
Efficient Traitor Tracing from Collusion Secure Codes

Olivier Billet1 and Duong Hieu Phan2

1 Orange Labs, Issy-les-Moulineaux, France
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Abstract. In this paper, we describe a new traitor tracing scheme which relies on

Tardos’ collusion secure codes to achieve constant size ciphertexts. Our scheme is

also equipped with a black-box tracing procedure against pirates that are allowed to

decrypt with some (possibly high) error rate while keeping the decoders of the lowest

possible size when using collusion secure codes, namely of size proportional to the

length of Tardos’ code.

1 Introduction

One common issue in digital content distribution is the problem of broadcasting data to

several legitimate users in a secure way. Therefore, the broadcaster usually encrypts its data

for the legitimate users. This is for example the case in pay-TV systems which allow to

restrict access to the content to subscribers only, or when distributing digital media such

as DVDs encrypted such that they can be used with compliant readers only [1]. In these

scenarios and many others, the legitimate users rely on a decryption box containing the

secrets that are necessary to obtain the digital content from the broadcasted information;

this decryption box can be a tamper resistant device such as a smart card, a firmware for

an electronic appliance, or a software on a personal computer. Tamper resistant devices

are hard and expensive since they are designed to withstand a large range of attacks from

side-channels attacks to invasive attacks. This raises the following issue: What if legitimate

users are able to extract the secrets from their decryption box and redistribute them?

Traitor tracing is a well known cryptographic means to discourage such indelicate users

(hereafter called traitors) from redistributing their secrets: It provides a way of embedding

different secrets into each user’s decryption box so that even if several traitors collude to

produce a pirate decoder from their shared secrets, an authority is able to trace at least one of

them. The efficiency of a traitor tracing scheme can be evaluated through several parameters:

the maximum size c of tolerated coalitions, the size of the broadcasted ciphertext, and the

size of the decoders. While it is obvious to design a traitor tracing scheme with a ciphertext

size linear in the total number N of users, efficiently resisting collusions when traitors have

full access to their decoders is not straightforward. Since its introduction by Chor, Fiat, and

Naor [8], several techniques have been proposed. A first class of schemes that we might call

combinatorial is based on carefully choosing some subset of a set of master keys to be put

in each decryption box. By analyzing the keys found in a pirate decoder, it is possible to

trace one of the traitors. The schemes [8, 20, 13, 9, 19] belong to this family. Another class



of schemes is the public key traitor tracing schemes first introduced in [17] by Kurosawa

and Desmedt. To this family belong for instance [2, 21, 10, 18, 7, 5]. A third class of schemes

relying on the use of collusion secure codes (and thus combining ideas from the two previous

classes) has been introduced by Kiayias and Yung in [16]. The schemes [24, 11, 31, 4] belong to

this class. Several of these works also provided additional features apart from the basic traitor

tracing properties. It has been shown how to cope with decoders that decrypt correctly only

with some (non-negligible) probability [20]. Tracing the traitors using black-box access only

to the pirate decoders has been first proposed in [9]. The notion of public traceability has

been proposed in [23, 7].

Our work, as for instance [16, 31, 11], is based on the use of collusion secure codes.

These schemes enjoy many nice and desirable properties: they support black-box tracing

and the ratio between the ciphertexts and the plaintexts is constant. However, since these

schemes use collusion secure codes for both the ciphertext and the key used in the decoders,

the size of the ciphertexts and decoders is quite large, namely O(c4 log(N/ε)) for resisting

coalitions of at most c traitors with probability 1− ε. Another drawback of [16] comes from

the use of an all-or-nothing transform (AONT [26]) to prevent deletion of keys from the

pirate decoders as a way to escape the tracing procedure based on the underlying collusion

secure code. This AONT renders the scheme quite rigid and prevents the reduction of the

ciphertext’s size since it requires to use every key from the decoder in order to decrypt a

ciphertext, and thus slows down the decryption process. Safavi-Naini and Wang propose

in [28] to use collusion secure codes that support random deletion in any position. In [31],

Sirvent constructs new collusion secure codes which support deletion of a number of positions

chosen by the adversary in addition to the usual properties: this results in a black-box

tracing procedure which accommodates even more powerful pirates than [16, 28] and allows

to remove the need for AONT. However, codewords from collusion secure codes supporting

adversarial erasure have length Ω(c4 log(N/ε)) and the size of the ciphertexts and decoders

remains large. In this paper, we propose a scheme based on Tardos’ collusion secure code

with constant size ciphertexts and thus resolve a first issue with code based traitor tracing

schemes. The independent work [4] also proposes a scheme with constant size ciphertexts, but

to be able to trace pirate decoders with non-negligible error rate δ, the size of the decoders

is Ω(c4/(1− δ)2 log(N/ε)) and tracing is accordingly expensive. This large complexity comes

from the fact that the authors in [4] built a collusion secure code with the strong property of

resisting erasure. While this might lead to useful applications in settings other than traitor

tracing, we show that such a strong collusion secure code is not required here: Our scheme

takes advantage of the specific setting of traitor tracing where it is possible to distinguish

between erased and unreadable positions. As a result our scheme can rely on Tardos’ code

and, in addition to bring constant size ciphertexts, also allows decoders of size O(c2 log(N/ε))

even when considering pirate decoders with high error rates δ.

2 Tardos’ collusion secure codes

Fingerprinting with collusion secure codes allows to uniquely identify a digital document

among several copies of it by embedding a fingerprint (a codeword). Such an identification

scheme must be resilient to collusions of traitors trying to remove their fingerprints so as

to escape identification. Therefore, collusion secure codes share some properties with traitor



tracing; However, the main assumption here (called the marking assumption) is that the

traitors from a coalition are only able to identify the positions where the digits from their

respective codewords differ; Such positions are called detectable positions. This assumption

especially makes sense when fingerprinting data: apart from the codewords, the documents

are identical, and it is easy to uncover places where two copies of a document differ.

Among the first collusion secure codes are the identifiable parent property (IPP) codes

introduced in [8]; However, these codes are defined over large alphabets and are resilient

in a restricted attack model. The marking assumption and a way to construct randomized

collusion secure codes has first been proposed by Boneh and Shaw in [6]; The length of the

codewords is O(N3 log(N/ε)) for fully-collusion resistant codes and O(c4 log(N/ε)) for codes

resisting coalitions of at most c traitors. Tardos later introduced a new construction in [33]

and proved that the size of its codewords is optimal: a length of O(c2 log(N/ε)) is enough

to resist coalitions of at most c traitors 3. This obviously gives fully-collusion secure codes

of length O(N2 log(N/ε)).

2.1 Tardos’ construction

We now briefly describe the generation of a Tardos collusion secure code as proposed in [33].

We additionally describe the associated tracing procedure.

Code generation. In order to generate a code for N users that resists to c-collusions,

set the length ` = 100c2 log(Nε ) where ε is the false-positive error probability (that is, the

probability that an innocent user is accused) of the tracing algorithm and randomly draw a

sequence of probabilities pi as follows:

pi = sin2(ri), i ∈ J1, ` K (1)

where ri is randomly drawn from [t, π/2−t] and 0 < t < π/4 is chosen so that 300 c sin2 t = 1.

Each binary codeword w of the code is then constructed by choosing its i-th digit to be

either ‘1’ or ‘0’ according to the probability pi, that is: Pr[wi = 1] = pi.

Tracing procedure. The authority traces a subset of the traitors from a coalition (of at

most c traitors) that has produced some binary word v by computing an accusation sum Zw
for each possible codeword w via:

Zw =
∑̀
i=1

vi ·
(
w̄i

√
1− pi
pi

+ (w̄i − 1)

√
pi

1− pi

)
,

where w̄i is the bit wi viewed as an integer. Then, users corresponding to codewords w

such that Zw > 20 c log(Nε ) are declared as traitors. Tardos proves that the probability of

false-negative alarms (that is, the probability that no traitor is found) is then εc/4.

2.2 Note about the marking assumption

Here we make some basic remark that will be used later on in this paper. Think about

Tardos’ code as a matrix containing the codewords in its rows. We note that the columns in

3 Update: For a concrete and formal evaluation of the length of the robust Tardos code, we refer

to [22, 3], where it is shown that the length is proportional to c2 log2 c. Consequently, we need to

add a factor of log2 c in our length evaluation in this article.



Tardos’ code are all treated identically: they are generated the same way and contribute to

the accusation sum following the same rule. Moreover, these columns have been generated

independently. This very simple fact allows one to use codewords of bigger length, say, twice

or four times the length of Tardos’ original codewords (i.e. L = 2` or L = 4`) and still

allows to trace the traitors by using any subset of positions of size `. We stress here that

the traitors can make an educated choice of the subset of positions instead of choosing them

randomly. However, even in this case, the resulting set of codeword remains a perfectly valid

instance of Tardos’ code.

This remark is motivated by the usual marking assumption for collusion secure codes.

Indeed, the most commonly used marking assumption is that traitors are able to identify

positions in their code words only where the digits differ: this fits a wide range of settings,

such as watermarking of digital content. However, in the following, we additionally consider

that some of the positions—regardless of the fact that they can be identified or not—might

be deleted by the traitors, so that this position does not hold the original digit anymore.

This issue motivated the introduction of AONT in [16] and the introduction of collusion

secure codes resisting erasure in [31, 4]. However, our above remark shows that expanding

a Tardos’ code of length ` to a length L = 1
β ` allows to cope with collusions of at most

c traitors that are able to delete up to (1− β)L digits from their pirate word, and then fall

back to the classical marking assumption on the untouched subset of βL = ` positions.

3 Traitor tracing schemes from collusion secure codes

3.1 Construction

Building the decoders. The main idea to build the decoder is to use two different set

of keys, viewed as a pair of tables denoted T (0) and T (1), each consisting of L randomly

drawn n-bit elements and to use them to recover u random values k1, . . . , ku broadcasted

(in an encrypted form) to the users in order to derive the corresponding session key SK

from the header for the data encapsulation mechanism: Obviously, the idea of using such a

pair of tables is to allow the embedding of the identity of the user a in her personal decoder:

if Ia is an L-bit string carrying the identity of user a, then we create a table T a specific to

user a by choosing as the i-th element T a[i] the key T (Iai )[i]. (Here, Iai denotes the i-th bit

of the bit string Ia.)

Coming back to the derivation of the session key SK from header, since each decoder

either embeds a key from T (0) or a key from T (1), the above-mentioned values ki must be

encrypted under both of these keys. The derivation of the session key is then performed

from an header = (r1, . . . , ru, z
(0)
1 , z

(1)
1 , . . . , z

(0)
u , z

(1)
u ) where the ri are u randomly chosen

indices from J1, LK and the zi are values obtained by encrypting u randomly chosen n-bit

values k1, . . . , ku using an encryption scheme Ẽ as follows:

∀i ∈ J1, uK, z
(0)
i = ẼT (0)[ri](ki) and z

(1)
i = ẼT (1)[ri](ki) .

Note that the number u of elements of the table T entering in the derivation of the session

key SK also depends on other system parameters in a way that is going to be discussed

later on. A brief description of how these elements fit together into our proposal for an

implementation of the function FK to be used in our key encapsulation mechanism within

each decoder is given in Figure 1.
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Fig. 1. The header is made of the values ri, z
(0)
i and z

(1)
i and the decoder of user a has access to

table T a. Using its bit string Ia, user a selects the correct values zi to be decrypted: here, user a

selects z
(0)
1 , z

(1)
2 , . . . , z

(1)
i , . . . , z

(0)
u . User a then decrypts these values with the corresponding keys

T a[k1], . . . , T a[ku] from table T a. The decrypted keys k1, . . . , ku are further combined together to

form the session key SK = k1 ⊕ · · · ⊕ ku.

Then, the data encapsulation mechanism is implemented as:

Encryption of M by broadcaster:

1. Draw (r1, r2, . . . , ru) from J1, LKu randomly;

2. Draw u elements k1, k2, . . . , ku from {0, 1}n randomly;

3. Encrypt the random values ki as z
(0)
i = ẼT (0)[ri](ki) and z

(1)
i = ẼT (1)[ri](ki), for i ∈ J1, uK;

4. Set header = (r1, . . . , ru; z
(0)
1 , z

(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z

(1)
u );

5. Derive the session key as SK = k1 ⊕ k2 ⊕ · · · ⊕ ku;

6. Encrypt M with the underlying encryption algorithm E and the secret key SK: C =

ESK(M);

7. Output the ciphertext E′(M) = (header, C).

Decryption of (header, C) in decoders:

1. Extract r1, . . . , ru from header;

2. Depending on the value Iai of the i-th bit of the user’s identifying string Ia, compute

ki = D̃Ta[ri]

(
z
(Iai )
i

)
∀i ∈ J1, uK .

3. Derive the temporary secret key SK = k1 ⊕ k2 ⊕ · · · ⊕ ku;

4. Use the underlying decryption algorithm to decrypt C with SK: M = DSK(C);

5. Output the plaintext D′(C) = M .



Pirate decoders. A pirate decoder is only required to decrypt valid ciphertexts with some

probability τ . This is meant to take into account the case of coalitions of pirates dropping

some of the secrets required to decrypt so as to help concealing their identity, which is highly

critical in the setting of decoders based on collusion secure codes.

The tracing procedure. There are two main types of decoders: stateless decoders and

stateful decoders. Stateless decoders do not record information between two decryption at-

tempts whereas stateful decoders might memorize some information in order to help escaping

the tracing procedure. We first describe a procedure against stateless decoders.

Our tracing procedure is derived from the general black-box tracing strategy for stateless

decoders described in [9]: In order to decide if the decoder embeds the key T (0)[r] or the

key T (1)[r] for some position r, the tracer provides the information to derive SK only for one

of the key, that is, broadcasts ẼT (0)[r](k1) and ẼT (1)[r](0); Therefore, if the decoder decrypts

correctly this (invalid) ciphertext, the tracer deduces that the decoder knows T (0)[r].

Our tracing procedure also heavily relies on the property that the pirate decoders always

embed at least ` digits that have been produced through the classical marking assumption

(traitors can only put unreadable digits on detectable positions, the other positions are

untouched) where ` is the required length for Tardos’ code to be secure. We give sufficient

conditions on the parameters u and β for this property to hold in Theorem 2 of the next

paragraph.

We first describe the tracing procedure for u = 1. In this case, header only consists of

three values (r, z0, z1) where D̃T 0[r] = D̃T 1[r]. We call a 0-invalid header a header (r, z0, ∗)
produced from a valid header (r, z0, z1) by replacing z1 by a randomly chosen value ‘*’ and

similarly call (r, ∗, z1) a 1-invalid header. One can easily detect if the cell r of a decoder is

coming from T (0)[r], T (1)[r] is unreadable or is wrong/erased; as noted previously, the ability

to decide between unreadable cells (i.e. where the decoder knows the two possible keys) and

the wrong/erased cells (i.e. where the decoder knows none of the keys) is fundamental to

the tracing procedure. In order to distinguish these two types of positions, just follow the

procedure:

– Input a number L/τ of valid headers with randomly chosen positions r (where τ is the

decryption threshold of the decoder); every possible position therefore occurs τ−1 times

on the average. Every position for which the decoder decrypted at least once, is declared

an inhabited position. (Thus, inhabited position are the positions r for which the tracer

knows for sure that the decoder embeds at least one of the values T (0)[r], T (1)[r].)

– For every inhabited position r, input a number τ−1 of 0/1-invalid headers. As soon as

the decoder correctly decrypts a b-invalid header, deduce that cell r is coming from

table T (b). If the decoder never decrypts b-invalid headers, deduce that the position r

corresponds to a detectable position in the collusion secure code, that is, assume that

the decoder knows both T (0)[r] and T (1)[r] and call this position an unveiled position.

(Note that the above procedure declares a position r to be ‘0’, ‘1’, or unveiled even though

the pirate decoder refused to use the corresponding key T (i)[r] all of the time but once, i.e.

used a probabilistic strategy to hide its choices.) Since the pirate decoder embeds at least

` digits (either from detectable positions or untouched from the traitors’ original codewords)

we are able to trace the traitors by applying Tardos’ tracing procedure to these ` positions

as explained in Section 2.



This procedure naturally extends to the case of u > 1. Remember that the pirate decoder

must decrypt correctly with probability greater than the threshold τ the well formed headers.

Therefore, for τ−1L choices of the u-tuples, the tracer knows about every inhabited position

(each time the decoder refuses to decrypt during this first phase no assumption is made,

but when the decoder decrypts, u inhabited positions are learnt). Then, for every inhabited

position r, the tracer considers 0/1-invalid headers corresponding to position r and chooses

the remaining u−1 positions among the set of inhabited positions (discovered in the previous

phase) randomly; the type (‘0’, ‘1’, or unveiled) of position r is then determined as in the

case u = 1 and the tracing procedure ends as before.

It is also possible to trace stateful decoders. Indeed, Kiayias and Yung proposed in [15]

a generic strategy to convert a tracing procedure against stateless decoders into a tracing

procedure against stateful decoders by using two versions of the plaintext watermarked

differently. This strategy can be applied with a slight modification of our scheme: instead

of encrypting k1 under T (0)[r1] and T (1)[r1], the broadcaster encrypts k1 under T (0)[r1]

and k̃1 under T (1)[r1]; Then instead of ESK(M), the broadcaster encrypts the plaintext

watermarked in two different ways M1 and M2 under SK = k1 ⊕ k2 ⊕ · · · ⊕ ku and under

S̃K = k̃1 ⊕ k2 ⊕ · · · ⊕ ku respectively, that is, provides ESK(M1) and E
S̃K

(M2).

3.2 Security

In this paragraph we provide two results. The first one, given by Theorem 1, is that the

encryption scheme we propose is secure. The second one is that our proposed implementation

of the decoders is indeed resistant to coalitions of at most c-traitors and is given in Theorem 2.

Semantic security of a symmetric encryption scheme The semantic security of a

symmetric encryption SKE = (KeyGen, Enc, Dec) is defined as follows:

Definition 1. Let A be an adversary against SKE and λ be some security parameter. The

adversary A chooses two messages, m0 and m1, of equal length, and gives them to an en-

cryption oracle. The key generation KeyGen(λ) generates a random key K, draws a random

value σ ∈ {0, 1}, and encrypts the corresponding message mσ using the key K. The result-

ing ciphertext c? = EncK(mσ) is then provided to the adversary A. Finally, the adversary

outputs σ̂ ∈ {0, 1}. We define the advantage of A against SKE to be

AdvSKEA (λ) =
∣∣∣Pr [σ = σ̂]− 1

2

∣∣∣
in the above attack game. We also define AdvSKE(λ) as the maximum of all advantages

AdvSKEA (λ) for all probabilistic, polynomial-time machines A. We say that SKE is seman-

tically secure if AdvSKE(λ) is negligibly for a security level λ.

Theorem 1. Assume that the encryption schemes (Ẽ, D̃) and (E,D) are semantically se-

cure. Let us assume that adversaries know for a fraction of at most 2α positions the corre-

sponding entry from at least one of the two tables T (0) and T (1), and let u(λ) be chosen so

that πu(λ) =
(
αL
u

)
/
(
L
u

)
is negligible for the security level λ. Then

AdvE
′
(λ) ≤ πu(λ) + 2AdvẼ(λ) + AdvE(λ)

and thus (E′, D′) is semantically secure against the above adversaries.



Proof. First, note that for each choice of the tuple of indices r1, r2, . . . , ru, either the adver-

sary knows at least one value in every of the u pairs (T (0)[r1], T (1)[r1]), . . . , (T (0)[ru], T (1)[ru]),

or she does not know T (0)[ri] and T (1)[ri] for at least one index ri among r1, . . . , ru. The first

case happens at most πu =
(
αL
u

)
/
(
L
u

)
of the times over the random choices of r1, . . . , ru. In the

other case, we can assume without loss of generality that the adversary A knows the u−1 re-

maining indices and (by renaming the indices) that the unknown values correspond to r1,

that is she does not know T (0)[r1] nor T (0)[r1]. Let us note s0 = T (0)[r1] and s1 = T (1)[r1].

As the keys to encrypt k2, . . . , ku are known to the adversary, the encryption of a message m

of E′ can be expressed, under the adversary’s view, as
(
Ẽs0(k1), Ẽs1(k1), k2, . . . ku, ESK(m)

)
,

where SK = k1 ⊕ k2 ⊕ · · · ⊕ ku. Let κ = k2 ⊕ · · · ⊕ ku so that SK = k1 ⊕ κ.

We now wish to bound the advantage of the adversary in breaking (E′, D′). To this end,

let Game0 be the original attack game played by the adversary A against (E′, D′). We denote

by ψ = (e?0, e
?
1, k

?
2 , . . . , k

?
u, c

?) the target ciphertext, we denote by σ the hidden bit generated

by the encryption oracle, and we let σ̂ be the bit outputted by A. Let T0 be the event where

σ = σ̂ . Also, let k?1 denote the underlying message corresponding to the ciphertexts e?0, e?1
and SK? denote the symmetric key used to encrypt mσ, that is: e?0 = Ẽs0(k?1), e?1 = Ẽs1(k?1),

and c? = ESK(mσ).

We also define a modified game Game1 which behaves just like game G1, except that

a completely random symmetric key SK+ is used in place of the key SK?. Let T1 be the

event that σ = σ̂ in this game Game1.

It is straightforward to see that there is an oracle query machine A1, whose running time

is essentially the same as that of A, such that:∣∣Pr[T1]− Pr[T0]
∣∣ ≤ 2AdvẼA1

(λ) . (2)

Indeed, the adversary A1 just uses adversary A to play two independent games against Ẽ:

one under the key s0 and another under the key s1. In the attack games that A1 are playing

against Ẽ, the challenged message kx1 is equal to SK? ⊕ k?2 ⊕ · · · ⊕ k?u in game Game0, and

is equal to SK+ ⊕ k?2 ⊕ · · · ⊕ k?u in game Game1.

Finally, we observe that in this modified game Game1, the key SK+ is used to encrypt

message mσ and does not play any other role. Thus, in game Game1, the adversary A is

essentially carrying out an attack against E:∣∣∣∣Pr[T1]− 1

2

∣∣∣ ≤ AdvE(λ) . (3)

By combining Eq. (2) and Eq. (3) in the case where the adversary lacks at least one pair,

we get:

AdvE
′
(λ) ≤ πu(λ) + (1− πu)

(
2AdvẼ(λ) + AdvE(λ)

)
which proves the theorem. ut

An immediate corollary of the previous theorem is that the encryption scheme prevents

an attacker from dropping too many cells of its pirate decoder without dramatically dropping

its probability of correctly decrypting. The following theorem in turn shows that this can

be exploited to rely on the collusion secure code to trace at least one of the traitors.



Theorem 2. Consider our construction for a traitor tracing scheme given in Sec. 3.1 with

master tables T (0), T (1) of n-bit cells and length L, a number u of keys ki, and where the

identifying strings are taken from the c-collusion secure code for N users derived from Tar-

dos’ fingerprinting scheme such as explained in Sec. 2, that is of size L = 100
β c2 log

(
N
ε

)
. We

claim that no coalition of less than c traitors can produce a pirate decoder with a decryption

probability greater than 2−t that can not be traced to at least one of the traitors as soon as

β and u are chosen so that: (
βL

u

)
≤ 2−t

(
L

u

)
. (4)

Proof. The idea of the proof is as follows: for the underlying fingerprint code to work, we

need to ensure that at least (say) one fourth of the cells of the tables has to be kept. Forcing

the pirate decoder to embed this number of cells to be able to decrypt correctly can be

achieved by increasing the number u of required cells to derive the session key SK.

First of all, note that for a cell from the table TP of the pirate decoder to be useful to

the pirate, more than n− t bits must be exact. (The remaining t bits can be guessed on the

fly for a price of at most 2−t, but more than t unknown bits would be too costly.) Therefore,

either the pirate decoder stores n− t bits or more of some cell (and thus the corresponding

bit from the fingerprinting code can be deduced) or the decoder stores less than n − t bits

of the cell (and thus it is useless for the derivation of the session key).

From the above we deduce that we can assume that only a certain fraction 0 < α ≤ 1 of

the cells of the table are kept in the pirate decoder. Now the probability that the decoder is

able to decrypt correctly is: πu =
(
αL
u

)
/
(
L
u

)
, so that the pirate decoder can not decrypt with

probability higher than 2−t by the hypothesis made at Eq. 4 if α < β. Therefore the pirate

decoder embeds more than βL digits and since the underlying Tardos’ fingerprint code of

length L has been expanded to 100
β c2 log

(
N
ε

)
, there remains 100c2 log

(
N
ε

)
digits in the pirate

word which allows Tardos’ tracing algorithm to output a list of traitors as usual. ut

3.3 Efficiency and sample parameters

We now propose a set of parameters for a sample implementation with the AES as the

underlying encryption schemes (E,D) and (Ẽ, D̃). The key size is therefore chosen to be

n = 128. For a number of users N = 230, setting β = 1
2 , and considering coalitions of at

most c = 100 traitors, the expanded code has length L ' 224, and Theorem 2 gives the

following data:

2−t = 10
100 2−t = 1

100 2−t = 1
1000

u 4 7 10

4 Conclusion

The long series of work about traitor tracing schemes based on collusion secure codes shows

that they can provide many interesting properties such as constant size ciphertexts, black-

box tracing procedures against stateful (and possibly high error rate) pirate decoders. In

contrast, the intriguing question of whether achieving trace and revoke capabilities is possible

or not remains open.
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