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Abstract. We consider designing public-key broadcast encryption schemes with constant-size secret keys
and ciphertexts, achieving chosen-ciphertext security. We first argue that known CPA-to-CCA transforms
currently do not yield such schemes. We then propose a scheme, modifying a previous selective CPA
secure proposal by Boneh, Gentry, and Waters. Our scheme has constant-size secret keys and ciphertexts
and we prove that it is selective chosen-ciphertext secure based on standard assumptions. Our scheme
has ciphertexts that are shorter than those of the previous CCA secure proposals. Then we propose
a second scheme that provides the functionality of both broadcast encryption and revocation schemes
simultaneously using the same set of parameters. Finally we show that it is possible to prove our first scheme
adaptive chosen-ciphertext secure under reasonable extensions of the bilinear Diffie-Hellman exponent and
the knowledge of exponent assumptions. We prove both of these extended assumptions in the generic
group model. Hence, our scheme becomes the first to achieve constant-size secret keys and ciphertexts
(both asymptotically optimal) and adaptive chosen-ciphertext security at the same time.

1 Introduction

A broadcast encryption is a cryptographic scheme that enables encryption of broadcast content such
that only a set of target users, selected at the time of encryption, can decrypt the content. Apparent
applications include group communication, pay TV, content protection, file system access control, and
geolocation.

A crucial aspect of any cryptographic scheme, which arguably decides its fate of being used in
practice, is its efficiency. Since one of the most prominent applications of broadcast encryption is
real-time broadcasting, ciphertext size is at the heart of efficiency measures for such schemes, and
constructions with constant-size ciphertexts are desirable. Indeed, if one allows the ciphertext size to
grow linearly with the number of target users, construction of secure broadcast encryption becomes
trivial. Other important measures of efficiency for broadcast encryption include the secret and public
key sizes and the encryption and decryption times.

A broadcast encryption scheme can be static or dynamic, depending on if the system users need
to be fixed once and for all at the setup stage or if it supports new users joining the system at an
arbitrary time, incurring only incremental parameter changes. Evidently, dynamic schemes are more
flexible and hence more desirable in practical applications.

An important security paradigm for broadcast encryption schemes is that of adaptive security.
This paradigm captures the fact that an adversary might choose to compromise keys in the system
adaptively, based on its acquired knowledge of the system parameters and previously compromised
keys and ciphertexts. Such a definition is widely accepted as the proper notion of security for broadcast
encryption schemes and there are schemes proposed in the literature that provably achieve security
against adaptive adversaries.

On the other hand, security against chosen ciphertext attacks (CCA) is a fundamental notion
of security for any encryption scheme, broadcast encryption included. Although there have been a
number of proposed broadcast encryption schemes that are secure against chosen plaintext attacks
(CPA), the CPA-to-CCA transformations in the literature do not seem to yield CCA secure broadcast
encryption schemes with constant-size ciphertexts.

Adaptive and CCA security, and constant-size ciphertexts, have all three been separately achieved
for broadcast encryption. However, there has not been any proposal that achieves all three simulta-
neously. In this paper, we propose a broadcast encryption with constant-size ciphertexts and prove it
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adaptive CCA secure under assumptions that are reasonable generalizations of previous assumptions
in the literature.

The literature on broadcast encryption mainly considers two categories of such schemes and each
work usually provides solutions that are efficient only for one of the two cases, depending on whether
the content is broadcast to a very small or a very large proportion of registered users. The party who
encrypts the content, hence either determines their intended set of target users or that of revoked users,
respectively, as an input to the encryption algorithm. Consequently, the latter category of schemes are
sometimes called revocation schemes.

Consider the pay-TV application in which the content of the broadcast consists of several TV chan-
nels. Normally, there are a number of basic channels that are usually bundled together and provided to
most of the customers in different packages, and also there are a number of more specialized channels
(e.g., pay-per-view) that are of the interest of a small proportion of customers. Hence we face a scenario
in which both of the above categories of schemes are simultaneously needed to broadcast the content.
Nevertheless, there has been no proposal in the literature that provides both functionalities efficiently,
and hence the existing efficient solution to the above scenario is to set up two parallel schemes, each
covering part of the broadcast content. In this paper, we propose a scheme that can handle both cases
efficiently, providing a solution to the above scenario that does not require maintaining two parallel
sets of system parameters.

1.1 Related Work

Broadcast encryption was first formalized by Fiat and Naor [FN94]. Their scheme is a private key
scheme and proved secure against an upper bounded number of colluders. Fully collusion secure
(private-key) broadcast encryption was first proposed in [NNL01], which introduced the subset cover
framework that became the basis for many subsequent proposals, including [DF03] which proposed
the first public key broadcast encryption.

Boneh, Gentry, and Waters [BGW05] were first to propose a fully collusion-resistant public key
broadcast encryption in which the ciphertext size is constant. In all the previous schemes, the size of
the ciphertext is linear in the size of the target set. In this paper we limit our attention to such schemes.
They proposed two schemes, respectively CPA and CCA secure, both in the selective model of security.
Dynamic broadcast encryption was proposed in [DPP07] where they designed CPA secure schemes
that were only partially adaptive secure. Strictly speaking, their scheme is a revocation scheme, in
which the set of revoked users is selected at the time of encryption, and in turn, any user outside of
the revoked set is able to decrypt. [Del07] proposed identity-based broadcast encryption and gave a
selective CPA secure scheme.

Adaptive security was first proposed by [GW09] where they gave several schemes achieving adaptive
CPA security, including two broadcast encryption schemes and two identity-based broadcast encryp-
tion (IBBE) schemes, one of each achieving constant-size ciphertexts in the random oracle model.
The schemes proposed in [Wat09] and [LSW10], respectively a broadcast encryption scheme and a
revocation scheme, are the only schemes secure under static assumptions (as opposed to the so called
q-based ones). The latter work also proposes an identity-based revocation scheme which is proved
selective CPA secure. Recently, the first adaptive CCA secure schemes were proposed by [PPS11a],
although their schemes do not have constant-size ciphertexts.

1.2 Our Contributions

In this paper, we propose an efficient dynamic broadcast encryption scheme (called OurBE) and prove
that it is selective CCA secure assuming the widely-used bilinear Diffie-Hellman exponent (BDHE)
assumption and a universal one-way hash function (UOWHF). The scheme has constant-size cipher-
texts (only two group elements), constant-size secret keys (only one group element), and a public key
which grows linearly with the number of users in the system. We construct our scheme by modifying a
selective CPA secure scheme (dubbed BGW1 from now on) by Boneh, Gentry, and Waters [BGW05].
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Our modification is minimal in the sense that our scheme has exactly the same ciphertext and secret
key sizes as that of BGW1, and is proved secure under the same assumption, plus the comparatively
weak UOWHF assumption. The minor difference is that our scheme has one extra element in the
linearly-growing public key. The only other CCA secure scheme with constant-size ciphertexts is a
modified version of BGW1 by the same authors (dubbed BGW2 from now on), which has ciphertexts
that are double the size of our scheme (i.e., four group elements vs. our two). BGW2 is proved selective
CCA secure under BDHE, plus the assumption that a signature scheme used in the construction is
strongly unforgeable, which is an assumption of comparable strength as UOWHF.

We also propose an inclusive-exclusive broadcast encryption scheme which can act as both a
broadcast encryption and a revocation scheme at the same time, as it allows the flexibility to specify
either the target set or the revoked set at the time of encryption. The ciphertext and the secret key
are still only two and one group elements, respectively, but we need to add one group element per
user to the already linearly-growing public key which results in a public key which is 1.5 times that
of BGW1.

Next, we show that it is possible to prove OurBE adaptive CCA secure under generalized versions of
existing assumptions. Particularly, we propose generalized versions of the BDHE and the knowledge-
of-exponent (KEA) assumptions, and prove that both hold in the generic group model. We argue that
both of these are intuitive and reasonable generalizations of accepted assumptions, and in turn, enable
achieving the highest level of security with highly-efficient parameters. Namely, OurBE is provably
adaptive CCA secure with constant-size ciphertexts and secret keys, and it is the first scheme to
achieve such properties.

2 Preliminaries

In this section we review the notation we use, the BDHE and GBDHE assumptions, and the notions
of security for dynamic broadcast encryption and universal one-way hash function.

Notation We use the following typefaces: Roman X for constants, italic X for variables, sans serif X
for algorithms, and calligraphic X for oracles. Let G and GT be groups of order p, and e : G×G 7→ GT

be a bilinear map. Let g be a generator of G and gT = e(g, g).

2.1 Dynamic Broadcast Encapsulation

Broadcast encryption is conventionally formalized as broadcast encapsulation in which, instead of a
ciphertext, a session key is produced, which is required to be indistinguishable from random. Such
a scheme can provide public encryption functionality in combination with a symmetric encryption
through the hybrid encryption (a.k.a. KEM-DEM) paradigm [CS03]. We hence use the terms encryp-
tion and encapsulation interchangeably.

Following [DPP07], we define a (public-key) dynamic broadcast encapsulation scheme as a tuple
of four algorithms BE = (Setup, Join,Encaps,Decaps) where:

– Setup(1k) outputs (MSK,EK) containing the master secret key and the (initial) encryption key;
– Join(MSK, i) outputs the key pair (ski, pki) for user i, and appends pki to EK;
– Encaps(EK, S) for a set of users S outputs (H,K) containing a ciphertext (a.k.a. header) and a

session key; and
– Decaps(EK, ski, S,H) outputs K if i ∈ S and ⊥ otherwise.

Adaptive CCA security for BE is defined via the following experiments for b ∈ {0, 1} between the
challenger C and the adversary A:

1. Setup: C runs Setup(1k) and gives EK to A;
2. Query: A arbitrarily issues the following oracle queries:

– join oracle query J (i): C runs Join(MSK, i) and gives pki to A;
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– corruption oracle query C(i): C gives ski to A;

– decapsulation oracle query D(i, S,H): C runs
Decaps(EK, ski, S,H) and gives K to A;

3. Challenge: A outputs a set S∗ on which it wants to be challenged; C runs Encaps(EK, S∗) and gets
(H∗,K∗), then sets K = K∗ if b = 0 or picks a random K if b = 1, and finally gives (H∗,K) to A;

4. Query: A issues further oracle queries as the previous query phase;

5. Guess: A outputs a guess b′. The experiment outputs 1 if b′ = b and there is no i∗ ∈ S∗ for which
there has been a C(i∗) or D(i∗, S∗, H∗) query. The experiment outputs 0 otherwise.

For any adversary A, we define its advantage against BE in an adaptive CCA attack to be the difference
between the probability that the above experiment for b = 0 outputs 1 and the probability that the
experiment for b = 1 outputs 1. The scheme is said to be adaptive CCA secure if for any adversary A
its advantage against BE in an adaptive CCA attack is negligible in k.

Selective security is defined via similar games with the difference that A commits to the set S∗

before the setup phase. For CPA security, A does not get to query the decryption oracle. We sometimes
use SCPA, SCCA, ACPA, and ACCA as shorthands referring to selective CPA, selective CCA, adaptive
CPA, and adaptive CCA security.

Note that the above definition (which is based on that of [PPS11b]1) is stronger than that of
[BGW05] since they require that the adversary does not make any decryption oracle query with
i ∈ S∗ for which H = H∗, but we relax the constraint and only require no query with i ∈ S∗ for which
(S,H) = (S∗, H∗).

2.2 The BDHE and GBDHE Assumptions

Let us define the two sets of polynomials P = (p1, . . . , ps) and Q = (q1, . . . , qt), with p1 = q1 = 1, and
a polynomial f , where ∀i, k : pi, qk, f ∈ Fp[X1, . . . , Xn]. Let us also define gP = (gp1 , . . . , gps). We say
that f is independent of (P,Q) if it cannot be written as f =

∑s
i,j=1 ai,jpipj +

∑t
k=1 bkqk for constants

ai,j and bk.

The generalized decision bilinear Diffie-Hellman exponent (GBDHE) problem is defined in [BBG05]

as follows: given the input gP (x1,...,xn) and g
Q(x1,...,xn)
T for random choices of x1, . . . , xn ∈ Fp, decide

between g
f(x1,...,xn)
T and a random T ∈ GT. The GBDHE assumption says that it is hard to solve the

GBDHE problem if f is independent of (P,Q).

The decision bilinear Diffie-Hellman exponent assumption (parameterized by the integer n and
denoted by n-BDHE), which is an instance of the GBDHE assumption, says that given the input

g, h, {gαk}k∈{1,...,2n}\{n+1} for random h ∈ G and α ∈ Zp, it is hard to decide between e(g, h)α
n+1

and
a random T ∈ GT.

2.3 Universal One-Way Hash Function

Consider a keyed hash function H. H is called a universal one-way hash function (UOWHF)2 if there
is no efficient adversary winning the following security game. First, the adversary chooses a message
and outputs it. Then, the challenger chooses a random key for H and gives it to the adversary. Finally,
the adversary outputs a second message and terminates. The adversary wins if the two messages are
different, but their hashes under the chosen key are the same. This notion was first proposed in [NY89],
and is shown to be strictly weaker than collision resistance [Sim98,RS04]. In fact, one-way functions
are shown to be sufficient for UOWHF [Rom90], whereas collision resistant hash functions are only
known to be constructed from claw-free permutations [Dam88] or lattice-based assumptions [GGH96].

1 Note that, in comparison with [PPS11b], we ignore the Reg parameter here as it can be regarded as part of EK.
2 UOWHF is also known as target collision resistance (TCR).
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3 CCA from Generic Transforms?

In this section we consider the two types of general standard model CPA-to-CCA transforms, namely
NY-like and CHK-like, and argue that applying these transforms to the proposed broadcast encryption
schemes in the literature does not give us CCA security and constant-size ciphertexts.

NY-like Transforms The Naor-Yung paradigm ([NY90] and [Sah99,DDN00,Lin03]) provides a con-
struction for CCA secure encryption from CPA secure encryption along with non-interactive zero-
knowledge proofs. To apply any NY-like transform to a broadcast encryption, one needs to make a
NIZK proof of a statement containing the session key K. Such proofs tend to be long and inefficient.
Furthermore, all the proposed schemes that have a constant-size ciphertext are pairing-based, and in
all these schemes the session key is a member of the target set GT, but NIZK proofs of statements
containing members of GT are not known. In particular, Groth-Sahai constructions [GS08] only pro-
vide witness indistinguishable proofs for such statements, whereas zero knowledge, and in particular
the ability to simulate proofs without knowing a witness, seems to be essential to the security proofs
of NY-like constructions.

CHK-like Transforms The Canetti-Halevi-Katz paradigm
([CHK04] and [BK05,Kil06]) provides a construction for CCA secure encryption from CPA secure
identity-based encryption and an extra authenticating primitive such as signature or message authen-
tication code (MAC). Essential to the paradigm is that any encryption to an identity can be decrypted
by the secret key generated for the same identity. However, in the broadcast encryption case, encryp-
tions are made to a set and decryptions are possible by the secret key of any member of that set.
Hence, such transforms are not readily applicable to identity-based broadcast encryptions.

4 An Efficient Selective CCA Broadcast Encryption

Let Hκ : G 7→ Zp be a hash family indexed by κ. We define a broadcast encryption scheme OurBE
in the following. We describe the system for (at most) n− 1 users to be notationally consistent with
the original scheme of [BGW05], on which the system is based. The system for n users can be defined
accordingly.

– Setup(1k, n− 1) picks a random generator g ∈ G, two random quantities α, γ ∈ Zp, and a random
index κ for hash function H, computes v = gγ , and outputs MSK = (α, γ) and EK = (g, v, κ).

– Join(MSK, i) computes gk = g(α
k) for k = i, i+1, n+1− i, and n+1+ i, and di = gγi , and outputs

ski = di and pki = (gi, gi+1, gn+1−i, gn+1+i). The secret key ski is given to the user, and EK is
updated by appending pki.

– Encaps(EK, S) picks a random element t ∈ Zp and sets K = e(gn+1, g)t, which can be equivalently
computed as K = e(gn+1−i, gi)

t for any i, computes H as follows, and outputs (H,K).

H = 〈gt, (v · gHκ(g
t)

1 ·
∏
j∈S

gn+1−j)
t〉.

– Decaps(EK, ski, S,H) parses the header as H = (C0, C1), checks if the following equation holds:

e(C1, g) = e(v · gHκ(C0)
1 ·

∏
j∈S

gn+1−j , C0), (1)

and if it does, then calculates the session key as follows:

K =
e(C1, gi)

e(di · gHκ(C0)
1+i ·

∏
j∈S\{i}

gn+1−j+i, C0)
.
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In the following we bring a theorem which states that if the hash function H is a universal one-way
hash function, then the proposed scheme satisfies selective CCA security under the same assumption
as that of the original scheme, namely n-BDHE. Intuitively, the main modification we make in (the

encryption algorithm of) the original scheme is the introduction of g
Hκ(gt)
1 . If this element is not

present, as it is in the original scheme, given a header H = (C0, C1) corresponding to a key K, one can
compute the header (Cr0 , C

r
1) that corresponds to the key Kr, and hence the scheme is malleable. We

show that a UOWHF is sufficient to eradicate malleability and get CCA security. This modification
is inspired by a similar technique in [BMW05] which, in contrast, was shown to be applicable to an
identity-based scheme. Here we show that a similar idea is applicable to BGW1. The proof of the
following theorem can be found in Appendix A. In the proof we use the structure of the keys in the
scheme to simulate decryption queries.

Theorem 1. The above scheme is selective CCA secure if the n-BDHE decision problem is hard and
H is a universal one-way hash function.

On Dynamicity Note that the bound on the number of users in OurBE does not prevent the system
from being able to handle more than n − 1 users. That is, as long as the system “jumps over” the
users number n and n+ 1 (i.e., after user number n− 1, the next user is numbered n+ 2), the system
can handle polynomially many users more than n− 1 and remains secure. The security of the scheme
with more than n− 1 users can be proved based on the following assumption: given the input h, and
{gk = gα

k} for k ∈ {n+ 1−m, . . . , n+ 1 +m} \ {n+ 1} for random g, h ∈ G and α ∈ Zp, it is hard to
decide between e(gn+1, h) and a random T ∈ GT. It is not hard to see that this assumption is equivalent

to the following assumption: given the input g, h, and {gk = gα
k} for k ∈ {1, . . . , 2m}\{m} for random

h ∈ G and α ∈ Zp, it is hard to decide between e(gm, h) and a random T ∈ GT. Here m ≥ n+ 2 is the
last user number to join. This assumption is comparable to the m-BDHE assumption. In fact, like the
BDHE assumption, it is an instance of the GBDHE assumption. In view of this observation, OurBE
is a dynamic broadcast encryption in the sense that: (1) the system setup and the ciphertext size are
independent of the upper bound on the number of users; (2) a new user can join anytime without
incurring modification of other user secret keys; and (3) the encryption key is incrementally updated
by an operation of O(1) complexity.

Comparison The only broadcast encryption scheme in the literature that provides CCA security with
constant-size ciphertexts is BGW2. It has similar secret and public key sizes as our scheme. However,
there are differences in terms of security assumptions and ciphertext size. BGW2 uses a signature or a
message authentication code (MAC) and is proved secure under n-BDHE plus the strong unforgeability
(SUF) of the signature or the MAC, whereas OurBE needs n-BDHE plus a universal one-way hash
function (UOWHF). In theory, SUF and UOWHF are equivalent (both are equivalent to one-wayness),
but in practice, hash functions are generally much more efficient than signatures. In terms of ciphertext
size, BGW2 has a ciphertext whose size is (about) double that of BGW1’s ciphertext: a BGW2 ciphertext
consists of a BGW1 ciphertext of two G elements, plus an element in Zp and a signature (or a MAC
tag). OurBE has the same ciphertext size as that of BGW1, i.e., only two G elements. We summarize
this comparison in Table 1. For simplification, we show the total number of elements without the
details of the groups to which each element belongs. Note that although pki in OurBE includes four
group elements, since there are some repeating values the final EK includes the three initial values
plus only 2n− 1 extra values of gi.

5 Inclusive-Exclusive Broadcast Encryption

In this section we show that OurBE can be slightly modified to provide both the broadcast encryption
and the revocation functionality simultaneously; that is, we propose a scheme in which the encrypter
may choose to determine either a target set S or a revoked set R of users at the time of encryption,
without the need to set up two parallel systems. The decryption naturally goes ahead only if the user
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Table 1. Comparison of CCA secure schemes with constant-size ciphertexts

Scheme |ski| / |EK| |H| Security Assumption

[BGW05] 1 / 2n+1 4 SCCA n-BDHE, SUF

OurBE 1 / 2n+2 2 SCCA n-BDHE, UOWHF

| · |: size in number of elements n: number of users plus one.

is either in S or not in R. In the following we (ab)use the notation “S/R” to indicate “either S or
R” as input to the encapsulation and decapsulation algorithms. In practice this can be implemented
using the first bit of the input to indicate the inclusive or exclusive mode of operation.

– Setup(1k, n − 1) picks random g ∈ G, α, γ ∈ Zp, and κ for H, computes v = gγ , sets π0 =
gα(α

n−1)/(α−1), and outputs MSK = (α, γ) and EK = (g, v, π0, κ).
– Join(MSK, i) computes gi, gi+1, gn+1−i, gn+1+i, and di = gγi , sets πi = πα

i

0 /gn+1, and outputs
ski = di and pki = (gi, gi+1, gn+1−i, gn+1+i, πi). Now, ski is given to the user, and EK is updated
by appending pki.

– Encaps(EK, S/R) picks a random t ∈ Zp and sets K = e(gn+1, g)t, computes H as either of the
following accordingly, and outputs (H,K).

H =


〈gt, (v · gHκ(g

t)
1 ·

∏
j∈S

gn+1−j)
t〉 if S given

〈gt, (v · gHκ(g
t)

1 · π0/
∏
j∈R

gn+1−j)
t〉 if R given

– Decaps(EK, ski, S/R,H) parses H = (C0, C1), checks if the either of the following equation ac-
cordingly holds:

e(C1, g) =


e(v · gHκ(C0)

1 ·
∏
j∈S

gn+1−j , C0) if S given

e(v · gHκ(C0)
1 · π0/

∏
j∈R

gn+1−j , C0) if R given

and if it does, then calculates the session key accordingly as follows:

K =
e(C1, gi)

e(di · gHκ(C0)
1+i ·

∏
j∈S\{i}

gn+1−j+i, C0)
, or

K =
e(C1, gi)

e(di · gHκ(C0)
1+i · πi/

∏
j∈R

gn+1−j+i, C0)
.

Correctness Let N = {1, . . . , n− 1}. We have

π0 =
∏
j∈N

gn+1−j and πi =
∏

j∈N\{i}

gn+1−j+i.

Hence in the exclusive mode, for any i /∈ R we have:

π0/
∏
j∈R

gn+1−j =
∏

j∈N\R

gn+1−j and

πi/
∏
j∈R

gn+1−j+i =
∏

j∈(N\R)\{i}

gn+1−j+i.
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Hence, if i /∈ R, the session key the user i calculates in the exclusive mode is effectively the same as
the session key it would have calculated if it were decrypting a ciphertext encrypted to S = N \R in
the inclusive mode, and therefore the scheme is correct.

Note that the parameters are set in a way that the scheme properly excludes users that join after
the time of encryption from inclusive-mode ciphertexts, and includes such users in the exclusive-mode
ciphertexts. Unfortunately, the system appears to lose full dynamicity.

Efficiency The scheme enjoys similar desirable efficiency measures as the inclusive-only scheme; that
is, the ciphertext and the user secret key sizes are both constant and the public key size is linear in
the number of users.

Security A similar security definition to that of broadcast encryption can be defined for such schemes,
with the difference that the adversary is now allowed to ask decryption oracle queries for both modes.
Naturally exclusive-mode decryption oracle queries D(i∗, N \ S∗, H∗) for i∗ ∈ S∗ are also not allowed.
It is not hard to see that the security of OurBE translates into the above scheme satisfying this security
definition.

6 Achieving Adaptive CCA Security

Since we have a very efficient scheme with asymptotically optimal size secret keys and ciphertexts
which is already proved selective CCA secure based on standard assumptions, in this section we try to
see how further we can achieve in terms of security by considering reasonable generalizations of some
standard assumptions, while retaining the same optimally efficient secret key and ciphertext sizes. We
first propose reasonable generalizations of the GBDHE and prove that they hold in the generic group
model; then we prove that OurBE can be proved ACCA secure under these assumptions; and finally
we compare our scheme to existing adaptive or CCA secure broadcast encryptions.

6.1 The OBDHE Assumption

We consider extending the GBDHE problem assuming that an extra resource is also given: the Diffie-
Hellman computation oracle ODH

g,e , that takes two inputs u, v ∈ G and outputs w ∈ G such that
e(u, v) = e(g, w). Let us call this the Oracle BDHE problem, or OBDHE for short. Formally, we
define:

The OBDHE Problem: Given the input gP (x1,...,xn) and g
Q(x1,...,xn)
T for random choices of

x1, . . . , xn ∈ Fp, and access to the ODH
g,e oracle, decide between g

f(x1,...,xn)
T and a random T ∈ GT.

Note that the GBDHE assumption implies that the only elements (dependent on x1, . . . , xn and)
in G that can be computed are those in the form g

∑
aipi . Thus, for any ODH

g,e query (dependent
on x1, . . . , xn) we can assume u = gσu and v = gσv , where σu and σv are polynomials. Then we
will have w = ODH

g,e (u, v) = gσuσv . Hence, by providing access to ODH
g,e , basically a number of “free

multiplications” in the exponent are given. Let us define p′ = σuσv. If we consider q′ queries to ODH
g,e ,

and the output to the i-th query represented as wi = gp
′
i , we can define P ′ = (p′1, . . . , p

′
q′). Our

extension of the GBDHE assumption says that it is still hard to solve the GBDHE problem if these
“free multiplications” in the exponent do not help breaking the independence property. Formally,
letting ‖ denote concatenation, we define:

Assumption 1 (OBDHE) It is hard to solve the decision (P,Q, f)-OBDHE problem if f is inde-
pendent of (P ‖ P ′, Q).

In Appendix B we prove that the assumption holds in the generic group model [Sho97,BBG05]. We
prove an upper bound on the success of any generic algorithm trying to solve the OBDHE problem
which is negligible if p, the order of Fp is super-polynomial. Leaving technicalities to the appendix, we
prove the following theorem:
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Theorem 2. The OBDHE Assumption holds in the generic group model.

In fact, our proof is similar to that of [BBG05], suggesting that our assumption is a natural and
closely-related extension of GBDHE. It is also worth to note that OBDHE is falsifiable by simply
solving the corresponding (P ‖ P ′, Q, f)-GBDHE problem efficiently.

6.2 The GKEA Assumption

We propose the generalized knowledge of exponent assumption (GKEA) as follows and prove that it
holds in the generic group model. In the following we use p to denote a polynomial (suppressing the
random variables) and p(x1, . . . , xn) to denote the evaluation of p on the input (x1, . . . , xn). Let the
tuple P = (p1, . . . , ps) be in Fp[X1, . . . , Xn]s. Let the linear span of P , denoted by Span(P ), be defined
as the vector space containing all the polynomials in the form

∑s
k=1 akpk.

Assumption 2 (GKEA) Let the tuple P = (p1, . . . , ps) be in Fp[X1, . . . , Xn]s, where p1 = 1. Let A
be an algorithm that given gP (x1,...,xn) for a random (x1, . . . , xn), outputs

( (ak)
s
k=1, h, h

q(x1,...,xn) ), such that

q(x1, . . . , xn) =
s∑

k=1

akpk(x1, . . . , xn).

Consider the subspace of Span(P ) defined as Vq = {r | r, rq ∈ Span(P )} and let {ri}ti=1 be a basis for
Vq. Then, there exists an extractor E that given the same input as A outputs

(bi)
t
i=1, such that dlogg(h) =

t∑
i=1

biri(x1, . . . , xn).

This assumption basically says that the only way an adversary can produce pairs of the form
(h, hq) is to pick given pairs of the form (hi, h

q
i ) and output (

∏
hbii ,

∏
(hqi )

bi) for some known values
of bi.

For P = (1, X) and q(X) = X, this becomes the original KEA of [Dam92], which basically says that
given (g, gx) the only way an adversary can produce pairs of the form (h, hx) is to output (gb, (gx)b) for
some known value of b. This assumption is referred to KEA1 in [HT98,BP04] and as Diffie-Hellman
Knowledge (DHK) in [Den06]. A similar problem is formalized as strong Diffie-Hellman (SDH) in
[ABR01].

For P = (1, X, Y, Y X) and q(X,Y ) = X, this becomes the KEA3 assumption of [BP04], which
basically says that given (g, gx, f, fx) the only way an adversary can produce pairs of the form (h, hx)
is to output (gbf c, (gx)b(fx)c) for some known values of b and c. This assumption is referred to as
Extended KEA (XKEA) in [AF07] and as Extended Diffie-Hellman Knowledge (EDHK) in [DP08].

The above two instances of the assumption have already been proved to hold in the generic group
model [Den06,AF07,DP08]. In the following we propose a theorem stating the generic assumption and
prove it in Appendix C.

Theorem 3. The GKEA Assumption holds in the generic group model.

6.3 Adaptive CCA Security

In this section we prove OurBE adaptive CCA secure under our generalized versions of the BDHE and
knowledge of exponent assumptions. To prove adaptive CCA security, we basically show that a de-
cryption query by the adversary that contains a valid ciphertext does not increase the (cryptographic)
‘knowledge’ of the adversary. Also note that since ciphertext validity is publicly verifiable, a decryption
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Table 2. Comparison of adaptive or CCA secure broadcast encryption schemes

Scheme O(|ski|) O(|H|) Security Assumption

[DF02] BE logn r log n
r

ACCA1 (IBE)

BE log1+ε n r
ε

ACCA1 (HIBE)

[BGW05] BE 1 1 SCCA n-BDHE, SUF

[GW09] BE 1 1 ACPA n-BDHES, PRF, ROM

BE 1 s ACPA n-BDHES, PRF

IBBE 1 1 ACPA n-BDHES, PRF, ROM

IBBE 1
√
s ACPA n-BDHES, PRF

[Wat09] BE n 1 ACPA dBDH, dLin

[LSW10] R 1 r ACPA dBDH, dLin

[PPS11a] BE 1 r log n
r

ACCA DDH

BE 1 r ACCA DDH

OurBE BE 1 1
SCCA

ACCA

n-BDHE, UOWHF

n-OBDHE, GKEA, UOWHF

O(| · |): order of size, n, s, r: number of total, targeted, revoked users.

query that contains an invalid ciphertext does not increase the adversary’s knowledge either. Hence
we basically show that a CCA attack against the system is equivalent to a CPA attack, under the
GKEA assumption and the hash function being a UOWHF. Furthermore, the access to ODH

g,e enables
answering adaptive corruption queries.

Formally, we prove adaptive CCA security assuming that the OBDHE and the GKEA assumptions
hold and H is a UOWHF. Intuitively, selective CPA security stems from the BDHE assumption un-
derlying the OBDHE assumption along with the hash function being a UOWHF; the Diffie-Hellman
oracle enables adaptive security; and the CCA security is achieved from the GKEA assumption along
with the hash function being a UOWHF. The following theorem is proved in Appendix D.

Theorem 4. OurBE is adaptive CCA secure if the OBDHE and the GKEA assumptions hold and H
is a universal one-way hash function.

We note that we prove CCA security based on the GKEA assumption, an assumption which is
much weaker than the generic model itself (and instances of it are shown to be falsifiable [BP04]), and
in fact, proving the equivalence of CPA and CCA security is trivial if the generic group model is used
directly, since on a decryption query with a first element gt, we may assume that t is known.

6.4 Comparison

Since our scheme is the first to achieve adaptive CCA security with constant-size ciphertexts, we
compare our scheme with those from the literature that are adaptive CPA or selective CCA secure.
We do not consider schemes that are not fully collusion resistant. The schemes in the literature with
constant-size ciphertexts include a selective CCA secure scheme from [BGW05], and three adaptive
CPA secure schemes from [GW09] and [Wat09]. The schemes in the literature that do not have
constant-size ciphertexts include adaptive CPA secure schemes from [DF02], [GW09] (identity-based)
and [LSW10] (revocation scheme), and recent adaptive CCA secure schemes from [PPS11a]. Table 2
summarizes our comparison. We consider plain and identity-based (IB) broadcast encryption (BE)
and revocation (R) schemes. Among these, schemes from [DF02] and [PPS11a] are generic schemes
based on (hierarchical) identity-based encryption ((H)IBE), and encryption schemes (implemented
under DDH), respectively. Since (H)IBE can be based on various assumption, we simply use it in
parentheses in the table. All other schemes are explicit proposals based on various bilinear Diffie-
Hellman assumptions, in some cases plus extra assumptions such as strong unforgeability (SUF) of
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signatures, pseudo-random functions (PRF), and the random oracle model (ROM). To accommodate
more information, we omit the O notation and write O(f(n, s, r)) as f(n, s, r). Comparatively more
desirable quantities are highlighted in boldface.

7 Concluding Remarks

We proposed a very efficient broadcast encryption scheme. The sizes of the secret keys and ciphertexts
in the scheme are asymptotically optimal, i.e., constant. We showed that the scheme can be proved
selective CCA secure assuming BDHE and a universal one-way hash function. Furthermore, we showed
that proving adaptive CCA security is possible if we consider extended versions of the GBDHE and
knowledge of exponent assumptions. Considering only the standard assumptions, our scheme provides
shorter ciphertexts than the only other known CCA secure scheme. Considering the extended assump-
tions, our scheme is the first scheme to achieve constant size secret keys and ciphertexts and adaptive
CCA security at the same time. The problem of designing schemes that achieve such properties under
standard assumptions remains open.
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A Proof of Theorem 1

Proof. Suppose there exist a selective CCA adversary A that is able to distinguish the above scheme’s
keys from random elements. We construct an algorithm B that either outputs a collision for a given
key κ or solves the n-BDHE decision problem.

Let B be given an n-BDHE challenge (g, h, {gi}i∈{1,...,2n}\{n+1}, T ) and has to decide whether
T = e(gn+1, h) or it is random. B runs A and receives a set S∗ of honest users on which it wishes to
be challenged. As a UOWHF adversary, B also gives out h as the first message on which it wishes to
be challenged and receives a key κ for the hash function. B chooses a random β ∈ Zp, calculates v as
follows, and gives EK = (g, v, κ) to A.

v = gβ · g−Hκ(h)1 ·
∏
j∈S∗

g−1n+1−j . (2)

On any join query for user i made by the adversary, B gives pki = (gi, gn+1−i, gn+1+i) to A.

On any private key query for user i made by A (note that i /∈ S∗), B calculates the private key as
follows and gives it to A.

di = gβi · g
−Hκ(h)
1+i ·

∏
j∈S∗

g−1n+1−j+i.

Note that di is properly simulated since we have di = vα
i
.

On a decryption query (i, S, (C0, C1)) by A (note that S ⊂ S∗ and i ∈ S), B first checks the validity
of the ciphertext using Equation 1. If the ciphertext is valid then it checks whether Hκ(h) = Hκ(C0)
which in case of validity provides a collision for the hash function Hκ and hence B can output C0 as
the second message and break the UOWHF property.

If Equation 1 holds and Hκ(h) 6= Hκ(C0), then let δ = Hκ(C0) − Hκ(h). B calculates the key as
follows:

K =
e(C1, g · g1/δn )

e(gβ · gβ/δn · gδ1 ·
∏

j∈S∗\S

(gn+1−j · g1/δ2n+1−j)
−1, C0)

.

Now since Equation 1 holds, the ciphertext is in the form

(gt, (v · gHκ(g
t)

1 ·
∏
j∈S

gn+1−j)
t)
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for some (unknown) t. Hence, the above calculated K will be as follows:

K =

e((v · gHκ(g
t)

1 ·
∏
j∈S

gn+1−j)
t, g · g1/δn )

e(gβ · gβ/δn · gδ1 ·
∏

j∈S∗\S

(gn+1−j · g1/δ2n+1−j)
−1, gt)

=

( e(gβ · gδ1 ·
∏

j∈S∗\S

g−1n+1−j , g · g
1/δ
n )

e(gβ · gβ/δn · gδ1 ·
∏

j∈S∗\S

(gn+1−j · g1/δ2n+1−j)
−1, g)

)t

=

( e(gβ · gδ1 ·
∏

j∈S∗\S

g−1n+1−j , g
1+αn/δ)

e(gβ(1+αn/δ) · gδ1 ·
∏

j∈S∗\S

g
−(1+αn/δ)
n+1−j , g)

)t

=

(
e(gδ1, g

1+αn/δ)

e(gδ1, g)

)t
= e(g1, g)α

nt = e(gn+1, g)t

and hence it is properly simulated. In the above, we have substituted v from Equation 2 and used
the fact that ∀k : gn+k = gα

n

k .

At some point, A declares that it is ready to receive the challenge. B calculates the challenge
ciphertext as C = (h, hβ) and gives C along with K = T to A. First, note that from Equation 2 we
have

v · gHκ(h)1 ·
∏
j∈S∗

gn+1−j = gβ,

and hence C is a valid ciphertext satisfying Equation 1. Furthermore, assuming that h = gt for some
t, we have

hβ = (gβ)t = (v · gHκ(h)1 ·
∏
j∈S∗

gn+1−j)
t,

which means that if T = e(gn+1, h) = e(gn+1, g)t, then K is the key corresponding to the ciphertext
C, and if T is random, then K is a random key.

In the second phase of the attack, B answers A’s queries as in the first phase.

At the end, A outputs its guess b. B outputs b as its decision for the n-BDHE challenge. Based on
the above discussion, if A is successful in its CCA attack, then either B is able to compute a collision
for Hκ and win the UOWHF game, or it is able to solve the n-BDHE decision problem successfully. ut

B Proof of the OBDHE Assumption

In this section, we prove Theorem 2. Let dP , dP ′ , dQ, and df be respectively the maximum degrees
of the polynomials in P , P ′, Q, and f . We prove the following upper bound in the generic bilinear
group model. We consider two random encodings ξ, ζ : Z+

p 7→ {0, 1}m and write G = {ξ(x)|x ∈ Z+
p }

and GT = {ζ(x)|x ∈ Z+
p }. The following theorem is a sufficient condition for Theorem 2.

Theorem 5. For P , Q, P ′ f , ξ, ζ, G, GT defined above, let |P | = s, |Q| = t, and ` = s + t. Let
d = max(2dP , dQ, df ). If f is independent of (P ‖ P ′, Q), then for any A making a total of at most q
queries to the oracles computing the group operations and the bilinear pairing, and at most q′ queries
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to the ODH
g,e oracle, we have:

∣∣∣∣∣Pr

A
 p, ξ(P (x1, . . . , xn)),

ζ(Q(x1, . . . , xn)),
ζ(t0), ζ(t1);ODH

g,e (·, ·)

 = b :

x1, . . . , xn, y
R← Fp,

b
R← {0, 1},

tb ← f(x1, . . . , xn),
t1−b ← y

− 1
2

∣∣∣∣∣
≤ (q + q′ + `+ 2)2 ·max(2dP ′ , d)

2p

Proof. Assume that we are given the algorithm A. Consider an algorithm B that interacts with A as
follows. B maintains two lists of pairs:

L = {(pi, ξi) : i = 1, . . . , τ0} and LT = {(qi, ζi) : i = 1, . . . , τ1},

such that at step τ of its interaction with A: τ0 + τ1 = τ + ` + 2. Here, pi ∈ Fp[X1, . . . , Xn], qi ∈
Fp[X1, . . . , Xn, Y0, Y1], and ξi, ζi ∈ {0, 1}m.

B also maintains a counter τ ′, initialized at zero, to count the number of ODH
g,e oracle queries, and

a list of polynomials:

P ′ = {p′i : i = 1, . . . , τ ′}

to store the polynomial output of the ODH
g,e oracle queries.

At step τ = 0, B initializes the lists by setting p1, . . . , ps in L equal to the polynomials in P ,
q1, . . . , qt in LT equal to the polynomials in Q, qt+1 = Y0, and qt+2 = Y1. It also chooses `+ 2 random
strings in {0, 1}m and initializes {ξi}si=1 and {ζi}t+2

i=1.

B then runs A under the input p, {ξi}si=1, {ζi}ti=1, ζt+1, and ζt+2. B answers A’s oracle queries
as follows. We are assuming that A’s queries can only be strings obtained from B since B can, by
increasing m, make the strings in G and GT arbitrarily hard to guess.

Group operations: For a G operation query (ξi, ξj), B calculates pτ0+1 ← pi±pj depending on whether
multiplication or division is requested. If pτ0+1 = pl for some l ≤ τ0, then B sets ξτ0+1 ← ξl; otherwise
it sets ξτ0+1 equal to a new random string different from all the previous ξi. Then it appends the new
pair (pτ0+1, ξτ0+1) to L, replies to A’s query with ξτ0+1, and finally increments the counter τ0. GT

operation queries are dealt with analogously by updating the list LT and counter τ1.

Bilinear pairings: For a pairing query of the form (ξi, ξj), B calculates qτ1+1 ← pi · pj . If qτ1+1 = ql
for some l ≤ τ1, then B sets ζτ1+1 ← ζl; otherwise it sets ζτ1+1 equal to a new random string different
from all the previous ζi. Then it appends the new pair (qτ1+1, ζτ1+1) to LT, replies to A’s query with
ζτ1+1, and finally increments the counter τ1.

ODH
g,e queries: For a ODH

g,e query (ξi, ξj), B calculates pτ0+1 ← pi · pj . If pτ0+1 = pl for some l ≤ τ0, then
B sets ξτ0+1 ← ξl; otherwise it sets ξτ0+1 equal to a new random string different from all the previous
ξi. B also sets p′τ ′+1 ← pτ0+1, appends p′τ ′+1 to P ′, and increments the counter τ ′. Then it appends
the new pair (pτ0+1, ξτ0+1) to L, replies to A’s query with ξτ0+1, and finally increments the counter τ0.

A terminates after at most q + q′ queries and returns a guess b′.

Now B chooses x1, . . . , xn, y
R← Fp and b

R← {0, 1}, and sets yb ← f(x1, . . . , xn) and y1−b ← y.
Setting Xi = xi for all i = 1, . . . , n, Y0 = y0, and Y1 = y1, we see that B’s interaction provides a
perfect simulation for A as long as the chosen random values for the random variables do not result
in any equality of the values of the intermediate different polynomials. In other words, the simulation
is perfect unless for some i and j we have one of the following:

1. pi(x1, . . . , xn) = pj(x1, . . . , xn), yet the polynomials pi and pj are not equal, or

2. qi(x1, . . . , xn, y0, y1) = qj(x1, . . . , xn, y0, y1), yet the polynomials qi and qj are not equal.
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Let Fail be the event that one of the above conditions holds. We bound the probability of this
event.

First, if we set Yb = f(X1, . . . , Xn), this does not raise the probability that Fail happens. This is
because the above substitution does not create any new equalities between polynomials qi and qj . In
general, qi − qj is in the form

s∑
k=1

s∑
l=1

ak,lpkpl +
s∑

k=1

q′∑
l=1

a′k,lpkp
′
l +

q′∑
k=1

q′∑
l=1

a′′k,lp
′
kp
′
l +

t∑
u=1

buqu + cY0 + dY1.

Let us define
P ∗ = P ‖ P ′ = (p∗1, . . . , p

∗
s+q′) = (p1, . . . , ps, p

′
1, . . . , p

′
q′).

Now we can write qi − qj in the form

s+q′∑
k=1

s+q′∑
l=1

ak,lp
∗
kp
∗
l +

t∑
u=1

buqu + cY0 + dY1.

Hence assuming that the substitution Yb = f(X1, . . . , Xn), does create a new equality, then qi − qj ,
which is in the above form, is a non-zero polynomial, yet setting Yb = f(X1, . . . , Xn) makes it zero.
Thus, f must be dependent on (P ‖ P ′, Q), which is a contradiction.

Now with the substitution Yb = f(X1, . . . , Xn), our polynomials are only in X1, . . . , Xn, and Y1−b.
The maximum degree of any polynomial in the form pi − pj or qi − qj is max(2dP , 2dP ′ , dQ, df ) =
max(2dP ′ , d). Hence, for each pair (i, j), the probability that a random assignment of the random
variables is a root of one of the above polynomials is at most max(2dP ′ , d)/p. Since there are at most

2
(
q+q′+`+2

2

)
pairs of (pi, pj) and (qi, qj) in total, we have

Pr[Fail] ≤
(
q + q′ + `+ 2

2

)
2 max(2dP ′ , d)

p

≤ (q + q′ + `+ 2)2 max(2dP ′ , d)

p
.

Now we would like to bound A’s success probability, i.e., |Pr[b = b′]− 1
2 |. We know that

Pr[b = b′] = Pr[b = b′|Fail] · Pr[Fail] + Pr[b = b′|¬Fail] · Pr[¬Fail].

If Fail does not happen, then B’s simulation is perfect. In this case, since b is chosen after the
simulation ends, Pr[b = b′|¬Fail] = 1

2 . Substituting this and Pr[¬Fail] = 1 − Pr[Fail] in the above
equation, we get the following after rearrangement:

Pr[b = b′]− 1

2
= (Pr[b = b′|Fail]− 1

2
) · Pr[Fail].

Hence we have

|Pr[b = b′]− 1

2
| = |Pr[b = b′|Fail]− 1

2
| · Pr[Fail] ≤ 1

2
Pr[Fail],

which gives us the claimed bound and finishes the proof. ut

C Proof of Theorem 3

Proof. Let dP be the maximum degree of the polynomials in P . We consider a random encoding
ξ : Z+

p 7→ {0, 1}m and write G = {ξ(x)|x ∈ Z+
p }.

Given an algorithm A we construct the extractor E as follows. E maintains a list L of pairs (pi, ξi),
initialized with pairs containing the elements of P and random strings, respectively as the first and
second elements.
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E runs A on input (ξi)
s
i=1. Any group operation query (ξi, ξj) is responded by computing pi+pj and

checking if the resulting polynomial already exists in the list. If it does, E returns the corresponding
encoding, and if not, it chooses a new random string as the encoding to be returned, and adds pi + pj
and the encoding to the list L.

When A terminates and returns (ξi, ξj) as its output, E finds the corresponding polynomial pair
(pi, pj). If pj 6= piq, E outputs ⊥. Otherwise, let {ri}ti=1 be defined as above. E decomposes pi as a
linear combination of {ri}ti=1, that is, it finds coefficients (bi)

t
i=1 such that pi =

∑t
i=1 biri, and outputs

(bi)
t
i=1.
Assume that A asks σ queries. E’s list contains s+σ pairs at the end of the execution of A. All the

polynomials in this list are in Span(P ). Since both pi and pj are in Span(P ), if pj = piq, then pi ∈ Vq,
and hence pi can be written as a linear combination of {ri}ti=1. Furthermore, the discrete logarithm
of A’s first input ξi is equal to pi(x1, . . . , xn), which in turn equals

∑t
i=1 biri(x1, . . . , xn). Therefore, E

succeeds if its simulation of A’s environment is perfect and pj = piq.
Note that if A’s environment is simulated perfectly, then it outputs a pair for which we have

pj(x1, . . . , xn) = pi(x1, . . . , xn)q(x1, . . . , xn), but not necessarily pj = piq.
Let Fail be the event that E fails. Based on the above discussion, E fails if either it fails to simulate

A’s environment perfectly or if pj 6= piq but pj(x1, . . . , xn) = pi(x1, . . . , xn)q(x1, . . . , xn). E’s simulation
of the environment for A is perfect unless a set of random values (x1, . . . , xn) result in some equality of
the values of the different polynomials in L. Hence, if we add piq as the polynomial number s+σ+1 to
the list L, E’s overall probability of failure is bounded by the probability that a set of random values
(x1, . . . , xn) result in some equality of the values of the different polynomials in the augmented list of
s+ σ + 1 polynomials. Hence we have:

Pr[Fail] ≤
(
s+ σ + 1

2

)
dP
p
≤ (s+ σ + 1)2dP

p
,

and the proof is complete. ut

The above proof is in the plain generic group model. It is easy to extend the proof to the bilinear
generic group model. Furhtermore, one can see that the proof still works (with some natural modifica-
tions) in the model where the adversary is allowed to query the oracles on any encoding, rather than
only those it has received before (either as input or as responses to previous oracle queries).

Another point to note is that, in the bilinear group model, any input to the adversary in the target
group can be disregarded and hence does not change the assumption.

D Proof of Theorem 4

Proof. We make our proof in two stages.

Stage 1: First, we prove that if H is a UOWHF, then the following specific assumption is an instance
of the OBDHE assumption as per our definition in Section 6.1: let ODH

g,e be an oracle that given (x1, x2)
outputs y s.t. e(x1, x2) = e(g, y). Given the following quantities:

g, h, {gk = gα
k}k∈{1,...,2n}\{n+1}, v,

and oracle access to ODH
g,e , it is hard to distinguish e(gα

n+1
, h) from a random value if the queries to

ODH
g,e are restricted to the following, where C ∩ S = ∅:

(1) |C| queries {ODH
g,e (gk, v)}k∈C , and

(2) one query ODH
g,e (w, h), where w = vg

Hκ(h)
1

∏
j∈S

gn+1−j .

Consider the hash function Hκ : G 7→ Zp and define the function µ(h) = hHκ(h). In the generic
group model, the input to Hκ is an encoding representing h, which is considered to be an encoding
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that may be chosen independently of h. Therefore, we may assume Hκ(h) independent of h. Of course
this is true only if the sole way to calculate µ(h) is through computing Hκ(h) first and then raising h
to the power of the hash output. Otherwise, if µ(h) cannot be computed through group operations,
without computing Hκ(h) separately, then the encoding of h cannot be chosen independently of h.
For a “good” hash function we may assume that µ(h) cannot be computed through group operations,
without computing Hκ(h) separately.

To be more precise, consider Theorem 5 and its presented proof in Appendix B. Assume that P also
includes an extra element which is a multiplication of a polynomial and the function η(y) = Hκ(gy).
Now, if the encoding of h = gy is chosen independently of h, the proof will still work, i.e., Pr[Fail] can
be shown to be upper-bounded by a negligible bound, unless for some considerable portion of possible
y’s we have ρ1(y)η2(y) + ρ2(y)η(y) + ρ3(y) = 0, where ρ1, ρ2, and ρ3 are polynomials of degree at
most max(2dP ′ , d). This condition implies that η(y) can be calculated for some considerable portion
of possible y’s by solving the above equation.

Formally, let us define a δ-good hash family as follows: We say a hash family Hκ : G 7→ Zp indexed
by κ is δ-good if for a random κ there does not exist polynomials ρ1, ρ2, and ρ3 of degree at most δ such
that for a non-negligible portion of possible y’s we have: ρ1(y) H2

κ(gy)+ρ2(y) Hκ(gy)+ρ3(y) = 0. Now
since max(2dP ′ , d) = 4n, we conclude that if H is at least 4n-good, then its output can be considered
independent of the encoding of its input, and hence we may treat it as a constant.

Now assume that for a given random κ and Y , we wish to find a pre-image X, such that Hκ(X) = Y .
Assume X = gx. If H is not a δ-good hash family, for a random κ there exist polynomials ρ1, ρ2, and
ρ3 of degree at most δ such that with a non-negligible probability: ρ1(x) Y 2 + ρ2(x) Y + ρ3(x) = 0.
This is a polynomial of order at most δ, and its roots can be found in time which is polynomial in δ
and log p [Ber70,Sho90]. For each root x, one can check whether Hκ(gx) = Y and find the pre-image
X with at most δ checks. Hence, if H is not a δ-good hash family, then it is not a pre-image resistant
(a.k.a. one-way) hash function. Since UOWHF implies pre-image resistance, we have the following
lemma:

Lemma 6. Let Hκ : G 7→ Zp be hash function for which p is super-polynomial in k. If H is a universal
one-way hash function, then it is δ-good (as per our definition above) for all δ polynomial in k.

Hence, if H is a UOWHF, then the following claim proves that the specific assumption above is
an OBDHE assumption as per our definition in Section 6.1, in which the output of H is treated as
a constant. Note that alternatively one may make the stronger assumption that H is modeled as a
non-programmable random oracle [BR93,Nie02]. Also note that since the system is defined for n − 1
users, S and C are subsets of {1, . . . , n− 1}.
Claim. For the following polynomials and S,C ⊆ {1, . . . , n− 1}, and for any constant c, f is indepen-
dent of (P ‖ P ′, Q) if C ∩ S = ∅.

P = ( 1, y, {xk}k∈{1,...,2n}\{n+1}, z, η, zy + cxy + y
∑
j∈S

xn+1−j ),

P ′ = {zxi}i∈C , Q = (1), and f = yxn+1.

Proof. We have at most one multiplication of polynomials at our disposal. Let us define

Px = {xk}k∈{1,...,2n}\{n+1}, Pzx = {zxi}i∈C , and

Pyx = Pyz = zy + cxy + y
∑
j∈S

xn+1−j .

To make f = yxn+1, since there is a y factor, one of our multiplicands needs to be either y or Pyx.
Choosing y will not help because we do not have an xn+1 to make f , so one of our multiplicands is
definitely Pyx. The only choice for a second multiplicand that can give us f is one from Px. Multiplying
these terms gives us terms of the form zyxi+cyxi+1 +y

∑
j∈S x

n+1−j+i, which includes yxn+1 if i ∈ S,

but then we have to be able to produce the term zyxi for some i ∈ S to be able to cancel it out.
To get zyxi, using only two multiplicands, we have the following four possibilities:
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– use y and zxi to get yzxi for some i ∈ C, but since C ∩ S = ∅ we can not get yzxi for any i ∈ S.

– use xi and Pyz again, but this cancels out our desired term yxn+1 as well since we have to use the
same i.

– use z and Pyx to get z2y+ cxyz+ zy
∑

j∈S x
n+1−j , which includes zyxi if n+ 1− i ∈ S or if i = 1,

but then, in either case, we have to cancel z2y and the only way to get z2y is to use the same
terms again which cancels our desired term zyxi as well.

– use Pzx and Pyx to get z2xky+cxk+1yz+zy
∑

j∈S x
n+1−j+k, which includes zyxi if n+1−i+k ∈ S

or if k+ 1 = i, but then, in either case, we have to cancel z2xky and the only way to get z2xky is
to use the same terms again with the same k which cancels our desired term zyxi as well.

Hence f is independent of (P ‖ P ′, Q) and the proof of Claim D is complete. ut

Stage 2: Now that we have proved our specific assumption is an OBDHE assumption, we prove that
under this assumption, the GKEA assumption, and the UOWHF assumption OurBE is adaptive CCA
secure.

Let A be an adaptive CCA adversary for OurBE. We construct an adversary B that successfully
breaks our specific assumption, if A is successful in its attack against OurBE, the GKEA assumption
holds, and H is a UOWHF.

First of all, note that, based on Lemma 6 and a discussion similar to that of Stage 1, as long as
Hκ is a UOWHF, it can be indistinguishably simulated independently of its input in the generic group
model, and hence hashed values can be considered constant for this proof. Jumping ahead, we treat
c = Hκ(C0) and c∗ = Hκ(C∗0 ) as constant coefficients for polynomials.

Let B be given the following quantities:

g, h, {gk = gα
k}k∈{1,...,2n}\{n+1}, v, T,

and (restricted) oracle access to ODH
g,e as specified by the assumption. It is supposed to distinguish

whether T = e(gα
n+1

, h) or T is random. As a UOWHF adversary, B gives out h as the first message
on which it wishes to be challenged and receives a key κ for the hash function. B runs A on input
EK = (g, v, κ).

On a join query for user i made by the adversary, B gives pki = (gi, gn+1−i, gn+1+i) to A.

On any private key query for user i made by A, B queries the oracle ODH
g,e (gi, v) and and gives the

oracle output to A. Note that if we assume v = gγ , then the oracle output is equal to gγi .

On a decryption oracle query (i, S,H), where H = (C0, C1), B first checks the ciphertext validity.
If the ciphertext is invalid it replies with ⊥. Let c = Hκ(C0). If the ciphertext is valid, then it is in the
following form:

H = (C0, C
q
0), where q = γ + cα+

∑
j∈S

αn+1−j . (3)

Let us assume, without loss of generality, that all the potential n− 1 users are initiated. Let C denote
the set of corrupted users by A and N∗ = {1, . . . , 2n} \ {n+ 1}. Now A can be viewed as an algorithm
that on input g, v, κ, {gi}i∈N∗ , and {di}i∈C outputs H = (C0, C

q
0) as above. Note that the input to A

(excluding κ /∈ G) can be written as follows:

gP , where P = ( 1, γ, {αi}i∈N∗ , {γαi}i∈C ).

To apply the GKEA assumption, note that here Span(P ) includes all the elements of the following
form:

ρ = u+ xγ +
∑
i∈N∗

yiα
i + γ

∑
i∈C

ziα
i, for random u, x, yi, zi. (4)

Consider ρq for some ρ and the q defined above, respectively in Equations 3 and 4. For ρq to be
in Span(P ), we should have x = 0 and ∀i ∈ C : zi = 0 because otherwise ρq will have either the factor
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xγ2 or ziγ
2αi for some i and would not fall in Span(P ). Hence any ρ satisfying ρq ∈ Span(P ) should

be in the form
ρ = u+

∑
i∈N∗

yiα
i, for random u, yi. (5)

A basis for such a subspace is the set {1, {αi}i∈N∗}. Therefore the GKEA assumption guarantees that
there exists an extractor that outputs the values {β, {bi}i∈N∗} such that

C0 = g

β+

∑
i∈N∗

biα
i

= gβ
∏
i∈N∗

gbii .

Now note that K = e(gn+1, C0). Hence the session key can be calculated based on the known repre-
sentation of C0 in terms of g and gi, e.g., as follows:

K = e(gn+1, g
β
∏
i∈N∗

gbii ) = e(gn+1, g)β
∏
i∈N∗

e(gn+1, gi)
bi

= e(gn, g1)
βe(g2n, g1)

bne(gn+2, g2n−1)
b2n

∏
i∈N∗\{n,2n}

e(gn, gi+1)
bi .

At some point, the adversary A terminates the first query phase and outputs a set S∗ on which

it wants to be challenged. B calculates w = vg
Hκ(h)
1

∏
j∈S∗ gn+1−j , makes the oracle query ODH

g,e (w, h),
receives the oracle output h′, sets the challenge ciphertext as H∗ = (C∗0 , C

∗
1 ) = (h, h′), and gives H∗

along with K = T to A. Let c∗ = Hκ(C∗0 ). Note that, Equation 1 (see page 5) holds, hence C is a valid
ciphertext, and C∗1 should be equal to C∗0 raised to a power of the following form:

γ + c∗α+
∑
j∈S∗

αn+1−j .

Furthermore, if T = e(gn+1, h), then K is the correct key corresponding to the ciphertext H∗, and if
T is random, then K is a random key.

In the second phase of the attack, B answers A’s join and corruption oracle queries as in the first
phase, and A’s decryption oracle queries, in a fashion similar to that of prior to the challenge, as
follows.

On a decryption oracle query (i, S,H), where H = (C0, C1), B first checks its validity, and if valid,
it is in the form of Equation 3.

Now the input to A can be listed as g, v, κ, {gi}i∈N∗ , and {di}i∈C , plusH∗ = (C∗0 , C
∗
1 ). Let C∗0 = gt

∗
.

The input to A can be written as gP , where P is as follows (κ, K0, and K1 can be disregarded as they
are not in G):

P = ( 1, γ, {αi}i∈N∗ , {γαi}i∈C , t∗, t∗(γ + c∗α+
∑
j∈S∗

αn+1−j) ).

Span(P ) includes all the linear combinations ρ of the above terms. Similarly, we argue that ρ cannot
include any γ or γαi terms because they would induce γ2 or γ2αi terms respectively in the product
ρq. Furthermore, ρ cannot include the last term because it would induce a non-cancelable t∗γ2 term
in the product ρq. In addition, note that if ρ includes the term t∗, then ρq would include the term

t∗(γ + cα+
∑
j∈S

αn+1−j).

The only way a ρ including this term can be contained in Span(P ) is if c∗ = c (i.e., Hκ(C∗0 ) = Hκ(C0))
and S = S∗ (note that j ≤ n− 1, so n+ 1− j ≥ 2), which contradicts H being a UOWHF. Therefore,
ρ cannot include the term t∗, and again ρ should be in the form of Equation 5, and hence the session
key can be calculated similarly as before.
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At the end, A outputs its guess b. B outputs b as its decision for its received challenge. Based on
the above discussion, if A is successful in its adaptive CCA attack, then B is able to either contradict
H being a UOWHF or distinguish T = e(gn+1, h) from a random element successfully. Hence the proof
of Theorem 4 is complete. ut
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