,: for
two equivalent blocks m?° ) m', when the user receives m®, and tries to alter it (but without

changing the meaning or content), he has only a negligible chance to output m’ ~, mb that

is closer to m® than to m®. This reflects that the user cannot change a watermark without

completely changing the message.
These two quite practical assumptions guarantee that

e protected blocks are indistinguishable from non-protected blocks;

e when a user has access to one version of the protected block only, we can learn from its
output which bit was embedded: the detected bit;

e when a user has access to both versions of the protected block, we either detect from its
output one explicit bit as above, or we note that both versions have been used: in either
case we can output one bit, associated to at least one version of the block available to the
user.

Of course, the user can drop some blocks, but this impacts the quality of the message: we will
assume that not too many blocks are dropped: at most a fraction 7.

E.1.3 Collusion-Secure Codes

Collusion-secure codes [BS98] allow to trace a subset of the users (the traitors) that colluded
to produce a word (pirate word) from the codewords they were given. This of course depends
on the way traitors can derive words from their codewords: the feasible set is the set of the
useful words that can be derived from the legitimate codewords. We focus on binary codes,
defined over the alphabet {0,1}. In our context, each bit-value is associated to a decryption
key, and a receiver has to decrypt at least one block in each pair of variants to be able to
get the global content. If all the codewords in a set agree on a position (i.e. they all have
the same bit at this position), then the collusion owns only one decryption key, and thus all
the words in the feasible set must have the same bit at this position. However, if some of the
words differ at a given position, then the collusion owns both decryption keys, and thus both
values are possible at this position. More formally, for any list of ¢ words wy,...,w; € {0,1}",
FS(wi,...,w) ={w e {0,1}"|Vie {1,...,n},3j € {1,...,t}, w[i] = w;[i]}.
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Definition E.1.1 An (N, t, e, n)-collusion-secure code T for FS is defined by a pair of algorithms
(Gen, Trace), where

e Gen(N,¢) takes as input the number N of codewords to output and an error probability
g, it outputs a tracing key tk and a code T' C {0, 1}" of size N.

e Trace(tk, w) takes as input the tracing key tk and a word w € FS(C'), where C' is a collusion
of at most ¢t codewords, it outputs a codeword w.

The running time of both algorithms must be polynomial in N log(1/e), and the tracing algo-
rithm should not be wrong too often: with probability less than e, w & C.

More precisely, an (N, t, e, n)-collusion-secure code for FS guarantees that
e given (I',tk) <— Gen(V,¢), with I" C {0,1}" of size N

e for any collusion C' C I of size at most ¢, for any w € FS(C), Trace(tk, w) outputs a word
in C with probability 1 — e.

Efficient constructions of such codes can be found in [TarO8b]: the resulting code length n for a
c-collusion secure code is O(c? log(N/e)), where € is the tracing error probability.

When we consider adversaries that can drop some blocks, we need more powerful codes. A
word w* € {0,1,*}" is in FS*(C) if there is a word w € FS(C) such that w equals w* at all the
non-x positions. The extended feasible set FS*(w) is the set of all words that are x-feasible for w.
Such a code that is traceable even in case of erasures is called robust code. Efficient constructions
of codes for FS* can be found in [BKMI0]: the resulting code length n for a c-collusion secure
code with a fraction d of the erasures is O(c?log(N/e)/(1 — 6)?).

E.1.4 Message-Traceable Encryption

A message-traceable encryption scheme ¥ is a multi-cast encryption scheme which allows all
the registered users (with a legitimate secret key) to decrypt a ciphertext. In addition, from the
decrypted content, it is possible to derive the key (or even the keys) used for the decryption. In
the following description, we focus on static schemes (the maximum number of users is set from
the beginning):

e Setup(1”, N, t), where k is the security parameter, N the number of users and ¢ the maximal
size of a collusion, generates the global parameters param of the system (omitted in the
following), N user secret keys {USKiq}id=1,... v, an encryption key EK, and a tracing key
TK.

e Encrypt(EK,m) takes as input the encryption key EK and a message m to be sent, it
generates a ciphertext c.

e Decrypt(USK, c) takes as input a decryption key USK and a ciphertext ¢, it outputs a
message m, or the error symbol L.

e Trace(TK, ¢, m) takes as input the tracing key TK, with a ciphertext ¢ and the decrypted
message m, it returns an index id € [1, N] of a user secret key USKjq4.
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E.2. A Generic Construction from PKE

Security Notions. As for any encryption scheme, the first security notion to define is the
semantic security, whose security game is presented in figure Of course, to make tracing
possible, the encryption algorithm will possibly derive several equivalent versions of the message
my to be encrypted, which will decrypt to slightly different messages depending on the key used
to decrypt. For this reason, we allow the adversary to choose which decryption key should be
used, hence the additional input id.

Definition E.1.2 [Semantic Security] A message-traceable encryption scheme W is said to be
(1, N,t,qp,e)-IND-CCA-secure (semantic security against chosen-ciphertext attacks) if in the
security game presented in figure the advantage, denoted Adviq')d_cca(n, 7,N,t,qp), of any
7-time adversary A asking for at most ¢p decryption queries (ODecrypt oracle) is bounded by

e:
AdvP4T@ (k. 7, N, t, qp) = ij{Pr[Expi\Edzcca_l(ﬁ, N,t) = 1]—Pr[Expi\I']dzcca_0(f1, N,t)=1]} <e.

This definition includes IND—CPA (for Chosen-Plaintext Attacks) when ¢p = 0, and thus we
denote the advantag