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Abstract. Strong security notions often introduce strong constraints on the construction of cryptographic
schemes: semantic security implies probabilistic encryption, while the resistance to existential forgeries requires
redundancy in signature schemes. Some paddings have thus been designed in order to provide these minimal
requirements to each of them, in order to achieve secure primitives.
A few years ago, Coron et al. suggested the design of a common construction, a universal padding, which
one could apply for both encryption and signature. As a consequence, such a padding has to introduce both
randomness and redundancy, which does not lead to an optimal encryption nor an optimal signature.
In this paper, we refine this notion of universal padding, in which a part can be either a random string in
order to introduce randomness or a zero-constant string in order to introduce some redundancy. This helps us
to build, with a unique padding, optimal encryption and optimal signature: first, in the random-permutation
model, and then in the random-oracle model. In both cases, we study the concrete sizes of the parameters, for
a specific security level: The former achieves an optimal bandwidth.

1 Introduction

When one deals with public-key encryption, chosen-ciphertext security [23] is by now the basic required se-
curity notion. Similarly, for signatures, resistance to existential forgeries against adaptive chosen-message
attacks [10] is also the minimal requirement. But strong security is not enough, it has to be achieved in
an efficient way, according to various criteria: time, bandwidth, but also size of the code.

The first two above criteria are the most usual goals, and improvements are continuously proposed.
When dealing with public-key cryptography, one can indeed note that fast paddings have been proposed
for encryption [3, 19] and signature [4]. About the bandwidth, Phan and Pointcheval recently addressed
this problem for encryption [21, 22], and proposed an optimal padding, w.r.t. this criteria, by avoiding
redundancy. Most signatures with message-recovery [18, 16, 4] improve the bandwidth, but these solutions
are not optimal, since redundancy and randomization are always added. The notable exception is the
recent idea of Katz and Wang, that achieves tight security by using FDH, but also PSS-R, constructions [4]
with only one additional bit, that is not random but dependent on the message [13].

The last criteria has been more recently considered, by Coron, Joye, Naccache and Paillier [5], with
the so-called notion of universal paddings: the code size is reduced by using a common padding for both
encryption and signature. For such a goal, they used a variant of PSS, called PSS-ES. Other solutions
have thereafter been proposed, including those of Komano and Ohta [14]. But in all these constructions,
the resulting encryption contains redundancy, and the signature is probabilistic.

1.1 Contribution

In this paper, we address this problem of efficiency, trying to optimize the three above criteria at the same
time: for a time-efficient construction, we consider simple paddings; for a good bandwidth, we extend the
work of [21, 22], by avoiding not only redundancy in encryption, but also randomization in signatures;
additionally, we use the idea of the Katz-Wang construction [13] in order to achieve tight security in
signature. Finally, about the size of the code, we optimize the common parts in the two paddings (for
signature and encryption), by giving a relaxed version of universal padding. Furthermore, we analyze the
security of these paddings, to be used for both encryption and signature, but in the extreme case where
the same primitive (trapdoor one-way permutation which might optionally be assumed claw-free) is used
for encryption and signature, at the same time, as already suggested in [12]: the same public/private key
pair is used for encryption and signature.

c© Springer-Verlag 2005.



2

More precisely, we study two paddings with the above universal property. The first one is based on
the Full-Domain Permutation construction, studied in [11] for signature and in [21], for encryption, which
can be proved optimal with the three above criteria in the random-permutation model. Hence the name of
Optimal Permutation-based Padding (OPbP). Then, we also review the OAEP 3-rounds construction [21,
22] (OAEP3r), in the random-oracle model [2].

1.2 Redundancy and Randomness

A basic requirement for encryption, to achieve semantic security, is a probabilistic mechanism which
is necessary to make distributions of ciphertexts indistinguishable. But until recently, chosen-ciphertext
security was thought to furthermore imply redundancy in the ciphertext (for a kind of proof of knowl-
edge/awareness of the plaintext [3, 1, 6].) However, this was not mandatory [21, 22], at least in the random-
oracle model and in the ideal-cipher model. Existence of such schemes in the standard model is still an
open problem.

Similarly, for signature, to prevent forgeries, some redundancy in the message-signature pair (or unique
string in case of message-recovery feature) is required, which should be hard to satisfy without the signing
key. But most of the signature schemes are probabilistic [25, 17, 4, 7], while it is not necessary (e.g. the
FDH-signature, but with loose security). Recently, Katz and Wang proved that it was possible to achieve
tight security with a deterministic construction very close to FDH-signature or PSS-R, by adding a single
bit that is not random but dependent on the message [13]. More precisely, this additional bit should be
not predictable by anyone else than the signer, and so Katz and Wang proposed that it results from a
PRF computation.

1.3 Universal Paddings

The goal of universal padding is to design a padding which can not only be applied for signature and
for encryption independently, but for both at the same time, with the same user’s keys: the public key is
used for both encryption and verification, while the private key is used for both decryption and signature.

In the security model, the adversaries (against either semantic security or existential unforgeability)
are given access to both the signing and decryption oracles, which is not the security scenario considered
when one deals with encryption and signature, independently. The decryption oracle may indeed help to
forge signatures, and vice-versa.

2 Security Model

2.1 Signature Schemes

Digital signature schemes are the electronic version of handwritten signatures for digital documents: a
user’s signature on a message m is a string which depends on m, on public and secret data specific to
the user and —possibly— on randomly chosen data, in such a way that anyone can check the validity of
the signature by using public data only. In this section, we briefly review the main security notions [10].

Definitions. A signature scheme S = (K,S,V) is defined by the three following algorithms:

– The key generation algorithm K. On input 1k, which is a formal notation for a machine with running
time polynomial in k (1k is indeed k in basis 1), the algorithm K produces a pair (pk, sk) of matching
public and private keys. Algorithm K is probabilistic. The input k is called the security parameter.
The sizes of the keys, or of any problem involved in the cryptographic scheme, will depend on it, in
order to achieve an appropriate security level (the expected minimal time complexity of any attack).

– The signing algorithm S. Given a message m and a pair of matching public and private keys (pk, sk)
S produces a signature σ. The signing algorithm might be probabilistic.

– The verification algorithm V. Given a signature σ, a message m, or just a part (possibly empty), and
a public key pk, V possibly extracts the full message m and tests whether σ is a valid signature of m
with respect to pk. In general, the verification algorithm need not be probabilistic.
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Forgeries and Attacks. The simpler goal for an adversary is to build a new acceptable message-
signature pair. This is called existential forgery. The corresponding security level is called existential
unforgeability (EUF). On the other hand, the strongest scenario one usually considers is the so-called
adaptive chosen-message attack (CMA), where the attacker can ask the signer to sign any message of
its choice, in an adaptive way: it can adapt its queries according to previous answers. When signature
generation is not deterministic, there may be several signatures corresponding to a given message. And
then the notion of existential forgery may be ambiguous [26]: the original definition [10] says the adversary
wins if it manages to forge a signature for a new message. Non-malleability [26] says the adversary wins
if it manages to forge a new signature.

Thereafter, the security notion one wants to achieve is (at least) the resistance to existential forg-
eries under adaptive chosen-message attacks (EUF/CMA): one wants that the success probability of any
adversary A with a reasonable time is small, where

Succ
euf/cma

S (A) = Pr
[

(pk, sk)← K(1k), (m,σ)← ASsk(pk) : V(pk,m, σ) = 1
]

.

2.2 Public-Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the public key of Alice to
send her a message that she will be the only one able to recover, granted her private key.

Definitions. A public-key encryption scheme S = (K, E ,D) is defined by the three following algorithms:

– The key generation algorithm K. On input 1k where k is the security parameter, the algorithm K
produces a pair (pk, sk) of matching public and private keys. Algorithm K is probabilistic.

– The encryption algorithm E . Given a message m and a public key pk, E produces a ciphertext c of
m. This algorithm may be probabilistic. In the latter case, we write Epk(m; r) where r is the random
input to E .

– The decryption algorithm D. Given a ciphertext c and the private key sk, Dsk(c) gives back the
plaintext m. This algorithm is necessarily deterministic.

Security Notions. The most widely admitted goal of an adversary is the distinction of ciphertexts
(IND). One thus wants to make it unable to distinguish between two messages, chosen by the adversary,
which one has been encrypted, with a probability significantly better than one half. On the other hand,
an attacker can play many kinds of attacks. The strongest scenario consists in giving a full access to
the decryption oracle, which on any ciphertext answers the corresponding plaintext. There is of course
the natural restriction not to ask the challenge ciphertext to that oracle. This scenario which allows
adaptively chosen ciphertexts as queries to the decryption oracle is named the chosen-ciphertext attack

(CCA). Therefore, for any adversary A, seen as a 2-stage attacker (A1,A2), its advantage Adv
ind/cca

S (A)
should be negligible, where

Adv
ind/cca

S (A) = 2× Pr
b,r

[

(pk, sk)← K(1k), (m0,m1, s)← A
Dsk

1 (pk),

c = Epk(mb; r) : ADsk

2 (m0,m1, s, c) = b

]

− 1.

2.3 Signature and Encryption

As already noticed, our motivation is to design a unified padding which one could use for both encryption
and signature at the same time, and furthermore with the same asymmetric primitive. The goals of an
adversary are thus the same as above: build an existential forgery (EUF) against the signature scheme, or
distinguish ciphertexts (IND) against the encryption scheme. However, the means are the combination of
the above attacks: it has access to both the signing oracle and the decryption oracle in a fully adaptive
way, hence the CMA + CCA notation.
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2.4 Claw-Free Permutations

In [13], Katz and Wang has shown that, by using trapdoor permutations induced by claw-free permu-
tations, one can obtain a variant of FDH (just adding one more bit) with tight reduction. We can also
use this technique for our construction. The existence of claw-free permutations seems be reasonable. In
fact, any random self-reducible permutation can be seen as a trapdoor permutations induced by claw-free
permutations [8] and almost all known examples of trapdoor permutations are self-reducible.

Definition 1 (Claw-Free Permutations). A family of claw-free permutations is a tuple of algorithms
{Gen; fi; gi|i ∈ I} for an index set I such that:

– Gen outputs a random index i and a trapdoor td.
– fi, gi are both permutations over the same domain Di.
– there is an efficient sampling algorithm which, on index i, outputs a random x ∈ Di.
– f−1

i (the inverse of fi) and g−1
i (the inverse of gi) are both efficiently computable given the trapdoor

td.

A claw is a pair (x0, x1) such that f(x0) = g(x1). Probabilistic algorithm A is said to (t, ε)-break a family
of claw-free permutations if A runs in time at most t and outputs a claw with probability greater than ε:

Pr
[

(i, td)← Gen(1k), (x0, x1)← A(i) : fi(x0) = gi(x1)
]

≥ ε

A family of claw-free permutations is (t, ε)-secure if no algorithm can (t, ε)-break it.

3 Optimal Permutation-based Padding

3.1 Our Optimal Proposal

In the following, we propose a universal padding, based on the construction from [21], in the random-
permutation model. It is optimal both for signing and encrypting, i.e., that uses only 82 bits of randomness
for encrypting and only 82 bits of redundancy for signing. After the description, we show it is indeed
secure, in the random-permutation model. In the next section, we provide another construction, based on
the OAEP-3 rounds construction from the same paper [21], which is secure in the random-oracle model,
but just near optimal (161 bits of overhead instead of 82).

The encryption and signature schemes use a permutation P, that we assume to behave like a truly
random permutation. Let k be a security parameter. Let ϕpk : {0, 1}n → {0, 1}n be a trapdoor one-way
permutation (whose inverse is called ψsk). Messages to sign or to encrypt with our padding function will
be of size ` = n − k − 1. The symbol “‖” denotes the bit-string concatenation and identifies {0, 1}k ×
{0, 1}` × {0, 1} to {0, 1}n. Finally, in the following, PRF%() designs a PRF that uses a secret key %.

The Padding. The padding is quite simple, since it takes as input a single bit γ, the message m and an
additional data r, and OPbP(γ,m, r) = P(γ‖m‖r) = t‖u. Thereafter, the reverse operation is natural:
OPbP−1(t, u) = P−1(t‖u) = γ‖m‖r.

Encryption Algorithm. The space of the plaintexts is M = {0, 1}`, the encryption algorithm uses a
random coin from the set r ∈ R = {0, 1}k, a random bit γ, and outputs a ciphertext c into {0, 1}n: on a
plaintext m ∈M, one computes t‖u = OPbP(γ,m, r) and c = ϕpk(t‖u).

Decryption Algorithm. On a ciphertext c, one first computes t‖u = ψsk(c), where t ∈ {0, 1}k and
u ∈ {0, 1}`+1, and then γ‖m‖r = OPbP−1(t, u). The answer is m.

Signature Algorithm. The space of the messages isM = {0, 1}`, the signature algorithm outputs a sig-
nature σ into {0, 1}n: on a message m ∈M, one computes γ = PRF%(m), and then t‖u = OPbP(γ,m, 0k)
and σ = ψsk(t‖u).



5

Verification Algorithm. On a signature σ, one first computes t‖u = ϕpk(σ), where t ∈ {0, 1}k and
u ∈ {0, 1}`+1, and then γ‖m‖r = OPbP−1(t, u). If r = 0k, the verification outputs “Correct” and recovers
m, otherwise outputs “Incorrect”.

3.2 Security Analysis

A variant of this padding has already been proved to lead to an IND/CCA secure encryption scheme [21],
and to a EUF/CMA signature scheme [11], in the random-permutation model. However, there was not the
additional bit of Katz and Wang, that just makes more randomness in the encryption. Here, we extend
these results to IND/CMA + CCA and EUF/CMA + CCA:

Theorem 2. Let A and B be both chosen-ciphertext (to the decryption oracle) and chosen-message (to
the signing oracle) adversaries, against the encryption scheme (IND) and the signature scheme (EUF)
respectively. Let us assume that A can break the semantic security with an advantage εE, or B can
produce an existential forgery with success probability εS (within a time bound t, after qp, qs, qd queries
to the permutation oracles, signing oracle and decryption oracle respectively.) Then the permutation ϕpk

can be inverted with probability ε′ within time t′ where either:

ε′ ≥ εE −
(qp + qd + qs + 1)2

2k+`+1
−

(qd + 1)2

2`
−

2qp + qd + qs + 2

2k
, or

ε′ ≥
1

qp + qs + 1
·

(

εS −
(qp + qd + qs + 1)2

2k+`+1
−

(qd + 1)2

2`
−

2qp + qd + qs + 2

2k

)

.

Particularly, if the function ϕpk is induced by a (t′, ε′)-secure claw-free permutation, the latter can be
rewritten by:

ε′ ≥
1

2

(

εS −
(qp + qd + qs + 1)2

2k+`+1
−

(qd + 1)2

2`
−

2qp + qd + qs + 2

2k

)

where t′ ≤ t+ (qp + qd + qs + 1)Tf , and Tf is the time for an evaluation of ϕpk.

Proof. We provide now the proof of this theorem, with incremental games, to reduce the inversion of the
permutation ϕpk on a random instance y (i.e., find x such that y = ϕpk(x)) to an attack against either
the encryption or the signature. We show that either A or B can help us to invert ϕpk.

Some parts of this proof are similar to [21]. We anyway provide the proof without the similar parts.

Game G0: This is the attack game, in the random-permutation model. Several oracles are thus available
to the adversary: two random permutation oracles (P and P−1), the signing oracle Ssk, and the decryption
oracle Dsk.

To break the encryption, the adversary A = (A1, A2) runs its attack in two steps. First, A1 is given
the public key pk, and outputs a pair of messages (m0,m1). Next a challenge ciphertext is produced by
the challenger, which flips a coin b and computes a ciphertext c? of m? = mb. This ciphertext comes from

a random r? R
← {0, 1}k , a bit γ? and c? = E(γ?,mb, r

?) = ϕpk(P(γ?,mb, r
?)). In the second step, on input

c?, A2 outputs a bit b′. We denote by Dist0 the event b′ = b and use the same notation Distn in any game
Gn.

To break the signature, the adversary B outputs its forgery, one checks whether it is actually valid
or not. We denote by Forge0 the event this forged signature is valid and use the same notation Forgen in
any game Gn.

Note that the adversary is given access to the signing oracle Ssk and the decryption oracle Dsk at
any time during the attack. Note also that if the adversary asks qd queries to the decryption oracle, qs

queries to the signing oracle and qp queries to the permutation oracles, at most qd + qs + qp + 1 queries
are asked to the permutation oracles during this game, since each decryption query or signing query may
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make such a new query, and the last verification step or the challenger step does too. By definition,

εE = Adv
ind/cma+cca

OPbP (A) = Pr[Dist0]− 1/2.

εS = Succ
euf/cma+cca

OPbP (B) = Pr[Forge0].

We skip the easy steps, similar to [21] for the encryption part, and to [4] for the signature. Details
can be found in the appendix A, which leads to the simulation in the game G8 presented in Figure 1,
which is statistically indistinguishable from the initial one since the distance is bounded by:

∆G ≤
(qp + qd + qs + 1)2

2k+`+1
+

(qd + 1)2

2`
+

2qp + qd + qs + 2

2k
.

In the following, depending on the goal of the adversary, namely against encryption or against signa-
ture, we complete the reduction to the inversion of the function ψsk on the given instance y.

Encryption attack.

Game G8.1: We suppress the element (γ?,m?, r?,⊥,⊥, c?) from P-List during the generation of the
challenge.

IRule ChalAdd(8.1)

Do nothing.

The two games G8.1 and G8 are perfectly indistinguishable unless (γ?,m?, r?) is asked for P (which
event is included in event BadP8.1, already excluded) or p? = ψsk(c

?) is asked to P−1. We define the
latter event AskInvP8.1. We have: ∆8.1 ≤ Pr[AskInvP8.1]. Since (γ?,m?, r?,⊥,⊥, c?) does not appear in
P-List, the adversary receives answers which are perfectly independent of the latter, and therefore, it has
no advantage for guessing b:

Pr[Dist8.1] =
1

2
.

Game G8.2: Instead of choosing c? = ϕpk(p
?), we choose c? = y, uniformly at random.

IRule Chal(8.2)

c? = y.

So, one implicitly defines p? = ψsk(y). Since the tuple (γ?,m?, r?,⊥,⊥, c?) is not used anywhere in the
simulation, the two games G8.2 and G8.1 are perfectly indistinguishable: ∆8.2 = 0.

Finally, it is clear that when the event AskInvP8.2 happens, one can easily compute ψsk on y: with
a look up into P-List (which contains at most qp + qd + qs + 1 elements), one can extract p such that
y = ϕpk(p). Therefore, Pr[AskInvP8.2] ≤ Succow

ϕ (t′), where Tϕ is the time for evaluating ϕpk, and t′ ≤
t+ (qp + qd + qs + 1)× Tϕ is the running time of the simulation in the current game. This completes the
first part of the proof.

Signature attack (general case).

Game G8.1: In the following, we number calls to the permutation oracle, but only those which are of
the form (γ, ?, 0k), which are those that are used for signature. We define a variable ν which is initialized
to 0.

IRule EvalP(8.1)
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P

-O
ra

cl
e A query P(γ,m, r) is answered by p, where

IRule EvalP(8)

– Look for (γ,m, r, α, β, c) in P-List:
• if the record is found,

∗ if α 6= ⊥, p = α;
∗ otherwise, Stop.

• otherwise, choose a random element s ∈ {0, 1}n and computes p = ϕpk(s). The record
(γ,m, r, p, s, ϕpk(p)) is added to P-List.

Furthermore, if (γ,m, r) is a direct query from the adversary to P, store the record (γ,m, r, p,⊥, ϕpk(p)) in
P-List.

P
−

1
-O

ra
cl

e A query P−1(p) is answered by (γ,m, r), where

IRule InvP(8)

Compute c = ϕpk(p) and look for (γ,m, r, α, β, c) in P-List:

– if the record is found, (γ,m, r) is defined,
– otherwise we randomly choose (γ,m, r) in {0, 1}n. If r = 0k, Stop.

Furthermore, if p a direct query from the adversary to P−1, store the record (γ,m, r, p,⊥, ϕpk(p)) in P-List.

D
-O

ra
cl

e A query Dsk(c) is answered by m, where

IRule D(8)

Look for (γ,m, r, α, β, c) in P-List:

1. if the record is found, (γ,m, r) is defined,
2. otherwise we randomly choose (γ,m, r) in {0, 1}n.

Store (γ,m, r,⊥,⊥, c) in P-List.

S
-O

ra
cl

e For a sign-query Ssk(m), one first computes γ = PRF%(m), then asks for p = P(γ,m, 0k) to the EvalP-oracle.
The signature σ is then defined according to the following rule:

IRule S(8)

Look for (γ,m, 0k, p, s, c) in P-List, and set σ = s.

C
h
a
ll
en

g
er

For two messages (m0,m1), flip coins γ? and b, set m? = mb, and randomly choose r?.

IRule Chal(8)

p? = P(γ?,m?, r?); c? = ϕpk(p
?).

IRule ChalAdd(8)

Add (γ?,m?, r?,⊥,⊥, c?) in P-List.

Answer c?

V
-O

ra
cl

e The game ends with the verification of the output (σ) from the adversary. One first computes t‖u = ϕpk(σ), then
asks for (γ,m, r) = P−1(t‖u). Then he checks whether r = 0k, in which case the signature is a valid signature
of m.

Fig. 1. Simulation in the Game G8
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Look for (γ,m, r, α, β, c) in P-List:

– if the record is found,
• if α 6= ⊥, p = α;
• otherwise, Stop.

– otherwise,
• if r = 0k, increment ν
• choose a random element s ∈ {0, 1}n and computes p = ϕpk(s). The record

(γ,m, r, p, s, ϕpk(p)) is added to P-List.

Clearly, this leaves the game indistinguishable from the game G8: ∆8.1 = 0.

Game G8.2: Since the verification process is included in the attack game, the output message is
necessarily asked to the permutation oracle EvalP. Let us guess the index ν0 of this (first) query. If the
guess failed, we abort the game. Therefore, only a correct guess (event GoodGuess) may lead to a success.

Pr[Forge8.2] = Pr[Forge8.1 ∧ GoodGuess] = Pr[Forge8.1 |GoodGuess]× Pr[GoodGuess]

≥ Pr[Forge8.1]×
1

qp + qs + 1
.

Game G8.3: We now incorporate the challenge y to the simulation of the permutation oracle. By this,
we could extract the pre-image x. Our idea is to return y as the value of the guessed ν-th query:

IRule EvalP(8.3)

Look for (γ,m, r, α, β, c) in P-List:

– if the record is found,
• if α 6= ⊥, p = α;
• otherwise, Stop.

– otherwise,
• if r = 0k, increment ν
• if ν 6= ν0 or if r 6= 0k, choose a random element s ∈ {0, 1}n and computes
p = ϕpk(s).

• if ν = ν0 and r = 0k, sets p = y.
• The record (γ,m, r, y, s, ϕpk(p)) is added to P-List.

Because of the random choice for the challenge y, this rule leaves the game indistinguishable from
the previous one: ∆8.3 = 0. It follows that the forgery leads to the pre-image of y: Pr[Forge8.3] =
Succow

ϕ (t+ (qp + qd + qs + 1)Tϕ). This concludes the second part of the proof.

Signature Attack (With (t′, ε′)-Secure Claw-Free Permutations). We assume that (ϕpk, λpk) are
from a (t′, ε′)-secure claw-free permutations family.

Game G8.1: We now exploit the bit γ to the simulation of the permutation oracle, as it was proposed
firstly by Katz and Wang [13]. The idea is to use ϕpk in the OPbP output, for one and only one value of
bit γ, and otherwise use λpk. As this value of γ is not predictable by the attacker, its forgery will, with
a probability 1

2 , produce a claw.

IRule EvalP(8.1)
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Look for (γ,m, r, α, β, c) in P-List:

– if the record is found,
• if α 6= ⊥, p = α;
• otherwise, Stop.

– otherwise,
• if r 6= 0k or γ = PRF%(m), choose a random element s ∈ {0, 1}n and compute
p = ϕpk(s).

• if r = 0k or γ 6= PRF%(m), choose a random element s ∈ {0, 1}n and compute
p = λpk(s).

• The record (m, r, p, s, ϕpk(p)) is added to P-List.

Because of the random choice of s and so λpk(s), this rule leaves the game indistinguishable from the
previous one: ∆8.1 = 0.

Using arguments as in [13], one can easily see that the forgery leads to a claw with probability 1
2 .

In fact, let us assume that the adversary can forge a signature (m̃, σ̃), where (m̃, 0k) has been asked
to the permutation oracle P either in a permutation query or in the verification step. Since the bit
bm̃ = PRF%(m̃) is an unknown random bit in the view of the adversary, with probability of 1

2 , there
exists an element (m̃, r̃, p̃ = λpk(s̃), s̃, ϕpk(p̃)) in the P-List. In that case, the simulator can output a claw
ϕpk(σ̃) = λpk(s̃).

ut

3.3 Proposed Sizes for the Parameters

We say that a scheme achieves a security level of 2κ, if the ratio between the running time t of the
adversary, and its success probability ε, is at least 2κ: this is an approximation of the expected time of
success. Or similarly, we want t/ε ≤ 2−κ, with a usual security bound set with κ = 80.

First, we can simplify the above security result. Indeed, for practical purpose, where ` is the bit-size
of the message, and k is the bit-size of the random/redundancy, the former is expected to be much larger
than the latter: the quantity Q/2`, or even Q2/2`, can be ignored in front of Q/2k (since Q, the global
number of queries is bounded by 280). Therefore, the above reduction cost provides that

εE
t
≤
ε′

t
+

2

2k
and

εS
t
≤
Qε′

t
+

2

2k
in the general case

≤
2ε′

t
+

2

2k
if the function ϕpk is induced by a claw-free permutation

In the latter case (the most interesting case, where one uses RSA) we can assume the message length
sufficiently large (and thus the RSA modulus) so that ε′/t is lower than 2−82. Due to the Lenstra-Verheul’s
estimation [15], for the case of RSA, we can use a 1024-bit modulus.

In the general case, we have to consider that the security parameter (and thus message length `) large
enough such that the ration between ε′/t is lower than 2−161. But then the overhead k = 82 is enough
too.

As a conclusion, for the general case, we can choose k = 82 if the security level of the function ϕ is
about 2161. For the particular case of RSA, we can use a 1024-bit modulus. We remark then that, with
only 82 bits of redundancy, we obtain the same level of security than RSA-PSS [3], which, compared to our
scheme, uses a lowest bandwidth. For the encryption security, we find again the result from [21]: 82 bits
of randomness are enough to achieve semantic security, even under chosen-ciphertext and chosen-message
attacks.
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4 The OAEP-3 Rounds Construction

4.1 Description

In order to work in the more usual random-oracle model [2], we now consider the OAEP-3 rounds
construction proposed in [21, 22]. As above, the security of this padding has already been studied for
encryption, but without giving access to the signing oracle to the adversary. We thus extend the security
model to deal with the two oracles access.

The encryption and signature schemes use three hash functions: F , G, H (assumed to behave like
random oracles in the security analysis) where the security parameters satisfy n = k + `+ 1:

F : {0, 1}k → {0, 1}`+1 G : {0, 1}`+1 → {0, 1}k H : {0, 1}k → {0, 1}`+1.

The encryption and signature schemes use any permutation family (ϕpk)pk on the space {0, 1}n, whose
inverses are respectively denoted ψsk, where sk is the private key associated to the public key pk. The
symbol “‖” denotes the bit-string concatenation and identifies {0, 1}k × {0, 1}` × {0, 1} to {0, 1}n.

Padding OAEP3r and Unpadding OAEP3r−1

OAEP3r(γ,m, r) : s = (γ‖m)⊕F(r) t = r ⊕ G(s) u = s⊕H(t)

OAEP3r(γ,m, r) = t‖u

OAEP3r−1(t, u) : s = u⊕H(t) r = t⊕ G(s) γ‖m = s⊕F(r)

OAEP3r−1(t, u) = γ‖m‖r

Encryption Algorithm. The space of the plaintexts is M = {0, 1}`, the encryption algorithm uses a
random coin from the set r ∈ R = {0, 1}k , a random bit γ and outputs a ciphertext c into {0, 1}n: on a
plaintext m ∈M, one computes t‖u = OAEP3r(γ,m, r) and c = ϕpk(t‖u).

Decryption Algorithm. On a ciphertext c, one first computes t‖u = ψsk(c), where t ∈ {0, 1}k and
u ∈ {0, 1}`+1, and then γ‖m‖r = OAEP3r−1(t, u). The answer is m.

Signature Algorithm. The space of the plaintexts is M = {0, 1}`, the signature algorithm outputs
a signature σ into {0, 1}n: on a plaintext m ∈ M, one computes γ = PRF%(m), then computes t‖u =
OAEP3r(γ,m, 0k) and σ = ψsk(t‖u).

Verification Algorithm. On a signature σ, one first computes t‖u = ϕpk(σ), where t ∈ {0, 1}k and
u ∈ {0, 1}`+1, and then γ‖m‖r = OAEP3r−1(t, u). If r = 0k, the verification outputs “Correct” then
recovers m, otherwise outputs “Incorrect”

4.2 Security Result

We extend the security result from [22] by the following theorem:

Theorem 3. Let A and B be both chosen-ciphertext (to the decryption oracle) and chosen-message (to
the signing oracle) adversaries, against the encryption scheme (IND) and the signature scheme (EUF)
respectively. Let us assume that A can break the semantic security with the advantage εE, or B can
produce an existential forgery with success probability εS (within a time bound t, after qf , qg, qh, qs, qd
queries to the oracles F , G, H, signing oracle and decryption oracle respectively.) Then the permutation
ϕpk can be inverted with probability ε′ within time t′ where either:
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ε′ ≥ εE −

(

q2d ×

(

1

2`+1
+

6

2k

)

+
4qdqg + qg

2`+1
+

5qdqf + qgqh + qf + qd
2k

)

or

ε′ ≥
1

qg + qs + 1
×

(

εS −

(

q2d ×

(

1

2`+1
+

6

2k

)

+
4qdqg + qg

2`+1
+

5qdqf + qgqh + qf + qd
2k

))

Particularly, if the function ϕpk is induced by a (t′, ε′)-secure claw-free permutation, the latter can be
rewritten by:

ε′ ≥
1

2
×

(

εS −

(

q2d ×

(

1

2`+1
+

6

2k

)

+
4qdqg + qg

2`+1
+

5qdqf + qgqh + qf + qd
2k

))

with t′ ≤ t+ (qf + qg + qh + qd)Tlu + q2dTlu + (qd + 1)qgqh(Tϕ + Tlu), where Tϕ is the time complexity for
evaluating any function ϕpk, and Tlu is the time complexity for a look up in a list.

Proof. The full proof can be found in the appendix B. The simulation of the oracles as well as the
simulation of the decryption are similar to the ones in [22]. The simulation of the signature (after all the
oracles are well simulated) is quite the same as in the random-permutation model case. ut

4.3 Proposed Sizes for the Parameters

Using similar arguments as in the previous construction, one can simplify the constraints on the security
parameters:

– For encryption, one has:

εE
t
≤
ε′

t
+
Q

2k
.

Then, k = 161 is enough if the security parameters are large enough (i.e., as soon as ε ′/t < 2−81).

– For signature, in the general case:

εS
t
≤
Qε′

t
+
Q

2k
.

In the general case, k = 161 is also valid, as soon as ε′/t < 2−161.

– For signature, in case the function ϕpk is induced by a claw-free permutation:

εS
t
≤

2ε′

t
+
Q

2k
.

We have a similar expression as in the above encryption case (the term ε′/t is replaced by 2ε′/t,
which allows shorter security parameters. Anyway, k = 161 is required, as soon as ε ′/t < 2−82.

To sum up, for the interesting case of the RSA, one can choose k = 161, with a security parameter chosen
so that the security level of the function ϕ is about 282, that is 1024-bit modulus.
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A Security Proof of the Optimal Permutation-based Padding

Game G1: A perfect simulation of the real attack game is described on the Figure 2. Actually, the rule

Chal(1) simulates the way the challenge c? is generated, exactly as the challenger would do. Besides, we
simulate the two random permutation oracles P and P−1, the decryption oracle Dsk and the signature
oracle Ssk, by maintaining a list P-List, using a truly random permutation P and its inverse P −1, and
finally a PRF PRF% for a random secret key %.
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P

-O
ra

cl
e A query P(γ,m, r) is answered by p, where

IRule EvalP(1)

p = P (γ,m, r).

Furthermore, if (γ,m, r) is a direct query from the adversary to P, store the record (γ,m, r, p,⊥, ϕpk(p)) in
P-List.

P
−

1
-O

ra
cl

e A query P−1(p) is answered by (γ,m, r), where

IRule InvP(1)

(γ,m, r) = P−1(p).

Furthermore, if p a direct query from the adversary to P−1, store the record (γ,m, r, p,⊥, ϕpk(p)) in P-List.

D
-O

ra
cl

e A query Dsk(c) is answered by m, where

IRule D(1)

p = ψsk(c), and (γ,m, r) = P−1(p).

Store (γ,m, r,⊥,⊥, c) in P-List.

S
-O

ra
cl

e For a sign-query Ssk(m), one first computes γ = PRF%(m), then asks for p = P(γ,m, 0k) to the EvalP-oracle.
The signature σ is then defined according to the following rule:

IRule S(1)

Computes σ = ψsk(p).

Store (γ,m, 0k, p, σ, ϕpk(p)) in P-List.

C
h
a
ll
en

g
er

For two messages (m0,m1), flip coins γ? and b, set m? = mb, and randomly choose r?.

IRule Chal(1)

p? = P(γ?,m?, r?); c? = ϕpk(p
?).

IRule ChalAdd(1)

Add (m?, γ?, r?,⊥,⊥, c?) in P-List.

Answer c?

V
-O

ra
cl

e The game ends with the verification of the output σ from the adversary. One first computes t‖u = ϕpk(σ), then
asks for (γ,m, r) = P−1(t‖u). Then he checks whether r = 0k, in which case the signature is a valid signature
of m.

Fig. 2. Simulation in the Game G1
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Note that we “store” elements of the form (γ,m, r, p, s, c) in P-List. Roughly speaking, we use p to store
the value of P(γ,m, r), c to store the value ϕpk(p), and s to store the value of ψsk(p) (i.e., p = ϕpk(s)).
The former will help us to simulate the decryption oracle, while the latter will help us to simulate the
signing oracle. In the organization of the list P-List, when we store an element (γ,m, r, p, s, c) in P-List, if
there is already an element (γ,m, r, α, β, y) in P-List with α = ⊥ or β = ⊥, we replace the latter by the
former.

Now, we denote by ∆n the statistical distance between the distribution of the adversary’s view in the
game Gn and in the game Gn−1. We see that the simulation is perfect since P-List is not used. The latter
list is only introduced for later simulation in the proof. Therefore: ∆1 = 0.

Game G2: In this game, we modify the simulation of the oracle P, P−1 so that the random permutation
P and its inverse P−1 are called at most once for each input. We use the following rules:

IRule EvalP(2)

Look for (γ,m, r, α, β, c) in P-List:

– if the record is found,
• if α 6= ⊥, p = α;
• otherwise, Stop.

– otherwise, p = P (γ,m, r).

IRule InvP(2)

Compute c = ϕpk(p) and look for (γ,m, r, α, β, c) in P-List:

– if the record is found, (γ,m, r) is defined,
– otherwise we compute (γ,m, r) = P−1(p).

We would give a wrong answer in the case the oracle P is called and if the record is found and α = ⊥.
In this case, we stop the game but the correct answer should be ψsk(c). We define this event BadP2. In
further games Gn, this event is defined as BadPn. Unless this event happens, the two games G2 and G1

are perfectly indistinguishable: ∆2 ≤ Pr[BadP2].

Game G3: In this game, we modify the simulation of the oracles P and P−1, without asking any query
at all to the random permutation P (and its inverse P −1), but answering a random value for any new
query: for a new (γ,m, r), we answer P(γ,m, r) by a random p, and for a new p we answer P−1(p) by a
random tuple (γ,m, r). We rewrite the rules as follows:

IRule EvalP(3)

Look for (γ,m, r, α, β, c) in P-List:

– if the record is found,
• if α 6= ⊥, p = α;
• otherwise, Stop.

– otherwise, p
R
← {0, 1}n.

IRule InvP(3)

Compute c = ϕpk(p) and look for (γ,m, r, α, β, c) in P-List:

– if the record is found, (γ,m, r) is defined,
– otherwise we randomly choose (γ,m, r) in {0, 1}n.

The two games G3 and G2 are perfectly indistinguishable unless a collision appears over (γ,m, r) or p in
P-List, we define this event CollP3. So, we have: ∆3 ≤ Pr[CollP3]. Since there are at most qp + qd + qs + 1
elements in the P-List, such a collision appears with probability bounded by (qp + qd + qs + 1)2/2n:

Pr[CollP3] ≤
(qp + qd + +qs + 1)2

2k+`+1
.

Game G4: Now, we can simulate the decryption oracle Dsk without ψsk:
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IRule D(4)

Look for (γ,m, r, α, β, c) in P-List:

1. if the record is found, (γ,m, r) is defined,
2. otherwise we randomly choose (γ,m, r) in {0, 1}n.

The two games G4 and G3 are perfectly indistinguishable since in case 2, we do exactly as P−1 was
simulated by the rule InvP(3) in the previous game, including the storage in P-List: ∆4 = 0.

Game G5: We consider the elements of the form (m, r,⊥, β, c) in P-List (there are at most qd + 1
elements). If there is a collision on m, we abort the game, which event is named CollM5. Therefore,
∆5 ≤ Pr[CollM5]. We see that for any (γ,m, r,⊥, β, c) except if m = m?, m is chosen randomly. As a
consequence, a collision over m can be found with probability bounded by (qd + 1)2/2`:

Pr[CollM5] ≤
(qd + 1)2

2`
.

When collisions are excluded, for any m, there is at most one r (and a c) such that (m, r,⊥, β, c) ∈ P-List.
One can thus see that

Pr[BadP5] ≤
qp + qs + 1

2k
.

Game G6: We now simulate the permutation oracle, in a way that will help us not to use the function
ψsk anymore in the simulation of signing oracle. For that, we choose to return some ϕpk(s) to permutation
oracle:

IRule EvalP(6)

Look for (γ,m, r, α, β, c) in P-List:

– if the record is found,
• if α 6= ⊥, p = α;
• otherwise, Stop.

– otherwise, choose a random element s ∈ {0, 1}n and compute p = ϕpk(s), The record
(γ,m, r, p, s, ϕpk(p)) is added to P-List.

Because ϕpk is a permutation, p is a random. Therefore, the two games G6 and G5 are perfectly indis-
tinguishable: ∆6 = 0.

Game G7: In this game, we verify that all known quantities P(γ,m, 0k) that are known by the attacker
have been asked to the P oracle, and not deduced by call to the P−1 oracle. Indeed, for all p, if the attacker
asked a = P−1(p), he knows that P(a) = p. Hence, if the returned a value was of the form γ‖m0‖0

k, our
simulator would not know any s, so that P(a) = ϕpk(s), and so would not be able to sign the message
m0 without ψsk.

IRule InvP(7)

Compute c = ϕpk(p) and look for (γ,m, r, α, β, c) in P-List:

– if the record is found, (γ,m, r) is defined,
– otherwise we randomly choose (γ,m, r) in {0, 1}n. If r = 0k, Stop.

Because of the random choice of the returned value to (new) P−1 queries, we stop the game with
probability 1/2k : ∆7 ≤ (qp + qd + 1)/2k .

Game G8: By now, each P(γ,m, 0k) that is known by the attacker can be written easily by the
simulator: P(γ,m, 0k) = ϕpk(s), by just looking for (γ,m, 0k, p, s, c) in the P-List. Hence, pre-images are
known.

One can thus simulate the signing oracle without querying ψsk:

IRule Ssk
(8)

Look for (γ,m, 0k, p, s, c) in P-List, and set σ = s.
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Hence, this game is indistinguishable from the previous one: ∆8 = 0.
Until now, we have simulated all the queries that the adversary could make: permutation oracles,

decryption oracle and signing oracle. These simulations are independent to whatever the adversary does
and therefore, we can easily get the expected result.

B Proof of the security for the case of OAEP-3 rounds

We first review the main steps, details cab be found in the full version of [22].

Game G0: This is the attack game, in the random-oracle model. The goal of the proof is to reduce the
inversion of the permutation ϕpk on a random instance y (i.e., find x such that y = ϕpk(x)) to an attack
against the encryption or signature. As for the previous proof, we are interested in the events Dist and
Forge which indicate the success of the adversary:

Pr[Dist0] = Adv
ind/cma+cca

OAEP3r (A) +
1

2

Pr[Forge0] = Succ
euf/cma+cca

OAEP3r (B).

Because it has a particular interest for signature, we name δ0 the value F(0k). We use in the following a
PRF PRF% for a random secret key %.

Advantage Zero to an adversary against encryption. The goal of the first two games is to build
a game in which b is perfectly indistinguishable to any adversary.

Game G1: The simulation in this game is presented in Figure 3. We simulate the random oracles F ,
G and H, as well as the decryption oracle Dsk, by maintaining lists: F-List, G-List and H-List as usual for
the random oracles, and D-List to deal with similar decryption queries. This perfect simulation does not
modify any probability: ∆1 = 0.

Game G2: In order to make the advantage of any (even powerful) adversary against encryption scheme
exactly zero, we define the mask f ? so that it is totally independent of the view of the adversary:

IRule Chal(2)

The three values γ+ R
← {0, 1}, r+ R

← {0, 1}k and f+ R
← {0, 1}`+1 are given, then γ? =

γ+, r? = r+, f? = f+ and s? = (γ+‖m?)⊕ f+, g? = G(s?), t? = r+ ⊕ g?, h? = H(t?), u? =
s? ⊕ h?.

The two games G2 and G1 are perfectly indistinguishable unless r? has been asked for F (by the adversary
or the decryption oracle). We thus define this event AskF2, and we have: ∆2 ≤ Pr[AskF2]. As hoped, in
this game, f+ is used in the generation of the challenge, but does not appear anywhere else since F(r+)
is not defined to be equal to f+. Thus, the output of A2 follows a distribution that does not depend on

b. Accordingly, Pr[Dist2] = 1/2. We thus obtain a first conclusion: Adv
ind/cma+cca

OAEP3r (t) ≤ Pr[AskF2]. As in
the proof in [22], we are now interested in the event AskF.

No G and H Queries in the Decryption Simulation. We modify the decryption process so that it
makes no new query to G and H.

Game G3: We begin to simulate the decryption oracle. First, we modify the rules D−noT, D−TnoS

and D−TSnoR by outputting a random message, and choosing at random the F , G andH oracles outputs,
without looking first in F-List and G-List:

IRule D−noT(3)

Choose m
R
← {0, 1}`, γ

R
← {0, 1}, g

R
← {0, 1}k and h

R
← {0, 1}`+1.

Set s = u⊕ h, r = t⊕ g and compute f = (γ‖m)⊕ s.
Add (r, f) in F-List, (s,⊥, g) in G-List, (t, h) in H-List.
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F

,
G

a
n
d
H

O
ra

cl
es

Query F(r): if a record (r, f) appears in F-List, the answer is f .
Otherwise the answer f is chosen randomly in {0, 1}`+1 and the record (r, f) is added in F-List.
Query G(s): if a record (s, ?, g) appears in G-List, the answer is g.
Otherwise:

IRule G(1)

the answer g is chosen randomly in {0, 1}k and the record (s,⊥, g) is added in G-List.

IRule EvalGAdd(1)

Do nothing % To be defined later

Query H(t): if a record (t, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly in {0, 1}`+1 and the record (t, h) is added in H-List.

D
-O

ra
cl

e Query Dsk(c): the answer m is defined according to the following rules:

IRule D−Init(1)

Compute t‖u = ψsk(c);

Look for (t, h) ∈ H-List:

– if the record is found, compute s = u⊕ h. Look for (s,⊥, g) ∈ G-List:
• if the record is found, compute r = t⊕ g. Look for (r, f) ∈ F-List:

∗ if the record is found
IRule D−TSR(1)

h = H(t),
s = u⊕ h, g = G(s),
r = t⊕ g, f = F(r),
γ‖m = s⊕ f .

∗ else
IRule D−TSnoR(1)

same as rule D−TSR(1).
• else

IRule D−TnoS(1)

same as rule D−TSR(1).
– else

IRule D−noT(1)

same as rule D−TSR(1).

Answer m and add (γ,m, c) to D-List.

S
sk
-O

ra
cl

e For a sign-query S(m), one first computes γ = PRF%(m), then asks for δ0 = F(0k) , then asks for t = G((γ‖m)⊕
δ0) to the G-oracle, then asks for h = H(t), and then compute u = (γ‖m) ⊕ δ0 ⊕ h. The signature σ is defined
according to the following rule:

IRule Ssk
(1)

Computes σ = ψsk(t‖u).

C
h
a
ll
en

g
er

For two messages (m0,m1), flip a coin b and set m? = mb, choose randomly r? and γ?, and then answer c?

where

IRule Chal(1)

f? = F(r?), s? = (γ?‖m?) ⊕ f?,

g? = G(s?), t? = r? ⊕ g?,

h? = H(t?), u? = s? ⊕ h?.

IRule ChalC(1)

and c? = ϕpk(t
?‖u?)

V
-O

ra
cl

e The game ends with the verification of the output σ from the adversary. One first computes t‖u = ϕpk(σ), then
recovers (γ‖m‖r) = OAEP3r−1(t, u). Then he checks whether r = 0k.

Fig. 3. Formal Simulation of the IND−CCA Game
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IRule D−TnoS(3)

Choose m
R
← {0, 1}`, γ

R
← {0, 1} and g

R
← {0, 1}k .

Set r = t⊕ g and compute f = (γ‖m)⊕ s.
Add (r, f) in F-List, (s,⊥, g) in G-List.

IRule D−TSnoR(3)

Choose m
R
← {0, 1}` and γ

R
← {0, 1}.

Compute f = (γ‖m) ⊕ s.
Add (r, f) in F-List.

The above rules are almost similar as before, except that inconsistencies may appear if some elements
were already in the lists. But inputs are random, and thus the collisions are unlikely.

∆3 ≤ qd ×

(

qg + qd
2`+1

+ 2×
qf + qd

2k

)

.

Game G4: In the previous rules for the simulation of the decryption simulation, the random oracles
were almost perfectly simulated, adding new relations to the corresponding lists. We now make more
technical modifications, which differ a lot from previous proofs. Granted that, we can achieve a stronger
result. We thus modify the above rules by not storing anymore the new relations (s,⊥, g) in G-List,
defined during these simulations. Therefore, when g is no longer explicitly defined, we cannot compute r
and thus we do not store (r, f) in F-List either. However, as soon as G(s) is known, we must define F(r)
accordingly, and update the lists:

IRule D−TnoS(4)

Choose m
R
← {0, 1}` and γ

R
← {0, 1}.

IRule D−noT(4)

Choose m
R
← {0, 1}`, γ

R
← {0, 1} and h

R
← {0, 1}`.

Add (t, h) in H-List.

IRule EvalGAdd(4)

Look for (t, h) ∈ H-List and for (γ,m, c) ∈ D-List such that c = ϕpk(t‖h⊕ s). If the record
is found, we compute r = t⊕ g and f = (γ‖m)⊕ s, and finally add (r, f) in F-List.

With the above new rules, the answers in the two games G4 and G3 are perfectly indistinguishable unless
r is asked to F before s is asked to G, which event is denoted by AskRbS4. In fact, if r is asked after s,
at the moment that s is asked, by the above simulation of G (and the extra rule EvalGAdd), we will find
out (t, h) and therefore (r, f) is computed in a consistent way, exactly as it would have been in the game
G3, and added in F-List.

Note that for each ciphertext c, the value t is unique, and thus h, and consequently s: this rule is thus
applied at most once for each ciphertext asked to the decryption oracle. However, until s is asked, g is a
uniformly distributed random variable, and r is so too. Therefore, the probability that r has been asked
to F is

qf+qd

2k :

Pr[AskRbS4] ≤ qd ×
qf + qd

2k
.

A more important gap may appear because of the removal of some elements (s,⊥, g) from G-List, and
(r, f) from F-List, which may have some impact on the simulation of later decryption queries, but also
on the event AskF itself:

– if we remove (r, f) for r = r?, then the event AskF happened in the previous game but does not occur
in the new game. Fortunately, since r = t ⊕ g where g is randomly chosen, the probability of this
event is 1/2k.
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– in the simulation of a later decryption query c′ = ϕpk(t
′‖u′), the element s′ = s might have been found

in the previous game, while it is no longer in the list in the current game. A rule D−TSR/D−TSnoR

is thus replaced by the rule D−TnoS, which means that g was just defined during the first decryption,
in the previous game, but never revealed later. Therefore, noting r ′ = t′⊕ g′ = t′⊕ g, the probability
that r′ is in the F-List is (qf + qd)/2

k (modification of D−TSR into D−TnoS). In the case that r ′ was
not in the F-List, γ ′‖m′ was and is still random: modification of D−TSnoR into D−TnoS.

|Pr[AskF4]− Pr[AskF3] | ≤ Pr[AskRbS4] + qd ×
qf + qd

2k
+ qd ×

1

2k
≤ 2qd ×

qf + qd
2k

+ qd ×
1

2k
.

Similarly, we also have:

|Pr[Forge4]− Pr[Forge3] | ≤ 2qd ×
qf + qd

2k
+ qd ×

1

2k
.

Game G5: We follow in simplifying the simulation of the decryption, by not storing the new relations
(t, h) in H-List either:

IRule D−noT(5)

Choose m
R
← {0, 1}` and γ

R
← {0, 1}.

In the two games, the answers of the decryption simulations are identical, since they are random values.
Nevertheless, the H-List has been changed, which may impact several other things:

– an F -answer can be changed. Indeed, if s is asked to G before t is asked to H, which event is denoted
by AskSbT5, the rule EvalGAdd will not apply. Otherwise, when the event AskSbT5 does not happen,
the F-List and the F simulation are unchanged, after the EvalGAdd rule. Fortunately, until t is asked
to H, h is a uniformly distributed random variable, and s = u⊕h is so too. Therefore, the probability
that s has been asked to G is qg/2

`+1 (since no new G relation is added by the decryption simulation):

Pr[AskSbT5] ≤ qd ×
qg

2`+1
.

– the removal of (t, h) from H-List, may have some impact on the simulation of a later decryption query
c′ = ϕpk(t

′‖u′):
• if s′ is in the G-List and t′ = t, it was found in the previous game, but it is no longer in the list.

A rule D−TSR/D−TSnoR is thus replaced by the rule D−noT. This event means that h ′ = h
was just defined during the first decryption in the previous game, but never revealed later. The
probability for s′ = t′ ⊕ h to be in the G-List was less than qg/2

`+1, which is an upper-bound of
this case to appear.
• if s′ is not in the G-List but t′ = t was found in the previous game, it may not be in the list any

longer. A rule D−TnoS is thus replaced by the rule D−noT. In this case, the decryption is the
same (it gives always a random plaintext and adds no element in the lists).

Summing up for all decryption queries, we get:

|Pr[AskF5]− Pr[AskF4] | ≤ Pr[AskSbT5] + qd ×
qg

2`+1
≤ 2qd ×

qg
2`+1

.

Similarly, we also have:

|Pr[Forge5]− Pr[Forge4] | ≤ 2qd ×
qg

2`+1
.

Remark that the G-List and H-List contain now only the queries asked by the adversaries and by the
generation of the challenge. The simulation of the decryption queries does not make/simulate any new
query to G or H, but to F only.

We denote by AskGA5 and AskHA5 the events that s? and t? (the values involved in the challenge),
respectively, are asked by the adversary. The event AskGHA5 is also set to true when both AskGA5 and
AskHA5 happen: AskGHA = AskGA ∧ AskHA. Note that these two queries, s? and t?, are also asked for
the generation of the challenge c?, but we do not consider them for the events AskGA5 and AskHA5.
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The Classical Plaintext Extractor. We now complete the modifications of the decryption process so
that it behaves exactly as the classical plaintext extractor, briefly described in the sketch of the proof.

Game G6: Before going on in some other modifications, we exclude some executions, with then a
random output: the rule Abort is always checked. If it is true, we stop the game with a random output
b′.

IRule Abort(6)

Abort and output a random bit: If AskGA6 ∧ ¬AskHA6, at the end.

When ¬AskHA6, H(t?) = u? ⊕ (γ?‖mb)⊕ f
+ is never revealed, while f+ is a random value independent

to the adversary’s view. Therefore, H(t?) is a uniformly distributed random variable: s? = u? ⊕ H(t?)
is so too. Consequently, the probability that s? is queried is qg/2

`+1. Consequently, the probability that
this rule is applied is qg/2

`+1:

∆6 ≤
qg

2`+1
.

Furthermore, Pr[AskF6] can easily be upper-bounded with the following relation (by using the same
classical argument as in [22]):

Pr[AskF6] ≤
qf
2k

+ Pr[AskGHA6].

We can thus make another intermediate conclusion, which explains our interest in Pr[AskGHA6]:

Pr[AskF2] ≤ q
2
d ×

(

4

2k
+

1

2`+1

)

+
4qdqf

2k
+

3qdqg
2`+1

+
qg

2`+1
+
qf + qd

2k
+ Pr[AskGHA6].

Game G7: We furthermore abort some games during the execution, if one of the following situations
is met:

IRule Abort(7)

Abort and output a random bit:

– If AskGA7 ∧ ¬AskHA7, at the end.
– If a D−TSR/D−TSnoR rule has been applied with t = t?, while H(t?) had not been

asked by the adversary yet.
– If a D−TSR rule has been applied with s = s?, while G(s?) had not been asked by

the adversary yet.

The gap between the two games is bounded by the proof of the following relation (by using the same
classical argument as in [22]):

∆7 ≤ qd ×

(

qf + qd
2k

+
qg

2`+1

)

.

Game G8: In this game, we complete the simulation of the decryption oracle, so that it does not
depend on the queries that the generation of the challenge makes. The decryption oracle does not use
anymore the element (s?, g?) if the adversary did not ask for s?.

IRule D−TSnoR(8)

If s = s? but s? has not been directly asked by the adversary yet: m
R
← {0, 1}` and

γ
R
← {0, 1}.

Else, one chooses m
R
← {0, 1}` and γ

R
← {0, 1}, computes f = (γ‖m) ⊕ s and adds (r, f)

in F-List.

If s = s? but s? has not been asked to G by the adversary during a D−TSnoR rule, f = F(r) is a
uniformly distributed random variable, therefore, we can give a random answer m. However, in this case,
we do not store anymore (r, f) and this could make some problems: if a latter different decryption query
c′ involves γ ′ = γ and r′ = r. In this case g? ⊕ t = g′ ⊕ t′. Since c′ 6= c and r′ = r, s′ must be not equal
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to s. In this case, g = G(s) = g? is independent to g′. Moreover, s? is not queried and thus r = g? ⊕ t is
a uniformly distributed random variable: the probability that a later decryption query c ′ satisfies that is
1/2k:

∆8 ≤
q2d
2k
.

In the above game, one can remark that the simulation of the decryption does not use at all the
queries asked to G and H by the generation of the challenge:

– D−TSR

• with r = r?: is not possible if the query r? has not been queried directly by the adversary, since
it has not been queried during the generation of the challenge;
• with s = s?: excluded in the game G7;
• with t = t?: excluded in the game G7;

– D−TSnoR

• with s = s?: similar to D−TnoS since the game G8;

• with t = t?: excluded in the game G7;
– D−TnoS

• with t = t?: similar to D−noT since the game G5;

The simulation of the decryption of c is in fact the simple plaintext extractor [3, 9, 21] which looks up
in the lists G-List and H-List (which only contain the queries directly asked by the adversary) to obtain
the values (s, ?, g) and (t, h) which match with c = ϕpk(t‖s⊕ h) without using anymore ψsk:

IRule D−Init(8)

Look for (t, h) ∈ H-List and (s, ?, g) ∈ G-List such that c = ϕpk(t‖s⊕ h).

– if the record is found, we found out the corresponding s and t, and we furthermore
define u = s⊕ h.

– otherwise, we take t = ⊥ and u = ⊥.

Note that the definitions t = ⊥ and u = ⊥ are just done to make the answer m to be random in the
following of the simulation. The time complexity of one simulation is thus upper-bounded by qgqh×(Tϕ +
Tlu), where Tϕ is the time to evaluate one function in the ϕ family, and Tlu the time for looking up in
the D-List.

Game G9: We now modify the simulator in order to deal with the signing oracle. We first modify the
simulation of the hash oracle G:

IRule G(9)

– Choose a random ρ ∈ {0, 1}n, compute α = ϕpk(ρ), parse α into α = α1‖α2, with α1

of k bits and α2 of (`+ 1) bits. Then, (s, ρ, α1) is added to G-List and (α1, s⊕ α2) to
the H-List.

One remarks that the goal of this game is to return ϕpk(ρ) as the value of OAEP3r(γ,m, 0k): indeed,
s = (γ‖m) ⊕ F(0k) = (γ‖m) ⊕ δ0, t = G(s) = α1 and u = s ⊕ H(t) = s ⊕ H(α1) = α2, giving
OAEP3r(γ,m, 0k) = ϕpk(ρ).

Because of the permutation property of ϕpk, and the random choice for ρ, this rule leaves the game
indistinguishable from the previous one, except that there could exist an element h ′ 6= s⊕ α2 such that
(α1, h

′) is already in the H-List, i.e., if H(α1) is already defined. This is a failure that can happen for qg

queries. Because of the permutation property of ϕpk, and the random choice for ρ, each α1 is random for
the attacker, and so the difference between this game and the previous one is

∆9 ≤
qg(qh + qs)

2k
.

Game G10: We can now simulate the signing oracle without querying ψsk:
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IRule Ssk
(10)

Look for ((γ‖m)⊕ δ0, ρ, g) in G-List, and set σ = ρ.

This rule leaves the game indistinguishable from the previous one: ∆10 = 0.
By now, we complete the simulation of all hash oracles as well as the decryption oracle and the signing

oracle for any attack. In the following, depending on the goal of the attacker, we manage to invert the
function ϕpk on the given instance y (or computing the function ψsk on the instance y).

Encryption attack.

Game G10.1: We can now modify the simulation of the challenge, without querying G or H:

IRule Chal(10.1)

The three values γ+ R
← {0, 1}, r+ R

← {0, 1}k and f+ R
← {0, 1}`+1 are given, as well as

g+ R
← {0, 1}k and h+ R

← {0, 1}`+1 then γ? = γ+, r? = r+, f? = f+, s? = (γ?‖m?) ⊕ f+,
g? = g+, t? = r+ ⊕ g?, h? = h+ and u? = s? ⊕ h?.

As seen above, this does not impact at all the simulation of the decryption, and the rule EvalGAdd either
since the modification had already been considered in the game G10.5. The probability distributions are
thus unchanged.

The global running time is bounded by (including all the list look up):

τ ′ ≤ τ + qdqgqh × (Tϕ + Tlu) + (qf + qg + qh + qd)× Tlu.

In the particular, one can improve it, using an extra list of size qgqh, which stores all the tuples
(s, g = G(s), t, h = H(t), c = ϕpk(t‖s⊕ h)). The time complexity then falls down to τ + qgqh× Tϕ + (qf +
qg + qh + qd)× Tlu.

Conclusion. The proof is almost finished, granted the permutation property of ϕpk from {0, 1}k ×
{0, 1}` × {0, 1} onto {0, 1}n. Indeed using a classical argument [22], one easily gets the relation:

Pr[AskGHA10.1] ≤ Succow
ϕ (τ ′ + qgqh(Tϕ + Tlu), qdqgqh + q2d),

where τ ′ is the above running time of the simulation, which concludes the proof of the Theorem, since

Pr[AskGHA6] ≤
2q2d
2k

+ qd ×

(

qf
2k

+
qg

2`+1

)

+ Succow
ϕ (τ ′ + qgqh(Tϕ + Tlu), qdqgqh + q2d).

Signature attack (general case).

Game G10.1: In the following, we number calls to the G oracle. We thus define a variable ν which is
initialized to 0. Then:

IRule G(10.1)

– Increment ν
– Choose a random ρ ∈ {0, 1}n, compute α = ϕpk(ρ), split α into α = α1‖α2, with α1

of k bits and α2 of (`+ 1) bits. Then, (s, ρ, α1) is added to G-List and (α1, s⊕ α2) to
the H-List.

Clearly, this leaves the game indistinguishable from the previous one: ∆10.1 = 0.
Game G10.2: Recall that since the verification process is included in the attack game, the value
s = (γ‖m) ⊕ δ0 (where m is the output message) is necessarily asked to the hash oracle G. Let us guess
the index ν0 of this (first) query. If the guess failed, we abort the game. Therefore, only a correct guess
(event GoodGuess) may lead to a success.
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Pr[Forge10.2] = Pr[Forge10.1 ∧ GoodGuess] = Pr[Forge10.1 |GoodGuess]× Pr[GoodGuess]

≥ Pr[Forge10.1]×
1

qg + qs + 1
.

Game G10.3: We can now simulate the hash oracle G, incorporating the challenge y, for which we want
to extract the pre-image x by ϕpk.

Our goal in this game is to return, at the guessed ν0-th query, a certain result, so that the value of
OAEP3r(γ,m, 0k), where m is the message which is used in the forge of the signature attacker, is equal
to y .

IRule G(10.3)

– Increment ν
– If ν = ν0, parse y into y = y1‖y2, with y1 of k bits and y2 of (` + 1) bits. Then,

(s, ρ, y1) is added to G-List and (y1, s⊕ y2) to the H-List.
– Otherwise, choose a random ρ ∈ {0, 1}n, compute α = ϕpk(ρ), divide α into α =
α1‖α2, with α1 of k bits and α2 of (`+1) bits. Then, add (s, ρ, α1) is added to G-List

and (α1, s⊕ α2) to the H-List.

For the ν0-th query, we have s = (γ‖m) ⊕ F(0k) = (γ‖m) ⊕ δ0, t = G(s) = y1 and u = s ⊕ H(t) =
s⊕H(y1) = y2, giving OAEP3r(γ,m, 0k) = y.

Because of the random choice for the challenge y, and so of (y1, y2), this rule leaves the game indis-
tinguishable from the previous one: ∆10.3 = 0. In this game, it’s easy to see that the forgery leads to the
pre-image of y:

Pr[Forge10.3] = Succow
ϕ (τ ′ + qgqh(Tϕ + Tlu), qdqgqh + q2d).

where τ ′ is bounded by the same way as in the encryption attack :

τ ′ ≤ τ + qdqgqh × (Tϕ + Tlu) + (qf + qg + qh + qd)× Tlu.

Signature attack when ϕpk is induced by a (t, ε′)-secure claw-free permutation (ϕpk, λpk).

Game G10.1: We now exploit the bit γ to the simulation of the permutation oracle, as it was proposed
firstly by Katz and Wang [13]. The idea is to use ϕpk in the OAEP3r output, for one and only one value
of the bit γ, and otherwise use λpk . As this value of γ is not predictable by the attacker, its forgery will,
with a probability 1

2 , produce a claw.

IRule G(10.1)

– Compute γ‖m = s⊕ δ0
– If γ = PRF%(m), choose a random ρ ∈ {0, 1}n, compute α = ϕpk(ρ), divide α into
α = α1‖α2, with α1 of k bits and α2 of (`+ 1) bits. Then, add (s, ρ, α1) is added to
G-List and (α1, s⊕ α2) to the H-List.

– If γ 6= PRF%(m), choose a random ρ ∈ {0, 1}n, compute α = λpk(ρ), divide α into
α = α1‖α2, with α1 of k bits and α2 of (`+ 1) bits. Then, add (s, ρ, α1) is added to
G-List and (α1, s⊕ α2) to the H-List.

Because of the random choice of ρ and so λpk(ρ), this rule leaves the game indistinguishable from the
previous one: ∆10.1 = 0.

Using the arguments in [13], one can easily see that the forgery leads to a claw with probability 1
2 .

In fact, let us assume that the adversary can forge a signature (m̃, σ̃), where ((bm̃‖m̃) ⊕ δ0) has been
asked to the oracle G either in a hash query or in the verification step. Since the bit bm̃ = PRF%(m̃) is an
unknown random bit in the view of the adversary, with probability of 1

2 , there exists an element (s̃, ρ̃, α̃1)
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in the G-List and an element (α̃1, s̃ ⊕ α̃2) in the H-List such that α̃ = α̃1‖α̃2 = λpk(ρ̃). In that case, the
simulator can output a claw ϕpk(σ̃) = λpk(ρ̃).

Pr[Forge10.1] = Succow
ϕ (τ ′ + qgqh(Tϕ + Tlu) + Tλ, qdqgqh + q2d).

where τ ′ is bounded by the same way as in the encryption attack :

τ ′ ≤ τ + qdqgqh × (Tϕ + Tlu) + (qf + qg + qh + qd)× Tlu.

This easily concludes the proof. ut


