
Xerox PARC Technical Report

Secure Group Communication over Partially

Connected Networks

Michel Abdalla ?

Dept. of Computer Science & Engineering
University of California at San Diego

9500 Gilman Drive
La Jolla, California 92093-0123

michel.abdalla@ens.fr

Matthew Franklin ??

Dept. of Computer Science
University of California at Davis

3021 Engineering II
Davis, CA 95616-8562
franklin@cs.ucdavis.edu

October 2000

Abstract

In this paper, we consider secure group communication protocols over partially connected networks.
These protocols enable a user to robustly and privately transmit a message to any subset of users in the
network, even in the presence of some malicious users. Our main goal is to design protocols for which we
can give guarantees on the maximum number of rounds it will take. To do so, we first design a simple and
efficient point-to-point protocol and then extend it to point-to-multipoint case in a straightforward way.
Despite its simplicity, the resulting protocol is highly parallelizable and very efficient in terms of rounds of
communication.

The protocols we construct require communication networks with enough short disjoint paths between any
pair of users. We show both empirically and analytically how to construct these networks. In the empirical
constructions, this is done by experimenting with random regular graphs. We show by means of extensive
simulation that these graphs are rich in short disjoint paths for reasonable values of node degree. In the
analytical constructions, we give several constructions for which we can give guarantees on the number and
length of disjoint paths between any two nodes.

Keywords: multicast, privacy, reliability, secure multi-party group communication, network design.

? Work done while author was visiting Xerox PARC.
??Work done while author was at Xerox PARC.

mailto:michel.abdalla@ens.fr
mailto:franklin@cs.ucdavis.edu

Table of Contents

1 Introduction . 1
1.1 Related work . 1
1.2 Outline . 3

2 Model and definitions . 3
3 Protocol . 4

3.1 Point-to-point protocol . 4
3.2 Point-to-multi-point protocol . 5

4 Empirical designs . 5
4.1 Generating random regular graphs . 6
4.2 Computing bounded disjoint paths . 6
4.3 Some results on small graphs . 7

5 Analytical designs . 9
5.1 Hypercubes. 10
5.2 Parallel hypercubes . 11
5.3 M -ary hypercubes . 12
5.4 Balanced incomplete block designs (BIBD) . 13

6 Future Work . 16

1 Introduction

In this technical paper, we consider secure group communication protocols over partially connected networks.
These protocols enable a user to transmit a message to any subset of users with privacy and reliability, even
in the presence of some malicious parties. We also call these protocols “targeted”, because the sender can
target the communication to any group of receivers within the network.

Our protocols are multi-party, in the sense that they require the participation of the sender, the receivers,
and nodes in the network that are outside the targeted receiver set. The non-receivers participate by merely
relaying information that is sent to them during the protocol. There is no need to trust the non-receivers
completely. Instead, we assume that a sufficient fraction of all of the parties are behaving properly, while
tolerating any form of malicious behavior by the rest of the parties. Our protocols are multi-round as well.
The number of rounds depends on the particular topology of the communication network.

Our main motivation for this work is to provide an alternative to existing methods for handling secure
communication within dynamic coalitions. In a dynamic coalition setting, receivers may need to be kicked
out of the group, so that they cannot learn future communication. With targeted group communication, this
does not require any rekeying, because senders merely exclude the kicked-out parties from the designated
receiver set.

Broadcast encryption methods [10] are single-round, single-party protocols for targeted group communi-
cation. Unfortunately, they are inefficient when the pool of potential receivers is large, due to the explosion
of secret keys that must be maintained. Secure multicast methods (e.g., [7]) are single-round, single-party
protocols for broadcast without targeting. They require some rekeying whenever a party needs to be kicked
out of the group. Despite clever efficiencies of the rekeying protocol itself, the result can be quite inefficient
when the frequency of rekeying is high.

We model our communication network by an undirected graph in which each node represents a user. An
edge is present between two nodes whenever these nodes can communicate securely to each other. We do not
care how these basic secure channels are implemented. They could be lower-layer protocols between parties
who share secret keys, or they could be physically secure communication links.

There are several properties that we may want from our protocols, such as low storage, high resilience, and
scalability. In addition, we also want efficiency in communication. We are particularly focused on the round
complexity of our protocols, although the total number of bits transmitted is important as well. Measures of
traffic congestion may be important, too, although we do not consider them in this study. Of course, traffic
congestion becomes much less important when targeted secure group communication is used to transmit a
session key, and ordinary multicast is used to propagate bulk encrypted data.

We begin by describing simple protocols that will work over any network. The fault-tolerance of these
protocols depends critically on the connectivity of the network, while the round complexity depends critically
on the lengths of the disjoint paths between nodes1. This second measure has not received much attention in
the literature. We go on to study this measure both empirically and analytically. We suggest specific network
designs for which connectivity and path lengths are particularly well-balanced, and thus particularly well-
suited for running our protocols.

1.1 Related work

Menger’s theorem. Menger’s theorem [16] shows that if a graph is k-connected, then there exists k disjoint
paths between any two nodes in the graph. However, nothing is said about the length of these paths. In [15],
the length of these paths is taken into consideration and the relation between the size of vertex-cuts that
destroys all bounded paths between two nodes and the number of bounded disjoint paths between these
nodes is investigated. In [12], Galil and Yu give bounds on the length of these paths when these paths are
edge-disjoint. More precisely, they prove that in a undirected graph with N nodes and k edge-disjoint paths

1 Throughout this paper, we will use “disjoint paths” to mean “node-disjoint paths”, i.e., paths with only their
endpoints in common. There is an analogous notion of edge-disjoint paths, which we will occasionally refer to
explicitly.

1

between any two nodes, the average length of these paths is O(N/
√
k). Moreover, if all vertices have degree

at least k, then the upper bound is even tighter and equal to O(N/k).

The Bounded Disjoint Path problem. In the Bounded Disjoint Path (BDP), the goal is to find the
maximum number of disjoint paths between the sender and receiver whose length is bounded by some value
k. As it will become clear later, this problem plays an important role in our protocols. In [13], it is shown
that, except for some small values of k, the BDP problem and several of its variants are NP-hard. Therefore,
we should not hope to find efficient algorithms to solve the BDP problem. For all those cases in which a
polynomial-time solution can exist, one such algorithm is provided in [13]. It is worth mentioning here that,
as shown by [22], the related problem of finding the maximum number of disjoint paths with minimum total
length can be solved efficiently. This metric can be of importance in some cases in which we are interested
in the performance of the communication protocol as a whole.

In [20], an approximation algorithm for the BDP problem is proposed and proved to be optimal for k < 5.
They also give support by means of simulation that the algorithm performs well for larger values of k. In [19],
other heuristic algorithms for the BDP problem are given, which are more efficient than that of [20] both in
terms of time and space. They also support the efficacy of their algorithms by extensive simulation.

Connectivity. In [9], the problem of point-to-point secure communication over partially connected networks
is considered. They show, among several other results, that one can achieve perfect privacy and perfect
reliability in the presence of up to t malicious faults if there are at least 2t + 1 disjoint paths between the
sender and receiver. They also show that this condition is not only sufficient but in fact necessary. The
communication model assumes that only single channels are available, i.e. the user can feed each channel
with totally independent messages.

In [2], Beimel and Franklin consider the problem of reliable communication when some pair of nodes
in the network share authentication keys. They showed that in this case, the total number of faults that
can be tolerated increases with respect to the same total number of nodes. These authentication keys can
be viewed as an alternative to increasing the fault tolerance without adding more communication channels.
Nevertheless, this comes at the cost of not having perfect reliability. That is, there exists a very small
probability that a message being transmitted is not received correctly by the receiver node.

[11] extends the work of [9] to consider cases where the protocol may be unreliable or not private with
some negligible probability and give a complete characterization of when secure communication is possible.
They also consider a more general model for communication in which multicast “lines” are available. These
lines (channels) allow the user to send a message in a single round to all its neighbors. The same message
will be received by all its neighbors. The user cannot, however, use these lines and send different messages to
different neighbors. They show that, in single line model, t+1 disjoint paths between sender and receiver are
necessary and sufficient for almost perfect reliability when we have at most t malicious nodes. They also show
that, in the single line model, 2t+ 1 disjoint paths between sender and receiver are sufficient and necessary
for almost perfect privacy, which does not improve over the case of perfect privacy. However, they show that
an improvement is possible in the multicast line model. More specifically, they prove that t+1 disjoint paths
between sender and receiver are necessary and sufficient to achieve almost perfect privacy when at most t
malicious nodes are present.

In [17], Nikoletseas et al investigate the multi-connectivity properties of random regular graphs with edge
faults. Among other things, they show that a random regular graph of average degree d, in which some of
its edges fails independently with probability f , remains d-connected except for O(1) vertices with very high
probability for all failure probabilities f ≤ N ε with for fixed ε > 0. In a related paper [18], Nikoletseas and
Spirakis study expander properties of random regular graphs with edge faults. More precisely, they determine
the value of p = 1− f for which the the giant component of the remaining graph remains a certified efficient
expander with high probability.

Expander graphs. In general terms, we say a graph is an (vertex) α-expander if, for each subset of vertices
X including at most half of the vertices, the total number of nodes in the neighborhood of X is at least
α|X|. In [14], Kleinberg and Rubinfeld consider bounded degree (edge) expander graphs and build upon
previous work asserting that expander graphs are rich in short disjoint paths. In particular, they provide a

2

greedy algorithm for approximating the maximum number of disjoint paths in expander graphs for which
they provide performance guarantees.

1.2 Outline

In Section 2, we present our communication model as well as some of the definitions we use in other sections.
Section 3 presents a simple and secure group communication protocol. The protocol is quite efficient in terms
of communication and works well for multicast group of small sizes. These protocols require communication
networks with enough short disjoint paths between every pair of nodes. In Section 4 and Section 5, we present
two different approaches for designing such networks. Section 4 presents some empirical designs based on
random regular graphs, where we analyze their behavior in terms of short disjoint paths when we vary the
average degree of a node. We show by means of extensive simulation that the disjoint paths between any two
nodes in such graphs are in general very short even for small degrees. However, we cannot give any guarantees
on the maximum length of these paths. Section 5, on the other hand, presents several constructions of graphs
for which we can give guarantees on the number and length of disjoint paths between any pair of nodes.
These guarantees, however, are usually conservative and in some cases very far from what can be achieved
in practice.

2 Model and definitions

Model. We represent the network by an undirected graph G = (V ,E), where the set of vertices V =
{v1, . . . ,vN} represents the set of nodes in the network and (vi,vj) ∈ E whenever nodes vi and vj can
communicate reliably and privately between themselves. This can be achieved, for example, by having shared
keys between these nodes for both encryption and authenticity.

Connectivity. Let G = (V ,E) be a graph and let X ⊆ V . A graph G is said to be connected if any two
nodes in V is connected by a path in G. For any two nodes vi and vj in V , we say that X separates nodes
vi and vj in G if any path from vi and vj contains at least one node in X. Or more generally we say that X
separates G if it separates any two nodes of V −X in G. Now if G−X is connected for every set X ⊂ V of
size less than δ, then we say that G is δ-connected. That is, no two nodes in V are separated by fewer than
δ other nodes. By Menger’s theorem [16], the above definition is equivalent to saying that any two nodes in
V can be connected by δ node-disjoint paths in G [8]. Hence, the following definition.

Definition 1. Let G = (V ,E) be a graph on N elements. We say G is δ-connected if any two nodes in G
can be connected by δ node-disjoint paths in G.

The above definition does not take into consideration the length of the disjoint paths. For this reason,
we extend here the above definition to capture the notion of maximum length of disjoint paths between any
two nodes.

Definition 2. Let G = (V ,E) be a graph on N elements. We say G is (δ, k)-connected if any two nodes in
G can be connected by δ disjoint paths in G, each of length at most k.

Reliability. Following [11], we have two variations for the definition of reliability in protocols. In the first
one, we say a protocol is almost-perfectly reliable if a message transmitted by a node vi to a node vj is
received by the latter with very high probability even in the presence of faults. In this variation, there is
a very small probability that the receiver does not get the message. We, however, are more interested in
the second variation which does not allow for the possibility of the receiver not obtaining the message. In
this second variation, we say that a protocol is (perfectly) reliable if a message transmitted by a node vi to
a node vj is always received by the latter even in the presence of faults. In the following, we give a more
precise definition which also takes into account the size of the subset of nodes controlled by the adversary.

3

Definition 3. Let G = (V ,E) be a graph on N elements and let vi and vj be any two nodes in V . A
protocol is said to be t-reliable if any message sent by vi to vj is received by the latter even if the adversary
can control any subset T ⊂ V \ {vi,vj} of size at most t.

Privacy. Similarly to the case of reliability, we can have two variations for the definition of privacy in
protocols, depending on whether we allow a very small probability of some information about the message
being transmitted to be leaked (almost perfect privacy) or not (perfect privacy). Since we are interested in
the case of perfect privacy, we only give a formal definition for this variant.

Definition 4. Let G = (V ,E) be a graph on N elements and let vi and vj be any two nodes in V . A protocol
is said to be t-private if, for any pair of equal-length messages m0 and m1, no subset T ⊂ V \ {vi,vj} of
size at most t can distinguish which message was sent from vi to vj.

3 Protocol

In this section, we assume we have networks with enough short disjoint paths between any two nodes. We
show in later sections how one can design such networks. So, let us turn our attention to the problem of
designing secure group communication protocols for which we can give bounds on the total number of rounds
it can take.

The protocol we present is based on an efficient point-to-point protocol and uses a näıve approach of
transmitting the message to each member in the multicast group separately. Despite its simplicity, our
protocol is highly parallelizable and very efficient in the total number of rounds it can take. Of course, this
simple approach has its limitations and can only be applied to small groups, since the amount of information
being transmitted grows linearly with the size of the group. But it is our opinion that such approach,
yet limited, still meets the requirements of several applications. It remains as future work to design group
communications protocols which are still round efficient whose communication costs are sub-linear in the
size of the multicast group.

3.1 Point-to-point protocol

Let G = (V ,E) be a (3t + 1, k)-connected graph, where t is the maximum number of faults the protocol
tolerates. Let vi and vj in V be respectively the source and target nodes. The goal is to transmit a message
msg securely from vi to vj . We assume vi and vj are not connected by an edge in E, else no protocol is
needed for them to communicate securely. We assume the message msg to be an element of a finite field of
prime order, say Z∗p . The protocol works as follows.

Transmission. The main idea is to use standard polynomial secret sharing[21]. Let px, for l = 1, . . . , 3t+ 1,
denote a disjoint path in G between nodes vi and vj . The sender node vi first picks a random polynomial
f(x) = msg+c1x+ . . .+ctx

t in Z∗p of degree t, by first making its 0-coefficient equal to msg and then picking
all the other coefficients cj for l = 1, . . . , t at random from Z∗p . Then, for each disjoint path l = 1, . . . , t, vi
sends the value f(l) through path pl to node vj . For a pictorial representation of our point-to-point protocol,
please refer to Fig. 1.

Reconstruction. The goal of the receiver node vj is to reconstruct the message msg from its shares even
when some of these shares are not correct. Note that this is possible since we allow for up to t malicious
adversaries. In order to do so, we opted for using Berlekamp’s reconstruction algorithm [3]. The algorithm is
very simple, requiring first solving a system of linear equations and then dividing one polynomial by another,
and yet quite efficient, taking O(t3) by näıve methods (for a concise description of this algorithm, please refer
to [11]. The main property of this algorithm in which we are interested is that the correct reconstruction of
the secret is possible whenever less than a third of these shares are wrong. More precisely, it allows us to
reconstruct msg from the 3t + 1 shares if at most t of them are not correct. For completeness, f(l) should
be set to a predefined value, say ⊥, whenever the point f(l) transmitted through path px is not received by
node vj .

4

...
...

...

...

...

v v
f(x)

f(1)

f(3t+1)

i j

f(x) = msg + c x + ... + c x mod p1 t
t

Fig. 1: Pictorial representation of our point-to-point protocol. Each path is labeled a value i between 1 and
3t+ 1.

Efficiency. If we assume that transmission of each point f(l) can be done in parallel and that the given
graph G is (3t+ 1, k)-connected, then the above protocol takes at most k rounds since the length of each of
these paths is bounded by k.

Privacy. One can easily see that no information about msg is leaked to any adversary controlling up to t
nodes. This adversary has access to at most t shares in the worst case. However, we know that Shamir secret
sharing is information theoretically secure and all sets of t shares have the same probability.

Reliability. From Berlekamp’s algorithm, we know that the receiver can reconstruct msg from 3t+1 shares
even if up to t of these shares contains incorrect values. Therefore, the protocol can tolerate up to t faults.
This corresponds to the worst possible case in which we have at most 1 faulty node in each disjoint path.

3.2 Point-to-multi-point protocol

The targeted point-to-multi-point protocol we present here is a simple extension of the point-to-point protocol
in Section 3.1, in which we transmit the message msg from the sender to each member of the multicast group
separately. Care should be taken, though, when picking a random polynomial during the transmission of the
message. For each user, we need to choose a new random polynomial so as to avoid having any node in the
graph, other than the sender or any of the receivers, obtaining more than one point per polynomial, which
of course would lower the privacy threshold. One can easily see that this protocol inherits all the security of
the underlying point-to-point protocol.

4 Empirical designs

We want to design specific communication networks for which the simple protocols from the previous section
will be secure and efficient. If every pair of nodes is (3t+ 1, k)-connected or connected by a single edge, then
our targeted group communication protocol will take k rounds and be t-reliable and t-private. We would like
to understand the tradeoffs among n, t, and k. We focus our attention in this section on the realistic setting
where the size of n is in the low 100’s.

In order to better understand the trade-offs between the number of disjoint paths and their length as a
function of the several parameters, such as average degree, in graph design, we run several experiments with
random regular graphs. The reason for picking regular graphs is that they seem to be the best possible choice
for our purposes since, in this case, all pairs of nodes are connected by the same number of disjoint paths

5

with very high probability [5], where this number is given by the average degree of a node. More specifically,
in this section, we present several experiments with random regular graphs and analyze their behavior with
respect to the number and length of disjoint paths between any pair of nodes when we vary the average
degree of a each node.

Before proceeding any further, we should also mention that we did make experiments with other types
of random graphs. In particular, we worked with graphs of the form GN,p = (V ,E), in which N = |V |
denotes the total number of nodes and p denotes the probability of having an edge between any two nodes vi
and vj , i.e. Pr[(vi,vj) ∈ E] = p for i, j = 1, . . . , N . Such graphs are most likely not regular and connected
with high probability for p ≥ logN/N [1]. The average degree of a node is given by p(N − 1), but can vary
significantly. Because of this unbalance, we did not expect such graphs to be very useful for our purposes
as we are concerned with the worst possible case for connectivity. That is, the connectivity of a graph will
be given by the pair with fewer number of disjoint paths connecting them. Indeed, our simulations with this
type of random graphs showed that such unbalance plays an important role in the overall connectivity of a
graph, significantly reducing its value in relation to that of a random regular graph with the same average
degree.

4.1 Generating random regular graphs

Our generation of random regular graphs is not exact in that it may generate graphs which are “slightly”
irregular. By that, we mean a graph where most of the nodes will have the same degree, the desired degree,
but some may have a slightly higher degree. This approximation works fine for our purposes and does not
have a significant effect on our results. In most cases, we noticed that the total number of edges which are
in excess is less than 0.5 percent of the total number of edges.

The algorithm takes as input two parameters: N , the total number of nodes in the graph; and d, the
average degree. It outputs a random graph GN,d where most nodes have degree d and a possibly few other
nodes have a slightly higher degree. It works as follows. Let V = {1, 2, . . . , N} denote the set of nodes and
let N(i) denote the set of nodes which are neighbors of node i. For each node i = 1, . . . , N , the algorithms
first picks a node j at random from the set V ′ = V −N(i), then checks if its degree is smaller than d and,
if so, adds j to N(i) and i to N(j). If node j has degree greater than or equal to d, then we simply repeat
the process by picking another node at random. In both cases, however, we remove node j from set V ′ to
avoid picking the same node over and over. We iterate until the size of N(i) reaches d or until the size of V ′

reaches 0, in which case we simply pick d− |N(i)| nodes at random from the set V −N(i) without worrying
about their degrees.

4.2 Computing bounded disjoint paths

The problem of computing bounded disjoint paths is of extreme relevance and plays an important part in
our protocols, as it will be seen later. In this problem, we are a given graph G = (V ,E), two nodes vi and
vj in V , and a bound k, and we want to compute the maximum number of vertex-disjoint paths between
vi and vj of length at most k. As it was shown in [13], this problem as well as several of its variants are
NP-complete except for small values of k. If we assume P 6= NP , then we can not hope for an efficient way
to compute the exact solution to this problem. Instead, we opted for computing an approximate solution to
this problem by using a greedy approach with the following heuristic.

The heuristic is to pick the shortest paths first. That is, for each pair of nodes, we first compute a shortest
path between them, then verify if its length is smaller than the bound k, remove all the edges and nodes
in it from the original graph, and repeat the process until no path of size at most k is found. The intuition
behind this heuristic is that by removing the shortest paths first, we would be removing the least number of
nodes from the graph and hence maximizing the total number of paths that we can find. One of the main
advantages of using this heuristic is the efficiency of its computation. Each disjoint path can be computed
in time O(E + V), by using a breadth-first search algorithm [6]. On the other hand, this method is not
guaranteed to perform well in all situations and can sometimes compute values which are very far from the

6

S T

Fig. 2: An counter-example for the heuristic of picking shortest paths first.

exact ones. For instance, in the example in Fig. 2, depending on which shortest path we select first between
nodes s and t, the total number of disjoint path can vary between 1 and 3.

The second heuristic we present is due to Reiter and Stubblebine [19] and is based on the idea of first
picking paths with smallest degrees. By degree of a path, we mean the sum of the degree of all the nodes in the
path. The intuition behind this heuristic is that paths with small degrees will most likely intercept a smaller
number of paths, hence maximizing the total number of disjoint paths we can compute. As pointed out by
[19], this method can be easily implemented by using a variant of Dijkstra’s shortest path algorithm [?,6]. As
one can see, this method works well, for example, for the graph given in Fig. 2, since now we would definitely
not pick the path between s and t that goes from top to bottom. Nevertheless, its computation is somewhat
more expensive than that of the previous method and can take time O(V 2) per path.

It turns out that in the case we are interested in, which is that of regular graphs, both heuristic will be
equally effective. Therefore, for performance purposes, we opted for using the first one in our simulations.

4.3 Some results on small graphs

In order to better understand how the number and length of disjoint paths vary as a function of the average
degree and total number of nodes, we ran several experiments on graphs with up to 200 nodes. The main
reason for choosing such small graphs is mostly due to the constraints involved in the simulation, which is
very time-consuming. However, it is our hope that the knowledge gained with such small graphs can still be
applied to larger ones. But even if this is not the case, we expect that results on small graphs can still be
useful for several different applications where the total number of nodes is small, such as multicast protocols
within small virtual private networks.

When working with random regular graphs, we are mainly interested in analyzing their connectivity. More
specifically, we want to know for a given graph the minimum number of disjoint paths that we have between
any two nodes and how long or short they are. For that purpose, we generate several random instances of
regular graphs and analyze their average connectivity. In doing so, we also keep track of the graph with best
connectivity among all the graphs we generated. These graphs are actually the most useful to us as they
provide us with best network design (connectivity) for a given cost (degree). Unless stated otherwise, the
total number of trials (instances) in our experiments is 100.

Fig. 3 describes the best (dotted line) and average (full line) cases for the connectivity in our simulation of
regular graphs with 100 nodes for different upper bounds on the path length and for several average degrees.
That is, for a given upper bound b and average degree d, its gives both the best and average cases for the
minimum number of disjoint paths of length at most b between any pair of nodes in graphs with 100 nodes
and average degree d. For example, we can see that for graphs with average degree d = 10, there are at least
8 disjoint paths of length at most 4 between any two nodes in the best case and at least about 7 disjoint

7

0

5

10

15

20

1 2 3 4 5 6 7 8

A
ll

p
a

ir
s
 m

in
im

u
m

 c
o

n
n

e
c
ti
v
it
y
 (

k
)

Upper bound on the path length (b)

d=5
d=10
d=15
d=20

Fig. 3: Best (dotted line) and average (full line) cases for connectivity in regular graphs with 100 nodes for
different upper bounds on the length of a path.

paths of length at most 4 on average (see Table 1). As one can see, the graph with best connectivity does not
differ significantly from the average random graph and they occur quite often. This seems to be the case even
when a larger number of instances is considered in the simulation. In fact, in almost all of our experiments,
this difference was no greater than 2. As a result, even if we pick the graph with best connectivity from a
smaller number of samples, say 10, we do not expect to be far from the optimum value for the connectivity.
Therefore, from now on, we only consider the best case for connectivity as they are not hard to find.

Best and average cases for connectivity
in regular graphs with 100 nodes and average degree 10

Upper Bound Best Connectivity Average connectivity Confidence Interval

1 0 0.00 0.0000
2 0 0.00 0.0000
3 2 1.00 0.0554
4 8 6.96 0.0474
5 10 9.03 0.0334
6 10 10.00 0.0000
7 10 10.00 0.0000
8 10 10.00 0.0000

Table 1: Best and average cases for the connectivity in regular graphs with 100 nodes for different upper
bounds on the length of a path. A total of 100 random instances were considered in the simulation.

Fig. 4a and Fig. 4b show the effect of varying the total number of nodes on the connectivity of a graph
while keeping the average degree d fixed and equal to 10. As expected, the larger the graph is, the longer
the disjoint paths connecting their nodes are. However, this increase is not as pronounced as one may expect
and, sometimes, not even existent. Note that as we increase the total number of nodes from 50 to 300, the
curve for the connectivity only slightly shifts to the right. In fact, when the total number of nodes in the
graph goes from 50 to 80 in Fig. 4a, there is no change in the connectivity and both curves are exactly the
same. It is true that these values are just approximations and that the exact values for both of these curves

8

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

A
ll

p
a
ir
s
 m

in
im

u
m

 c
o
n
n
e
c
ti
v
it
y
 (

c
)

Upper bound on the path length (b)

N=50
N=80

N=100
N=150
N=200
N=300

(a) Best case

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

A
ll

p
a
ir
s
 m

in
im

u
m

 c
o
n
n
e
c
ti
v
it
y

Upper bound on the path length

N=50
N=80

N=100
N=150
N=200
N=300

(b) Average case

Fig. 4: Best and average cases for connectivity in regular graphs of degree 10 for different upper bounds on
the length of a path.

may actually present some discrepancy. Nevertheless, we do not expect any significant change in the overall
picture. That is, we still expect the connectivity to increase very slowly with the total number of nodes in
the graph.

Table 2 summarizes some of our results on graphs with 100 nodes. More specifically, for a given lower
bound on the number of disjoint paths and upper bound on the length of these paths, it describes the
minimum average degree for which we could find a regular graph meeting these criteria. For example, the
entry 8 in the second column (k = 5) of the second row (c = 7) indicates that minimum degree for which
we could find a graph, in which every two nodes is connected by at least 7 disjoint paths of length at most
5, is 8. In this particular case, our simple group communication protocol presented in Section 3 would be
2-resilient and 2-private and each transmission would take at most 5 rounds. Likewise, in order to have a
secure protocol that tolerates up to 4 faults (last row) and runs in at most 4 rounds (third column), we only
need a regular graph with average degree 14.

Lowest average degree achieved

Maximum length
Connectivity 6 5 4 3

4 6 6 8 12

7 7 8 10 15

10 10 10 12 17

13 13 13 14 20

Table 2: Minimum degree achieved on regular graphs with 100 nodes for different bounds on the length and
number of disjoint paths.

5 Analytical designs

In this section, we give a few specific constructions of graphs for which we can provide bounds on the number
and length of disjoint paths between every pair of nodes.

The first construction, based on hypercubes, is very simple and yet able to produce graphs with a high
number of disjoint paths between any pair of nodes. Moreover, these paths are also reasonably short and,

9

in the worst case, have length proportional to logarithm of total number of nodes in the graph. The main
drawback of this method for constructing graphs resides in its lack of flexibility. The only freedom we have
is to choose the dimension of the hypercube. See Section 5.1.

To overcome the lack of flexibility in hypercube-based designs, we suggest three other methods of con-
struction. The second and third methods (resp. parallel hypercubes and M -ary hypercubes) are extensions
to the basic hypercube construction. Both extensions are based on the idea of adding extra neighbors to each
node in the graph, hence increasing the number of disjoint paths between nodes, while keeping the upper
bound on the length of these paths the same. See Section 5.2 and Section 5.3.

The last method we present is based on balanced incomplete block designs and is somewhat more complex,
but more flexible than the previous ones. For example, by increasing the average degree of a node, one can
obtain graphs with much shorter disjoint paths. It is interesting to mention here, as it will be shown later,
that the graph generated using this method is not necessarily regular. See Section 5.4.

5.1 Hypercubes.

A n-dimensional hypercube is a graphG = (V ,E), in which each node vi ∈ V can be viewed as n-dimensional

binary vector (v
(1)
i , . . . , v

(n)
i) where v

(j)
i ∈ {0, 1}, such that two nodes are connected by an edge if and only

if their representing vectors differ in exactly 1 position.
Some basic properties of n-dimensional hypercubes are: (i) the total number of vertices is N = |V | = 2n;

(ii) the total number of edges is 2n−1 × n; and (iii) each node has exactly n neighbors.
The following theorem, whose proof is given in ??, presents a more interesting property of n-dimensional

hypercubes, which is related to what we want. More specifically, it says that in hypercubic graphs, the
number and length of disjoint paths between any two nodes are both logarithmic in the total number of
nodes in the graph. Corollary 1 follows easily from Theorem 1 by considering the worst possible case for the
length of a path, which in this case occurs when m = n− 1.

Theorem 1. Let G = (V ,E) be a n-dimensional hypercube and let vi and vj in V be any two nodes with
Hamming distance m. Then, there exists n disjoint paths connecting these nodes, m of which have length m
and n−m of which have length m+ 2.

Corollary 1. Let G = (V ,E) be a n-dimensional hypercube. Then, for any two nodes vi and vj in V , there
exists n disjoint paths connecting these nodes whose length are at most n+ 1.

As seen above, this construction is very simple and yet able to produce graphs with a high number of
disjoint paths between any pair of nodes. Moreover, these paths are also reasonably short and, in the worst
case, have length proportional to logarithm of total number of nodes in the graph. The main drawback of
this method for constructing graphs resides in its lack of flexibility. The only freedom we have is to choose
the dimension of the hypercube.

Proof. The proof is constructive in that we give a specific algorithm for computing all the n disjoint paths
between nodes vi and vj . From the definition of Hamming distance between two vectors, we know that the
representing vectors of vi and vj differ in exactly m positions. We consider two cases in our construction:
m = n and m < n.

Let us start by considering the case where m = n. Without loss of generality, let us assume that vi =
(0, . . . , 0) and vj = (1, . . . , 1). We can do so by simply changing the representation of every node vk from

(v
(1)
k , . . . , . . . , v

(n)
k) to (v

(1)
k′ , . . . , . . . , v

(n)
k′) where v

(l)
k′ = 1− v

(l)
k when v

(l)
i = 1, and v

(l)
k′ = v

(l)
k when v

(l)
i = 0.

For simplicity, we slightly change the notation to represent a node as a binary string of length n. Hence, we
have vi = 0 . . . 0 = 0n and vj = 1 . . . 1 = 1n.

The algorithm takes as input a value n, the dimension of the hyper-cube graph, and outputs n disjoint
paths between vi = 0n and vj = 1n, It works as follows. Let k = 1, . . . , n. The k-th path between vi and vj is
given by vi = 0n → 0k−110n−k → 0k−1110n−k−1 → · · · → 0k−11n−k+1 → 10k−21n−k+1 → 110k−31n−k+1 →
· · · → vj = 1n. Note that, except for nodes vi and vj , no other node appears in more than one path.
Moreover, all paths have length n.

10

Fig. 5: An example of a parallel hypercube construction for n = 3 and B = 3. Only some cross-edges are
shown.

Now, let us consider the case where m < n. Without loss of generality, we assume that vi and vj differ
in the first m positions (dimensions). We can do so by simply permuting the positions in the representing
vectors. By an argument similar to the one in the previous case, we can also assume that vi = 0n and
vj = 1m0n−m. The algorithm works as follows.

The algorithm takes as input two values: n, the dimension of the hyper-cube graph; and m, the Hamming
distance between nodes vi and vj . It outputs n disjoint between vi = 0n and vj = 1m0n−m.

The algorithm works in two stages. In the first stage, m paths of length m are computed in a way similar
to the previous case by simply ignoring the higher n − m dimensions. Let k = 1, . . . ,m. The k-th path
between vi and vj is given by vi = 0n → 0k−110n−k → 0k−1110n−k−1 → · · · → 0k−11m−k+10n−m →
10k−21n−k+10n−m → 110k−31n−k+10n−m → · · · → vj = 1m0n−m. Note once again that, except for nodes vi
and vj , no other node appears in more than one path and that each path has length m.

In the second stage, the remaining n −m paths are computed by moving further away from the target
node in a first step (to maintain the disjointness property), and then getting closer to the target node
in each subsequent step. Let k′ = 1, . . . , n − m. The k′ + m-th path from vi to vj is as follows: vi =

0n → 0m+k′−110n−m−k
′ → 10m+k′−210n−m−k

′ → 110m+k′−310n−m−k
′ → · · · → 1m0k

′−110n−m−k
′ → vj =

1m0n−m. One can easily see that no node appears in more than one path and that each path has length
exactly m+ 2. This concludes the proof.

5.2 Parallel hypercubes

Parallel hypercubes are a collection of parallel hypercubes connected to each other in a special way. They are
described by two parameters: B, the number of parallel hypercubes; and n, the dimension of each hypercube.
Let vi,2 represent node i in hypercube j. The construction is as follows. First, each hypercube j itself is
constructed like in the previous section. That is, if we represent a node vi,2 by a n-dimensional vector

(v
(0)
i,j , . . . ,v

(n−1)
i,j), This node will have exactly n neighbors, those ones whose vectors differ from its vector in

exactly one position. Hence, each hypercube will have a total of 2n nodes. Last, if a node vi,2 is connected to
a node vi′,2 in hypercube j, then it is also connected to node vi′,2 in hypercube j′ 6= j. We call these edges
cross-edges. Fig. 5 gives an example of a parallel hypercube construction for n = 3 and B = 2. For clarity,
we only shoe the cross-edges (bolder lines) for one of the nodes in the left-most hypercube.

Let (B,n)-hypercube denote a graph G = (V ,E) consisting of B n-dimensional hypercubes. Some of its
basic properties are: (i) the total number of vertices is N = |V | = B × 2n; (ii) the total number of edges is
B × n× 2n−1; and (iii) each node has exactly B × n neighbors.

The following theorem, whose proof can be easily derived from that of Theorem 1, describes the number
and length of disjoint paths between any two nodes within Hamming distance m of each other in a (B,n)-

11

hypercube graph. Corollary 2 follows easily from it by considering the worst possible case for the length of
a path, which occurs when m = n− 1.

Theorem 2. Let G = (V ,E) be a (B,n)-hypercube and vi and vj in V be any two nodes with Hamming
distance m. Then, there exists B × n disjoint paths connecting these nodes, B ×m of which have length m
and B × (n−m) of which have length m+ 2.

Corollary 2. Let G = (V ,E) be a (M,n)-hypercube. Then, for any two nodes vi and vj in V , there exists
(M − 1)n disjoint paths connecting these nodes of length at most n+ 2.

5.3 M-ary hypercubes

To overcome the lack of flexibility in the hypercube-based design in Section 5.1, we suggest here an extension
to that construction. This extension is based on the idea of adding extra neighbors to each node in the graph,
hence increasing the number of disjoint paths between nodes, while keeping the upper bound on the length
of these paths the same.

As seen in Section 5.1, each node vi in a n-dimensional hypercube can be seen as n-dimensional binary

vector (v
(1)
i , . . . , v

(n)
i), where v

(j)
i ∈ {0, 1}. To allow for more neighbors, while maintaining the maximum

length of each disjoint path the same, the idea is to replace binary vectors by M -ary vectors. That is, each

element v
(j)
i of a node vi is now a member of the set {0, . . . ,M−1}. As before, we still have an edge between

two nodes if and only if their representing vectors differ in exactly 1 position.
Let (M,n)-hypercube denote a M -ary n-dimensional hypercube graph G = (V ,E). Some of its basic

properties are: (i) the total number of vertices is N = |V | = Mn; (ii) the total number of edges is (M − 1)×
n×Mn ÷ 2; and (iii) each node has exactly (M − 1)× n neighbors.

The following theorem states precisely the number and length of disjoint paths between any pair of nodes
in the graph. Its proof is given in ??. Corollary 3 follows easily from Theorem 1 by considering the worst
possible case for the length of a path, which is m = n− 1 in this case.

Theorem 3. Let G = (V ,E) be a (M,n)-hypercube and let vi and vj in V be any two nodes with Hamming
distance m. Then, there exists (M − 1)n disjoint paths connecting these nodes, m of which have length m
and (M − 1)n−m of which have length m+ 2.

Corollary 3. Let G = (V ,E) be a (M,n)-hypercube. Then, for any two nodes vi and vj in V , there exists
(M − 1)n disjoint paths connecting these nodes of length at most n+ 2.

Proof. As in the proof of Theorem 1, we give a specific algorithm for computing (M − 1)n disjoint paths
between nodes vi and vj with the specific length property stated in the theorem. As in that construction,
we also consider two possible cases in our construction: m = n and m < n.

Let us start by considering the case where m = n. Without loss of generality, let us assume that vi =
(0, . . . , 0) and vj = (1, . . . , 1), which can be achieved by a simple change of representation. For simplicity,
instead of using the vector notation for a node, we use a M -ary string of length n to represent a node. Hence,
vi = 0 . . . 0 = 0n and vj = 1 . . . 1 = 1n.

The algorithm takes as input two values: n, the dimension of the M -ary hyper-cube graph; and M , the
size of the alphabet from which each point coordinate is drawn; It outputs (M − 1)n disjoint paths between
vi = 0n and vj = 1n, It works as follows.

The construction of the first n paths between nodes vi and vj can be described in a straight forward
manner. The idea is to start with node vi and each round move one step closer to node vj by selecting a
node whose hamming distance to node vj is smaller than that of the current node. Let k = 1, . . . , n. Then
the first n paths between nodes vi and vj are as follows: vi = 0n → 0k−110n−k → 0k−1110n−k−1 → · · · →
0k−11n−k+1 → 10k−21n−k+1 → 110k−31n−k+1 → · · · → vj = 1n. Note that, except for nodes vi and vj , no
other node appears in more than one path. Moreover, all paths have length n.

The construction of the last n paths between nodes vi and vj is also very similar to that of the first n
ones. The main difference is that in the first step we select a node whose Hamming distance to node vj is

12

still n. The reason for doing so is that all other nodes closer to node vj were already used in the construction
of the first n paths. After that, the idea is the same and we try to move one step closer to node vj in each
round. Let k = 1, . . . , n and let δ = 2, . . . ,M−1. Then, the last (M−2)n paths between nodes vi and vj are
as follows: vi = 0n → 0k−1δ0n−k → 0k−1δ10n−k−1 → 0k−1δ110n−k−2 → · · · → 0k−1δ1n−k → 10k−2δ1n−k →
110k−3δ1n−k → · · · → 1k−1δ1n−k → vj = 1n. Again, note that, except for nodes vi and vj , no other node
appears in more than one path. Moreover, all paths have length n+ 2.

Now, let us consider the case where m < n. Without loss of generality, we assume that vi and vj differ in
the first m positions (dimensions) and are equal to 0n and 1m0n−m, respectively. This can be accomplished
by a simple change in the representation of a node. The algorithm works as follows.

The algorithm takes as input three values: n, the dimension of the M -ary hyper-cube graph; M , the size
of the alphabet from which each point coordinate is drawn; and m, the Hamming distance between nodes
vi and vj . It outputs (M − 1)n disjoint between vi = 0n and vj = 1m0n−m.

The algorithm works in two stages. In the first stage, (M − 1)m paths are constructed in a similar way
to that of the previous case by simply ignoring the higher n−m dimensions. Let k = 1, . . . ,m. The first m
paths between vi and vj are given by vi = 0n → 0k−110n−k → 0k−1110n−k−1 → · · · → 0k−11m−k+10n−m →
10k−21n−k+10n−m → 110k−31n−k+10n−m → · · · → vj = 1m0n−m. Note that each of these paths has
length m. Let k = 1, . . . ,m and let δ = 2, . . . ,M − 1. The last (M − 2)m paths between nodes vi and vj
are as follows: vi = 0n → 0k−1δ0n−k → 0k−1δ10n−k−1 → 0k−1δ110n−k−2 → · · · → 0k−1δ1m−k0n−m →
10k−2δ1m−k0n−m → 110k−3δ1m−k0n−m → · · · → 1k−1δ1m−k0n−m → vj = 1m0n−m. Note that all these
paths have length m+ 2.

In the second stage, the remaining (M − 1)(n −m) paths are constructed by first moving further away
from the target node in an initial step (using one of the higher (n−m) dimensions) and then moving closer to
the target node in each subsequent step. Let k′ = 1, . . . , n−m and let δ = 1, . . . ,M−1. The remaining paths
from vi to vj are as follows: vi = 0n → 0m+k′−1δ0n−m−k

′ → 10m+k′−2δ0n−m−k
′ → 110m+k′−3δ0n−m−k

′ →
· · · → 1m0k

′−1δ0n−m−k
′ → vj = 1m0n−m. One can easily see that each path has length exactly m+ 2. This

concludes the proof.

5.4 Balanced incomplete block designs (BIBD)

Balanced Incomplete Block Designs (BIBD) are often used when it comes to the design of regular mathe-
matical structures. Here, we are interested in using such designs to help us construct graphs for which we
can give bounds on the number and length of disjoint paths between any two nodes in the graph. But before
we proceed with the construction of graphs, let us first define BIBDs more formally.

Definition 5. A Balanced Incomplete Block Design (BIBD) is a pair (V ,B) where V is a set of N elements
and B is a collection of b k-subsets (blocks) of V such that each element of V appears in exactly r subsets
and each pair of elements of V appears in exactly λ subsets.

Note that these parameters are not totally independent. In fact, in order to guarantee the existence of a
BIBD with parameters (N, b, r, k, λ), we require that

rN = b k; and (1)

r(k − 1) = λ(N − 1); (2)

As a result, we can also refer to BIBDs with parameters (N, b, r, k, λ) as (N, k, λ)-designs since the parameters
b and r can be easily derived from the other three parameters. For other conditions for the existence of BIBDs,
please refer to [4].

Here is an example taken from from [4] of a (11, 5, 2)-design, i.e. a set of subsets of size 5 drawn from a
set of 11 elements such that each pair of elements appears in exactly 2 subsets: {{0, 1, 2, 3, 7}, {0, 1, 4, 5, 6},
{0, 2, 5, 8, 9}, {0, 3, 6, 8, a}, {0, 4, 7, 9, a}, {1, 2, 4, 8, a}, {1, 3, 5, 9, a}, {1, 6, 7, 8, 9}, {2, 3, 4, 6, 9}, {2, 5, 6, 7, a}, {3,
4, 5, 7, 8}}.

Now, let us go back to the construction of graphs using BIBDs. Remember that we want to ensure that
every two nodes, not directly connected by an edge, are connected by a minimum number of disjoint paths,

13

0 0 0 0 0

17 16 29 3a 4a

23 45 58 68 79

Fig. 6: Some of the virtual rings generated from the (11, 5, 2)-design in the text.

say t, each of length at most k. Each block (subset) in a BIBD will be mapped into a virtual ring over the
network. Despite its simplicity, this construction has several advantages. First, each pair of nodes in a ring,
not directly connected by an edge, will be connected by 2 disjoint paths of length at most k − 2. Second, if
each triple of nodes appears in exactly 1 block, then every pair of nodes, not directly connected by an edge,
will be connected by at least 2λ paths. Such types of block designs can be obtained, for example, by using
sub-designs of Steiner families [4]. Henceforth, we assume this is true in all block designs we consider. Third,
the computation of disjoint paths is straight forward and does not depend on the total number of nodes in
the graph.

We should mention here that a similar idea of constructing graphs from block designs was used in [23],
but they were mainly interested in the case where λ = 1. In our case, however, we want to have as many
disjoint paths as possible between any pair of nodes and λ will be always greater than 1.

Before going any further, let us take a look at a more concrete example. Consider the (11, 5, 2)-design
given above as an example. Fig. 6 shows some of the rings we can obtain by mapping each block into a ring
over a network with 11 nodes. Note that some edges appears in more than one virtual ring. Because the
block size, k, is 5, each pair of nodes in the ring, not directly connected by an edge, will be connected by 2
disjoint paths of length at most 3 = k− 2. Because each pair of nodes appears in exactly λ = 2 blocks, there
is at least 2λ = 4 disjoint paths between any two nodes, not directly connected by a node.

Fig. 7 depicts the entire graph obtained by mapping all 11 blocks into virtual rings. Consider, for instance
the pair of nodes 0 and 5. By using the virtual rings, we can easily draw the following 4 disjoint paths between
nodes 0 and 5: 0→ 1→ 4→ 5; 0→ 6→ 5; 0→ 2→ 5; and 0→ 9→ 8→ 5. Note, however, that, by using
the other remaining nodes, we can still draw 2 more disjoint paths: 0 → 3 → 5; and 0 → 7 → 5. Moreover,
by not using node 8 in one of the paths above (we could have gone directly from node 9 to node 5), we could
have obtained yet another disjoint path, 0 → a → 8 → 5, and achieved the maximum number of disjoint
paths between 0 and 5.

We need to make two observations here. First, the graph obtained by this kind of transformation is not
unique and depends on the way we arrange the nodes in a ring. In fact, even the total number of edges in a
graph can be different depending on which heuristic we use for constructing the rings. As a result, the degree
d of a node is also not unique and can vary between 2r (since we can have 2 new edges per node per ring
and each node belongs to exactly r rings) and 2r/λ (if, whenever a node is paired with a node in some ring,
the same are paired together in all the other λ− 1 rings in which they appear). Likewise, the total number
of edges will vary between Nr and Nr/λ. Second, both the lower bound on the number of disjoint paths
between any pair of nodes and the upper bound on the length of these paths are conservative. In fact, as in
the example in Fig. 7, the lower bound on the number of disjoint paths, 2λ, can be much smaller than the
maximum value we could achieve in practice, which is usually in the order of the minimum of the degrees of
the source and target nodes. From the analysis above, we know this number is at least 2r/λ.

Table 3 summarizes the range of values for a graph G = (V ,E) constructed from a (N, k, λ)-design.

In order to compare the construction based on hypercubes from Section 5.1 to the current one, let us
consider the best possible scenario for BIBD-based constructions. That is, let us assume that the graph
generated by the current construction is regular with average degree d = 2r/λ and that r = λ2 so that the

14

2

3

4

56

7

8

9

a

0

1
d=7 => {1,2,5,8}

d=6 => {a}

d=8 => {0,3,4,6,7,9}

Fig. 7: Graph generated from the (11, 5, 2)-design in the text.

Parameter Value range

Total number of nodes (|V |) N
Total number of edges in the graph (|E |) N r/λ ≤ |E | ≤ N r
Degree of a node (d) 2 r/λ ≤ d ≤ 2 r
Number of disjoint paths (t) t ≥ 2λ
Maximum length of disjoint path k − 2

Table 3: Parameters of a graph G = (V ,E) based on a (N, k, λ)-design.

lower bound on the number of disjoint paths between any two nodes, 2λ, matches its upper bound, d = 2r/λ.
Then, by (2), we get

d(k − 1) = 2(N − 1). (3)

That means that the product of the degree of a node (which also determines the maximum number of disjoint
paths) and the length of a disjoint path is in the order of N . For example, if we want disjoint paths with
length bounded by a constant, we would need graphs where the average degree is linear in the total number
of nodes.

Let us first consider the case where k = logN in (3). This is about the same guarantee we could get for
the upper bound on the length of disjoint paths by using hypercube-based constructions. As one can see, the
average degree of a node d for BIBD-based constructions is in the order of N/ logN , which is much larger
than d = logN achieved by the hypercube-based construction of Section 5.1. On the other hand, the total
number of disjoint paths between any two nodes would be much higher in BIBD-based constructions than
in hypercube-based ones.

Now consider the case where d = logN in BIBD-based constructions. As one can see from (3), the
upper bound on the path length, k, is in the order of N/ logN , which is much higher than that achieved by
hypercube-based constructions.

From the comparison above, it seems that hypercube-based constructions outperforms BIBD-based con-
structions with respect to both the upper bound on the length of disjoint paths and the average degree of
a node. The main reason for this, as showed by the specific example in Fig. 7, seems to be that the bounds
on the path length and number of disjoint paths are very conservative. This suggests that in order to have a
more realistic comparison between the two constructions, one would have to first compute, even if approxi-

15

mately, the bounded disjoint paths for a given BIBD-based construction and only then compare the values
with those of a hypercube-based construction.

One main advantage of BIBD-based constructions over basic hypercube-based ones is the freedom of
choosing the parameters in the network design in the former. As pointed out before, we only have the
freedom to choose one parameter in the latter, which is the dimension of the hypercube. However, the same
is not true for extended hypercubes constructions and is no longer clear in this case whether the gain in
flexibility in BIBD-based constructions justifies the not-so-tight bounds on the number and length of disjoint
paths.

6 Future Work

One important direction for future work is to design protocols for point-to-group communication that achieve
sublinear bit complexity in the size of the targeted group. It seems intuitively plausible that there are ways
to improve on our simple replication of point-to-point communication.

We would also like to have better tools for designing good communication networks on which to execute
our protocols. Empirically, we may have only scratched the surface. The set of all possible networks is vast,
and it is not clear where and how to search. Analytically, our designs based on hypercubes and BIBD’s are
promising, but much remains to be discovered.

Lastly, we remark that it is not clear that the search for better protocols and the search for better network
designs should be treated separately. There may be a unified approach that will yield better results.

References

1. N. Alon and J. Spencer. The Probabilistic Method. Wiley-Interscience Publication, New York, 1992.
2. A. Beimel and M. Franklin. Reliable communication over partially authenticated networks. Theoretical Computer

Science, 220(1):185–210, 1999.
3. E. R. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent Number 4,633,470. Issued

Dec. 1986.
4. C. Colborn and J. Dinitz, editors. The CRC Handbook of Combinatorial Designs. CRC Press, 2000 N.W.

Corporate Blvd., Boca Raton, FL 33431-9868, USA, fifth edition, 1996.
5. C. Cooper, A. Frieze, and B. Reed. Random regular graphs of non-constant degree. Pre-Print, June 2000.
6. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill, 1990.
7. E. H. D. Wallner and R. Agee. Key management for multicast: Issues and architectures. ftp://ftp.ietf.org/internet-

drafts/draft-wallner-key-arch-01.txt, 1998.
8. R. Diestel. Graph theory. Springer-Verlag, New York, 1997. Translated from the 1996 German original.
9. D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. Journal of the ACM,

40(1):17–47, Jan. 1993.
10. A. Fiat and M. Naor. Broadcast encryption. Proc. Crypto ’93, pages 480–491, 1993.
11. M. Franklin and R. Wright. Secure communication in minimal connectivity models. Journal of Cryptology,

13(1):9–30, 2000.
12. Z. Galil and X. Yu. Short length versions of menger’s theorem. In Proceedings of the 27th Annual ACM Symposium

on the Theory of Computing (STOC ’95), pages 499–508, New York, May 1995. ACM.
13. A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding maximum disjoint paths with length constraints.

Networks, 12(3):277–86, 1982.
14. J. Kleinberg and R. Rubinfeld. Short paths in expander graphs. In 37th Annual Symposium on Foundations of

Computer Science, pages 86–95, Burlington, Vermont, 14–16 Oct. 1996. IEEE.
15. L. Lovasz, V. Neumann-Lara, and M. Plummer. Mengerian theorems for paths of bounded length. Periodica

Mathematica Hungarica, 9(4):269–76, 1978.
16. K. Menger. Allgemeinen kurventheorie. Fund. Math., 10:96–115, 1927.
17. S. Nikoletseas, K. Palem, P. Spirakis, and M. Yung. Short vertex disjoint paths and multiconnectivity in random

graphs: Reliable network computing. Lecture Notes in Computer Science, 820:508–??, 1994.
18. S. E. Nikoletseas and P. G. Spirakis. Expander properties in random regular graphs with edge faults. In 12th

Annual Symposium on Theoretical Aspects of Computer Science, volume 900 of lncs, pages 421–432, Munich,
Germany, Mar. 1995. Springer.

16

19. M. Reiter and S. Stubblebine. Path independence for authentication in large-scale systems. In Proceedings of the
Fourth ACM Conference on Computer and Communication Security, pages 57–66, Apr. 1997.

20. D. Ronen and Y. Perl. Heuristics for finding a maximum number of disjoint bounded paths (telecommunication
networks). Networks, 14(4):531–44, 1984.

21. A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.
22. J. W. Suurballe. Disjoint paths in a network. Networks, 4(2):125–45, 1974.
23. B. Yener, Y. Ofek, and M. Yung. Combinatorial design of congestion-free networks. IEEE/ACM Transactions

on Networking, 5(6):989–1000, Dec. 1997.

17

	Introduction
	Related work
	Outline

	Model and definitions
	Protocol
	Point-to-point protocol
	Point-to-multi-point protocol

	Empirical designs
	Generating random regular graphs
	Computing bounded disjoint paths
	Some results on small graphs

	Analytical designs
	Hypercubes.
	Parallel hypercubes
	M-ary hypercubes
	Balanced incomplete block designs (BIBD)

	Future Work

