
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Design and Analysis of

Secure Encryption Schemes

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Michel Ferreira Abdalla

Committee in charge:

Professor Mihir Bellare, Chairperson
Professor Yeshaiahu Fainman
Professor Adriano Garsia
Professor Mohan Paturi
Professor Bennet Yee

2001

Copyright

Michel Ferreira Abdalla, 2001

All rights reserved.

The dissertation of Michel Ferreira Abdalla is approved,

and it is acceptable in quality and form for publication

on microfilm:

Chair

University of California, San Diego

2001

iii

DEDICATION

To my father (in memorian)

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xii

Fields of Study . xiii

Abstract . xiv

I Introduction . 1
A. Encryption . 1

1. Background . 2
2. Perfect Privacy . 3
3. Modern cryptography . 4
4. Public-key Encryption . 5
5. Broadcast Encryption . 5
6. Provable Security . 6
7. Concrete Security . 7

B. Contributions . 8

II Efficient public-key encryption schemes 11
A. Introduction . 12
B. Definitions . 17

1. Represented groups . 17
2. Message Authentication Codes 17
3. Symmetric Encryption . 19
4. Asymmetric Encryption . 21

C. The Scheme DHIES . 23
D. Attributes and Advantages of DHIES 24

1. Encrypting with Diffie-Hellman: The ElGamal Scheme 25
2. Deficiencies of ElGamal Encryption 26
3. Overcoming Deficiencies in ElGamal Encryption: DHIES 29

E. Diffie-Hellman Assumptions . 31
F. Security against Chosen-Plaintext Attack 38

v

G. Security against Chosen-Ciphertext Attack 41
H. ODH and SDH . 47

III Re-keyed Encryption Schemes . 55
A. Introduction . 55
B. Re-keying processes as pseudorandom generators 60
C. Generalization: Tree-based re-keying 67

1. Construction . 68
2. Security . 69
3. Discussion . 74
4. Optimality of analysis . 74
5. More general constructions . 77

D. Re-keyed symmetric encryption . 78

IV Broadcast Encryption Schemes . 87
A. Introduction . 87

1. Related Work . 89
2. Contributions . 91

B. Definitions and Model . 93
C. Simple Examples . 95
D. A Lower Bound . 96

1. Tools . 96
2. The Bound . 98

E. Finding a Good Key Cover . 101
F. Practical Solutions . 103

1. Overview . 103
2. The Tree Scheme . 104
3. Where Extra Keys are Effective 108
4. Partitioning . 110

G. Dynamic Environments . 116
1. Adapting to a Dynamic Population 116
2. In-Program Dynamics . 117
3. Experimenting with In-Program Dynamics 118

Bibliography . 124

vi

LIST OF FIGURES

II.1 Encrypting with the scheme DHIES. We use the symmetric encryp-

tion algorithm, E , of SYM; the MAC generation algorithm, T , of
MAC; and a hash function, H. The shaded rectangles comprise the
ciphertext. 23

II.2 The scheme DHIES = (E ,D,K), where: SYM = (E ,D) is a sym-
metric encryption scheme using keys of length eLen; MAC = (T ,V)
is a message authentication code with keys of length mLen and tags

of length tLen; G = (G, g, , ↑) is a represented group whose group
elements encoded by strings of length gLen; and H : {0, 1}gLen →
{0, 1}eLen+mLen. 25

II.3 Algorithm B for attacking the security of SYM. 40
II.4 Algorithm C for attacking the hard-coreness of H on G. 40
II.5 Algorithm B for attacking the security of SYM. 43
II.6 Algorithm C for attacking the hard-coreness of H on G under adap-

tive Diffie-Hellman attack. 44
II.7 Algorithm F for attacking the security of MAC. 45
II.8 Algorithm B for attacking the hard-coreness of the Diffie-Hellman

problem under SDH on G. 50

III.1 The parallel and serial re-keying schemes. 60
III.2 Diagram of our tree-based construction 69

IV.1 Definition depiction. 93
IV.2 The lower bound for the number of transmissions (t) as a function

of the target set size k, with n = 1024, f = 2, and deg(S) = log2 n. 100
IV.3 Algorithm f -Cover . 101
IV.4 The effect of the “≤” threshold T on the number of transmissions

(t), for a tree with n = 1024. 105
IV.5 The effect of the “≤” threshold T on the Actual redundancy (fa)

for a tree with n = 1024. 106
IV.6 The effect of the “≤” threshold T on the Opportunity (η), for a

tree with n = 1024. 107
IV.7 A histogram of the key sizes used for several target set sizes k, for

n = 1024. 108
IV.8 Number of transmissions (t) as a function of the target set size k,

with n = 1024, f = 2, 11 levels, and 9 extra keys. 111
IV.9 Actual redundancy (fa) as a function of the target set size k, with

n = 1024, f = 2, 11 levels, and 9 extra keys. 112
IV.10 Opportunity (η) as a function of the target set size k, with n =

1024, f = 2, 11 levels, and 9 extra keys. 113
IV.11 Number of transmissions (t) as a function of the target set size k,

with n = 128K, f = 2, and 18 keys in total. 114

vii

IV.12 Actual redundancy (fa) as a function of the target set size k, with
n = 128K, f = 2, and 18 keys in total. 115

IV.13 The dynamic opportunity ηd(i) for i = 1, 3, 6, 10 slots, as a function
of the target set size k, using τ = 0.01 for n = 1024. 119

IV.14 The dynamic opportunity ηd(i) for i = 1, 3, 6, 10 slots, as a function
of the target set size k, using τ = 0.1 for n = 1024. 120

IV.15 The dynamic opportunity ηd(i) for several target set sizes, as a
function of the slot number i, using τ = 0.1 for n = 1024. 121

IV.16 The dynamic opportunity ηd(10), after 10 slots, for different values
of τ , as a function of the target set size k, for n = 1024. 123

viii

LIST OF TABLES

IV.1 A summary of some simple examples. Bold numerals indicate an
optimal parameter. 96

ix

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support and guid-

ance of my advisor, Professor Mihir Bellare, to whom I am deeply grateful. I

would like to thank him for introducing me to the area of cryptography and for

the countless discussions on the topic. It has been a privilege working with him

and having him as a friend.

I would also like to thank Professor Yeshaiahu Fainman, Professor Adri-

ano Garsia, Professor Mohan Paturi, and Professor Bennet Yee, for agreeing to be

part of my thesis committee.

Most of my research has been done in collaboration with many people.

I have been fortunate to have worked with Jee Hea An, Mihir Bellare, Sasha

Boldyreva, Walfredo Cirne, Anand Desai, Leslie Franklin, Matt Franklin, Keith

Marzullo, Sara Miner, Meaw Namprempre, David Pointcheval, Leonid Reyzin, Phil

Rogaway, Mike Semanko, Yuval Shavitt, Abdallah Tabbara, Bogdan Warinschi and

Avishai Wool. A significant part of this thesis is based on joint work with Mihir

Bellare, Phillip Rogaway, Yuval Shavitt, and Avishai Wool. I thank them for

allowing me to include results based on these joint works.

I would also like to use this opportunity to thank my friend and previous

advisor, Otto Duarte, and my friends, Celio Albuquerque, Marcio Faerman, Pa-

tricia Pinto, and Ana Velloso, for encouraging me to pursue my Ph.D. studies at

UCSD. Celio and Marcio were particularly helpful in assisting me to settle down

in my new place. I only had a weekend between my arrival in the United States

and the beginning of classes to furnish my new apartment and I would not have

made it without their help. I will always be grateful to all of them.

My special thanks to all my friends in the Cryptography and Security

Lab and in the Computer Science department: Jee Hea An, Andre Barroso, Mi-

hir Bellare, Sasha Boldyreva, Henri Casanova, Walfredo Cirne, Matthew Dailey,

Holly Dail, Sashka Davis, Anand Desai, Marcio Faerman, Leslie Franklin, Ale-

jandro Hevia, Matt Hohlfeld, Flavio Junqueira, Barbara Kreaseck, Daniele Mic-

x

ciancio, Sara Miner, Meaw Namprempre, Graziano Obertelli, Adriana Palacio,

Mike Semanko, Alan Su, Renata Teixeira, Bogdan Warinschi, Bennet Yee, Bianca

Zadrozny, and Dmitrii Zagorodnov.

I thank my mother Nadyr Abdalla, my sister Patricia Abdalla, and my

girlfriend Stacie Ngo for their love and support.

I thank CAPES for providing the financial support for my Ph.D. studies.

xi

VITA

June 27, 1970 Born, Rio de Janeiro, Brazil

1993 B.S. Universidade Federal do Rio de Janeiro, Brazil

1993–1994 Indice Desenvolvimento de Sistemas

1996 M.S., COPPE/UFRJ, Brazil

1996–2001 Research Assistant, University of California, San Diego

2001 Doctor of Philosophy
University of California, San Diego

PUBLICATIONS

M. Abdalla, M. Bellare and P. Rogaway. “The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES.” Topics in Cryptology – CT-RSA 2001, Lecture Notes
in Computer Science 2020, pp. 143–158, Springer-Verlag, D. Naccache ed., 2001.

M. Abdalla, S. Miner and C. Namprempre. “Forward Security in Threshold Signa-
ture Schemes.” Topics in Cryptology – CT-RSA 2001, Lecture Notes in Computer
Science 2020, pp. 441–456, Springer-Verlag, D. Naccache ed., 2001.

M. Abdalla and M. Bellare. “Increasing the Lifetime of a Key: a Compara-
tive Analysis of the Security of Re-keying Techniques.” Advances in Cryptology
– ASIACRYPT 2000, Lecture Notes in Computer Science 1976, pp. 546–559,
T. Okamoto ed., Springer-Verlag, 2000.

M. Abdalla and L. Reyzin. “A New Forward-secure Digital Signature Scheme.”
Advances in Cryptology – ASIACRYPT 2000, Lecture Notes in Computer Science
1976, pp. 116–129, T. Okamoto ed., Springer-Verlag, 2000.

M. Abdalla, Y. Shavitt and A. Wool. “Key Management for Restricted Multicast
Using Broadcast Encryption.” IEEE/ACM Transactions on Networking, Vol. 8,
Number 4, pp. 443–454, August, 2000.

M. Abdalla, Y. Shavitt and A. Wool. “Towards Making Broadcast Encryption
Practical.” Financial Cryptography’99, Lecture Notes in Computer Science 1648,
pp. 140-157, M. Franklin ed., Springer-Verlag, 1999.

M. Abdalla, W. Cirne, L. Franklin and A. Tabbara. “Security Issues in Agent
Based Computing.” in Proc. of the 15th Brazilian Symposium on Computer
Networks, Campinas, Brazil, May 1997.

xii

FIELDS OF STUDY

Major Field: Computer Science and Engineering
Studies in Cryptography and Network Security.
Professor Mihir Bellare and Bennet Yee

Studies in Electrical and Computer Engineering.
Professor Yeshaiahu Fainman

Studies in Mathematics.
Professor Adriano Garsia

Studies in Complexity and Theory.
Professors Mohan Paturi

xiii

ABSTRACT OF THE DISSERTATION

Design and Analysis of

Secure Encryption Schemes

by

Michel Ferreira Abdalla

Doctor of Philosophy in Computer Science

University of California, San Diego, 2001

Professor Mihir Bellare, Chair

In this thesis, we design, and analyze the security of, several encryption

schemes both in the private-key and public-key setting. Our main goal is to provide

schemes for which we can provide theoretical proofs of security, but which are also

efficient and practical.

We begin by describing a new public-key encryption scheme based on the

Diffie-Hellman problem, called DHIES. The main goal of DHIES is to not only

be as efficient as the ElGamal encryption scheme, but to also provide security

against chosen-ciphertext attacks. DHIES is a Diffie-Hellman based scheme that

combines a private-key encryption method, a message authentication code, and a

hash function, in addition to number-theoretic operations. The proofs of security

are based on the assumption that the underlying symmetric primitives are secure

and on appropriate assumptions about the Diffie-Hellman problem. Our proofs are

in the standard model; no random-oracle assumption is required. DHIES is now in

the draft standards of ANSI X9.63 [6] and IEEE P1363a [50] and in the corporate

standard SECG [71].

Next, we study re-keyed encryption schemes. These are schemes in which

shared keys are not used directly to encrypt messages, but rather used as a mas-

ter key to derive sub-keys, which are then used to encrypt messages. This is a

xiv

commonly employed paradigm in computer security systems, about whose secu-

rity benefits users appear to have various expectations. In this thesis, we provide

concrete security analyses of various re-keying mechanisms and their usage. We

show that re-keying does indeed “increase” security, effectively extending the life-

time of the master key and bringing significant, provable security gains in practical

situations.

We also study the problem of secure encryption in the broadcast model,

where a broadcast center wants to communicate securely with a set of users (the

target set) over an insecure broadcast channel.

xv

Chapter I

Introduction

A fundamental problem in cryptography is how to communicate securely

over an insecure channel, which might be controlled by an adversary. This problem

has for a long time fascinated people and has become even more important with

the proliferation of computers and communication networks, such as the Internet.

From simple message exchanges among friends, to purchases made with a credit

card, to the transmission of sensitive documents, these communication systems are

now being used for many different purposes.

The problem of secure communication has many different flavors depend-

ing on the security aspect in which we are interested and on how powerful adver-

saries can be. In this thesis, we are mainly concerned with the privacy aspect of

the communication.

I.A Encryption

Encryption is certainly one of the most fundamental problems in cryptog-

raphy and it is usually what it comes to mind when one talks about cryptography.

The latter, however, encompasses many other areas, including, but not limited

to, message authentication, digital signatures, identification protocols, and zero-

knowledge protocols.

1

2

I.A.1 Background

The two main parties involved in a encryption scheme are the sender and

the receiver. Whenever a sender wants to transmit a message, called the plaintext,

to the receiver, it first converts it to an encrypted form, called the ciphertext,

and then sends it to the receiver. The method used to convert the plaintext into

a ciphertext is called the encryption algorithm. Upon receiving the ciphertext,

the receiver uses a decryption algorithm to recover the original plaintext from the

ciphertext it received.

The goal of an encryption algorithm is simple —to allow the sender and

receiver to communicate privately over an insecure communication channel, pos-

sibly under the control of an adversary. Such an adversary is usually able to

eavesdrop, and even alter in some cases, the communication that is taking place

between the sender and receiver. Hence, it becomes clear that in order to achieve

privacy in communication, the receiver needs to have some sort of information

advantage with respect to the adversary or else the adversary could recover the

original plaintext from ciphertext in the same way the receiver does, since it has

access to all information being exchanged over the communication channel. The

information advantage of the receiver could take several forms, but it usually in-

volves the knowledge of a secret not known by the adversary. This secret could

be, for example, the knowledge of the encryption and decryption algorithms them-

selves or part of their inputs. The case in which the encryption and decryption

algorithms themselves are kept hidden from the adversary is known as obscurity

and is particularly interesting in cases where message lengths are small and the

amount of resources available to sender and receiver is limited. For instance, two

people willing to privately exchange fixed-length messages with one another could

agree in advance on a fixed but random way of permuting the letters in each mes-

sage. The receiver, knowing the way letters were permuted in a message, can

recover the original plaintext from the ciphertext by simply computing the inverse

permutation on the ciphertext. An adversary, on the other hand, would not be

3

able to recover the original plaintext since it is not aware of the way in which the

letters were permuted. This problem with this approach is that is not efficient

when messages are long as the amount of secret information that each party needs

to store can increase significantly.

A method more commonly used nowadays is to hide part of the input of

the encryption and decryption algorithms and not the algorithms themselves. This

input is typically called the key and will be fixed within each instantiation of the

encryption scheme. The keys used by the encryption and decryption algorithms

are called, respectively, the encryption key and the decryption key. The decryption

key should always be kept secret and, for this reason, is also called the secret

key. The encryption key, on the other hand, might be either secret, as in the case

of private-key encryption, or mathematically related to the decryption key, as in

the case of public-key encryption. Because the encryption and decryption keys are

usually equal in private-key encryption and different in public-key encryption, these

two are also referred to as symmetric and asymmetric encryption, respectively.

The algorithm used to generate the keys in either the symmetric and asymmetric

encryption schemes is called the key generation algorithm.

I.A.2 Perfect Privacy

Up to now, we have mentioned that some information advantage is neces-

sary in order to achieve private communication between two parties, but we have

not defined what privacy means. It turns out that providing such a definition is

not as straight-forward as one may think and can be very tricky sometimes. The

first formal definition for what it is now known as perfect privacy was given by

Shannon [73]. It describes privacy in terms of information entropy and it says that

the amount of entropy in a plaintext given the ciphertext should be the same as

amount of entropy in the plaintext itself. In other words, no information about

the plaintext should be leaked through the ciphertext. Shannon was also the first

to provide a symmetric encryption scheme that provably meets this formal notion

4

of privacy. In this scheme, called the one-time pad, both the sender and receiver

share a secret key whose length is at least that of the message being exchanged.

To encrypt a message, the sender simply computes the bit-wise x-or1 of the secret

key with the message to send it to receiver. The original plaintext can then be

recovered from the ciphertext by simply computing the bit-wise x-or of the latter

with the secret key. The main advantage of this scheme is that it is impossible for

an adversary to extract any information about the plaintext from the ciphertext.

Its main disadvantage is the fact that it requires a secret key at least as long the

message being encrypted. In fact, as it was also shown by Shannon, this condition

is not only sufficient but also necessary to achieve perfect privacy.

I.A.3 Modern cryptography

A scheme meeting the notion of perfect privacy is secure in an information-

theoretic sense since it is impossible for an adversary to extract any information

about the plaintext from the ciphertext. A different approach adopted in modern

cryptography is to define privacy in terms of infeasibility rather than impossibility

as adversaries are computationally bounded in practice. In this computational-

complexity approach, it is permitted for a ciphertext to leak information about

the plaintext as long as this information cannot be efficiently computed. Here,

efficiently means computable in polynomial time. An example of a definition for

privacy in the computational-complexity sense is that of indistinguishability of en-

cryptions, given by Goldwasser and Micali [44], which says that no adversary

should be to efficiently distinguish between the encryption of two plaintexts with

non-negligible probability of success. In that work, they show that, if a scheme

meets the above notion, then no adversary can efficiently compute any information

about the plaintext from the ciphertext.

There are many advantages in adopting the computational-complexity ap-

proach. Here we list two of them. First, the key length can be much shorter

1The x-or of two bits b0 and b1 is simply b0 + b1 modulo 2.

5

than those in information-theoretic approach. In particular, the key length can be

smaller than the message length. For example, by using a pseudorandom genera-

tor on a random seed, one could generate arbitrarily long (but polynomial on the

length of the seed) pseudorandom strings to be used as the secret key in the Shan-

non’s one-time pad scheme presented above. Second, it allows for the existence

of public-key encryption. The latter is not possible in the information-theoretic

framework since it is possible, even if not efficiently, for an adversary to compute

the secret (decryption) key from the public (encryption) key.

I.A.4 Public-key Encryption

The notion of public-key cryptography, introduced by Diffie and Hell-

man [32], is perhaps one of main innovations in modern cryptography. In contrast

to private-key cryptography, in which two parties need to share a secret in advance,

public-key cryptography enables secure communication between two parties with-

out requiring previously established secrets.

In public-key cryptography, each user has a pair of related keys associated

to it, a public key and a secret key. While the public key is made public to all

parties, including the adversary, and secret key should only be known by the user

to which it is associated. In the particular case of public-key encryption, the public

and secret key become, respectively, the encryption and decryption keys. In order

to send a message to a user, one can simply encrypt the message using the public

key associated to that user. Whenever a user receives a ciphertext, supposedly

encrypted with its public key, it decrypts it using its secret key.

The first public-key encryption scheme was proposed by Rivest, Shamir,

and Adleman [69] and it is now known as the RSA cryptosystem.

I.A.5 Broadcast Encryption

Even though the primary use of encryption is for secure point-to-point

communication, this is certainly not its only use. With the increasing number of

6

users connected to large communication networks, such as the Internet, the number

of applications in which encryption is being used is growing significantly. One such

example is broadcast encryption.

The main parties in a broadcast encryption scheme are the broadcast

center and a set of users, all connected to an insecure broadcast channel. The

goal of a broadcast encryption scheme is to allow the broadcast center to securely

communicate with a subset of all users. The subset of users will vary according to

the particular application. For example, in satellite/cable pay TV pplications, the

subset of users can be those users who subscribed and paid for a particular service

or program. Because the number of users can be incredibly large, the scalability

of solution is crucial in the design of these schemes.

Other examples of applications in which encryption is often used are

threshold encryption and key distribution.

I.A.6 Provable Security

A very common paradigm used in modern cryptography for designing

protocols is to build on top of existing cryptographic primitives, whose security

properties are well-defined and well-understood. Such cryptographic primitives

usually solve very specific problems and are hard to find in practice. The security

of these primitives, however, is not usually the main part of the security analysis

of a protocol. Most often, cryptographic protocols are broken not because the

security of the basic primitives got broken but because of the way in which these

primitives are used. That is exactly where provable security comes into play. It

enables us to provide a greater assurance of security, by proving that the scheme

meets formally defined objectives under a given model and the assumption that

the cryptographic primitives are secure.

A cryptographic scheme S based on a primitive P is said to be provably

secure if the security of P has been demonstrated to imply the security of S. More

precisely, we use this phrase when someone has formally defined the goals GP

7

and GS for some primitive P and scheme S, respectively; and then has proven that

the existence of an adversary AS who breaks scheme S, in the sense of violating GS,

implies the existence of an adversary AP who breaks primitive P , in the sense of

violating GP .

What provable security means is that as long as we are ready to believe

that P is secure, then there are no attacks on S. This obviates the need to consider

any specific cryptanalytic attacks on S.

Examples of candidates that can be used as basic cryptographic primitives

include pseudorandom generators and block ciphers as well as number-theoretic

functions such as the RSA one-way function.

I.A.7 Concrete Security

Although provable security can tell us when a scheme is secure, it does

not necessarily say how secure a scheme really is. For instance, when comparing

the security of different schemes, it might be helpful to know how tightly or loosely

related the security of these schemes is with respect to the security of their under-

lying primitives. A more quantitative approach to provable security may be more

desirable in these situations.

This concrete and quantitative approach to provable security is usually

called practice-oriented provable security and was developed by Bellare and Rog-

away [15, 16]. The general idea is as follows. Let S be a cryptographic scheme

which makes use of a primitive P , and let AS be an adversary which attacks S.

When proving the security of S, one should convert the adversary AS attacking

S into an adversary AP which attacks the primitive P . Ideally, AP should use

the same computational resources as AS and, with this investment in resources,

AP should be just as successful in attacking the primitive P as AS was successful

in attacking the cryptographic scheme S. This way, “practical” attacks on P im-

ply practical attacks on S, and so the assumed absence of practical attacks on P

implies the absence of practical attacks on S.

8

To quantify how close we come to the ideal, we define the success proba-

bility of AP attacking P and the success probability of AS attacking S, and then

we give concrete formulas that show how AP ’s computational resources and suc-

cess probability depend on AS’s computational resources and success probability.

These formulas measure the demonstrated security. By giving explicit formulas,

we make statements which are more precise than those that are given in doing

asymptotic analyses of reductions.

I.B Contributions

In this thesis, we design and analyze the security of several encryption

schemes both in the symmetric and asymmetric setting. Our main goal is to provide

schemes that are theoretically interesting, but are also efficient and practical.

We start by describing a new public-key encryption scheme based on

the Diffie-Hellman problem, which we call DHIES. It is a simple extension of the

ElGamal encryption scheme and is now in the draft standards of ANSI X9.63 [6]

and IEEE P1363a [50] and in the corporate standard SECG [71]. The scheme is as

efficient as ElGamal encryption, but has stronger security properties. Furthermore,

these security properties are proven to hold under appropriate assumptions on the

underlying primitive. DHIES is a Diffie-Hellman based scheme that combines a

symmetric encryption method, a message authentication code, and a hash function,

in addition to number-theoretic operations, in a way which is intended to provide

security against chosen-ciphertext attacks. The proofs of security are based on the

assumption that the underlying symmetric primitives are secure and on appropriate

assumptions about the Diffie-Hellman problem. The latter are interesting variants

of the customary assumptions on the Diffie-Hellman problem, and we investigate

relationships among them, and provide security lower bounds. Our proofs are in

the standard model; no random-oracle assumption is required. These results are

based on previous joint work with Mihir Bellare and Phillip Rogaway [2, 3].

9

Next, we study re-keyed encryption schemes. These are schemes in which

shared keys are not used directly to encrypt messages, but rather used as a master

key to derive sub-keys, which are then used to encrypt messages. This is a com-

monly employed paradigm in computer security systems, about whose security

benefits users appear to have various expectations. Yet the security of these meth-

ods has not been systematically investigated. In this thesis, we provide concrete

security analyses of various re-keying mechanisms and their usage. We show that

re-keying does indeed “increase” security, effectively extending the lifetime of the

master key and bringing significant, provable security gains in practical situations.

We quantify the security provided by different re-keying processes as a function of

the security of the primitives they use, thereby enabling a user to choose between

different re-keying processes given the constraints of some application. These re-

sults are based on a previous joint work with Mihir Bellare [1].

Finally, we examine the problem of secure communication in the broad-

cast model. In this model, a user, called the broadcast center, wants to com-

municate securely with a set of users (the target set) over an insecure broadcast

channel. This problem occurs in two application domains: satellite/cable pay TV,

and the Internet MBone. In these systems, the parameters of major concern are

the number of key transmissions, and the number of keys held by each receiver.

In the Internet domain, previous schemes suggest building a separate key tree for

each multicast program, thus incurring a setup cost of at least k log k per program

for target sets of size k. In the pay TV domain, a single key structure is used for all

programs, but known theoretical bounds show that either very long transmissions

are required, or that each receiver needs to keep prohibitively many keys.

We propose broadcast encryption schemes that are targeted at both do-

mains. Our schemes maintain a single key structure that requires each receiver to

keep only a logarithmic number of establishment keys for its entire lifetime, while

admitting low numbers of transmissions. In order to achieve these goals, we allow

a controlled number of users outside the target set to occasionally receive the mul-

10

ticast. This relaxation is appropriate for many scenarios in which the encryption

is used to force consumers to pay for a service, rather than to withhold sensitive

information. For this purpose, we introduce f -redundant establishment key allo-

cations, which guarantee that the total number of recipients is no more than f

times the number of intended recipients. We measure the performance of such

schemes by the number of key transmissions they require, by their redundancy f ,

and by the probability that a user outside the target set will be able to decrypt

the multicast. We prove a new lower bound, present several new establishment

key allocations, and evaluate our schemes’ performance by extensive simulation.

These results are based on previous joint work with Yuval Shavitt and Avishai

Wool [4, 5].

Chapter II

Efficient public-key encryption

schemes

Over the last decade, several schemes for public-key encryption have been

proposed in the literature. Most of them, however, either lack a proof of security or

are very inneficient. To overcome this problem and be able to create efficient, prov-

ably secure, encryption schemes, some researchers make use of a idealized model,

the Random Oracle model, in which hash functions are modeled as public random

oracles. A proof of security in this enriched model is then seen as an (heuristic)

security assurance in the standard model, based on the thesis that the instantiation

of these oracles by cryptographic hash functions would not compromise the overall

security. More recently, however, some concerns about the use of the RO model

have been raised and the construction of efficient schemes which can be proven

secure in the standard model has become of major interest.

This chapter describes a Diffie-Hellman based encryption scheme, DHIES

(formerly named DHES and DHAES), which is now in several (draft) standards.

The scheme is as efficient as ElGamal encryption, but has stronger security prop-

erties. Furthermore, these security properties are proven to hold under appropri-

ate assumptions on the underlying primitive. DHIES is a Diffie-Hellman based

scheme that combines a symmetric encryption method, a message authentication

11

12

code, and a hash function, in addition to number-theoretic operations, in a way

which is intended to provide security against chosen-ciphertext attacks. The proofs

of security are based on the assumption that the underlying symmetric primitives

are secure and on appropriate assumptions about the Diffie-Hellman problem. The

latter are interesting variants of the customary assumptions on the Diffie-Hellman

problem, and we investigate relationships among them, and provide security lower

bounds. Our proofs are in the standard model; no random-oracle assumption is

required. These results are based on previous joint work with Mihir Bellare and

Phillip Rogaway [2, 3].

II.A Introduction

This chapter describes a method for encrypting strings using the Diffie-

Hellman assumption. We are concerned with the “details” of Diffie-Hellman based

encryption — how a message should be “packaged” in order to best exploit the

group operations (e.g., modular exponentiation) which are at the core of a Diffie-

Hellman based encryption.

The method we suggest is called DHIES, standing for “Diffie-Hellman

Integrated Encryption Scheme”. It is a simple extension of the ElGamal encryption

scheme and is now in the draft standards of ANSI X9.63 and IEEE P1363a [6, 50]

and in the corporate standard SECG [71]. The scheme was formerly known as

DHES and as DHAES. It is all the same scheme.

DHIES uses symmetric encryption, message authentication, and hashing.

This may seem like a lot of cryptography beyond the group operation, but it is

exactly this additional cryptography which ensures, by and large, that we get our

security guarantees.

The security analysis of DHIES requires some interesting new variants of

the Diffie-Hellman assumption. We look at relationships among these notions, and

we prove a complexity lower bound, in the generic model, about one of them.

13

Background. DHIES is designed to be a natural extension of the El-

Gamal scheme, suitable in a variety of groups, and which enhanced ElGamal in

a couple of ways important to cryptographic practice. First, the scheme needs to

provide the capability of encrypting arbitrary bit strings (ElGamal requires that

message be a group element). And second, the scheme should be secure against

chosen-ciphertext attack (ElGamal is not). The above two goals have to be realized

without increasing the number of group operations for encryption and decryption,

and without increasing key sizes relative to ElGamal. Within these constraints,

we want to provide the best possible provable-security analysis. But efficiency and

practicality of the scheme should not be sacrificed in order to reduce assumptions.

The approach above is somewhat in contrast to related schemes in the

literature. More typical is to fix an assumption and then strive to find the low-

est cost scheme which can be proven secure under that assumption. Examples of

work in this style are that of Cramer and Shoup [30] and that of Shoup [76], who

start from the decisional Diffie-Hellman assumption, and then try to find the best

scheme they can that will resist chosen-ciphertext attack under this assumption.

In fact, the latter can also be proved secure in the random oracle model based on

the weaker computational Diffie-Hellman assumption. These schemes are remark-

able, but their costs are about double that of ElGamal, which is already enough to

dampen some practical interest. A somewhat different approach was taken by Fu-

jisaki and Okamoto [39], starting from weaker asymmetric and symmetric schemes

to construct a stronger hybrid asymmetric scheme. Their scheme can be quite

practical, but the proof of security relies heavily on the use of random oracles.

The DHIES scheme uses a hash function. In [17], a claim is made that

DHIES should achieve plaintext awareness if this hash function is modeled as a

public random oracle and one assumes the computational Diffie-Hellman assump-

tion. In fact, technical problems would seem to thwart any possibility of pushing

through such a result.

Our approach. DHIES is a very “natural” scheme. (See Section II.C

14

for its definition.) The method follows standard ideas and practice. Intuitively, it

is secure. Yet it seems difficult to prove security under existing assumptions about

the Diffie-Hellman problem.

This situation seems to arise frequently. It seems often to be the case

that we think certain methods are good, but we don’t know how to prove that

they are good starting from “standard” assumptions. We suggest that what we

are seeing with DHIES is a manifestation of hardness properties of Diffie-Hellman

problems which just haven’t been made explicit so far.

In this chapter, we capture some of these hardness properties as formal

assumptions. We will then show how DHIES can then be proven secure under

these assumptions. Then we further explore these assumptions by studying their

complexity in the generic model [75], and by studying how the assumptions relate

to one other.

Related work. As we have indicated, the DHIES scheme first appears

in [17]. No proof appears in that work. It was suggested that a proof of plaintext

awareness [15, 9] could be achieved under the random-oracle model. However, no

such proof has appeared, and technical difficulties would seem to bar it.

DHIES is now embodied in three (draft) standards [6, 50, 71]. All of

these assume an elliptic curve group of prime order. To harmonize our work with

those standards, and to simplify complexity assumptions, we shall assume the the

underlying group in which we work has prime order. When working with a group

whose order is not prime a minor change can be made to the protocol so that it

will still be correct. Namely, the value gu should be fed into the hash function H.

Zheng and Seberry [83] have proposed an ElGamal-based scheme that

uses universal one-way hash functions. Security of their scheme is not supported

by proofs in the reductionist sense of modern cryptography. Lim and Lee [55] have

pointed out that in some of the cryptosystems proposed in [83], the method of

adding authentication capability may fail just under known plaintext attacks. A

submission to IEEE P1363a based on [83] has been made by Zheng [82].

15

Another contemporaneous suggestion was proposed by Johnson, Matyas,

and Peyravian [51]. Assume that the messageM already contains some redundancy

(e.g., some number of fixed bits) and unpredictability (e.g., random bits have been

embedded in M). Then to asymmetrically encrypt M , [51] suggest to subject it

to 4 rounds of a Feistel network based on a function H, thereby obtaining a new

string M ′. Encrypt, using an arbitrary encryption primitive, an arbitrary piece

of M ′. It is plausible that if H is modeled as a random function then the above

approach can be proven sound.

Cramer and Shoup describe an encryption scheme based on the decisional

Diffie-Hellman problem which achieves provable security against adaptive chosen-

ciphertext attack [30]. They prove their scheme secure under the decisional Diffie-

Hellman assumption (and a collision-intractable hash function), or, in the random-

oracle model, under the ordinary Diffie-Hellman assumption [74]. Their scheme

is more costly than ours in terms of key sizes, encryption time, and decryption

time (in particular, encryption takes five exponentiations), but the scheme is still

practical.

The notions of indistinguishability and semantic security, and their equiv-

alence under chosen-plaintext attack is due to [44]. The notion of chosen-ciphertext

security that we use is due to [68]. Equivalences are further investigated by [9].

Note that the form of chosen-ciphertext security we use is the “strong” form, called

CCA2 in [9].

Outline. To specify our scheme in a compact and precise way, we first

specify in Section II.B the “syntax” of an asymmetric encryption scheme and what

it means for it to be secure. We also specify in Section II.B the syntax of the types

of primitives which our asymmetric encryption scheme employs along with their

security definitions. The specification of DHIES is then given in Section II.C and

its attributes and advantages are discussed in Section II.D.

The security of DHIES relies on variants of the Diffie-Hellman problem,

which we introduce in Section II.E. More specifically, we formalize three new

16

Diffie-Hellman assumptions (though one of them, the hash Diffie-Hellman assump-

tion, is essentially folklore). The assumptions are the hash Diffie-Hellman as-

sumption (HDH), the oracle Diffie-Hellman assumption (ODH), and the strong

Diffie-Hellman assumption (SDH). The HDH and ODH assumptions measure the

sense in which a hash function H is “independent” of the underlying Diffie-Hellman

problem. One often hears intuition asserting that two primitives are independent.

Here is one way to define this. The SDH assumption formalizes, in a simple man-

ner, that the “only” way to compute a value guv from gv is to choose a value u and

compute (gv)u. The definitions for both ODH and SDH have oracles which play a

central role.

Section II.F shows that DHIES is secure against chosen-plaintext attacks.

The HDH assumption is what is required to show this. In Section II.G, we show

that DHIES is secure against chosen-ciphertext attacks. The ODH assumption is

what is required to show this. Of course this means that DHIES is also secure

against chosen-plaintext attacks [9] based on the ODH assumption, but in fact we

can prove the latter using the HDH assumption (although we do not show it here),

a much weaker one.

These two results make additional cryptographic assumptions: in the case

of chosen-plaintext attacks, the security of the symmetric encryption scheme; in

the case of chosen-ciphertext attacks, the security of the symmetric encryption

scheme and the security of the message authentication code. But the particular

assumptions made about these primitives are extremely weak.

The ODH assumption is somewhat technical; SDH is rather simpler. In

Section II.H, we show that, in the random-oracle model, the SDH assumption im-

plies the ODH assumption. A lower bound for the difficulty of the SDH assumption

in the generic model of Shoup [75] is also given in Section II.H. This rules out a

large class of efficient attacks.

Following works such as [15, 16], we take a concrete, quantitative ap-

proach for all of the results above.

17

II.B Definitions

II.B.1 Represented groups

DHIES makes use of a finite cyclic group G = 〈g〉. (This notation in-

dicates that G is generated by the group element g.) We will use multiplicative

notation for the group operation. So, for u ∈ N, gu denotes the group element of

G that results from multiplying u copies of g. Naturally, g0 names the identity

element of G. Note that, if u ∈ N, then, by Lagrange’s theorem, gu = gu mod |G|.

Algorithms which operate on G will be given string representations of

elements inG. We thus require an injective map : G→ {0, 1}gLen associated toG,

where gLen is some number (the length of the representation of group elements).

Similarly, when a number i ∈ N is an input to, or output of, an algorithm, it

must be appropriately encoded, say in binary. We assume all necessary encoding

methods are fixed, and do not normally write the operators.

Any “reasonable” group supports a variety of computationally feasible

group operations. Of particular interest is there being an algorithm ↑ which takes

(the representations of) a group element x and a number i and computes (the

representation of) xi. For clarity, we write this operator in infix, so that (x) ↑ (i)
returns xi. We will call the tuple G = (G, g, , ↑) a represented group.

II.B.2 Message Authentication Codes

Let Message = {0, 1}∗ and let mKey = {0, 1}mLen for some number mLen.

Let Tag = {0, 1}tLen for some number tLen (a superset of the possible tags). A

message authentication code is a pair of algorithms MAC = (T ,V). Algorithm T
(the MAC generation algorithm) takes a key k ∈ mKey and a message x ∈ Message

and returns a string T (k, x). This string is called the tag. Algorithm V (the

MAC verification algorithm) takes a key k ∈ mKey, a message x ∈ Message, and

a purported tag τ ∈ Tag. It returns a bit V(k, x, τ) ∈ {0, 1}, with 0 indicating

that the message was rejected (deemed unauthentic) and 1 indicating that the

18

message was accepted (deemed authentic). We require that for all k ∈ mKey and

x ∈ Message, V(k, x, T (k, x)) = 1. The first argument of either algorithm may be

written as a subscript.

Security. The security of a MAC is defined by an experiment in which

we first choose a random key k ∈ mKey and then give an adversary F a Tk(·)
oracle, we say that F ’s output (x∗, τ ∗) is unasked if τ ∗ is not the response of the

Tk(·) oracle to an earlier query of x∗. Our definition of MAC security follows.

Definition II.B.1 Let MAC = (T ,V) be a message authentication scheme and

let F be an adversary. Consider the experiment

experiment Expsuf-cma
MAC,F

k
R← mKey

(x∗, τ ∗)← F Tk(·),Vk(·,·)

if Vk (x
∗, τ ∗) = 1 and τ ∗ was never returned by Tk(·) in response to query x∗

then return 1 else return 0

Now define the suf-cma-advantage of F as follows:

Advmac
MAC,F = Pr[Expsuf-cma

MAC,F = 1] .

For any t, qt, µt, qv, and µt, we define the suf-cma-advantage of MAC as

Advmac
MAC

(t, qt, µt, qv, µv) = max
F
{Advmac

MAC,F }

where the maximum is over all F with time-complexity t, making to the tag oracle

at most qt queries the sum of whose lengths is at most µt bits and making to the

verification oracle at most qv queries the sum of whose lengths is at most µv bits.

♦

We say adversary F has forged when, in the experiment above, it outputs

a pair (x∗, τ ∗) such that Vk (x
∗, τ ∗) = 1 and (x∗, τ ∗) was not previously obtained

via a query to the tag oracle.

This definition is stronger than the usual one as given in [11]. There,

one asks that the adversary not be able to produce MACs of new messages. Here

19

we require additionally that the adversary not be able to generate new MACs

of old messages. However, if the MAC generation function is deterministic and

verification is done by simply re-computing the MAC (this is typically true) then

there is no difference.

Candidates. Candidate algorithms include HMAC [7] or the CBC MAC

(but only a version that is correct across messages of arbitrary length).

II.B.3 Symmetric Encryption

Let Message be as before, and let eKey = {0, 1}eLen, for some number

eLen. Let Ciphertext = {0, 1}∗ (a superset of all possible ciphertexts). Let Coins be

a synonym for {0, 1}∞ (the set of infinite strings). A symmetric encryption scheme

is a pair of algorithms SYM = (E ,D). Algorithm E (the encryption algorithm)

takes a key k ∈ eKey, a plaintext x ∈ Message, and coins r ∈ Coins, and returns

ciphertext E(k, x, r). Algorithm D (the decryption algorithm) takes a key k ∈
eKey and a purported ciphertext y ∈ Ciphertext, and returns a value D(k, y) ∈
Message ∪ {BAD}. We require that for all x ∈ Message, k ∈ Key, and r ∈ Coins,

D(k, E(k, x, r)) = x. Usually we omit mentioning the coins of E , thinking of

E as a probabilistic algorithm, or thinking of E(k, x) as the induced probability

space. A return value of BAD from D is intended to indicate that the ciphertext

was regarded as “invalid” (it is not the encryption of any plaintext). The first

argument of either algorithm may be written as a subscript.

Security. Security of a symmetric encryption scheme is defined as in [8],

in turn an adaptation of the notion of polynomial security as given in [44, 61]. We

imagine an adversary A that runs in two stages. During either stage the adversary

may query an encryption oracle E(k, ·) which, on input x, returns E(k, x, r) for a

randomly chosen r. In the adversary’s find stage it endeavors to come up with a

pair of equal-length messages, x0 and x1, whose encryptions it wants to try to tell

apart. It also retains some state information s. In the adversary’s guess stage it

is given a random ciphertext y for one of the plaintexts x0, x1, together with the

20

saved state s. The adversary “wins” if it correctly identifies which plaintext goes

with y. The encryption scheme is “good” if “reasonable” adversaries can’t win

significantly more than half the time.

Definition II.B.2 [8] Let SYM = (E ,D) be a symmetric encryption scheme and

let A be an adversary. Consider the experiment

experiment Expind-cpa-fg
SYM,A

k
R← eKey

(x0, x1, s)← AE(k,·)(find)

b
R← {0, 1}

y ← E(k, xb)

b̃← AE(k,·)(guess, y, s)

if b̃ = b then return 1 else return 0

Now define the ind-cpa-advantage of A in the find-and-guess notion as follows:

Advind-cpa-fg
SYM,A = 2 · Pr[Expind-cpa-fg

SYM,A = 1]− 1

if A is legitimate, and 0 otherwise. For any t, q, and µ, we define the ind-cpa-

advantage of SYM as

Advind-cpa-fg
SYM

(t, q, µ) = max
A
{Advind-cpa-fg

SYM,A }

where the maximum is over all A with time-complexity t, making to the encryption

oracle at most q queries the sum of whose lengths is at most µ bits. ♦

It is understood that, above, A must output x0 and x1 with |x0| = |x1|.
The multiplication by 2 and subtraction by 1 are just scaling factors, to make a

numeric value of 0 correspond to no advantage and a numeric value of 1 correspond

to perfect advantage. As a reminder, “time-complexity” is the maximum execution

time of the experiment Expind-cpa-fg
SYM,A plus the size of the code for A, all in some

fixed RAM model of computation.

Candidates. One candidate algorithms for the symmetric encryption

are CBC encryption and Vernam cipher encryption.

21

II.B.4 Asymmetric Encryption

Let Coins, Message, Ciphertext be as before and let PK ⊆ {0, 1}∗ and

SK ⊆ {0, 1}∗ be sets of strings. An asymmetric encryption scheme is a three-tuple

of algorithms ASYM = (E ,D,K). The encryption algorithm E takes a public key

pk ∈ PK, a plaintext x ∈ Message, and coins r ∈ Coins, and returns a ciphertext

y = E(k, x, r). The decryption algorithm D takes a secret key sk ∈ SK and a

ciphertext y ∈ Ciphertext, and returns a plaintext D(sk, y) ∈ Message ∪ {BAD}.
The key generation algorithm K takes coins r ∈ Coins and returns a pair (pk, sk) ∈
PK × SK. We require that for all (pk, sk) which can be output by K, for all

x ∈ Message and r ∈ Coins, we have thatD(sk, E(pk, x, r)) = x. The first argument

to E and D may be written as a subscript.

Privacy against chosen-plaintext attack. Our treatment mimics

the find-then-guess notion of [8] and follows [44, 61, 42]. The definition is similar

to Definition II.B.2, so we state it without further discussion.

Definition II.B.3 Let ASYM = (E ,D,K) be an asymmetric encryption scheme

and let A an adversary. Consider the experiment

experiment Expind-cpa-fg
ASYM,A

(sk, pk)← K
(x0, x1, s)← A(find, pk)

b
R← {0, 1}

y ← Epk(xb)

b̃← A(guess, pk, y, s)

if b̃ = b then return 1 else return 0

Now define the ind-cpa-advantage of A in the find-and-guess notion as follows:

Advind-cpa-fg
ASYM,A = 2 · Pr[Expind-cpa-fg

ASYM,A = 1]− 1

if A is legitimate, and 0 otherwise. For any t, we define the ind-cpa-advantage of

22

ASYM as

Advind-cpa-fg
ASYM

(t, c) = max
A
{Advind-cpa-fg

ASYM,A }

where the maximum is over all A with time-complexity t and whose challenge has

length at most c bits. ♦

Privacy against adaptive chosen-ciphertext attack. The def-

inition of chosen-ciphertext security of an asymmetric encryption scheme is very

similar to that given in Definition II.B.3. The difference is that here the adversary

is given access to a decryption oracle in both stages. So we state it without further

discussion.

Definition II.B.4 Let ASYM = (E ,D,K) be an asymmetric encryption scheme

and let A an adversary for its chosen-ciphertext security. Consider the experiment

experiment Expind-cca-fg
ASYM,A

(sk, pk)← K
(x0, x1, s)← ADsk (find, pk)

b
R← {0, 1}

y ← Epk(xb)

b̃← ADsk (guess, pk, y, s)

if b̃ = b then return 1 else return 0

Now define the ind-cca-advantage of A in the find-and-guess notion as follows:

Advind-cca-fg
ASYM,A = 2 · Pr[Expind-cca-fg

ASYM,A = 1]− 1

if A is legitimate, and 0 otherwise. For any t, we define the ind-cpa-advantage of

ASYM as

Advind-cpa-fg
ASYM

(t, c) = max
A
{Advind-cpa-fg

ASYM,A }

where the maximum is over all A with time-complexity t, making to the decryption

oracle at most q queries the sum of whose lengths is at most µ bits. ♦

23

macKey encKey

secret value
Make

H

encM

M

ephemeral PK
Make

recipient’s
public key

ephemeral PK

secret value

T

E

tag

guv

u

gu

gv

Figure II.1: Encrypting with the scheme DHIES. We use the symmetric encryption

algorithm, E , of SYM; the MAC generation algorithm, T , of MAC; and a hash

function, H. The shaded rectangles comprise the ciphertext.

II.C The Scheme DHIES

This section recalls the DHIES scheme. Refer to Figure II.1 for a pictorial

representation of encryption under DHIES, and Figure II.2 for the formal definition

of the algorithm. Let us explain the scheme in reference to those descriptions.

Let G = (G, g, , ↑) be a represented group, where group elements are

represented by strings of gLen bits. Let SYM = (E ,D) be a symmetric encryption

scheme with key length eLen, and let MAC = (T ,V) be a message authentica-

tion code with key length mLen and tag length tLen. Let H : {0, 1}gLen →
{0, 1}mLen+eLen be a function. From these primitives we define the asymmetric

encryption scheme DHIES = (E ,D,K). We will write DHIES [[G, SYM,MAC,H]]

whenever we want to explicitly indicate the dependency of DHIES on its associated

primitives. The component algorithms of DHIES are defined in Figure II.2.

Each user’s public key and secret key is exactly the same as with the

24

ElGamal scheme: gv and v, respectively, for a randomly chosen v. (Here we

will not bother to distinguish group elements and their bit-string representations.)

To send a user an encrypted message we choose a random u and compute an

“ephemeral public key,” gu. Including gu in the ciphertext provides an “implicit”

Diffie-Hellman key exchange: the sender and receiver will both be able to compute

the “secret value” guv. We pass guv to the hash function H and parse the result

into two pieces: a MAC key, macKey , and an encryption key, encKey . We sym-

metrically encrypt the message we wish to send with the encryption key, and we

MAC the resulting ciphertext using the MAC key. The ciphertext consists of the

ephemeral public key, the symmetrically encrypted plaintext, and the authentica-

tion tag generated by the MAC.

The group G is of prime order. We henceforth assume that |G| is
prime. This is extremely important to ensure the security of DHIES or otherwise

the scheme could be malleable. The reason stems from the fact that in groups where

|G| is not a prime (e.g., Z∗p), g
uv and gv together might not uniquely determine gu.

That is, there may exist two values u and u′ such that u 6= u′ but guv = gu′v. As

a result, both u and u′ would produce two different valid ciphertexts for the same

plaintext. Therefore, if one can compute gu′

, given gu and gv, such that guv = gu′v

holds with high probability, then we would break the scheme in the malleability

sense. To prevent such attacks in groups not of prime order (e.g., Z∗p), one should

feed gu to H.

II.D Attributes and Advantages of DHIES

To explain the problem which DHIES solves, and the sense in which it

solves this problem, let us back up and provide a bit of background.

25

algorithm K
begin

v ← {1, . . . , |G|} ; pk ← g ↑ v ; sk ← v
return (pk, sk)

end

algorithm E(pk,M)
begin

u← {1, . . . , |G|}
X ← pk ↑ u
U ← g ↑ u
hash← H(X)
macKey ← hash[1 ..mLen]
encKey ← hash[mLen+ 1 ..

mLen+ eLen]
encM ← E(encKey ,M)
tag ← T (macKey ,M)
EM ← U ‖ encM ‖ tag
return EM

end

algorithm D(sk,EM)
begin

U ‖ encM ‖ tag ← EM

X ← U ↑ sk
hash← H(X)
macKey ← hash[1 ..mLen]
encKey ← hash[mLen+ 1 ..

mLen+ eLen]
if V(macKey , encM , tag) = 0
then return BAD

M ← D(encKey , encM)
return M
end

Figure II.2: The scheme DHIES = (E ,D,K), where: SYM = (E ,D) is a symmetric
encryption scheme using keys of length eLen; MAC = (T ,V) is a message authen-
tication code with keys of length mLen and tags of length tLen; G = (G, g, , ↑) is
a represented group whose group elements encoded by strings of length gLen; and

H : {0, 1}gLen → {0, 1}eLen+mLen.

II.D.1 Encrypting with Diffie-Hellman: The ElGamal Scheme

Let G be a finite cyclic group, say G = Z∗p , the multiplicative group

of integers modulo a (large) prime p. We’ll denote the group operation of G

multiplicatively, so that repeated multiplication is represented by exponentiation.

Let g be a generator for G; that is, the elements of G are {g1, g2, . . . , g|G|}. Fix

such a group G and its generator g. All multiplications (or exponentiations, which

is just shorthand for repeated multiplication) will be performed in G.

26

Diffie and Hellman suggested that two parties communicating over a chan-

nel subject to (passive) eavesdropping could come to share a secret key as fol-

lows [32]. The first party chooses a random number u ∈ {1, . . . , |G|} and sends gu

to the second party. The second party chooses a random number v ∈ {1, . . . , |G|}
and sends gv to the first party. The shared key is declared to be guv, which the

first party can calculate as (gv)u and the second party can calculate at (gu)v.

Roughly said, the Diffie-Hellman assumption for G asserts that an ad-

versary who sees gu and gv (for a random u, v) cannot compute guv.

ElGamal [35] explained how to adapt the above to give a public key

encryption method. The intended receiver of an encrypted message has a public

key which specifies gv (where v was chosen randomly from {1, . . . , |G|}). The

sender wants to send to that receiver a ciphertext C which is the encryption of a

message M . We assume M ∈ G. The sender computes C by choosing a random u

(again in {1, . . . , |G|}) and transmitting C = (gu,M ·guv). Knowing v, the receiver

can compute guv = (gu)v from C and then multiply M · guv by the inverse of guv

to recover M .

II.D.2 Deficiencies of ElGamal Encryption

We highlight a number of issues arising from the encryption method we

have just described.

1. Limited message space. First there was the assumption that M ∈ G.

Messages are naturally regarded as bit strings, not group elements. Often there

will be a natural embedding of some bit strings into group elements, but that may

fall short of all potential messages.

2. May not provide good privacy. As Goldwasser and Micali explain and

formalize in [44], a good encryption scheme should do more than make it infeasible

for an adversary to decrypt: the scheme should conceal from an adversary mounting

a passive attack “any” information about the plaintext. For example, it should

not be possible to determine even one bit of the plaintext given the ciphertext.

27

This property has been defined in several ways which have been shown to be

equivalent [44], including a definitions known as “indistinguishability” and one

known as “semantic security.”

Even in groups for which one anticipates using ElGamal encryption, the

ElGamal encryption does not achieve semantic security. For example, when the

scheme is implemented in the group G = Z∗p, there are attacks showing that some

information about the plaintext can be determined from the ciphertext. See below

the description of one such attack.

It is possible to guarantee the semantic security of ElGamal encryption

if it is done in special groups, and if we make a stronger assumption about the

Diffie-Hellman problem. Specifically, the order of the group should be prime (note

the order of Z∗p is p − 1 which is not prime) and we make the decisional Diffie-

Hellman assumption, which says that it is infeasible to distinguish the following

two distributions: (gu, gv, guv), for a random u and v, and (gu, gv, gz), for a random

u,v, and z. This is a very strong assumption.

It would be preferable to have a scheme which worked in any group where

the Diffie-Hellman problem is hard, and one which was guaranteed to achieve

semantic security under a weaker number-theoretic assumption.

3. We want more than basic privacy. For an encryption scheme to be

a maximally useful tool in the design of higher-level protocols it should actually

do more than shield information about the plaintext in the presence of a passive

attack. Stronger goals include non-malleability [31] and chosen-ciphertext secu-

rity [66, 68]. Informally, non-malleability means that an adversary cannot mutate

one ciphertext into a related one. Chosen-ciphertext security means that an ad-

versary cannot break an encryption scheme even if it can cause some ciphertexts

to be decrypted. ElGamal encryption achieves neither of these “beyond semantic

security” goals: it is easy to see that the scheme is malleable and also insecure

under a chosen-ciphertext attack. (See below).

We are finding that uses of encryption in cryptographic practice relies

28

more and more on the scheme meeting these “beyond semantic security” goals.

For example, the designers of SET (Secure Electronic Transactions) mandated the

use of an encryption scheme which achieves more than semantic security. This

was necessary, in the sense that the SET protocols would be wrong if instanti-

ated by a primitive which achieves only semantic security, and to design SET-like

protocols using a primitive which achieves only semantic security would seem to

yield more complicated protocols. As a second example, Bleichenbacher [20] has

shown that encryption under RSA PKCS #1 v1.5 [67] is vulnerable to chosen-

ciphertext attack, and he goes on to demonstrate how this leads to an attack on

SSL 3.0. Because schemes which achieve “only” semantic security are so easily

misused by protocol designers, we believe it is highly desirable that standardized

schemes achieve “beyond semantic security” goals, particularly non-malleability

and chosen-ciphertext security.

Attacks on the ElGamal Scheme

ElGamal encryption fails to achieve strong notions of security, such as

non-malleability and chosen-ciphertext security, in any represented group. In fact,

it does not even achieves semantic security in some groups, such as Z∗p. To support

these claims, we here provide the reader with examples of attacks on the ElGamal

scheme.

The first of these attacks against the ElGamal scheme shows that it is

not semantically secure when Z∗p is the underlying group of G, p is a prime, and g is

a generator. The attack is based on the fact that we can check whether a number

x ∈ Z∗p is a square or not in polynomial time by computing the value x(p−1)/2 mod p,

which is 1 if x is a quadratic residue mod p and -1, otherwise. In the find stage,

we choose two messages in Z∗p, one which is a square and one which is not. In the

guess stage, we first check whether gu and gv are square. We know that guv is a

non-square if and only if both gu and gv are non-square. Then, knowing this, we

can tell which message was encrypted by checking whether the encrypted message

29

M · guv is a square or not. That is, if guv is a square, then M · guv is a square if

and only if M is a square. If guv is a non-square, then M · guv is a square if and

only if M is a non-square.

In order to provide a malleability attack against the ElGamal scheme,

we can see that, given a ciphertext EM = (gu, encM) where encM = M · guv,

we can easily produce a valid ciphertext ẼM by just modifying the second part

of EM . That is, if we multiply encM by some value gk (k 6= 0) to obtain ˜encM ,

then the resulting ciphertext ẼM = (gu, encM) will be an encryption for a message

M̃ = M · gk because the value of guv does not change in this case. Note that this

is not dependent on which group G is being used.

To provide a chosen-ciphertext attack against the ElGamal scheme, we

can show that we can obtain the plaintext for any given ciphertext. Let EM =

(gu, encM) be the challenge ciphertext. Let ˜encM be a point in G such that

˜encM 6= encM and let M̃ be the decryption of ẼM = (gu, ˜encM). As we know that

M̃ = ˜encM/guv, we can compute guv and then encM/guv, which is the decryption

of EM .

II.D.3 Overcoming Deficiencies in ElGamal Encryption: DHIES

The scheme we have presented, DHIES, does Diffie-Hellman based en-

cryption in a way which overcomes the limitations enumerated above, but without

significant increase in cost compared to ElGamal. Key characteristics and advan-

tages of DHIES include the following.

1. Basic privacy — Proven in the sense of provable security. Roughly

said, to achieve semantic security we assume the existence of a function H : G→
{0, 1}∗ such that 〈gu, gv, H(guv)〉 looks like a pair of random group elements to-

gether with a random string. For non-trivial functions H this assumption —that

H is hard-core for the Diffie-Hellman problem on G— would seem to be weaker

than decisional Diffie-Hellman. We prove that under this assumption, our scheme

achieves semantic security. For reasonable choices of H, this assumption would

30

seem to hold for any group one would imagine using, not just particular groups.

2. Beyond basic privacy: non-malleability and chosen-ciphertext security

— proven in the sense of provable security. We prove that our scheme is secure

against adaptive chosen-ciphertext attacks. This is proved under an assumption

called the Oracle Diffie-Hellman assumption, and assuming the underlying MAC

and encryption schemes are secure. It is shown in [9, 34] that security under adap-

tive chosen-ciphertext attack implies non-malleability, so that property is achieved

automatically.

3. No random oracles. The proofs here do not appeal to the random

oracle model. They are all in the standard model. This addresses concerns that

have been raised about this model [26].

4. Efficiency. The efficiency of ElGamal encryption is preserved: the cost

of encryption is essentially the same as with ElGamal encryption: two exponentia-

tions to encrypt, one to decrypt. For encryption, both of these exponentiations can

be off-line, meaning that they can be done even before the message M is known.

The length of ciphertexts and the public key is the same as in ElGamal.

5. Versatile instantiation — The group. We allow considerable versatility

in instantiating DHIES. First, the group G in which we perform our operations

can be essentially any group in which our version of the Diffie-Hellman assumption

is reasonable. It could be Z∗p , or a subgroup of Z∗n, or an elliptic curve group (in

which case the group operation is usually written additively, so what we have

been denoting gu would be written multiplicatively, as ug). Our proofs assume no

algebraic structure for G beyond its being a finite cyclic group.

6. Versatile instantiation — Ancillary primitives. Cryptography beyond

the group operations is performed using generic primitives. We employ primitives

for symmetric encryption, message authentication, and hashing. For achieving

semantic security, the underlying symmetric encryption and hashing schemes must

meet weak, formalized assumptions. For achieving non-malleability and chosen-

ciphertext security the encryption scheme and message authentication code must

31

meet weak, formalized assumptions, while the hash function is modeled by a public

random oracle.

7. Arbitrary message space. Finally, messages to be encrypted are arbi-

trary bit strings; messages are not restricted in length or content.

II.E Diffie-Hellman Assumptions

This section specifies five versions of the Diffie-Hellman assumption. The

first two are standard (included here only for completeness); the next one is

straightforward/folklore; and the last assumptions are new.

Computational Diffie-Hellman assumption: CDH. We refer to

the “standard” Diffie-Hellman assumption as the computational Diffie-Hellman as-

sumption, CDH. It states that given gu and gv, where u, v were drawn at random

from {1, . . . , |G|}, it is hard to compute guv. Under the computational Diffie-

Hellman assumption it might well be possible for the adversary to compute some-

thing interesting about guv given gu and gv; for example, the adversary might be

able to compute the most significant bit, or even half of the bits. This makes

the assumption too weak to directly use in typical applications. For example, the

ElGamal scheme is not semantically secure given only this assumption.

Definition II.E.1 [Computational Diffie-Hellman: CDH] Let G = (G, g, ,

↑) be a represented group and let A be an adversary. Consider the experiment

experiment ExpcdhG,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

Z ← A(U, V)

if Z = guv then b← 1 else b← 0

return b

Now define the advantage of A in violating the computational Diffie-Hellman as-

32

sumption as

AdvcdhG,A = Pr[ExpcdhG,A = 1] . ♦

Decisional Diffie-Hellman assumption: DDH. A stronger as-

sumption that has been gaining popularity is the decisional Diffie-Hellman as-

sumption, DDH. (For a nice discussion, see Boneh’s survey [24].) It states, roughly,

that the distributions (gu, gv, guv) and (gu, gv, gw) are computationally indistin-

guishable when u, v, w are drawn at random from {1, . . . , |G|}. This assumption

can only hold in a group G whose order does not contain small prime factors (e.g.,

subgroup of order q of Z∗p for large primes p and q). In such groups the assumption

suffices to prove the semantic security of the ElGamal scheme.

Definition II.E.2 [Decisional Diffie-Hellman: DDH] Let G = (G, g, , ↑) be
a represented group and let A be an adversary. Consider the experiments

experiment Expddh-realG,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

Z ← guv

b← A(U, V, Z)

return b

experiment Expddh-randG,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

z
R← {1, . . . , |G|} ; Z ← gz

b← A(U, V, Z)

return b

Now define the advantage of A in violating the decisional Diffie-Hellman assump-

tion as

AdvddhG,A = Pr[Expddh-realG,A = 1]− Pr[Expddh-randG,A = 1] . ♦

The assumption we make to prove security for DHIES under chosen-

plaintext attack is weaker than DDH but stronger than CDH. It is called the hash

Diffie-Hellman assumption, HDH. To prove the security of DHIES under chosen-

ciphertext attacks, we will make stronger versions of the Hash Diffie-Hellman as-

sumptions which say the assumption is true even when the adversary has addi-

tional power in the form of oracles giving certain kinds of information about other,

33

independent Diffie-Hellman keys. The precise formulation of all three of our as-

sumptions is below, and they are followed by a discussion on the choice of hash

functions suitable for these assumptions.

Hash Diffie-Hellman assumption: HDH. As indicated above, se-

mantic security of a Diffie-Hellman-based scheme requires that we be able to get

some number of “hard-core” bits from the Diffie-Hellman key, namely key derived

bits that cannot be distinguished from random bits. Our assumption is that ap-

plying a suitable hash function H to guv will yield such bits. The assumption we

make, called the Hash Diffie-Hellman assumption, HDH, is a “composite” one—it

concerns the interaction between a hash function H and the group operations in G.

Here is the definition.

Definition II.E.3 [Hash Diffie-Hellman: HDH] Let G = (G, g, , ↑) be a

represented group, let hLen be a number, let H : {0, 1}∗ → {0, 1}hLen, and let A

be an adversary. Consider the experiments

experiment Exphdh-realG,H,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

Z ← H(guv)

b← A(U, V, Z)

return b

experiment Exphdh-randG,H,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

Z
R← {0, 1}hLen

b← A(U, V, Z)

return b

Now define the advantage of A in violating the hash Diffie-Hellman assumption as

AdvhdhG,H,A = Pr[Exphdh-realG,H,A = 1]− Pr[Exphdh-randG,H,A = 1] . ♦

The decisional Diffie-Hellman assumption says that guv looks like a ran-

dom group element, even if you know gu and gv. The hash Diffie-Hellman assump-

tion says that H(guv) looks like a random string, even if you know gu and gv. So

if you set H to be the identity function you almost recover the decisional Diffie-

Hellman assumption (the difference being that in one case you get a random group

34

element and in the other you get a random string). When H is a cryptographic

hash function, like SHA-1 [72], the hash Diffie-Hellman assumption would seem to

be a much weaker assumption than the decisional Diffie-Hellman assumption.

We now move on to some more novel assumptions.

Oracle Diffie-Hellman assumption: ODH. Suppose we provide an

adversary A with gv and an oracle Hv, which computes the function Hv(X) = Xv.

Think of v ∈ {1, . . . , |G|} as having been chosen at random. Now if we give the

adversary gu (where u ∈ {1, . . . , |G|} is chosen at random) then the oracle will

certainly enable the adversary to compute guv: the adversary need only ask the

query gu and she gets back Hv(g
u) = guv. Even if we f orbid the adversary from

asking gu, still she can exploit the self-reducibility of the discrete log to find the

value of guv. For example, the adversary could compute Hv(gg
u) = guvgv and

divide this by Hv(1) = gv.

But what if instead we give the adversary an oracle Hv which computes

Hv(X) = H(Xv), for H a cryptographic hash function such as SHA-1? Suppose

the adversary’s goal is to compute H(guv), where gu and gv are provided to the

adversary. Now, as long as the oracle Hv can not be queried at gu, the oracle

would seem to be useless. We formalize this as follows.

Definition II.E.4 [Oracle Diffie-Hellman: ODH] Let G = (G, g, , ↑) be a

represented group, let hLen be a number, let H : {0, 1}∗ → {0, 1}hLen, and let A

be an adversary. Consider the experiments

experiment Expodh-realG,H,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

W ← H(guv)

Hv(X)
def
= H(Xv)

b← AHv(·)(U, V,W)

return b

experiment Expodh-randG,H,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

W
R← {0, 1}hLen

Hv(X)
def
= H(Xv)

b← AHv(·)(U, V,W)

return b

35

Now define the advantage of A in violating the oracle Diffie-Hellman assumption

as

AdvodhG,H,A = Pr[Expodh-realG,H,A = 1]− Pr[Expodh-randG,H,A = 1] .

Here A is not allowed to call its oracle on gu. ♦

We emphasize that the adversary is allowed to make oracle queries that

depend on the target gu, with the sole restriction of not being allowed to query gu

itself.

Strong Diffie-Hellman assumption: SDH. Suppose A is an algo-

rithm which, given gv, outputs a pair of strings (gu, guv), for some u ∈ {1, . . . , |G|}.
One way for A to find such a pair is to pick some value u and then compute gu

and guv. Indeed, we expect this to be the “only” way A can compute such a pair

of values. We capture this idea as follows.

Given a represented group G = (G, g, , ↑) and a number v, let Ov be an

oracle, called a restricted DDH oracle, which behaves as follows:

Ov(U,X) =





1 if X = U v

0 otherwise

That is, the oracle tells whether the second argument equals the first

argument raised to v-th power. This oracle can be seen as a restricted form of a

DDH oracle for which we fix one of its arguments as being gv. Our next definition

speaks to the uselessness of having a restricted DDH oracle.

Definition II.E.5 [Strong Diffie-Hellman: SDH] Let G = (G, g, , ↑) be a

represented group and let A be an adversary. Consider the experiment

36

experiment ExpsdhG,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

Ov(U,X)
def
= (X = U v)

Z ← AOv(·,·)(U, V)

if Z = guv then b← 1 else b← 0

return b

Now define the advantage of A in violating the strong Diffie-Hellman assumption

as

AdvsdhG,A = Pr[ExpsdhG,A = 1] . ♦

The intuition is that the restricted DDH oracle is useless because the

adversary already “knows” the answer to almost any query it will ask.

Similar intuition was captured in [47] by saying that for every non-uniform

probabilistic polynomial-time algorithm A that, on input gv, outputs (gu, guv),

there exists a non-uniform probabilistic polynomial-time algorithm S (the “ex-

tractor”) that not only outputs (gu, guv), but also u. Our approach avoids the

complexity of a simulator-based formulation. We emphasize that our oracle does

not return a value u (the discrete log of its first argument) but only a bit indicating

whether a given pair has the right form.

Resource measures. We have defined several different senses of ad-

versarial advantage. For each notion xxx we overload the notation and define

AdvxxxΠ (R) = max
A
{AdvxxxΠ,A }

where R is a resource measure and the maximum is taken over all adversaries that

use resources at most R. The resources of interest in our case are time-complexity

(denoted by t) and, when appropriate, number of queries (denoted by q). Any

other resources of importance will be mentioned when the corresponding notion is

described. Here and throughout this dissertation “time-complexity” is understood

37

to mean the maximum of the execution times of the experiments defining the

advantage of adversary A plus the size of the code for A, all in some fixed RAM

model of computation. (Note that the execution time refers to that of the entire

experiment, not just the execution time of the adversary.)

We comment that we are considering the complexity of adversaries who

try to attack a specific represented group G. Such an adversary may depend on G,
so explicitly providing a description of G to A is unnecessary.

Choice of hash function. Now that we understand how we want the

hash function to interact with the group, we can consider various choices for the

hash function H.

Our suggested choice is to appropriately derive H from some crypto-

graphic hash function like SHA-1 [72]. (The precise manner in which H is derived

from SHA-1 is important and should be discussed.) A primary reason we prefer a

cryptographic function is that one-wayness of H appears important to the oracle

Diffie-Hellman assumption: it should be hard to recover guv from H(guv), since

otherwise the self-reducibility-based attack we discussed above can be mounted.

Let us back up a bit and try to see what requirements the different as-

sumptions impose on the choice of H. Suppose first we are interested only in

semantic security, namely we need just the HDH assumption. There is no known

choice of H for which one can prove the hard-coreness under the CDH assumption.

Under the DDH assumption, however, things get much easier, since this assump-

tion already says that the Diffie-Hellman key is indistinguishable from a random

group element: the only remaining problem is to go from a random group element

to a random string of appropriate length. In some groups this can be done quite

easily by simple truncation of the key. Alternatively, Naor and Reingold [65] show

that application of a function H chosen at random from a family of universal hash

functions will suffice. Zheng and Seberry [83] had earlier suggested the application

of a universal hash function to the Diffie-Hellman key as a heuristic under the

computational Diffie-Hellman assumption. The result of [65] says that under the

38

stronger DDH assumption this heuristic is valid. Note this function can be chosen

at random once and for all and included in the public key. In [83], the function is

chosen anew for each encryption and included in the ciphertext, which increases

the size of the ciphertext.

However, the use of truncation or universal hash functions appears more

dangerous when we come to consider the stronger oracle Diffie-Hellman assump-

tion above. In particular, the result of Boneh and Venkatesan [25] showing that

computing the most significant bits of Diffie-Hellman keys is as hard as computing

the key itself can be turned on its head to give an algorithm to attack the ODH as-

sumption. Namely, their results show that for some simple choices of functions H,

an adversary can use the HDH oracle Hv defined above to solve the Diffie-Hellman

problem. These attacks do not appear to work when a one-way cryptographic hash

function is used, which is why we recommend this choice. We do not know whether

these attacks rule out all choices of universal hash families, but they do seem to

rule out some particular ones.

II.F Security against Chosen-Plaintext Attack

We show that DHIES [[G, SYM,MAC,H]] meets the notion of indistin-

guishability under a chosen-plaintext attack, as defined in Definition II.B.3.

Theorem II.F.1 Let G be a represented group, let SYM be a symmetric encryp-

tion scheme, letMAC be a message authentication scheme, and let H be a function.

Let DHIES be the asymmetric key encryption scheme associated to these primi-

tives, as defined in Section II.C. Then, for any numbers t and c,

Advind-cpa-fgDHIES (t, c) ≤ 2 ·AdvhdhG,H(t) +Advind-cpa-fgSYM
(t, 0, 0) .

Idea of proof. The assumption is that the symmetric encryption

scheme SYM is secure and H is hard-core for the Diffie-Hellman problem in the

39

underlying group. (The assumption that MAC is secure is not needed to ensure se-

mantic security.) The proof considers an adversary A who defeats the semantic se-

curity of the scheme. Let gv be the recipient public key and let y = U ‖ encM ‖ tag
be the challenge ciphertext that this adversary gets in its guess stage. We consider

two cases depending on whether the output of H “looks random”.

• Case 1 — The output of H looks random. In this case, we present an adver-

sary B that breaks the encryption scheme SYM.

• Case 2 — The output of H does not look random. In this case, we present

an algorithm C that breaks the hard-coreness of H on G.

The formal proof, given below, does not actually consider separate cases, but the

underlying intuition is the same. Given A, we construct B and C and then relate

A’s advantage to that of B and C.

Proof: Let A be an adversary attacking DHIES in the sense of semantic security.

Assume it has time-complexity at most t. We construct an adversary B attacking

SYM and an adversary C attacking H being hard-core for G, and then upper bound

the advantage of A in terms of the advantages of these adversaries.

Algorithm B. Figure II.3 describes algorithm B. Recall from Definition II.B.2

that B has access to an oracle for encryption, and runs in two stages. Notice that B

never invokes its encryption oracle E . Moreover, the running time of Expind-cpa-fg
SYM,B

is at most t.

Algorithm C. Figure II.4 depicts the behavior of algorithm C. C is given as

input U, V,W , where U = gu and V = gv for random u, v, and W is either H(guv)

or a random string. C outputs at the end a bit indicating its guess as to which of

these cases occurs. Notice that the time-complexity of C is at most t.

Analysis. When W = H(guv) we notice that C is running A as the latter would

be run in its attack on the semantic security of DHIES. From the definition of

40

algorithm BE(·)(find)
begin

v
R← {1, . . . , |G|}

pk ← gv

(x0, x1, s)← A(find, pk)
s̃← (x0, x1, s, pk)
return (x0, x1, s̃)

end

algorithm BE(·)(guess, ỹ, s̃)
begin

parse s̃ as (x0, x1, s, pk)

u
R← {1, . . . , |G|} ; U ← gu

macKey
R← {0, 1}mLen

tag ← TmacKey(ỹ)
y ← U ‖ ỹ ‖ tag
b← A(guess, pk, s, y)
return b

end

Figure II.3: Algorithm B for attacking the security of SYM.

algorithm C(U, V,W)
begin

macKey ← W [1 . . .mLen] ;
encKey ← W [mLen+ 1 . . .mLen+ eLen]
pk ← V
(x0, x1, s)← A(find, pk)

b̃← {0, 1} ; encM ← EencKey(xb̃
)

tag ← TmacKey(encM)
y ← U ‖ encM ‖ tag
b← A(guess, pk, s, y)

if b = b̃ then return 1 else return 0
end

Figure II.4: Algorithm C for attacking the hard-coreness of H on G.

Advind-cpa-fgDHIES,A , we have that

Pr[Exphdh-realG,H,C = 1] =
1

2
+
Advind-cpa-fgDHIES,A

2
.

On the other hand, when W is a random string, we notice that C runs A in the

same way as B does, and hence

Pr[Exphdh-randG,H,C = 1] =
1

2
+
Advind-cpa-fg

SYM,B

2
.

41

Subtracting gives us

AdvhdhG,H,C =
1

2
+
Advind-cpa-fgDHIES,A

2
− 1

2
− Adv

ind-cpa-fg
SYM,B

2

=
Advind-cpa-fgDHIES,A

2
− Adv

ind-cpa-fg
SYM,B

2
;

whence

Advind-cpa-fgDHIES,A = 2 ·AdvhdhG,H,C +Advind-cpa-fg
SYM,B .

Since the time-complexity of algorithm C is at most t, we conclude that AdvhdhG,H,C

≤ AdvhdhG,H(t). Moreover, since B makes 0 encryption queries and has time-

complexity at most t, we also have Advind-cpa-fg
SYM,B ≤ Advind-cpa-fg

SYM
(t, 0, 0). Thus

from the above we have

Advind-cpa-fgDHIES,A ≤ 2 ·AdvhdhG,H(t) +Advind-cpa-fgSYM
(t, 0, 0) .

But A was an arbitrary adversary subject to the constraint that it had time-

complexity at most t and the length of its challenge ciphertext is at most c. The

theorem follows.

II.G Security against Chosen-Ciphertext Attack

We show that DHIES [[G, SYM,MAC,H]] meets the notion of indistin-

guishability under an adaptive chosen-ciphertext attack, as in Definition II.B.4.

Theorem II.G.1 Let G = (G, g, , ↑) be a represented group, let SYM be a sym-

metric encryption scheme, and let MAC be a message authentication scheme. Let

DHIES be the asymmetric encryption scheme associated to these primitives as

defined in Section II.C. Then for any numbers t, q, µ, and c,

Advind-cca-fgDHIES (t, q, µ, c) ≤ Advind-cpa-fg
SYM

(t, 0, 0) + 2 ·AdvodhG,H(t, q) +

2 ·Advmac
MAC

(t, 1, c, q, µ) .

Idea of Proof. The assumption is that both symmetric encryption

scheme SYM and the message authentication scheme MAC are secure and H is

42

a hard-core for the Diffie-Hellman problem on G under adaptive Diffie-Hellman

attack. The proof considers an adversary A who defeats the adaptive chosen-

ciphertext security of the scheme. Let gv be the recipient public key; let y =

U ‖ encM ‖ tag be the challenge ciphertext that algorithm A gets in its guess stage.

Let us call a Type 1 query a ciphertext of the form U ‖ ˜encM ‖ t̃ag . A Type 2 query

have the form Ũ ‖ ˜encM ‖ t̃ag with Ũ 6= U . We consider three cases depending on

whether the output of H looks random and on whether there was a Type 1 query

ỹ to the decryption oracle Dsk such that Dsk(ỹ) 6= BAD.

• Case 1 — The output of H does not look random. In this case we present

an algorithm C that breaks the hard-coreness of H on G under adaptive

Diffie-Hellman attack.

• Case 2 — The output of H looks random and there was a Type 1 query ỹ to

Dsk such that Dsk(ỹ) 6= BAD. In this case we present an adversary F which

breaks the message authentication scheme MAC.

• Case 3 — The output of H looks random and there was not a Type 1 query

ỹ to Dsk such that Dsk(ỹ) 6= BAD. In this case we present an adversary B

which breaks the encryption scheme SYM.

Proof: Let A be an adversary attacking DHIES in the sense of adaptive chosen-

ciphertext security. Assume it has running time at most t, makes at most q queries

to its decryption oracle. We construct an adversary B attacking SYM, an adversary

C attacking H being a hard-core for G under non-adaptive Diffie-Hellman attack,

and an adversary F for the message authentication scheme MAC and then upper

bound the advantage of A in terms of the advantages of these adversaries.

Algorithm B. Figure II.5 describes algorithm B. Recall from Definition II.B.2

that B has access to an oracle for encryption and runs in two stages. Since the

time-complexity t of A accounts for the time taken by decryption queries as well

as the time to generate pk and the challenge ciphertext y, the time-complexity of

43

algorithm BE(·)(find)
begin

v
R← {1, . . . , |G|}

pk ← gv

run A(find, pk)
–For each decryption query yi

parse yi as Ui ‖ encM i ‖ tag i

hashi ← H(U v
i)

macKey i ← hashi[1..mLen]
encKey i ← hashi[mLen+ 1..

mLen+ eLen]
if VmacKeyi

(encM i, tag i) = 1 then

return DencKeyi
(encM i)

else return BAD
–Let (x0, x1, s) be the output of A
s̃← (x0, x1, s, v, pk)
return (x0, x1, s̃)
end

algorithm BE(·)(guess, ỹ, s̃)
begin

parse s̃ as (x0, x1, s, v, pk)
ASK← false

u
R← {1, . . . , |G|}

U ← gu

macKey
R← {0, 1}mLen

tag ← TmacKey(ỹ)
y ← U ‖ ỹ ‖ tag
run A(guess, pk, s, y)
–For each decryption query yi

parse yi as Ui ‖ encM i ‖ tag i

hashi ← H(U v
i)

macKey i ← hashi[1..mLen]
encKey i ← hashi[mLen+ 1..

mLen+ eLen]
if VmacKeyi

(encM i, tag i) = 1 then

if Ui 6= U then

return DencKeyi
(encM i)

else ASK← true;
return BAD

–if ASK = true then b
R← {0, 1}

else let b be the output of A
return b
end

Figure II.5: Algorithm B for attacking the security of SYM.

B is at most that of A (i.e., t).

Algorithm C. Figure II.6 defines the behavior of algorithm C. C is given as

input U, V,W , where U = gu and V = gv for random u and v, respectively, and W

is either H(guv) or a random string. Recall from Definition II.E.4 that C is also

given access to a Hv-oracle. At the end, C outputs a bit indicating its guess as to

which of these cases occurs.

Notice that, since the time-complexity of A accounts for the time taken by de-

cryption queries as well as the time to compute the challenge ciphertext, the time-

44

algorithm CHv(·)(U, V,W)
begin

macKey ← W [1 . . .mLen]
encKey ← W [mLen+ 1..

mLen+ eLen]
pk ← V
run A(find, pk)
–For each decryption query yi

return Decr-Sim(yi, U, V,W)
–Let (x0, x1, s) be the output of A

b̃← {0, 1}
encM ← EencKey(xb̃

)
tag ← TmacKey(encM)
y ← U ‖ encM ‖ tag
run A(guess, pk, s, y)
–For each decryption query yi

return Decr-Sim(yi, U, V,W)
–Let b be the output of A

if b = b̃ then return 1 else return 0
end

subroutine Decr-Sim(yi, U, V,W)
begin

parse yi as Ui ‖ encM i ‖ tag i

if Ui = U then

macKey i ← W [1 . . .mLen]
encKey i ← W [mLen+ 1..

mLen+ eLen]
else

hashi ← Hv(Ui)
macKey i ← hashi[1..mLen]
encKey i ← hashi[mLen+ 1..

mLen+ eLen]
if VmacKeyi

(encM i, tag i) = 1 then

return DencKeyi
(encM i)

else return BAD
end

Figure II.6: Algorithm C for attacking the hard-coreness of H on G under adaptive
Diffie-Hellman attack.

complexity of C is at most t.

Algorithm F . Figure II.7 describes algorithm F . Recall from Definition II.B.1

that F has access to two oracles: a tag-generation oracle T and a verification oracle

V . It outputs a pair message-tag, a possible forgery. Notice that, since the time

complexity of A accounts for the time taken by decryption queries and for the time

to generate the secret-public key pair sk, pk) and the challenge ciphertext y, F ’s

time-complexity is at most t.

Analysis. As in the proof of non-adaptive chosen-ciphertext security, our goal

is to upper bound the success probability of adversary A in terms of the success

probabilities of adversaries B for the symmetric encryption scheme, C for the

45

algorithm F T (·),V(·,·)

begin

W ← (ε, ε)

v
R← {1, . . . , |G|} ; pk ← gv

u
R← {1, . . . , |G|} ; U ← gu

encKey
R← {0, 1}eLen

run A(find, pk)
–For each decryption query ỹ
return Decr-Sim(ỹ)

–Let (x0, x1, s) be the output of A

b̃
R← {0, 1}

encM ← EencKey(xb̃
)

tag ← T (encM)
y ← U ‖ encM ‖ tag
run A(guess, pk, s, y)
–For each decryption query ỹ
return Decr-Sim(ỹ)

–Let b be the output of A
return W
end

subroutine Decr-Sim(ỹ)
begin

parse ỹ as Ũ ‖ ˜encM ‖ t̃ag
h̃ash← H(Ũ v)
˜macKey ← h̃ash[1..mLen]
˜encKey ← h̃ash[mLen+ 1..

mLen+ eLen]

if Ũ = U then

if V(˜encM , t̃ag) = 1 then

W ← (˜encM , t̃ag)

return DencKey(˜encM)
else return BAD
else

if V ˜macKey
(˜encM , t̃ag) = 1 then

return D ˜encKey
(˜encM)

else return BAD
end

Figure II.7: Algorithm F for attacking the security of MAC.

hard-coreness of H for G under non-adaptive Diffie-Hellman attack, and F for the

message authentication scheme. For this purpose, let y be the challenge ciphertext

in experiment Expind-cca-fgDHIES,A and let SomeValid be the event where A makes a

Type 1 query ỹ such that Dsk(ỹ) 6= BAD in this experiment. Let SomeValid

denote the event where there is no Type 1 query ỹ such that Dsk(ỹ) 6= BAD in

experiment Expind-cca-fgDHIES,A . We make use of the following three claims.

Claim II.G.2 Pr[Expodh-realG,H,C = 1] = 1
2
+

Adv
ind-cca-fg
DHIES,A

2
.

Proof: When the input W = H(guv), we notice that C is running A as the latter

would be run in its attack on the adaptive chosen-ciphertext security of DHIES.

Therefore, the claim follows from the definition of Advind-cca-fgDHIES,A .

46

Claim II.G.3 Pr[Expodh-randG,H,C = 1 ∧ SomeValid] ≤ 1
2
+

Adv
ind-cpa-fg
SYM

(t,0,0)

2

Proof: When A does not make a Type 1 query to its decryption oracle nor makes

a Type 1 query ỹ such that Dsk(ỹ) 6= BAD, C runs A in the same way B does.

Hence, the probability that C outputs 1 given SomeValid is at most 1/2 + 1/2 ·
Advind-cpa-fg

SYM,B . Since B makes 0 encryption queries and has time-complexity at

most t, the claim follows directly from the assumed security of SYM.

Claim II.G.4 Pr[Expodh-randG,H,C = 1 ∧ SomeValid] ≤ Advmac
MAC

(t, 1, c, q, µ)

Proof:When there is a Type 1 query ỹ to the decryption oracle such that Dsk(ỹ) 6=
BAD, let i be the number of one such query and let yi = U ‖ encM i ‖ tag i be

its value. By assumption, we know that VmacKey(encM i, tag i) = 1. Because

(encM i, tag i) 6= (encM , tag) (or otherwise yi = y and A would have queried its

decryption oracle with the challenge ciphertext), either encM i was not queried of

tag-generation oracle T (·) or tag i was not the response returned by tag-generation

oracle T (·) on query encM . In either case, (encM i, tag i) is a valid forgery and

F succeeds in breaking MAC. Therefore, Pr[Expodh-randG,H,C = 1 ∧ SomeValid] ≤
Pr[SomeValid] ≤ Advmac

MAC,F . Hence, since F has time-complexity at most t,

makes exactly one query to its tag-generation oracle T (·) whose length is at most

c (the upper bound on the length of challenge ciphertext), and makes at most q

queries to its verification oracle V(·, ·) the sum of whose lengths is at most µ bits,

the claim follows from the assumed security of MAC.

From Definition II.E.4 and Claims II.G.2, II.G.3, and II.G.4, we have that:

AdvodhG,H,C

≥ 1

2
+
Advind-cca-fgDHIES,A

2
− 1

2
− Adv

ind-cpa-fg
SYM

(t, 0, 0)

2
−Advmac

MAC
(t, 1, c, q, µ)

=
Advind-cca-fgDHIES,A

2
− Adv

ind-cpa-fg
SYM

(t, 0, 0)

2
−Advmac

MAC
(t, 1, c, q, µ) ;

47

whence

Advind-cca-fgDHIES,A ≤ Advind-cpa-fgSYM
(t, 0, 0) + 2 ·AdvodhG,H,C + 2 ·Advmac

MAC
(t, 1, c, q, µ) .

We conclude that, since C has time-complexity at most t and makes at most q

queries to its oracle Hv, Adv
odh
G,H,C ≤ AdvodhG,H(t, q). Thus, from the above, we have

Advind-cca-fgDHIES,A ≤ Advind-cpa-fg
SYM

(t, 0, 0) + 2 ·AdvodhG,H(t, q) + 2 ·Advmac
MAC

(t, 1, c, q, µ) .

But A was an arbitrary adversary subject to the constraint that it has time-

complexity at most t and makes at most q queries to its decryption oracle the sum

of whose lengths is at most µ bits, and the length of the challenge ciphertext is at

most c in experiment Expind-cca-fgDHIES,A . The theorem follows.

II.H ODH and SDH

In this section, we first exploit the relationship between the strong Diffie-

Hellman (SDH) and the oracle Diffie-Hellman (ODH) assumptions when the hash

function H is modeled as a random oracle. More specifically, we show that, in the

random oracle (RO) model, the SDH assumption implies the ODH assumption.

We then go on to prove a lower bound on the complexity of strong Diffie-Hellman

assumption with respect to generic algorithms.

However, before proving the implication between the SDH and ODH as-

sumption in the RO model, we need to back up a little and modify the experiment

defining the security of ODH assumption to account for the presence of a random

oracle H. The following is the definition of ODH assumption in the the RO model.

Definition II.H.1 [Oracle Diffie-Hellman in the random oracle model:

ODH-RO] Let G = (G, g, , ↑) be a represented group, let hLen be a number, let

Ω be the set of all functions from {0, 1}∗ to {0, 1}hLen, and let A be an adversary.

Consider the experiments

48

experiment Expodh-real-roG,H,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

W ← H(guv)

Hv(X)
def
= H(Xv)

H
R← Ω

b← AHv(·),H(·)(U, V,W)

return b

experiment Expodh-rand-roG,H,A

u
R← {1, . . . , |G|} ; U ← gu

v
R← {1, . . . , |G|} ; V ← gv

W
R← {0, 1}hLen

Hv(X)
def
= H(Xv)

H
R← Ω

b← AHv(·),H(·)(U, V,W)

return b

Now define the advantage of A in violating the oracle Diffie-Hellman assumption

in the random oracle model and the advantage function of ODH assumption in the

RO model, respectively, as follows:

Advodh-roG,H,A = Pr[Expodh-real-roG,H,A = 1]− Pr[Expodh-rand-roG,H,A = 1]

Advodh-roG,H (t, qh, qo) = max
A
{Advodh-roG,H,A } ,

where the maximum is over all A with time-complexity t, making at most qh queries

to its H-oracle and qo queries to its Hv-oracle. Here A is not allowed to call its

oracle Hv on input gu. ♦

The following theorem shows that, in the random oracle (RO) model, the

strong Diffie-Hellman assumption implies the oracle Diffie-Hellman assumption.

Theorem II.H.2 Let G = (G, g, , ↑) be a represented group and let the associ-

ated hash function H be chosen at random. Let qh and qo be, respectively, the

total number of queries to H-oracle and to the Hv-oracle. Then,

Advodh-roG,H (t, qh, qo) ≤ AdvsdhG (t+ qh qo O(gLen+ hLen), (qh + qo)
2) .

Proof: Let A be any adversary against the ODH assumption in the RO model.

Let t be its time-complexity and qh and qo be, respectively, the number of queries

it makes to H and Hv oracles. We can construct an adversary B for the Diffie-

Hellman problem under SDH on G, using A as a sub-routine, as follows.

49

Algorithm B. Algorithm B is shown in Figure II.8. B is given as input (U, V),

where U = gu and V = gv for random u and v and outputs a value guess, its guess

for guv. B is also given access to a restricted DDH oracle Ov. Initially, B picks two

values, hash0 and hash1, at random and set hash0 to be the output of H on input

U v (although it still does not know the value of U v). It also fix a default value g

for guess. Then it runs A as a subroutine, feeding its input with either hash0 or

hash1. Our hope is that, at some point, A is going to make a query of the form

U v to the H oracle, since otherwise A would have no advantage in distinguishing

the real output hash0
def
= H(U v) from the random string hash1. To find out when

A queries its H-oracle on input U v, we query our restricted DDH oracle Ov on

input (U,X) whenever A makes a query X to its H-oracle. If Ov(U,X) returns

1, then X = U v and we update the value of guess to X. Notice that B does not

have access to either the H-oracle or the Hv-oracle. However, it can simulate both

oracles.

The oracle H is to be simulated as follows. In response to a query X, if X has

been asked of H, then return the same response as given to that previous query.

If X has not been asked of H, then first check whether Ov(U,X) = 1. If so, then

update the value of guess to X and return hash0 as the response to the current

H-query. If not, then check whether there was some query Ũ to the Hv-oracle such

that Ov(Ũ ,X) = 1. If there was such query, then let hash be the same value used

as response to that query. If not, then let hash be a random string. Return hash

as the response to the current H query.

The Hv-oracle is to be simulated as follows. When a query Ũ 6= U is made, check

whether Ũ has already been asked of Hv. If so, then return the same response

as given to that previous query. If not, then check whether there was a previous

H-query X where Ov(Ũ ,X) = 1. If so, then let hash be the output given to that

H-query. If not, then let hash be a random value. Return hash as the response to

the current query.

50

algorithm BOv(·)(U, V)
begin

hash0
R← {0, 1}hLen ; hash1

R← {0, 1}hLen

b
R← {0, 1} ; W ← hashb

guess ← g
run AHv(·),H(U, V,W)

– For each Hv-query Ũ , return response as described in the text
– For each H-query X, return response as described in the text

(updating guess if Ov(U,X) = 1)

– Let b̃ be the output of A
return guess

end

Figure II.8: Algorithm B for attacking the hard-coreness of the Diffie-Hellman

problem under SDH on G.

Notice that B runs in time at most t + qoqhO(hLen + gLen) and makes at most

(qo + qh)
2 queries to its Ov-oracle.

Analysis. Consider the experiments Expodh-real-roG,A and Expodh-rand-roG,A and let

AskA and AskA denote, respectively, the event in which H-oracle query U v is

made by A and its complement.

When query U v is not made directly by A to its H-oracle, there is no way for it to

tell whether its input W is equal to H(U v) or a random string of length hLen since

the former can take any value in {0, 1}hLen. Hence, the probabilities that A outputs

1 in experiments Expodh-rand-roG,A and Expodh-real-roG,A , given that A does not query its

H-oracle on input U v are exactly the same. That is, Pr[Expodh-real-roG,A = 1 ∧AskA]

= Pr[Expodh-rand-roG,A = 1 ∧AskA].

Consider now the case in which adversary A queries its H-oracle on input U v in

experiments Expodh-rand-roG,A and Expodh-real-roG,A . In such case, we know that adversary

B, which runs A as a sub-routine, succeeds in solving the Diffie-Hellman problem

under SDH on G. This is because we know there is an index i ∈ {1, . . . , qh} such

51

that hi = X and X = U v. Since Ov(U,X) = 1, guess will take the correct value

U v and B will succeed in solving the strong Diffie-Hellman problem on G. Hence,
Pr[Expodh-real-roG,A = 1 ∧AskA]− Pr[Expodh-rand-roG,A = 1 ∧AskA] ≤ Pr[AskA] ≤
AdvsdhG,B. Moreover, since B makes at most (qo + qh)

2 queries to its oracle Ov

and has time complexity at most t + qoqhO(hLen + gLen), it is also the case that

AdvsdhG,B ≤ AdvsdhG (t, (qo + qh)
2).

Putting it all together, we have that

AdvodhG,H,A

= Pr[Expodh-real-roG,A = 1]− Pr[Expodh-rand-roG,A = 1]

= Pr[Expodh-real-roG,A = 1 ∧AskA] + Pr[Expodh-real-roG,A = 1 ∧AskA]

−Pr[Expodh-rand-roG,A = 1 ∧AskA]− Pr[Expodh-rand-roG,A = 1 ∧AskA]

= Pr[Expodh-real-roG,A = 1 ∧AskA]− Pr[Expodh-rand-roG,A = 1 ∧AskA]

≤ Pr[AskA]

≤ AdvsdhG,B

≤ AdvsdhG (t+ qoqhO(hLen+ gLen), (qo + qh)
2).

The bound claimed in the theorem follows easily from the fact that A was an

arbitrary adversary subject to the constraint that it had time-complexity at most

t and made at most qh queries to its H-oracle and at most qo queries to its Hv-

oracle.

Lower bounds with respect to generic algorithms. Generic

algorithms in groups are algorithms which do not make use of any special properties

of the encoding of group elements other than assuming each element has a unique

representation. This model was introduced by Shoup [75] and is very useful in

proving lower bounds (with respect to such algorithms) for some problems. In

fact, Shoup proved that in such a model both the discrete logarithm and the Diffie-

Hellman problems are hard to solve as long as the order of the group contains at

least one large prime factor. Following the same approach, we also use this model

52

here to prove lower bounds for some new problems we introduce. Let us proceed

now with the formalization of this model.

Let Zn = {1, . . . , n} be the additive group of integers modulo n, the order

of the group. Let S be a set of bit strings of order at least n. We call an injective

map from Zn to S an encoding function. One example for such a function would

be the function taking u ∈ Z|G| to gu mod |G|, where G is a finite cyclic group of

order |G| generated by the group element g.

A generic algorithm is a probabilistic algorithm A which takes as input a

list

(σ(x1), σ(x2), . . . , σ(xk)),

where each xi ∈ Zn and σ is a random encoding function, and outputs a bit string.

During its execution, A can make queries to an oracle Σ. Each query will result

in updating the encoding list, to which A has always access. Σ gets as input two

indices i and j and sign bit, and then computes σ(xi ± xj) and appends it to the

list. It is worth noticing that A does not depend on σ, since it is only accessible

by means of oracle queries.

We need to extend the original generic model to allow queries to the

restricted DDH oracle Ov. In this case, Ov gets as input two indices i and j

and returns 1 if xj = v · xi and 0, otherwise. In general lines, our result shows

that the restricted DDH oracle Ov does not help in solving the Diffie-Hellman

problem whenever the group order contains a large prime factor. One should note,

however, that our result has no implications on non-generic algorithms, such as

index-calculus methods for multiplicative groups of integers modulo a large prime.

Let us state this more formally.

Definition II.H.3 [SDH in generic model] Let Zn be the additive group of

integers modulo n, let S be a set of strings of cardinality at least n, and let σ be a

random encoding function of Zn on S. In addition, let Ω be the set of all mappings

Zn to S. Let A be an generic algorithm. Consider the experiment

53

experiment Expg-sdhn

σ
R← Ω

g ← σ(1)

u
R← {1, . . . , n} ; U ← σ(u)

v
R← {1, . . . , n} ; V ← σ(v)

Σ(i, j,±) def= xi ± xj

Ov(i, j)
def
= (xj = vxi)

Z ← AOv(·,·),Σ(·,·,·)(g, U, V)

if Z = σ(uv) then b← 1 else b← 0

return b

Now define the advantage of A in violating the strong Diffie-Hellman assumption

in the generic model and the advantage function of SDH assumption in this model,

respectively, as follows:

Advg-sdhn,A = Pr[Expg-sdhn,A = 1]

Advg-sdhn (q) = max
A
{Advg-sdhn,A } ,

where q is the total number of queries made by A to its oracles. ♦

Theorem II.H.4 Let Zn be the additive group of integers modulo n, let S be a

set of strings of cardinality at least n. Then, for any number q,

Advg-sdhn (q) ≤ O(q2/p)

where p is the largest prime factor of n.

A corollary of Theorem II.H.4 is that any generic algorithm solving the Diffie-

Hellman problem under SDH with success probability bounded away from 0 has

to perform at least Ω(p1/2) group operations.

Proof: Here we just present a proof sketch using a technique used by Shoup

in [75]. Let n = s pt with gcd(s, p) = 1. Since additional information only reduces

the running time, we can assume that solving the Diffie-Hellman problem in the

subgroup of order s is easy. Hence, let n = pt wlog.

54

We start by running algorithm A. In doing so, we need to simulate all its oracles.

We play the following game. Let U and V be indeterminants. During the execution

of the algorithm, we will maintain a list F1, . . . , Fk of polynomials in Zpt [U, V],

along with a list σ1, . . . , σk of distinct values in S. Initially, we have F1 = 1,

F2 = U , and F3 = V ; and three distinct values σ1, σ2, and σ3 chosen at random

from S. When the algorithm makes a query (i, j,±) to its Σ-oracle, we first

compute Fk+1 = Fi ± Fj ∈ Zpt [U, V] and check whether there is some l ≤ k such

that Fk+1 = Fl. If so, then we return σl to A. Else we pick choose a random but

distinct σk+1, return it to A, and update both lists. When the algorithm makes a

query (i, j) to its Ov, we return 1 if Fj = V · Fi else 0.

We can assume that A outputs an element in the encoding list (otherwiseAdvsdhn,A ≤
1/(p − q)), where q is the number of queries made by A. Then, let us choose u

and v at random from Zpt . Notice that Advsdhn,A can be upper bounded by the

probability of one of the following happening: Fi(u, v) = Fj(u, v) for some Fi and

Fj; or Fi(u, v) = uv for some i; or Fj 6= Vi but Fj(u, v) = vFi(u, v). Otherwise, the

algorithm cannot learn anything about u or v except that Fi(u, v) 6= Fj(u, v) for

every i and j. But, using results from [75], for fixed i and j, the probability that

Fi − Fj vanishes is at most 1/p; the probability that Fi − UV vanishes is at most

2/p; and the probability that Fj −V Fi vanishes is at most 2/p. It follows that the

probability of one of these happening is O(q2/p). The theorem follows from the

fact that A was an arbitrary adversary subject to the constraint that it makes at

most q queries to its oracles.

Chapter III

Re-keyed Encryption Schemes

III.A Introduction

Re-keying (also called key-derivation) is a commonly employed paradigm

in computer security systems, about whose security benefits users appear to have

various expectations. Yet the security of these methods has not been systematically

investigated. Let us begin with some examples that illustrate usage, commonly

employed implementations, and motivation for re-keying, and see what security

issues are raised. We then go on to our results.

Re-keyed encryption. Say two parties share a key K, and want to

encrypt data they send to each other. They will use some block cipher based

mode of operation, say CBC. The straightforward approach is to use K directly

to encrypt the data. An often employed alternative is re-keyed encryption. The

key K is not used to encrypt data but rather viewed as a master key. Subkeys

K1, K2, K3, . . . are derived from K, by some process called the re-keying process.

A certain number l of messages are encrypted using K1 and then the parties switch

to K2. Once l messages have been encrypted under K2 they switch to K3 and so

on.

Examples of re-keying methods. Many different re-keying methods

are possible. Let us outline the two most commonly used. In each case F (·, ·) is

55

56

a map that takes a k-bit key κ and k-bit input x to a k-bit output F (κ, x). (This

might be implemented via a block cipher or a keyed hash function.) The parallel

method consists of setting Ki = F (K, i) for i = 1, 2, The serial method sets

k0 = K and then sets Ki = F (ki−1, 0) and ki = F (ki−1, 1) for i = 1, 2, For a

pictorial representation of these methods, please refer to Figure III.1. Many other

methods are possible, including hybrids of these two such as tree-based re-keying

(see Section III.C).

Why re-key? Common attacks base their success on the ability to get

lots of encryptions under a single key. For example differential or linear cryptanal-

ysis [19, 59] will recover a DES key once a certain threshold number of encryptions

have been performed using it. Furthermore, most modes of operation are subject

to birthday attacks [8], leading to compromise of the privacy of a scheme based

on a block cipher with block size k once 2k/2 encryptions are performed under the

same key. Typically, the birthday threshold is lower than that of the cryptanalytic

attacks.

Thus, if encryption is performed under a single key, there is a certain

maximum threshold number of messages that can be safely encrypted. Re-keying

protects against attacks such as the above by changing the key before the threshold

number of encryptions permitting the attack is reached. It thus effectively extends

the lifetime of the (master) key, increasing the threshold number of encryptions

that can be performed without requiring a new exchange of keys.

Questions. Although re-keying is common practice, its security has

not been systematically investigated. We are interested in the following kinds of

questions. Does re-keying really work, in the sense that there is some provable

increase in security of an application like re-keyed encryption described above?

That is, can one prove that the encryption threshold —number of messages of

some fixed length that can be safely encrypted— increases with re-keying? How do

different re-keying processes compare in terms of security benefits? Do some offer

more security than others? How frequently should the key be changed, meaning

57

how should one choose the parameter l given the parameters of a cryptographic

system?

High level answers. At the highest level, our answer to the most

basic question (does re-keying increase security?) is “YES.” We are able to justify

the prevailing intuition with concrete security analyses in the provable security

framework and show that re-keying, properly done, brings significant security gains

in practical situations, including an increase in the encryption threshold. Seen from

closer up, our results give more precise and usable information. We quantify the

security provided by different re-keying processes as a function of the security of

the primitives they use. This enables comparison between these processes. Thus,

say a user wants to encrypt a certain amount of data with a block cipher of a

certain strength: our results can enable this user to figure out which re-keying

scheme to use, with what parameters, and what security expectations.

Re-keyed CBC encryption. As a sample of our results we discuss

CBC encryption. Suppose we CBC encrypt with a block cipher F having key-

length and block-length k. Let’s define the encryption threshold as the number Q

of k-bit messages that can be safely encrypted. We know from [8] that this value

is Q ≈ 2k/2 for the single-key scheme. We now consider re-keyed CBC encryption

under the parallel or serial re-keying methods discussed above where we use the

same block cipher F as the re-keying function. We show that by re-keying every

2k/3 encryptions —i.e. set the subkey lifetime l = 2k/3— the encryption threshold

increases to Q ≈ 22k/3. That is, one can safely encrypt significantly more data by

using re-keying. The analysis can be found in Section III.D.

Overview of approach and results. Re-keying can be used in

conjunction with any shared-key based cryptographic data processing. This might

be data encryption, under any of the common modes of operation; it might be data

authentication using some MAC; it might be something else. We wish to provide

tools that enable the analysis of any of these situations. So rather than analyze

58

each re-keyed application independently, we take a modular approach. We isolate

the re-keying process, which is responsible for producing subkeys based on a master

key, from the application which uses the subkeys. We then seek a general security

attribute of the re-keying process which, if present, would enable one to analyze

the security of any re-keying based application. We suggest that this attribute is

pseudorandomness. We view the re-keying process as a stateful pseudorandom bit

generator and adopt a standard notion of security for pseudorandom bit generators

[21, 81]. We measure pseudorandomness quantitatively, associating to any re-

keying process (stateful generator) G an advantage functionAdvprgG,n(t), which is the

maximum probability of being able to distinguish n output blocks of the generator

from a random string of the same length when the distinguishing adversary has

running time at most t. We then analyze the parallel and serial generators, upper

bounding their advantage functions in terms of an advantage function associated

to the underlying primitive F . See Section III.B.

To illustrate an application, we then consider re-keyed symmetric encryp-

tion. We associate a re-keyed encryption scheme to any base symmetric encryption

scheme (e.g. CBC) and any generator. We show how the advantage function of the

re-keyed encryption scheme can be bounded in terms of the advantage function

of the base scheme and the advantage function of the generator. (The advantage

function of an encryption scheme, whether the base or re-keyed one, measures

the breaking probability as a function of adversary resources under the notion of

left-or-right security of [8].) Coupling our results about the parallel and serial gen-

erators with known analyses of CBC encryption [8] enables us to derive conclusions

about the encryption threshold for CBC as discussed above. See Section III.D.

Security of the parallel and serial generators. Our analysis

of the parallel and serial generators as given by Theorems III.B.4 and III.B.5 indi-

cates that their advantage functions depend differently on the advantage function

of the underlying primitive F . (We model the latter as a pseudorandom function

[43] and associate an advantage function as per [11].) In general, the parallel gen-

59

erator provides better security. This is true already when F is a block cipher but

even more strikingly the case when F is a non-invertible PRF. This should be kept

in mind when choosing between the generators for re-keying. However, whether or

not it eventually helps depends also on the application. For example, with CBC

encryption, there is no particular difference in the quantitative security providing

by parallel and serial re-keying (even though both provide gains over the single-key

scheme). This is due to the shape of the curve of the advantage function of the

base CBC encryption function as explained in Section III.D.

Forward security. Another possible motivation for re-keying is to

provide forward security. The goal here is to minimize the amount of damage that

might be caused by key exposure due, for instance, to compromise of the security of

the underlying system storing the secret key. (Forward security was first considered

for session keys [46, 33] and then for digital signatures [13].) Under re-keying, the

adversary would only get the current subkey and state of the system. It could

certainly figure out all future subkeys, but what about past ones? If the re-keying

process is appropriately designed, it can have forward security: the past subkeys

will remain computationally infeasible for the adversary to derive even given the

current subkey and state, and thus ciphertexts that were formed under them will

not be compromised. It is easy to see that the parallel generator does not provide

forward security. It can be shown however that the serial one does. A treatment of

forward security in the symmetric setting, including a proof of the forward security

of the serial generator and the corresponding re-keyed encryption scheme, can be

found in [18].

Related work. Another approach to increasing the encryption thresh-

old, discussed in [12], is to use a mode of encryption not subject to birthday attack

(e.g. CTR rather than CBC) and implement this using a non-invertible, high se-

curity PRF rather than a block cipher. Constructions of appropriate PRFs have

been provided in [12, 48]. Re-keying is cheaper in that one can use the given block

cipher and a standard mode like CBC and still push the encryption threshold well

60

...

K1 K2 Kn

FK(2)FK(1) FK(n)

K

(a) Parallel scheme

Fkn
(0)

Fkn
(1)

kn

Kn

...

Fk2
(0)

Fk2
(1)

k1 k2

Fk1
(0)

Fk2
(1)

K1 K2

(b) Serial scheme

Figure III.1: The parallel and serial re-keying schemes.

beyond the birthday threshold.

Re-keying requires that parties maintain state. Stateless methods of in-

creasing security beyond the birthday bound are discussed in [10].

These results are based on a previous joint work with Mihir Bellare [1].

III.B Re-keying processes as pseudorandom generators

The subkeys derived by a re-keying process may be used in many different

ways: data encryption or authentication are some but not all of these. To enable

modular analysis, we separate the subkey generation from the application that

uses the subkeys. We view the re-keying process —which generates the subkeys—

as a stateful pseudorandom bit generator. In this section we provide quantitative

assessments of the security of various re-keying schemes with regard to notions of

security for pseudorandom generators. These application independent results are

used in later sections to assess the security of a variety of different applications

under re-keying.

Stateful generators. A stateful generator G = (K,N) is a pair

of algorithms. The probabilistic key generation algorithm K produces the initial

state, or seed, of the generator. The deterministic next step algorithm N takes

the current state as input and returns a block, viewed as the output of this stage,

and an updated state, to be stored and used in the next invocation. A sequence

Out1,Out2, . . . of pseudorandom blocks is defined by first picking an initial seed

St0 ← K and then iterating: (Out i, St i) ← N (St i−1) for i ≥ 1. (When the

generator is used for re-keying, these are the subkeys. Thus Out i was denoted Ki

61

in Section III.A). We assume all output blocks are of the same length and call this

the block length.

We now specify two particular generators, the parallel and serial ones.

We fix a PRF F : {0, 1}k × {0, 1}k → {0, 1}k. (As the notation indicates, we are

making the simplifying assumption that the key length, as well as the input and

output lengths of each individual function F (K, ·) are all equal to k.) In practice,

this might be instantiated via a block cipher or via a keyed hash function such as

HMAC [7]. (For example, if DES is used, then we set k = 64 and define F (K, ·)
to be DES(K[1..56], ·).)

Construction III.B.1 (Parallel generator) The F -based parallel generator

PG[F] = (K,N) is defined by

algorithm K
K

R← {0, 1}k

Return 〈0, K〉

algorithm N (〈i,K〉)
Out ← F (K, i)

Return (Out , 〈i+ 1, K〉)

The state has the form 〈i,K〉 where K is the initial seed and i is a counter, initially

zero. In the i-th stage, the output block is obtained by applying the K-keyed PRF

to the (k-bit binary representation of the integer) i, and the counter is updated.

This generator has block length k.

Construction III.B.2 (Serial generator) The F -based serial generator SG[F]

= (K,N) is defined by

algorithm K
K

R← {0, 1}k

Return K

algorithm N (K)

Out ← F (K, 0)

K ← F (K, 1)

Return (Out , K)

The state is a key K. In the i-th stage, the output block is obtained by applying

the K-keyed PRF to the (k-bit binary representation of the integer) 0, and the

new state is a key generated by applying the K-keyed PRF to the (k-bit binary

representation of the integer) 1. This generator has block length k.

62

Pseudorandomness. The standard desired attribute of a (stateful)

generator is pseudorandomness of the output sequence. We adopt the notion of

[21, 81] which formalizes this by asking that the output of the generator on a

random seed be computationally indistinguishable from a random string of the

same length. Below, we concretize this notion by associating to any generator an

advantage function which measures the probability that an adversary can detect

a deviation in pseudorandomness as a function of the amount of time invested by

the adversary.

Definition III.B.3 (Pseudorandomness of a stateful generator) Let G =

(K,N) be a stateful generator with block length k, let n be an integer, and let A

be an adversary. Consider the experiments

experiment Expprg-realG,n,A

St0 ← K ; s← ε

for i = 1, . . . , n do

(Out i, St i)← N (St i−1) ; s← s ‖Out i
g ← A(s)

return g

experiment Expprg-randG,n,A

s← {0, 1}n·k

g ← A(s)

return g

Now define the advantage of A and the advantage function of the generator, re-

spectively, as follows:

AdvprgG,n,A = Pr[Expprg-realG,n,A = 1]− Pr[Expprg-randG,n,A = 1]

AdvprgG,n(t) = max
A
{AdvprgG,n,A } ,

where the maximum is over all A with “time-complexity” t.

Here “time-complexity” is the maximum of the execution times of the two experi-

ments plus the size of the code for A, all in some fixed RAM model of computation.

(Note that the execution time refers to that of the entire experiment, not just the

execution time of the adversary.) The advantage function is the maximum likeli-

hood of the security of the pseudorandom generator G being compromised by an

adversary using the indicated resources.

63

Security measure for PRFs. Since the security of the above con-

structions depends on that of the underlying PRF F : {0, 1}k × {0, 1}k → {0, 1}k,
we recall the measure of [11], based on the notion of [43]. Let Rk denote the family

of all functions mapping {0, 1}k to {0, 1}k, under the uniform distribution. If D is

a distinguisher having an oracle, then

AdvprfF,D = Pr[DF (K,·) = 1 : K
R← {0, 1}k]− Pr[Df(·) = 1 : f

R← Rk]

is the advantage of D. The advantage function of F is

AdvprfF (t, q) = max
D
{AdvprfF,D } ,

where the maximum is over all A with “time-complexity” t and making at most

q oracle queries. The time-complexity is the execution time of the experiment

K
R← {0, 1}k ; v ← DF (K,·) plus the size of the code of D, and, in particular,

includes the time to compute FK(·) and reply to oracle queries of D.

Pseudorandomness of the parallel and serial generators.

The following two theorems show how the pseudorandomness of the two generators

is related to the security of the underlying PRF.

Theorem III.B.4 Let F : {0, 1}k×{0, 1}k → {0, 1}k be a PRF and let PG[F] be

the F -based parallel generator defined in Construction III.B.1. Then

AdvprgPG[F],n(t) ≤ AdvprfF (t, n) .

Proof: Let A be an adversary attacking the pseudorandomness of PG[F] and t be

the maximum of the running times of Expprg-realPG[F],n,A and Expprg-randPG[F],n,A. We want to

upper bound AdvprgPG[F],n,A. We do so by constructing a distinguisher D for F and

relating its advantage to that of A. D has access to an oracleO. It simply computes

s = O(1) ‖ . . . ‖O(n) and outputs the same guess as A on input s. We can see

that when the oracle O is drawn at random from the family F , the probability

that D returns 1 equals the probability that the experiment Expprg-realPG[F],n,A returns

1. Likewise, the probability that the experiment Expprg-randPG[F],n,A returns 1 equals that

64

of D returning 1 when O is drawn at random from the family of random functions

Rk. As D runs in time at most t and makes exactly n queries to its oracle, we get

that

AdvprgPG[F],n,A ≤ AdvprfF (t, n) .

Since A was an arbitrary adversary and the maximum of the running times of

experiments Expprg-realPG[F],n,A and Expprg-randPG[F],n,A is t, we obtain the conclusion of the

theorem.

Theorem III.B.5 Let F : {0, 1}k×{0, 1}k → {0, 1}k be a PRF and let SG[F] be

the F -based parallel generator defined in Construction III.B.2. Then

AdvprgSG[F],n(t) ≤ n ·AdvprfF (t+ log n, 2) .

Proof: Let A be an adversary attacking the pseudorandomness of SG[F] and t be

the maximum of the running times of Expprg-realSG[F],n,A and Expprg-randSG[F],n,A. We want to

upper bound AdvprgSG[F],n,A. We begin by defining the following sequence of hybrid

experiments, where j varies between 0 and n.

experiment HybridA,j

St
R← {0, 1}k ; s← ε

for i = 1, . . . , n do

if i ≤ j then Out i
R← {0, 1}k

else (Out i, St)← N (St)

s← s ‖Out i
g ← A(s)

return g

Let Pj be the probability that experiment HybridA,j returns 1, for j =

0, . . . , n. Note that the experiments Expprg-realSG[F],n,A and Expprg-randSG[F],n,A are identical

to HybridA,0 and HybridA,n, respectively. (Not syntactically, but semantically.)

65

This means that P0 = Pr[Expprg-realSG[F],n,A = 1] and Pn = Pr[Expprg-randSG[F],n,A = 1].

Putting it all together, we have

AdvprgSG[F],n,A = Pr[Expprg-realSG[F],n,A = 1]− Pr[Expprg-randSG[F],n,A = 1]

= P0 − Pn . (III.1)

We now claim that

AdvprgSG[F],n,A = P0 − Pn ≤ n ·AdvprfF (t+ log n, 2) . (III.2)

Since A was an arbitrary adversary, we obtain the conclusion of the theorem. It

remains to justify Equation (III.2). We will do this using the advantage function

of F . Consider the following distinguisher for F .

algorithm DO

j
R← {1, . . . , n} ; s← ε

for i = 1, . . . , n do

if i < j then Out i
R← {0, 1}k

if i = j then Out i ← O(0) ; St ← O(1)
if i > j then (Out i, St)← N (St)

s← s ‖Out i
g ← A(s)

return g

Suppose the oracle given to D was drawn at random from the family F . Then, the

probability that D returns 1 equals the probability that expirement HybridA,j−1

returns 1, where j is the value chosen at random by D in its first step. Similarly,

if the given oracle is drawn at random from the family of random functions Rk,

then the probability that D returns 1 equals the probability that the experiment

HybridA,j returns 1, where j is the value chosen at random by D in its first step.

66

Hence,

Pr[DO | O R← F] = 1
n

∑n
j=1Pj−1

Pr[DO | O R← Rk] = 1
n

∑n
j=1Pj .

Subtract the second sum from the first and exploit the collapse to get

P0 − Pn

n
= 1

n

∑n
j=1Pj−1 − 1

n

∑n
j=1Pj = AdvprfF,D .

Note that D runs in time at most t+ O(log n) and makes exactly 2 queries to its

oracle, whence we get Equation (III.2). This concludes the proof of the theorem.

The qualitative interpretation of Theorems III.B.4 and III.B.5 is the same:

both the parallel and the serial generator are secure pseudorandom bit generators

if the PRF is secure. The quantitative statements show however that the pseu-

dorandomness of n output blocks depends differently on the security of the PRF

in the two cases. For the parallel generator, it depends on the security of the

PRF under n queries. For the serial generator, it depends on the security of the

PRF against only a constant number of queries, but this term is multiplied by the

number of output blocks. Comparing the functions on the right hand side in the

two theorems will tell us which generator is more secure.

Examples. As an example, assume F is a block cipher. Since F is a

cipher, each map F (K, ·) is a permutation, and birthday attacks can be used to

distinguish F from the family of random functions with a success rate growing

as q2/2k for q queries (c.f.. [11, Proposition 2.4]). Let us make the (heuristic)

assumption that this is roughly the best possible, meaning

AdvprfF (t, q) ≈ q2 + t

2k
(III.3)

for t small enough to prevent cryptanalytic attacks. Now the above tells us that

the advantage functions of the two generators grow as follows:

AdvprgPG[F],n(t) ≈
n2 + t

2k
and AdvprgSG[F],n(t) ≈

nt

2k
.

Since t ≥ n, the two functions are roughly comparable, but in fact the first one

67

has a somewhat slower growth because we would expect that t À n. So, in this

case, the parallel generator is somewhat better.

Now assume F is not a block cipher but something that better approxi-

mates a random function, having security beyond the birthday bound. Ideally, we

would like something like

AdvprfF (t, q) ≈ q + t

2k
(III.4)

for t small enough to prevent cryptanalytic attacks. This might be achieved by

using a keyed hash function based construction, or by using PRFs constructed

from block ciphers as per [12, 48]. In this case we would get

AdvprgPG[F],n(t) ≈
n+ t

2k
and AdvprgSG[F],n(t) ≈

nt

2k
.

Thinking of t ≈ n (it cannot be less but could be more, so this is an opti-

mistic choice), we see that the first function has linear growth and the second

has quadratic growth, meaning the parallel generator again offers better security,

but this time in a more decisive way.

These examples illustrate how the quantitative results of the theorems

can be coupled with cryptanalytic knowledge or assumptions about the starting

primitive F to yield information enabling a user to choose between the generators.

III.C Generalization: Tree-based re-keying

In this section, we suggest a more general way to generate keys based on a

balanced tree. The idea is to start from secure but limited stateful pseudorandom

number generator and build a more general and flexible stateful pseudorandom

number generator, while still preserving security. In our tree-based construction of

a stateful generator, each internal node represents a single stateful pseudorandom

number generator and each leaf represents an output block (i.e., the key for the

re-keyed symmetric encryption scheme) of the overall scheme at a certain stage.

Except for those generators at the lowest level, each output block of a generator

will feed the input (its coins) of the key generation algorithm of those generators

68

one level below which are directly connected to them in the tree (its children). The

state St = 〈St1, . . . , StL−1, i〉 will consist of the state of all generators in the path

from the current leaf to the root (St 1, . . . , StL−1), where L is the total number of

levels in the tree, plus the number of the current leaf, i. To obtain a new output

block (the next leaf), we only need to obtain the output blocks of those generators

which are not in the common path from both the current and next leaves to the

root.

In order to be more flexible, we allow different values of arity at different

levels, but we assume their values to be the same within each level. Wlog, we also

assume that the length of the initial seed (actually the coins) of all generators at

the same level to be the same and equal to length of the output block of their

parents. We consider the root level to be 1.

III.C.1 Construction

Let us now specify our construction more formally. Refer to Figure III.2

for a pictorial representation. Let Gl = (Kl,Nl) be a stateful pseudorandom number

generator used at level l. Let al be the arity of the tree at level l and kl be the key

length of Gl. Then we define our overall stateful pseudorandom number generator

G = (K,N), whose key length is k = k1, as follows:

69

.

a2

G2

a1

G1

G2

a2a2

G2

GL−1

aL−1 aL−1

GL−1 GL−1

aL−1

GL−1

aL−1

GL−1

aL−1

. . .

.
.

K1 Kn

Figure III.2: Diagram of our tree-based construction

algorithm K
l ← 1

St l ← Kl

while l < L− 1 do

(Out l, St l)← Nl(St l)

St l+1 ← Kl+1(Out l)

l ← l + 1

St ← 〈St1, . . . , StL−1, 0〉
return St

algorithm N (St)

parse St as 〈St1, . . . , StL−1, i〉
l ← L− 1 ; d← i+ 1

while d mod al = 0 do

d← bd/alc ; l ← l − 1

(Out l, St l)← Nl(St l)

while l < L− 1 do

l ← l + 1 ; St l ← Kl(Out l−1)

(Out l, St l)← Nl(St l)

St ← 〈St1, . . . , StL−1, i+ 1〉
return (OutL−1, St)

III.C.2 Security

We claim that the stateful pseudorandom number generator G we con-

structed in the previous subsection is secure as long as each underlying stateful

pseudorandom number generator G1, . . . ,GL−1 is secure.

Theorem III.C.1 Let each Gl = (Kl,Nl) be a secure stateful generator with block

size kl for l = 1, . . . , L− 1. Define a0 = 1 and let nl =
∏l−1

j=0 al be the total number

of nodes at level l. Let G be the overall stateful generator formed out of the basic

70

stateful generators as above. Then

AdvprgG (n, t) ≤
L−1∑

l=1

nl Adv
prg
Gl

(al, t) .

Proof:

The analysis here follows that of Goldreich, Goldwasser and Micali’s construction

of a pseudorandom function from a pseudorandom generator [43], and its later

extensions such as the analysis of the cascade construction of pseudorandom func-

tions [7]. We note however that although the analysis ideas are similar, our setting

and conclusions are quite different. We are building and analyzing key derivation

processes (stateful generators), not pseudorandom functions. More importantly,

we prove that re-keying can actually increase the security of an application.

Let A be an adversary attacking the security of G and having a running time of at

most t. We want to upper bound AdvprgG,A. Let nl =
∏l−1

i=0 ai be the total number of

nodes at level l (a0 = 1). We begin by defining the sequence of hybrid experiments,

HybridA,l,j, where l varies between 1 and L − 1 and j varies between 0 and nl.

In experiment HybridA,l,j, the output of all generators in levels 1 up to l − 1

and those in level l whose indices are smaller than j are replaced by truly random

strings of the same length.

experiment HybridA,l,j (1 ≤ l ≤ L− 1) (0 ≤ j ≤ nl)

cl ← 0

if cl < j then

Outh
R← {0, 1}kh+1

else

Outh−1
R← {0, 1}kh ; Sth ← Kh(Outh−1)

(Outh, Sth)← Nh(Sth)

for h = l + 1, . . . , L− 1 do

Sth ← Kh(Outh−1)

(Outh, Sth)← Nh(Sth)

71

s← OutL−1 ; cL ← 0

for cL = 1, . . . , L− 1 do

d← cL ; h← L− 1

while d mod ah = 0 and h ≥ l do

d← bd/ahc ; h← h− 1

if h = l − 1 then

cl ← cl + 1 ; h← h+ 1

if cl < j then

Outh
R← {0, 1}kh+1

else

Outh−1
R← {0, 1}kh ; Sth ← Kh(Outh−1)

(Outh, Sth)← Nh(Sth)

else if h = l and cl < j then

Outh
R← {0, 1}kh+1

else

(Outh, Sth)← Nh(Sth)

while h < L− 1 do

h← h+ 1 ; Sth ← Kh(Outh−1)

(Outh, Sth)← Nh(Sth)

s← s ‖OutL−1
g ← A(guess, s)

return g

Let Pl,j be the probability that experiment HybridA,l,j returns 1, for l = 1, . . . , L

and j = 0, . . . , nl. We first notice that experiments Expprg-realG,n,A and Expprg-randG,n,A are

respectively identical, semantically, to experimentsHybridA,1,0 andHybridA,L,nL
.

As a result,

AdvprgG,A = Pr[Expprg-realG,n,A = 1]− Pr[Expprg-randG,n,A = 1]

= P1,0 − PL,nL
. (III.5)

72

Moreover, we can still go a bit further and notice that for l = 1, . . . , L− 2, Pl,nl
=

Pl+1,0. Then, Equation (III.5) can be rewritten as

AdvprgG,A = P1,0 − PL,nL

=
L−1∑

l=1

Pl,0 − Pl,nl
. (III.6)

Our goal is to show that

Pl,0 − Pl,nl
≤ nl Adv

prg
Gl

(al, t) (III.7)

for any l ∈ {1, . . . , L− 1}. The claimed result would then follow directly from this

since A is an arbitrary adversary running in time t. We can do so by using the

advantage function of each Gl. Consider the following sequence of distinguishers

Dl for each Gl.

algorithm Dl(S) (|S| = alkl+1) (1 ≤ l ≤ L− 1)

j
R← {0, . . . , nl − 1} ; i← 0 ; cl ← 0

parse S as S0 ‖ . . . ‖Sal−1

if cl < j then

Outh
R← {0, 1}kh+1

else if cl = j then

Outh ← Si ; i← i+ 1

else

Outh−1
R← {0, 1}kh ; Sth ← Kh(Outh−1)

(Outh, Sth)← Nh(Sth)

for h = l + 1, . . . , L− 1 do

Sth ← Kh(Outh−1)

(Outh, Sth)← Nh(Sth)

s← OutL−1 ; cL ← 0

for cL = 1, . . . , L− 1 do

d← cL ; h← L− 1

while d mod ah = 0 and h ≥ l do

73

d← bd/ahc ; h← h− 1

if h = l − 1 then

cl ← cl + 1 ; h← h+ 1

if cl < j then

Outh
R← {0, 1}kh+1

else if cl = j then

Outh ← Si ; i← i+ 1

else

Outh−1
R← {0, 1}kh ; Sth ← Kh(Outh−1)

(Outh, Sth)← Nh(Sth)

else if h = l and cl < j then

Outh
R← {0, 1}kh+1

else if h = l and cl = j then

Outh ← Si ; i← i+ 1

else

(Outh, Sth)← Nh(Sth)

while h < L− 1 do

h← h+ 1 ; Sth ← Kh(Outh−1)

(Outh, Sth)← Nh(Sth)

s← s ‖OutL−1
g ← A(guess, s)

return 1− g

Suppose we run experiment Expprg-realGl,al,Dl
. We notice it amounts to running exper-

iment HybridA,l,j, where j is the value chosen at random by Dl in its first step,

and then flipping the answer bit. Similarly if we run experiment Expprg-randGl,al,Dl
we

notice that it amounts to running HybridA,l,j−1 where j is the value chosen at

random by Dl in its first step, and then flipping the answer bit. So

Pr[Expprg-realGl,al,Dl
= 1] = 1

nl

∑nl

j=11− Pl,j

74

Pr[Expprg-randGl,al,Dl
= 1] = 1

nl

∑nl

j=11− Pl,j−1 .

Subtract the second sum from the first and exploit the collapse to get

Pl,0 − Pl,nl

nl

= 1
n

∑nl

j=1(1− Pl,j) − 1
nl

∑nl

j=1(1− Pl,j−1) = AdvprgGl,Dl
.

Note that the running time of Dl is at most t, whence we get Equation (III.7).

This concludes the proof of the theorem.

III.C.3 Discussion

One direct implication of the above theorem is that this scheme can gen-

erate up to nL keys even though each base scheme Gl could only generate al keys;

this is an added advantage of the construction. For example, let nL = Q. Then the

factor multiplying the advantage function of each GL−1 is Q/aL−1. In this particu-

lar case, a trade-off between the factor Q/aL−1 and the advantage function of GL−1
over aL−1 queries will play the major role in the overall behavior of G. On the one

hand, if we choose a small value for aL−1, opting for relaxing the constraints over

GL−1, then we decrease the total number of data blocks Q generated by G. This

can be compensated, however, by increasing the values of other al. On the other

hand, if we pick a large value for aL−1, thus increasing Q, then we can increase

the requirements over GL−1, which in turn may be affect the overall efficiency. The

right choice of values will depend on the requirements of each application. Our

goal here is to provide a tool to ease its design.

III.C.4 Optimality of analysis

Theorem III.C.1 gives an upper bound for the advantage function of G in

terms of the advantage function of each Gl. However, it is not clear whether this

upper bound is tight or whether one can do better. In this section, we show that

the given analysis is tight and that one cannot do better without resorting to the

peculiarities of a particular generator. In order to prove our claim, we follow the

same line presented in [7]. That is, we first define a setting in which functions can

75

only be accessed as a black box and then present a simple algorithm in this setting

which achieves a distinguishing probability equal (up to a constant factor) to that

one given in the theorem.

We start by defining the new setting, BBF, standing for Black-Box-Family

setting. In the BBF setting, for each data block length k, there exists a family

F k : {0, 1}k × {0, 1}k → {0, 1}k of functions which takes as input a seed s and

a value x and outputs some value y, all of length k. Each seed s determines a

different function F k
s . Since we want these functions to be accessed as a black box,

no explicit description of how to compute them is given. Instead, the data blocks

outputted by such functions can only be obtained by means of oracle queries.

There are two types of queries. One is called oracle query and is related to a

particular function being analyzed. The second type is called family query and

can be related to any function in the family. Consequently, the seed has to be

provided explicitly in the query. Each generator GF k(·,·) = (KF k(·,·),N F k(·,·)), whose

data block length is k, is defined as follows in the BBF setting. KF k(·,·) takes as

input a seed s and returns a tuple 〈s, 0〉. N F k(·,·) takes as input a tuple 〈s, i〉 and
returns a pair (F k

s (i), 〈s, i+ 1〉). A distinguisher for a generator GF k

in the BBF

setting is an algorithm for deciding whether a given string is random or whether

it is the output of this generator for some random seed s.

Let us proceed with the analysis. Assume, for the sake of simplicity,

that, in our tree-based construction, all data blocks have length k (i.e., kl = k

for l = 1, . . . , L). Moreover, also assume the arity to be the same in all levels

and equal to a. Let us then define Advprg
F k,GFk (q, τ) as being the maximum over

all distinguishing probabilities in breaking the security of a generator GF k

by any

algorithm which makes at most q oracle queries and τ family queries with respect

to a family F k. Let F ? be the family obtained by using our tree-based construction.

Then, for any family F k, Theorem III.C.1 implies that

AdvprgF ?,G(nL, τ) ≤
L−1∑

l=1

nl Adv
prg

F k,GFk (a, τ) , (III.8)

76

where nl = al−1. Our goal is to show that such general upper bound is tight by

providing a lower bound for functions drawn from a particular family.

Consider the family RF in which each of the 2k functions with data block

length k is a random map between {0, 1}k and {0, 1}k. We claim that

AdvprgRF ?,G(nL, O(nL)) ≥ c nL−1 Adv
prg

RF k,GRFk (a,O(nL)) , (III.9)

for some c > 0. But from inequality III.8, we now that

AdvprgRF ?,G(nL, O(nL)) ≤ c′ nL−1Adv
prg
RF,G(a,O(nL)) (III.10)

for some constant c′ > 0. (Theorem III.C.1 actually contains other low-order ex-

ponents terms, but we disregard them here for simplicity, although a distinguisher

which matches even those terms can be easily constructed.) Putting both inequal-

ities III.9 and III.10 together concludes our proof.

In order to prove inequality III.9, we shall proceed in steps. First, we

construct a general distinguisher for the overall scheme and compute its advantage

AdvprgRF ?,G(nL, τ). Then, we relate this advantage to that of a single function,

Advprg
RF,GRFk (a, τ), and conclude the proof.

Our construction of the distinguishing algorithm exploits the fact that

collisions in the tree-based construction can be detected at the output. For in-

stance, if two output blocks at the same level are the same, then both subtrees

rooted at these output blocks will also be the same and this can be easily detected

solely by looking at the output string. However, collisions between data blocks at

different levels can also be exploited. For example, if there is a collision between a

data block at the last level and one at the level before that, we can find that out

by using each of the data blocks in the output string as a seed to a generator and

checking whether a group of a data blocks matches. The resulting advantage of

such distinguisher is O(nL · nL−1)/2
k (this is the probability of having a collision

between these two levels) but it would require O(a · nL) many queries. In order

to lower the total number of queries, our construction only searches for matches

of a fixed number of data blocks, say 3, instead of a. The resulting advantage,

77

though smaller, is still O(nL ·nL−1)/2
k while only O(nL) number of queries is now

required. Thus,

AdvprgRF ?,G(nL, O(nL)) ≥
c′ · nL · nL−1

2k
(III.11)

for some constant c′ > 0. But it is easy to see that

Advprg
RF,GRFk (a, τ) ≤

c̃ · τ
2k

, (III.12)

for some constant c̃ >)0. Therefore,

AdvprgRF ?,G(nL, O(nL)) ≥ c · nL−1 ·AdvprgRF,GRFk (a,O(nL)) , (III.13)

for some constant c > 0, which concludes our proof. It is worth to say that an

even tighter result can be obtained by making the distinguisher check for collisions

between any two levels and within each level. Although this would result in a

larger advantage, the order of total number of queries is still kept the same.

III.C.5 More general constructions

Even though the tree-based construction presented above allows us for

some flexibility when instantiating the scheme, it requires all generators in the same

level to be the same. This seems to be too strict. Hybrid schemes using different

types of generators in the same level may be desirable in some situations since

security requirements may vary with time (based on statistics, for example). We

claim here that this restriction can be relaxed without compromising the security

of the overall generator. In fact, we claim that the advantage function of the overall

generator would simply be, in this case, the sum of the advantage function of each

generator (represented by internal nodes in the tree). The proof for this claim

would also be very similar to that for Theorem III.C.1 and so we skip it here.

Another possible generalization of the above scheme would involve the

use of unbalanced trees. Though not so clearly, this case is actually covered by the

construction just described above. Since each internal node can represent a differ-

ent generator, it might as well be another tree-based construction. Consequently,

such construction inherits the security of its building blocks.

78

III.D Re-keyed symmetric encryption

We fix a base encryption scheme. (For example, CBC mode encryption

based on some block cipher.) We wish to encrypt data using this scheme, but

with re-keying. Two things need to be decided. The first is how the re-keying

is to be done, meaning how the subkeys will be computed. This corresponds to

making a choice of stateful generator to generate the subkey sequence. The second

is the lifetime of each subkey, meaning how many encryptions will be done with

it. This corresponds to choosing an integer parameter l > 0 which we call the

subkey lifetime. Associated to a base scheme, generator and subkey lifetime, is a

particular re-keyed encryption scheme. We are interested in comparing the security

of the re-keyed encryption scheme across different choices of re-keying processes

(i.e. generators), keeping the base scheme and subkey lifetime fixed. In particular,

we want to compare the use of the parallel and serial generators.

Our analysis takes a modular approach. Rather than analyzing separately

the re-keyed encryption schemes corresponding to different choices of generators,

we first analyze the security of a re-keyed encryption scheme with an arbitrary

generator, showing how the advantage of the encryption scheme can be bounded

in terms of that of the generator and the base scheme. We then build on results

of Section III.B to get results for re-keyed encryption with specific generators. We

begin by specifying in more detail the re-keyed encryption scheme and saying how

we measure security of symmetric encryption schemes.

Re-keyed encryption schemes. Let SE = (Ke, E ,D) be the base

(symmetric) encryption scheme, specified by its key generation, encryption and

decryption algorithms [8]. Let G = (Kg,N) be a stateful generator with block

size k, where k is the length of the key of the base scheme. Let l > 0 be a

subkey lifetime parameter. We associate to them a re-keyed encryption scheme

SE [SE ,G, l] = (K, E ,D). This is a stateful encryption scheme which works as

follows. The initial state of the encryption scheme includes the initial state of

79

the generator, given by St0
R← Kg. Encryption is divided into stages i = 1, 2,

Stage i begins with the generation of a new key Ki using the generator: (Ki, St i)←
N (St i−1). In stage i encryption is done using the encryption algorithm of the base

scheme with key Ki. An encryption counter is maintained, and when l encryptions

have been performed, this stage ends. The encryption counter is then reset, the

stage counter is incremented, and the key for the next stage is generated. If the

base scheme is stateful, its state is reset whenever the key changes.

Formally, the key generation algorithm K of the re-keyed scheme is run

once, at the beginning, to produce an initial state which is shared between sender

and receiver and includes St0. The encryption algorithm E takes the current state

(which includes Ki, St i, a stage counter, the encryption counter, and a state for

the base scheme if the latter happens to be stateful) and the message M to be

encrypted, and returns ciphertext C ← EKi
(M). It also returns an updated state

which is stored locally. It is advisable to include with the ciphertext the number i

of the current stage, so that the receiver can maintain decryption capability even if

messages are lost in transit. The D algorithm run by the receiver can be stateless

in this case. (This is true as long as the goal is privacy against chosen-plaintext

attacks as we consider here, but if active attacks are considered, meaning we want

privacy against chosen-ciphertext attacks or authenticity, the receiver will have to

maintain state as well.)

Security measures for encryption schemes. Several (polynomial-

time equivalent) definitions for security of a symmetric encryption scheme under

chosen-plaintext attack were given in [8]. We use one of them, called left-or-right

security. The game begins with a random bit b being chosen. The adversary then

gets access to an oracle which can take as input any two equal-length messages

(x0, x1) and responds with a ciphertext formed by encrypting xb. The adversary

wins if it can eventually guess b correctly. We can associate to any adversary

an advantage measuring the probability it wins. We then associate to the base

encryption scheme —respectively, the re-keyed encryption scheme— an advan-

80

tage function Advind-cpaSE (t, q,m) —respectively Advind-cpa
SE

(t, q,m)— which mea-

sures the maximum probability of the scheme being compromised by an adversary

running in time t and allowed q oracle queries each consisting of a pair of m-bit

messages. Intuitively, this captures security against a chosen-plaintext attack of q

messages. (The usual convention [8] is to allow messages of different lengths and

count the sum of the lengths of all messages but for simplicity we ask here that

all messages have the same length. Note that for the base encryption scheme, all

encryption is done using a single, random key. For the re-keyed scheme, it is done

as the scheme specifies, meaning with the key changing every l encryptions. We

omit details here, but precise definitions with this type of notation can be found

for example in [14].)

Security of re-keyed encryption. The qualitative interpretation

of the following theorem is that if the generator and base encryption scheme are

secure then so is the re-keyed encryption scheme. It is the quantitative implications

however on which we focus. The theorem says that the security of encrypting ln

messages with the re-keyed scheme relates to the pseudorandomness of n blocks

of the generator output and the security of encrypting l messages under the base

scheme with a single random key. The Advind-cpaSE (t, l,m) term is multiplied by n,

yet there is a clear gain, in that the security of the base encryption scheme relates

to encrypting only l messages.

Theorem III.D.1 (Security of re-keyed encryption) Let SE be a base en-

cryption scheme with key size k, let G be a stateful generator with blocksize k, and

let l > 0 be a subkey lifetime. Let SE = SE [SE ,G, l] be the associated re-keyed

encryption scheme. Then

Advind-cpa
SE

(t, ln,m) ≤ AdvprgG,n(t) + n ·Advind-cpaSE (t, l,m) .

Proof: Let A be an adversary attacking the security of the SE scheme and let t

be the maximum of the running times of experiments Expind-cpa-b
SE,A

, where b ∈ {0, 1}.
We want to upper boundAdvind-cpa

SE,A
= Pr[Expind-cpa-1

SE,A
= 1]−Pr[Expind-cpa-0

SE,A
= 1].

81

To do this we specify an adversary D attacking the security of the stateful gen-

erator G, and a distinguisher A attacking the SE scheme, and then bound the

advantage of A in terms of the advantages of A and D.

The adversary D. D will receive a sequence of blocks and must tell whether

they are outputs of the generator or truly random. It will let the blocks it receives

play the role of the keys ki that are used by SE in the SE scheme. D will test

whether or not A succeeds on the given sequence of blocks. If so, it bets that the

block sequence was pseudorandom, and if not, it bets that the block sequence was

random. In adopting the latter opinion, it is assuming that breaking SE is hard on a

random block sequence, which we bear out later by providing a distinguisher which

breaks the given (standard) encryption scheme SE otherwise. The description of

D is as follows:

algorithm D(s)

parse s as Out1 ‖ . . . ‖Outn
b

R← {0, 1}
for i = 1, . . . , n do

St ← A
〈E(Outi,LR(b

′,·,·)),i〉
(St)

g ← A(St)

if g = b then return 1 else return 0

At stage i, it uses block Out i to simulate the encryption oracle E(Ki,LR(b, ·, ·))
that A is supposed to get at that stage, given the definition of SE . The notation

A
〈E(Out ,LR(b,·,·)),i〉

means that A is given an oracle that on input (x0, x1) returns

〈E(Out i, xb), i〉. When A outputs its guess, A checks whether A makes the right

guess. If so, then it returns 1, betting that the output is not random, else 0.

We notice that the simulation of encryption oracle in each stage is perfect when

the output blocks come from the generator. Hence, we have that

Pr[Expprg-realG,n,D = 1] = Advind-cpa
SE,A

. (III.14)

82

The distinguisher A. We design a distinguishing algorithm A attacking the

given scheme SE . A gets an oracle E(K,LR(b′, ·, ·)). It runs A, but on a sequence

of random, independent keys rather than keys obtained via the generator. It also

simulates the LR encryption oracle 〈E(Out ,LR(b, ·, ·)), i〉 that should be given to

A. However, it does so differently from what A expects. That is, instead of

selecting the bit b at random and using it in simulation of the LR encryption

oracle throughout all time periods, it picks a period j ∈ {1, . . . , n} at random and

sets the value b, used in the simulation of the LR encryption oracle, to 0 for all

time periods i < j and to 1 for all time periods i > j. In time period j, it lets K

play the role of Kj by using its own oracle E(K,LR(b′, ·, ·)) in the simulation of

〈E(Out ,LR(b, ·, ·)), j〉. The intuition for doing so is that in order for A to be able

to distinguish between the left or right encryption throughout all time periods, it

should also be able to identify the case in which we start by encrypting the left

input to the LR oracle and then switch to encrypting the right input to the LR

oracle. At the end, A outputs the same guess A does. In running A, A also keeps

track of the state St of A which is passed from the current stage to the next.

algorithm AE(K,LR(b′,·,·))

j
R← {1, . . . , n} ; s← ε

for i = 1, . . . , n do

Ki
R← {0, 1}k

if i < j then b← 0

if i > j then b← 1

if i = j then

St ← A
〈E(K,LR(b′,·,·)),i〉

(St)

else

St ← A
〈E(Ki,LR(b,·,·)),i〉(St)

g ← A(St)

return g

83

In order to analyze the success probability of A, let us define the following sequence

of hybrid experiments, where j varies between 0 and n.

experiment HybridA,j

for i = 1, . . . , n do

Ki
R← {0, 1}k

if i ≤ j then b← 0 else b← 1

St ← A
〈E(Ki,LR(b,·,·)),i〉(St)

g ← A(St)

return g

Suppose that b′ = 0 in the oracle given to A. We can see that, in this case, the prob-

ability that A returns 1 equals the probability that the experiment HybridA,j−1

returns 1, where j is the value chosen at random by A in its first step. Similarly,

if b′ = 1 in the oracle given to A, then the probability that A returns 1 equals

the probability that the experiment HybridA,j returns 1, where j is the value

chosen at random by A in its first step. Let Pj be the probability that experiment

HybridA,j returns 1, for j = 0, . . . , n. Then,

Expind-cpa-0SE,A = 1
n

∑n
j=1Pj−1

Expind-cpa-1SE,A = 1
n

∑n
j=1Pj .

If we subtract the second sum from the first and exploit the collapse, we get that

Advind-cpaSE,A = Pr[Expind-cpa-1SE,A = 1]− Pr[Expind-cpa-0SE,A = 1]

= 1
n

∑n
j=1Pj−1 − 1

n

∑n
j=1Pj

=
Pn − P0

n
.

Moreover, by noticing that Pn−P0 equals the probability that Expprg-randG,n,D returns

1, we have that

Pr[Expprg-randG,n,D = 1] = n ·Advind-cpaSE,A (III.15)

84

Now, combining Equations (III.14) and (III.15), we get

Advind-cpa
SE,A

= Pr[Expprg-realG,n,b,A = 1]

= AdvprgG,A + Pr[Expprg-randG,n,b,A = 1]

= AdvprgG,A + n ·Advind-cpaSE,A .

Finally, by observing that the running time of both D and A is at most t and that

D makes at most q queries to its encryption oracle, it follows that

Advind-cpa
SE

(qn, t) ≤ AdvprgG (n, t1) + n ·Advind-cpaSE (q, t2) .

Re-keyed encryption with the parallel and serial genera-

tors. Combining Theorem III.D.1 with Theorems III.B.4 and III.B.5 gives us

information about the security of re-keyed encryption under the parallel and serial

generators.

Corollary III.D.2 (Security of re-keyed encryption with the parallel gen-

erator) Let SE be a base encryption scheme, let F : {0, 1}k×{0, 1}k → {0, 1}k be a
PRF, let PG[F] be the F -based parallel generator defined in Construction III.B.1,

and let l > 0 be a subkey lifetime. Let SE = SE [SE ,PG[F], l] be the associated

re-keyed encryption scheme. Then

Advind-cpa
SE

(t, ln,m) ≤ AdvprfF (t, n) + n ·Advind-cpaSE (t, l,m) .

Corollary III.D.3 (Security of re-keyed encryption with the serial gen-

erator) Let SE be a base encryption scheme, let F : {0, 1}k×{0, 1}k → {0, 1}k be

a PRF, let SG[F] be the F -based serial generator defined in Construction III.B.2,

and let l > 0 be a subkey lifetime. Let SE = SE [SE ,SG[F], l] be the associated

re-keyed encryption scheme. Then

Advind-cpa
SE

(t, ln,m) ≤ n ·AdvprfF (t+ log n, 2) + n ·Advind-cpaSE (t, l,m) .

Example. For the base encryption scheme, let us use CBC with some

block cipher B: {0, 1}k × {0, 1}b → {0, 1}b having block length b. We wish to

85

compare the security of encrypting q messages directly with one key; doing this

with re-keying using the parallel generator; and doing this with re-keying using the

serial generator. The re-keying is based on a PRF F : {0, 1}k × {0, 1}k → {0, 1}k

having block length k. Note that B and F can but need not be the same. In

particular B must be a cipher (i.e. invertible) in order to enable CBC decryption,

but we have seen that better security results for the re-keying schemes by choosing

F to be non-invertible and might want to choose F accordingly.

Let CBC denote the base encryption scheme. Let PCBC denote the re-

keyed encryption scheme using CBC as the base scheme, the F -based parallel gen-

erator, and subkey lifetime parameter l. Let SCBC denote the re-keyed encryption

scheme using CBC as the base scheme, the F -based serial generator, and subkey

lifetime parameter l. Since B is a cipher we take its advantage to be

AdvprfB (t, q) ≈ q2

2b
+

t

2k
. (III.16)

We know from [8] that

Advind-cpaCBC (t, q,m) ≈ q2m2

b22b
+ 2 ·AdvprfB (t, qm/b) ≈ 3q2m2

b22b
+

2t

2k
.

For simplicity we let the message length be m = b. Thus if q = ln messages of

length m are CBC encrypted we have

Advind-cpaCBC (t, ln, b) ≈ 3l2n2

2b
+

2t

2k

Advind-cpaPCBC (t, ln, b) ≈ AdvprfF (t, n) +
3l2n

2b
+

2nt

2k

Advind-cpaSCBC (t, ln, b) ≈ n ·AdvprfF (t+ log n, 2) +
3l2n

2b
+

2nt

2k
.

The first corresponds to encryption with a single key, the second to re-keying with

the parallel generator, and the third to re-keying with the serial generator. Suppose

we let F be a block cipher. (This is the easiest choice in practice.) We can simply

let F = B. In that case F obeys Equation (III.3) and we get

Advind-cpaCBC (t, ln, b) ≈ 3l2n2 + 2t

2k

Advind-cpaPCBC (t, ln, b) ≈ 3l2n+ n2 + 2nt

2k

86

Advind-cpaSCBC (t, ln, b) ≈ 3l2n+ 2nt+ t

2k
.

The two generators deliver about the same advantage. To gauge the gains provided

by the re-keying schemes over the single-key scheme, let us define the encryption

threshold of a scheme to be the smallest number of messages Q = ln that can be

encrypted before the advantage hits one. (Roughly speaking, this is the number of

messages we can safely encrypt.) We want it to be as high as possible. Let’s take

t ≈ nl. (It cannot be less but could be more so this is an optimistic choice). In

the single-key scheme Q ≈ 2k/2. In the re-keyed schemes let us set l = 2k/3. (This

is the optimal choice.) In that case Q ≈ 22k/3. This is a significant increase in the

encryption threshold, showing that re-keying brings important security benefits.

We could try to set F to be a non-invertible pseudorandom function for

which Equation (III.4) is true. (In particular F would not be B.) Going through

the calculations shows that again the two generators will offer the same advantage,

but this would be an improvement over the single-key scheme only if k > b. (Setting

k = 2b yields an encryption threshold of 2b for the re-keyed schemes as compared

to 2b/2 for the single-key scheme.)

We saw in Section III.B that the parallel generator offered greater security

than the serial one. We note that this did not materialize in the application to

re-keyed CBC encryption: here, the advantage functions arising from re-keying

under the two generators are the same. This is because the term corresponding to

the security of the base scheme in Corollaries III.D.2 and III.D.3 dominates when

the base scheme is CBC.

In summary we wish to stress two things: that security increases are

possible, and that our results provide general tools to estimate security in a variety

of re-keyed schemes and to choose parameters to minimize the advantage functions

of the re-keyed schemes.

Chapter IV

Broadcast Encryption Schemes

IV.A Introduction

The domain we consider in this chapter is that of broadcast applications

where the transmissions need to be encrypted. The examples we consider are a

broadband digital TV network [58], broadcasting either via satellite or via cable,

and Internet secure multicast [78], e.g., via the MBone [36].

In the context of pay TV, the head-end occasionally needs to multicast

an encrypted message to some subset of users (called the target set) using the

broadcast channel. Each network user has a set-top terminal (STT) which receives

the encrypted broadcast and decrypts the message, if the user is entitled to it. For

this purpose the STT securely stores the user’s secret keys, which we refer to as

establishment keys. Because of extensive piracy [60], the STTs need to contain a

secure chip which includes secure memory for key storage. This memory should

be non-volatile, and tamper-resistant, so the pirates will find it difficult to read

its contents. As a result of these requirements, STTs have severely limited secure

memory, typically in the range of a few Kilobytes.

Earlier work on broadcast encryption (cf. [38]) was motivated by the

need to transmit the key for the next billing period or the key for the next pay-

per-view event, in-band with the broadcast, since STTs only had uni-directional

87

88

communications capabilities. The implicit assumption was that users sign up for

various services using a separate channel, such as by calling the service provider

over the phone. In such applications it is reasonable to assume that the target set

is almost all the population, and there are only small number of excluded users.

Moreover, it is crucial that users outside the target set are not able to decrypt the

message since it has a high monetary value, e.g., the cost of a month’s subscription.

However, current STTs typically follow designs such as [28] which al-

low bi-directional communication, where the uplink uses an internal modem and

a phone line, or a cable modem. These new STTs upload the users’ requests

and download next month’s keys via a callback mechanism, and not through the

broadcast channel. This technological trend would seem to invalidate the neces-

sity for broadcast encryption schemes completely. We argue that this is not the

case—there are other applications where broadcast encryption is necessary, such as

multicasting electronic coupons, promotional material, and low-cost pay-per-view

events. Such applications need to multicast short-lived, low value messages that

are not worth the overhead of communicating with each user individually. In such

applications, though, the requirements from the solution are slightly different. On

the one hand, it is no longer crucial that only users in the target set receive the

message, as long as the number of free-riders is controlled. On the other hand, it

is no longer reasonable to assume anything about the size of the target set.

Multicast in the Internet is a service that is bound to become more and

more popular. Audio and video are two most talked about applications, but there

are diverse data applications that can benefit from multicast, such as news updates,

stock quotes, etc. Some of the multicast applications will be broadcasted freely,

while others will be for pay. Once such pay-multicast services are deployed on the

Internet, they would face similar issues faced by the pay-TV industry: High-value

transmissions would need to be encrypted, and only paying customers should have

the decryption keys.

In the past years, several suggestions for Internet multicast key-manage-

89

ment architectures were proposed [63, 79, 78]. These proposals do not specify

whether the decryption keys are to be held in a tamper-resistant hardware module

or in the receiving hosts’ insecure memory. We speculate that if Internet multicasts

are to carry information with significant monetary value, then the service providers

will encounter piracy. And in the Internet, the service providers loose the main

advantage they have over the pirates in the pay-TV industry: The pirates have

access to a high bandwidth, cheap, and world-wide, distribution channel—the same

Internet that the service providers use (see [53] for a discussion of these issues).

For this reason, we argue that successful Internet pay-multicast services would

probably require users to keep keys in a secure STT-like device. But regardless of

how Internet multicast keys are to be stored, it is certainly desirable to keep their

number low.

For the rest of this chapter, we use the term “receiver”, for both pay-TV

STTs and Internet-multicast key stores (implemented either in a secure module or

in the host memory).

IV.A.1 Related Work

Fiat and Naor [38] were first to introduce broadcast encryption (in the

context of pay-TV). They suggested methods of securely broadcasting key infor-

mation such that only a selected set of users can decrypt this information while

coalitions of up to k other users can learn nothing, either in the information-

theoretic sense, or under a computational security model. Their schemes, though,

required impractical numbers of keys to be stored in the receivers. Extensions to

this basic work can be found in [22, 23, 77].

Luby and Staddon [57] studied the trade-off between the transmission

length and the number of keys stored in the receivers. They assumed a security

model in which encryptions cannot be broken, i.e., only users that have a correct

key can decrypt the message. We adopt the same security model. Their work

still addressed fixed-size target sets, which are assumed to be either very large or

90

very small, and no user outside the target set is allowed to be able to decrypt the

message. A main part of their work is a disillusioning lower bound, showing that

either the transmission will be very long or a prohibitive number of keys needs to

be stored in the receivers.

A related line of work goes under the title of “tracing traitors” [27, 64].

The goal is to identify some of the users that leak their keys, once a cloned receiver

is found. This is achieved by controlling which keys are stored in each receiver, in

a way that the combination of keys in a cloned receiver would necessarily point to

at least one traitor.

Key management schemes for encrypted broadcast networks, which give

the vendor the flexibility to offer program packages of various sizes to the users,

can be found in [80]. The problem of tracking the location of receivers in order to

prevent customers from moving a receiver from, e.g., a home to a bar, is addressed

in [40].

The Iolus project [63] was the first serious attempt to propose a framework

for secure Internet multicast. The Iolus framework is based on a hierarchical tree

structure. At higher layers, group servers communicate with each other using

secure multicast. At lower layers, secure communication is exchanged between

group members. Special servers are needed to handle the join/leave operation in

each level.

Wong et al. [79] were the first to suggest a key management scheme for

secure multicast in the Internet. Their work influenced the network working group

of the IETF in the form of a recent RFC [78]. Their solution is based on a hierarchy

of keys that is built with the group of currently paying customers. The customers

of each service (a movie channel, a stock quote service, a news bulletin) are the

leaves of a balanced tree, where each node of the tree corresponds to a group key;

the group members are the descendents of that node. This solution achieves a

logarithmic cost for join/leave operations. However, the tree is built per program

(or per group), and as such incurs a high overhead when many different programs

91

are multicast.

IV.A.2 Contributions

Our starting point is the observation that the requirement “no users out-

side the target set can decrypt the message” is too strict for many applications. For

instance, for the purposes of multicasting electronic coupons, it may be enough to

guarantee that the recipient set contains the target set, and that the total number

of recipients is no more than f times the size of the target set. Service providers

can afford a small potential increase in the number of redeemed coupons, as long

as this simplifies their operations and lowers their cost. We call establishment key

allocation schemes that provide such guarantees “f -redundant broadcast encryp-

tion schemes”. Relaxing the requirements in this way allows us to depart from the

lower bounds of [57].

On the other hand, we have a more ambitious goal when it comes to

possible target sets. Unlike earlier work, we require our schemes to be able to

multicast to any target set, not just those target sets of very small or very large

cardinality.

We concentrate on schemes which store only a small number of keys in

each receiver. For systems with several million users, it is reasonable to require

the maximum number of keys per user to be O(log n), where n is the total number

of users, or at most O(nε), where, say, ε ≤ 1/4.

Subject to these constraints, we are interested in several measures of the

quality of an establishment key allocation. The first is the number of transmissions,

t: we can always attain our requirements trivially if we assign each receiver a unique

key, but then we suffer a very high number of transmissions. The second parameter,

which we call opportunity, is the proportion of free-riders in the population outside

the target set. The opportunity measures the incentive a customer has to avoid

paying (in cheap pay-per-view type services). If the opportunity is very high, close

to 1, there is no incentive for customers to pay, as they can almost surely get a

92

free ride.

After discussing the basic trade-offs associated with the problem, we

present some simple examples, that show the problem difficulty. We then prove a

new lower bound on the tradeoff between the transmission length and the num-

ber of keys stored per receiver, a lower bound that incorporates the f -redundancy

of our establishment key allocations. We show that the f -redundancy gives us a

substantial gain: For the same number of transmissions t we can hope for only

exp(Ω(n/tf)) keys per receiver, whereas the bound of [57] is exp(Ω(n/t)).

We then present several establishment key allocation constructions, and

an approximation algorithm that finds a key cover with minimal number of trans-

missions, for any given target set of users. Since this problem is similar to the

minimum set cover problem, that is known to be NP-hard, we cannot expect to

find an optimal solution efficiently. Instead, we use a greedy approximation algo-

rithm to find good key covers. We conducted an extensive simulation study of the

problem, from which we present only the interesting results.

Finally, we discuss the practical aspects of using our scheme for key man-

agement of secure multicast on the Internet. We propose a single key management

structure for all the services in a given infrastructure (e.g., one key structure for

the entire MBone [36]). The cost of building this key management structure is

logarithmic in the size of the total user population, but it is now usable for all the

services provided on this infrastructure, making it much cheaper than the “sepa-

rate tree per group” proposed by [79, 78]. We discuss how to build and maintain

our structure incrementally, as users are added or dropped from the MBone. We

also discuss the practical issues of how to manage the key transmissions in a dy-

namic environment, where paying users join and leave a specific program while it

is in progress. We show that such a dynamic environment further encourages users

to pay.

Our results are based on previous joint work with Yuval Shavitt and

Avishai Wool [5, 4].

93

K

C

U

S

SS3
1

2

Figure IV.1: Definition depiction.

Organization: In the next section we formally define the problem and

the various parameters we are interested in. In Section IV.C we show some sim-

ple solutions. In Section IV.D we prove our new lower bound on the trade-off

between the number of keys per user, the redundancy factor, and the transmis-

sion length. In Section IV.E we discuss how to find which keys to use given an

establishment key allocation. In Section IV.F we show our schemes and the re-

sults of their performance evaluation. In Section IV.G we discuss how to adapt

our schemes to dynamic Internet environments, and evaluate their performance in

such environments.

IV.B Definitions and Model

Let U be the set of all the receivers (i.e., receivers connected to a head-

end), with |U| = n. We use K to denote the target set, i.e., the set of paying

customers, and denote its size by |K| = k (see Figure IV.1).

We describe the allocation of the establishment keys by a collection S =

{S1, S2, . . .} of key sets such that ∪Si = U . We associate a unique establishment

key ei with each set Si ∈ S. A key ei is stored in the secure memory of every

receiver u ∈ Si. Hence the number of keys a receiver u ∈ U stores is equal to the

94

number of sets Si ∈ S it belongs to. Formally,

Definition IV.B.1 Let S be an establishment key allocation. The degree of a

receiver u is deg(u) = |{i : Si 3 u}|. The degree of a collection S is deg(S) =

maxu∈U deg(u).

Definition IV.B.2 Given a target set K, a key cover of K is a collection of sets

Si ∈ S whose union contains K:

C(K) ⊆ S such that K ⊆ ∪Si∈C(K)Si.

The minimal key cover is Cmin(K) = C(K) for which |C(K)| is minimal.

Suppose the head-end needs to send a message µ to all the members of

a target set K. Given any key cover C(K), the head end encrypts µ using the

establishment keys ei corresponding to the sets Si ∈ C(K), and broadcasts each

encryption separately.1.

Definition IV.B.3 We denote the best possible number of transmissions that

the head-end can use for a target set K by tK = |Cmin(K)|. Thus the worst case

number of transmissions is tmax(S) = maxK{ tK }.

In order to define the redundancy and opportunity measures we need the

following technical definition.

Definition IV.B.4 We denote the set of recipients of a given key cover C(K) by

RC(K) = ∪{Si ∈ C(K)} and the total number of recipients by rC(K) = |RC(K)|.

By the definition of a key cover C(K), every member of the target set K

has at least one of the keys used to encrypt µ. However, other receivers outside K

usually exist, which are also capable of decrypting the message. All our establish-

ment key allocations are constructed with a worst case guarantee that there are

never too many of these free-riders. Formally,

1This method was called the OR protocol in [57].

95

Definition IV.B.5 An establishment key allocation S is said to be f -redundant

if
rC(K)

k
≤ f

for every K ⊆ U with |K| = k.

A variant measure of redundancy is the actual redundancy fa, which is

the ratio between the non-paying and paying recipients. We are interested in the

average case fa, so we define it as a function of the target set K. Formally,

Definition IV.B.6 For a target set K with |K| = k the actual redundancy is

fa = rC(K)−k
k

.

If S guarantees a worst case redundancy factor f , then 0 ≤ fa ≤ f − 1 for any

target set K.

Finally, we define the opportunity, η, as the proportion of non-paying

recipients (free-riders) in the non-paying population (0 ≤ η ≤ 1). The opportunity

measures the incentive a customer has to avoid paying (e.g., in cheap pay-per-view

type services). Again, this is a function of the target set K.

Definition IV.B.7 For a target set K with |K| = k the opportunity is η =

rC(K)−k
n−k

.

IV.C Simple Examples

To demonstrate our definitions and the trade-offs associated with the

problem let us examine some simple solutions for the problem (which are similar

to those in [79]). See Table IV.1 for a summary of the examples.

Example IV.C.1 The “always broadcast” solution: S = {U}.

Both the degree, deg(S), and the number of transmissions, tmax(S), re-
quired to distribute the message are optimal and equal to 1 in this case. However,

the redundancy is f = n in the worst case and the opportunity, η, is always 1. The

96

S deg(S) tmax(S) f η
{U} 1 1 n 1

{{1}, . . . , {n}} 1 n 1 0
2U 2n−1 1 1 0

Table IV.1: A summary of some simple examples. Bold numerals indicate an

optimal parameter.

last two parameters are very bad since the system gives no incentive for a customer

to pay for a program; a single paying customer enables the entire population a free

ride.

Example IV.C.2 The “key per user” solution: S = {{1}, {2}, . . . , {n}}.

Here the degree deg(S) = 1 is optimal, and so are the redundancy f = 1, and

the opportunity η = 0. However, the number of transmissions is a very poor

tmax(S) = n.

Example IV.C.3 The “all possible sets” solution: S = 2U .

The degree here is an impractical deg(S) = 2n−1, however, all the other parameters

are optimal: tmax(S) = 1, f = 1, and η = 0. This is because every possible target

set K has its own designated key.

IV.D A Lower Bound

IV.D.1 Tools

Before presenting our lower bound on the degree of an f -redundant estab-

lishment key allocation, we need to introduce some definitions and results which

we use in the proof.

We start with covering designs, which are a class of combinatorial block

designs. A succinct description of covering designs can be found in [29, Ch. IV.8].

A more detailed survey is [62].

97

Definition IV.D.1 A k-(n, d) covering design is a collection of d-sets (blocks)

D = {D1, . . . , D`} over a universe of n elements, such that every k-set of elements

is contained in at least one block.

Definition IV.D.2 The covering number C(n, d, k) is the minimum number of

blocks in any k-(n, d) covering design.

Theorem IV.D.3 [Schönheim bound] [70] C(n, d, k) ≥ L(n, d, k), where

L(n, d, k) =

⌈
n

d

⌈
n− 1

d− 1
· · ·

⌈
n− k + 1

d− k + 1

⌉⌉⌉
≥




n

k



/



d

k


.

We also rely on the following result of Luby and Staddon, which addresses

strict broadcast encryption protocols.

Definition IV.D.4 An establishment key allocation S is called strict for a collec-

tion of target sets D if the sets in D can be covered without redundancy. Formally,

RC(D) = D for all D ∈ D.

Theorem IV.D.5 [57] Let D = {D1, . . . , D`} be a collection of target sets, with

|Di| ≥ d for all Di ∈ D. Then any establishment key allocation S which is strict

for D, and which can transmit to any Di ∈ D using at most t transmissions, must

have

deg(S) ≥
(
`1/t

t
− 1

)/
(n− d).

Remark: The precise statement we use here is a generalization of [57, Theorem 12].

In their original formulation the target sets Di all have a cardinality of exactly d,

and the collection D consists of all




n

d


 possible d-sets. However, their proof

can be easily extended to any arbitrary collection of target sets, of cardinality d

or larger.

98

IV.D.2 The Bound

Theorem IV.D.6 Let S be an f -redundant establishment key allocation over a

universe U of size n, for which tmax(S) = t. Then

deg(S) ≥ max
1≤k≤n/f







1

t







n

k



/



kf

k







1/t

− 1



/
(n− k)





.

Proof: For a target set K of size |K| = k, let R(K) be the minimal possible

recipient set for K (or one such set if many minimal recipient sets exist). Consider

the collection of minimal recipient sets

D = {R(K) : |K| = k}.

Note that covering K f -redundantly, using the t′ ≤ t key sets that define R(K), is

precisely equivalent to covering R(K) strictly with (the same) t′ key sets. Therefore

we see that S is an establishment key allocation which is strict for D, and can

transmit to any R(K) ∈ D using at most t transmissions. Note also that, trivially,

|R(K)| ≥ k for any |K| = k. Thus we can apply Theorem IV.D.5 to obtain

deg(S) ≥
(
|D|1/t

t
− 1

)/
(n− k). (IV.1)

By definition |R(K)| ≤ kf for all K, however, some sets R(K) ∈ D may have

fewer than kf elements. Define a modified collection D′ in which each R(K) ∈ D
is replaced by some superset R̂(K) ⊇ R(K) with |R̂| = kf . Note that |D′| ≤ |D|
since R̂(K1) = R̂(K2) is possible when R(K1) 6= R(K2). But now D′ is a k-

(n, kf) covering design. Thus we can lower-bound its size by the Schönheim bound,

Theorem IV.D.3, to obtain

|D| ≥ |D′| ≥ L(n, kf, k) ≥




n

k



/



kf

k


. (IV.2)

Plugging (IV.2) into (IV.1) and maximizing the expression over the choice of k

yields our result.

99

Using standard estimations of binomial coefficients, and maximizing over

k, we can obtain the following asymptotic estimate.

Corollary IV.D.7 Let S be an f -redundant establishment key allocation over a

universe U of size n, for which tmax(S) = t. Then deg(S) ≥ exp(Ω(n/tf)).

We therefore see that the f -redundancy gives us a substantial gain in

the degree: the bound of [57] for strict establishment key allocations is deg(S) =
exp(Ω(n/t)). In other words, if we allow a redundancy factor of f we can hope

to use only an f ’th root of the number of keys required per receiver in a strict

establishment key allocation for the same number of transmissions.

Theorem IV.D.6 and Corollary IV.D.7 give a lower bound on the required

number of keys a receiver needs to store. As we said before, this is typically a

small fixed value which we can reasonably model by log2 n or nε. Thus we are

more interested in the inverse lower bound, on the number of transmissions t.

Asymptotically we can obtain the following bound.

Corollary IV.D.8 Let S be an f -redundant establishment key allocation over a

universe U of size n. Then

tmax(S) ≥



Ω
(

n
f log logn

)
, when deg(S) = O(log n),

Ω(n
f log n

), when deg(S) = O(nε).

The asymptotic bound of Corollary IV.D.8 hides the constants, and in-

verting Theorem IV.D.6 gives a rather unwieldy expression for the lower bound

on t. Therefore, we choose to invert Theorem IV.D.6 numerically and to plot

the result, as a function of the target set size k, in Figure IV.2. As we shall

see in the sequel, the highest point on this curve (t ≈ 19 for n = 1024) is sig-

nificantly lower than our best constructions, which suffer from a worst case of

tmax(S) = 3n/8 = 384 when n = 1024.

100

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000

Nu
m

be
r o

f t
ra

ns
m

iss
io

ns
 (t

)

Target set size (K)

Lower bound, n=1024

Figure IV.2: The lower bound for the number of transmissions (t) as a function of

the target set size k, with n = 1024, f = 2, and deg(S) = log2 n.

101

algorithm f -Cover (K,S)
R← ∅; C ← ∅
repeat

A ← {Si :
|Si\R|

|(K∩Si)\R|
≤ f}.

A← Si ∈ A which maximizes |(K ∩ Si) \R|.
R← R ∪ A; C ← C ∪ {A}.

until the candidate collection A is empty.
return (R, C).

Figure IV.3: Algorithm f -Cover

IV.E Finding a Good Key Cover

An f -redundant establishment key allocation guarantees that an f -re-

dundant cover exists for every target set K. In particular, singleton target sets

K = {u} need to be addressed. Thus, S must include enough sets Si with |Si| ≤ f

so that every user is contained in one of them. For simplicity, we shall assume that

S contains the singletons themselves as sets, i.e., every receiver is assumed to hold

one key that is unique to it.

Once we decide upon a particular f -redundant establishment key alloca-

tion S, we still need to show an efficient algorithm to find an f -redundant key cover

C(K) for every target set K. Among all possible f -redundant key covers that S al-

lows, we would like to pick the best one. By “best” we mean here a cover that min-

imizes the number of transmissions t. Trying to minimize the actual redundancy fa

would lead to trivialities because we can always achieve the optimal fa = 0 since we

assumed that S contains all the singletons. Thus, for every target set K, we obtain

the following optimization problem: given a collection of sets S = {S1, . . . , Sm}
and a target set K, find a sub-collection Cmin(K) ⊆ S with minimal cardinality

|Cmin(K)| such that K ⊆ ∪{Si ∈ Cmin(K)} and | ∪ {Si ∈ Cmin(K)}|/|K| ≤ f .

This is a variation of the Set Cover problem [41], and thus an NP-hard

optimization problem. We omit the formal reduction proving this. Moreover, it

102

is known that no approximation algorithm exists for Set Cover with a worst case

approximation ratio2 better than lnn (unless NP has slightly super-polynomial

time algorithms) [37].

On the positive side, the Set Cover problem admits a greedy algorithm,

which achieves the best possible approximation ratio of lnn [52, 56]. Moreover,

the greedy algorithm is extremely effective in practice, usually finding covers much

closer to the optimum than its approximation ratio guarantees [45]. For this reason,

our general algorithm f -Cover for choosing a key cover is an adaptation of the

greedy algorithm. See Figure IV.3 for the details.

Theorem IV.E.1 If {{1}, . . . , {n}} ⊆ S then algorithm f -Cover returns an f -

redundant key cover of K for any target set K.

Proof: The set R maintains the current cover in the algorithm. In every iteration,

when a set Si is added to the cover, |Si\R| new users are covered, and |(K∩Si)\R|
of them are target set members that were not included in the cover before. Note

that we only add a set Si if
|Si\R|

|(K∩Si)\R|
≤ f and that the sets (Si \ R) are disjoint

for the Si’s chosen in different iterations. From these observations it is easy to

prove that the f -redundancy is kept throughout the algorithm execution, and in

particular, when the algorithm terminates.

Remarks:

• The candidate set A needs to be re-calculated in each iteration, since a non-

candidate set Si may become a candidate (or vice versa) after some other Sj

is added to the cover.

• It is easy to see that the time complexity of algorithm f -Cover is O(m2)

where m is the number of sets in S.

• In practice the computation time on a 433 MHz Intel Celeron processor was

between 1ms and 17ms for N =1024, 2048, and 4096, and various values of

k.
2[49] contains a good discussion of approximation algorithms and in particular a chapter on Set Cover.

103

In order to make the algorithm even more efficient, we do not use it in its

most general form. Instead, we split the establishment key allocation S into levels,

each containing sets of the same size. Formally, we break S into S = S1∪S2∪ · · ·,
such that |S`

i | = k` for some k` and for all S`
i ∈ S`. The algorithm is performed in

phases, where only sets belonging to level S ` are considered in the candidate set A
during in phase `. The algorithm starts at the highest level, the one containing of

the largest sets in S. When A is empty at a certain level, the cover so far, R, and

the covering sets, C, are fed to the execution phase of the algorithm in the next

(lower) level.

IV.F Practical Solutions

IV.F.1 Overview

Our basic goal is to construct an f -redundant establishment key alloca-

tion, namely to construct an S that will satisfy the following requirements: (i) the

number of establishment keys per user (degree) is low; and (ii) |RC(K)|/|K| ≤ f

for every target set K ⊆ U . Given such an establishment key allocation, we eval-

uate its performance with respect to the number of transmissions t, the actual

redundancy fa, and the opportunity η, using computer simulations.

We are interested in “average” performance, but since performance de-

pends heavily on the target set size, k, we use it as a parameter in the simulations.

Each data point for a target set size k in the graphs represents the mean of the

relevant measure, averaged over r samples of k-sets chosen uniformly at random.

We show the 95% confidence intervals3 for each data point, unless the graphical

height of the confidence intervals is very close to the size of the symbols depicted

on the curves. We typically use r = 25 samples per data point.

Unless stated otherwise, we assume that the redundancy is f = 2. We

also conducted experiments with other values of f but they showed qualitatively

3A 95% confidence interval means that the population mean appears within the specified interval with
probability 0.95. See [54] for a precise definition of confidence interval.

104

similar results.

IV.F.2 The Tree Scheme

The Scheme’s Description

A simple multi-level establishment key allocation is a balanced tree, that

is built by recursively partitioning the sets of a high level into equally-sized, disjoint

sets in the next level. Sets that form a partition of a single set, one level above

them, are considered children of this set in the tree. The number of keys each

receiver holds in this scheme is only 1 + loga n, where a is the arity of the tree. In

the sequel we always assume a binary tree (a = 2).

An important advantage of a tree scheme (besides its simplicity) is that

the greedy algorithm of Figure IV.3 can easily be made to run in time linear in

the size of the cover set, rather than in the total number of sets in the collection.

The idea is to start at the root of the tree (the set U) and then traverse it either

in a DFS or in a BFS order. Whenever an f -redundant set is found, select it and

ignore the subtree under it.

The problem with the tree scheme is its worst case behavior. Consider

the case where f = 2 and the collection is a full binary tree. If the target set

comprises k = n/4 users such that no two of them belong to a common set of size

4 or less, then we are forced to use t = n/4 transmissions. It is easy to see that

this is the worst possible configuration.

The average behavior of the basic tree is substantially better than the

worst case. Figure IV.4 shows the average number of transmissions on several

variants of a tree for a population of n = 1024 users. We see from the “threshold

at sets of size 2” curve in the figure that the peak of the average t is 164, which

is 36% less than the worst case of 256. We explain this threshold and discuss the

different variants of the tree in Section IV.F.2.

We conducted the same tests for larger populations and noticed that the

qualitative behavior does not change significantly, thus we omit the details. Here

105

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Nu
m

be
r o

f t
ra

ns
m

iss
io

ns

Target set size

threshold at sets of size 2
threshold at sets of size 4
threshold at sets of size 8

threshold at sets of size 16
threshold at sets of size 32

Figure IV.4: The effect of the “≤” threshold T on the number of transmissions

(t), for a tree with n = 1024.

we focus on simulations of small populations for another reason. We shall see

in Section IV.F.4 that we can capitalize on the detailed understanding of small

populations when we discuss partitioning large populations. Our results show

that breaking a large population into small subgroups and solving the problem

independently for each subgroup results in a good performance trade-off.

“<” or “≤”?

A subtle issue in the execution of algorithm f -Cover is whether the in-

equality in step 2 is strict (<) or not (≤). Assume that f = 2 and that the

collection S is a full binary tree. If a set of size Si with |Si| = 2 is tested using

non-strict inequality, and only one member of Si is in the target set K, then Si

is selected as a candidate and may be part of the cover. However, using a strict

inequality gives a better choice, which is to select the singleton containing that

106

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Ac
tu

al
 re

du
nd

an
cy

Target set size

threshold at sets of size 2
threshold at sets of size 4
threshold at sets of size 8

threshold at sets of size 16
threshold at sets of size 32

Figure IV.5: The effect of the “≤” threshold T on the Actual redundancy (fa) for

a tree with n = 1024.

user, thereby reducing the actual redundancy without increasing the number of

transmissions. On the other hand, using strict inequality for larger set sizes tends

to increase the number of transmissions. So, intuitively, we would like to use “<”

in the lowest levels of the tree, and use “≤” for sets of size T or larger, for an

appropriate threshold T . Figures IV.4, IV.5 and IV.6 compare the performance of

a tree scheme when the threshold is varied. Note that the T = 2 curve, which we

commented on before, represents using “≤” everywhere.

The most striking graph is that of the actual redundancy (Figure IV.5).

We see that when we use strict inequality in the level of the tree corresponding

to sets of size 2 (i.e., the “≤” threshold is T = 4) the actual redundancy, fa,

drops dramatically for target set sizes below n/2. At the same time, the number

of transmissions, t, remains unchanged. There is also an improvement in the

opportunity, η. Moving the threshold further up improves fa and η at the cost of

107

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

O
pp

or
tu

ni
ty

Target set size

threshold at sets of size 2
threshold at sets of size 4
threshold at sets of size 8

threshold at sets of size 16
threshold at sets of size 32

Figure IV.6: The effect of the “≤” threshold T on the Opportunity (η), for a tree

with n = 1024.

108

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64 128 256 512 1024
Level (key set size)

Nu
m

be
r o

f k
ey

s
us

ed

k=121
k=241
k=361
k=481

Figure IV.7: A histogram of the key sizes used for several target set sizes k, for

n = 1024.

increasing t. We found out that, in most cases, and especially when extra keys

are added (see below), it pays to set the threshold at T = 8 since the increase in

t is very small while the gain in fa and η is substantial. Thus, in all the following

simulations we only use strict inequality for sets of size 4 and below.

Note that choosing T = 8 has an effect on the worst case performance

since now k = 3n/8 users can be selected such that no four of them belong to

a common set of size 8 and no three of them belong to a common set of size 4.

As a result, we would be forced to use t = 3n/8 transmissions, all at the level

corresponding to singleton sets.

When T = 8, the peak number of transmissions t is 193 ≈ n/5 (see Figure

IV.4), which means a 50% improvement over the worst case performance of 384,

and achieves actual redundancy that is always lower than 0.9. However, in most

of the range the results are much better. In particular, if the interesting target set

size range is below k = n/5, we get t < n/6, fa < 0.16, and η < 0.04.

IV.F.3 Where Extra Keys are Effective

The basic tree scheme requires only log2 n keys to be stored in each re-

ceiver. Therefore it is reasonable to consider schemes with slightly more keys: For

109

populations of several millions, we can afford to keep twice or four times as many

keys in a receiver.

In this section, we study schemes in which a tree is augmented by ad-

ditional sets. The motivation for doing so is clear: by increasing the number of

sets (and thereby keys), the probability of finding a smaller cover increases. We

are interested in locating the levels where it best pays to add sets, subject to the

constraints on the number of keys per receiver.

In order to generate the extra key sets, we start with a “level-degree”

profile, which specifies how many keys each user should hold at each level. For a

level with set size k, a degree of d implies that each user should belong to d − 1

extra sets, in addition to the one basic tree set it belongs to at this level. Thus

we need to be able to generate nd/k sets of size k, such that each user belongs to

exactly d of them. We achieve this by randomly permuting the n users d−1 times,

and for each random permutation we add the users in positions (i−1)k+1, . . . , ik

as a set, for i = 1, . . . , n/k.

A vivid explanation for the preferred placement of the extra keys can be

found in the histogram in Figure IV.7. The histogram depicts the number of keys

used from each level of sets, for target sets of four sizes. We used a population of

n = 1024 users and a basic tree scheme with 11 levels. The histogram clearly shows

that the small sets are the ones used most often. As the target set size grows, some

larger key sets are also used. However, even when the target sets are k = 241 and

k = 361, i.e., target sets requiring the highest number of transmissions, relatively

few keys are used for sets of size 32 and up. Therefore it seems that adding key

sets at the low levels of the tree is the right approach.

Figures IV.8, IV.9, and IV.10 depict the performance of an 11-level tree

(n = 1024) augmented tree with 9 extra keys. This choice allows us to double the

number of keys per level in all the intermediate levels (1 < |Si| < n). Following

the conclusions we draw from the key usage histogram in Figure IV.7, these extra

keys are distributed as uniformly as possible among the levels from the bottom

110

(couples) level up to some level `. We varied ` in order to find the most effective

distribution.

We first note that regardless of how the extra keys are distributed, the

peak number of transmissions drops by at least 23% (from 193 down to 147 for the

“up to sets of size 2” distribution) in comparison to a non-augmented tree.

Figure IV.8 shows that the best t is achieved by distributing the extra keys

at the three lowest levels, i.e., adding couples, quadruplets, and octets. Adding sets

of size 16 as well resulted in an almost identical performance. However, adding

even larger sets gave significantly inferior performance. Figures IV.9 and IV.10

show that this improvement comes at the expense of an increase in fa for small

target set sizes, although the actual redundancy is still well below the guaranteed

worst case of fa ≤ f − 1 (= 1 when f = 2).

In a similar experiment with 38 keys (= 11 + 3 × 9) per user, the best t

was achieved by spreading the keys among the lowest 4 levels (up to sets of size 16);

the peak t for this experiment was about 94 transmissions, for target sets of size

271 (= n/3.8), which is 22% lower than the 121 achieved in Figure IV.8 by the

“up to sets of size 8” distribution. We also ran the same experiments for larger

and smaller values of n, with similar results. We omit the details.

Our conclusions from this set of experiments are that (a) adding a few

extra keys per user substantially reduces the number of transmissions t, and (b) it

pays to add these extra keys at the lower levels of the tree rather than to distribute

them at higher levels as well.

IV.F.4 Partitioning

The results in the previous sections suggest that keys are more “valuable”

at the lower levels of the tree than at the higher levels. Thus, it seems reasonable

to discard the keys of the largest sets (highest levels) altogether, and to use the

additional key space for more lower level keys. We achieve this by partitioning the

population, n, into ν disjoint partitions of size n/ν. The space occupied by the

111

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000

Nu
m

be
r o

f t
ra

ns
m

iss
io

ns

Target set size

single tree
up to sets of size 512

up to sets of size 16
up to sets of size 8
up to sets of size 2

Figure IV.8: Number of transmissions (t) as a function of the target set size k,

with n = 1024, f = 2, 11 levels, and 9 extra keys.

112

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Ac
tu

al
 re

du
nd

an
cy

Target set size

single tree
up to sets of size 512

up to sets of size 16
up to sets of size 8
up to sets of size 2

Figure IV.9: Actual redundancy (fa) as a function of the target set size k, with

n = 1024, f = 2, 11 levels, and 9 extra keys.

113

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

O
pp

or
tu

ni
ty

Target set size

single tree
up to sets of size 512

up to sets of size 16
up to sets of size 8
up to sets of size 2

Figure IV.10: Opportunity (η) as a function of the target set size k, with n = 1024,

f = 2, 11 levels, and 9 extra keys.

114

0

5000

10000

15000

20000

25000

0 20000 40000 60000 80000 100000 120000

Nu
m

be
r o

f t
ra

ns
m

iss
io

ns

Target set size

single partition (tree)
partitions of size 1k

partitions of size 256
partitions of size 128

partitions of size 32

Figure IV.11: Number of transmissions (t) as a function of the target set size k,

with n = 128K, f = 2, and 18 keys in total.

log2 ν deleted keys per user is then used to increase the number of low level sets

in each partition.

In this section we concentrate on larger, more realistic user population

sizes. However, since each individual partition is small, we can apply the insight

we have gained from our earlier small-population experiments.

Figures IV.11 and IV.12 compare the performance of the a single tree

scheme for a population of 128K customers with the performance of schemes that

employ the same number of keys (18) but with ν partitions. Within each partition

we distribute the log ν extra keys to achieve the lowest peak t; as we have seen

before, this means that the extra keys are distributed among the lowest levels in

the tree, thus adding key sets of sizes between 2 and 32. For each value of ν we

ran the equivalent of the experiment we discussed in Section IV.F.3. We report

only the results of the best (lowest peak t) extra-key distribution for each value of

115

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000 120000

Ac
tu

al
 re

du
nd

an
cy

Target set size

single partition (tree)
partitions of size 1k

partitions of size 256
partitions of size 128

partitions of size 32

Figure IV.12: Actual redundancy (fa) as a function of the target set size k, with

n = 128K, f = 2, and 18 keys in total.

ν.

Figure IV.11 shows that the decrease in t is dramatic for a large range of

target set sizes. In particular, the peak t drops by about 36%, from 24337 for a

single partition to 15526 for ν = 1024 partitions of size 128 each. Increasing the

ν further reduces t for some values of k. However, for large target set sizes, and

especially those with k > n/2, we pay a penalty in the number of transmissions.

For such large target sets we have to use t = ν transmissions instead of one. We

argue that as long as ν is substantially smaller than the peak t, the savings in

t for smaller target sets far outweighs the penalty incurred for large target sets.

Moreover, dealing with targets with k > n/2 can be done by maintaining a single

additional broadcast key together with the partitions’ keys.

Figure IV.12 shows that partitioning the users increases fa for target sets

with k < n/2. However, the peak fa actually drops since we no longer use the

116

very large key sets, e.g., those with size n/2 or n/4. Partitioning also improves the

opportunity for k ∼ n/2 (graph omitted).

We conclude that partitioning the users is an effective method for design-

ing establishment key allocations. It is better to discard the large high-level key

sets in favor of extra sets at the low levels. As a rule of thumb we suggest to use

at least ν ≈ √n partitions, and possibly more for larger values of n.

IV.G Dynamic Environments

In this section we discuss aspects of implementing our key management

scheme in a dynamic environment such as the Internet. We distinguish between

two types of dynamics. One type is the population’s dynamics, i.e., the change in

the population as new users are added and dropped from the MBone infrastructure.

The other type is in-program dynamics, i.e., the case where paying customers join

and leave a specific program broadcast while it is taking place.

IV.G.1 Adapting to a Dynamic Population

Our first concern is how to adapt the static establishment key allocation

we described before to a user population that is changing over time. We note

that the user population is mainly growing as new networks are connected to the

MBone. Networks depart from the MBone at a lower rate.

In Section IV.F.4 we showed that instead of building one monolithic es-

tablishment key allocation, it is better to split the population into partitions of

a smaller size, say of 1024 users in each. Each of these partitions has its own

establishment key allocation. Using this observation, we suggest building the es-

tablishment key allocation incrementally, in phases, as the population changes. A

new partition is created at the beginning of each phase, with virtual “place holder”

users. An establishment key allocation is constructed for the new partition, and

each virtual user is assigned its keys. Each (real) new user that joins the MBone

117

replaces a virtual user, and is assigned the virtual user’s keys. The phase ends

when all the virtual users in the new partition have been replaced by real users.

At this point a new phase starts.

A user disconnecting from the MBone (not a temporary logoff) is marked

as non-existing. Once the number of non-existing users in a partition drops below

some threshold, say half the users are non-existing, the partition is deleted and all

the users are rekeyed to a new partition. Note that the cost of rekeying a user is

amortized over all the leave operations that required no rekeying in the past.

The virtual users in a new partition and the non-existing users in old

partitions are all accounted for when key covers are computed for specific programs.

However, their presence can only make fa better: some of the redundant users that

are part the cover C(K) (for which the ratio f is guaranteed) are not really there.

IV.G.2 In-Program Dynamics

Next we discuss how decryption keys are transmitted in a dynamic envi-

ronment, in which users join or leave a specific program, i.e., when the target set

K is dynamically changing while the program is being transmitted. We believe

that this type of fine-grained join/leave control is more appropriate in the MBone

environment, where a single program may be quite lengthy.

To handle the dynamic changes in the target set, we divide the program’s

transmission time into slots of certain length, say 5 minutes. In each time slot,

a different encryption key is used. We collect all the join/leave operations within

slot i− 1, compute the updated target set Ki, and recalculate the key cover C(Ki)

for the next slot. The recipients in RC(Ki) receive the new key.

Our goal is to quantify the effect of the in-program dynamics on the

number of free-riders. To this end, we introduce the following definitions.

Definition IV.G.1 Consider the first i slots of a program transmission.

1. Let V i denote the set of users that can view all the i slots.

2. Let P i denote the set of users that pay for all the i slots.

118

3. Let N i denote the set of users that do not pay for any of the i slots.

To measure the dynamic redundancy, we define the free-to-pay ratio ρ(i),

which is the proportion of non- and partial-paying users in the viewer set V i.

Formally,

Definition IV.G.2 Let ρ(i) = |Vi\Pi|
|Vi|

.

The ratio ρ is similar to a dynamic version of the actual redundancy fa (recall

Definition IV.B.6), but with a different denominator: ρ(1) = (rC(K) − k)/rC(K)

whereas fa = (rC(K) − k)/k. For f -redundant establishment key allocations we

have ρ(1) ≤ 1 − 1/f , however, this inequality may not hold for larger values of i

since V i and P i evolve at different rates.

We define the dynamic opportunity, ηd, as the proportion of non-paying

recipients (free-riders) in the non-paying population.

Definition IV.G.3 Let ηd(i) =
|Vi∩N i|
|N i|

.

This is a generalization of the opportunity η of Definition IV.B.7, and ηd(1) = η.

IV.G.3 Experimenting with In-Program Dynamics

We conducted a series of simulation experiments to evaluate the effect

of recalculating the key cover for every slot on the possibility to receive a pro-

gram for free. We focused on relatively small user populations, since, as we have

seen in Section IV.F.4, partitioning the population into many small partitions is

advantageous.

The results we report here are all for n = 1024. We used 20 keys per user,

using the best scheme we found in the experiments of Section IV.F.3, namely,

distributing the 9 extra keys up to sets of size 8. We experimented with other

values of n, and with other key distributions, with essentially the same results, so

we omit the details.

The in-program dynamics are captured by the following two parameters:

119

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Dy
na

m
ic

op
po

rtu
ni

ty

Target set size

time slot = 1
time slot = 3
time slot = 6

time slot = 10

Figure IV.13: The dynamic opportunity ηd(i) for i = 1, 3, 6, 10 slots, as a function

of the target set size k, using τ = 0.01 for n = 1024.

• |K1| is the initial paying population size;

• τ is the fraction of the paying population at slot i that stops paying during

slot i (leaving users);

For simplicity we assume that every user that leaves in slot i is replaced by a

joining user. Thus |Ki| = |K1| for all i. Exactly τ |Ki−1| leaving users are chosen

at random from the set Ki−1, and the same number of joining users are chosen at

random from U \Ki−1. The values we tested for τ were 0.01, 0.02, 0.05, and 0.1.

Figures IV.13 and IV.14 show the effect of the in-program dynamics on

the dynamic opportunity ηd(i). We see that even when the target set size changes

by only 1% in each slot, the dynamic opportunity drops by between 33% and 52%

for 250 ≤ k ≤ 450 by the end of ten slots. When the target set size changes by

10% in each slot (Figure IV.14), the dynamic opportunity becomes negligible (less

120

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Dy
na

m
ic

op
po

rtu
ni

ty

Target set size

time slot = 1
time slot = 3
time slot = 6

time slot = 10

Figure IV.14: The dynamic opportunity ηd(i) for i = 1, 3, 6, 10 slots, as a function

of the target set size k, using τ = 0.1 for n = 1024.

121

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Dy
na

m
ic

op
po

rtu
ni

ty

Time slot

target set size = 121
target set size = 211
target set size = 301
target set size = 391
target set size = 481

Figure IV.15: The dynamic opportunity ηd(i) for several target set sizes, as a

function of the slot number i, using τ = 0.1 for n = 1024.

than 2%) after ten slots, for all target set sizes below 30% of the population. It is

apparent from the figures that ηd(i), as a function of k, tends to a step function

when i → ∞. The rate of the convergence to a step function depends on τ , with

higher values of τ resulting in faster convergence.

The explanation for this big gain, even for small change rates, lies in

the algorithm we use to find the key cover (recall Figure IV.3). In step 3 of the

algorithm, we pick a set that minimizes the actual redundancy. In many cases

there are several choices for this set, and the arbitrary tie-breaking selection made

by the algorithm determines the set of free-riders. A small random perturbation

in the target set K randomizes the tie-breaking, resulting in a significant change

in the set of free-riders.

Figure IV.15 shows the rates by which ηd(i) drops as a function of time

for τ = 10%. The dynamic opportunity drops to negligible levels for all but the

122

largest target sets by the end of only 10 time slots. When the rate of change is

1% (graph omitted) the decrease is slower, however, as we said in the discussion

of Figure IV.13, the drop is still substantial in the mid-sized target sets.

Figure IV.16 shows the dramatic drop in the dynamic opportunity when

the rate of change τ grows from 1% to 10%, in comparison to the opportunity η for

a static target set. We see that even when the dynamics are minimal (τ = 0.01)

there is a 60% drop in the opportunity, e.g., from η = 0.24 to ηd(10) = 0.097 for

k = 301. For higher rates of change the drop is even more pronounced.

We conclude from all the above discussion that the in-program dynam-

ics makes the service provider’s situation more favorable. The changing target

population results in significantly better performance from our f -redundant estab-

lishment key allocations: the free-rider’s opportunity rapidly decreases, even for

low change rates. Thus it becomes increasingly hard to be able to watch an entire

program for free, as the number of slots increases.

123

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Dy
na

m
ic

op
po

rtu
ni

ty

Target set size

Opportunity
tau = 0.01
tau = 0.02
tau = 0.05
tau = 0.10

Figure IV.16: The dynamic opportunity ηd(10), after 10 slots, for different values

of τ , as a function of the target set size k, for n = 1024.

Bibliography

[1] M. Abdalla and M. Bellare. Increasing the lifetime of a key: a comparative
analysis of the security of re-keying techniques. In T. Okamoto, editor, Ad-
vances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 546–559. Springer-Verlag, Berlin Germany, Decem-
ber 3–7, 2000.

[2] M. Abdalla, M. Bellare, and P. Rogaway. DHIES: an encryption scheme based
on the Diffie-Hellman problem. Contributions to IEEE P1363a, September
1998.

[3] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assump-
tions and an analysis of DHIES. In D. Naccache, editor, Topics in Cryptology
– CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science, pages
143–158, April 8–12,, San Francisco, USA 2001. Springer-Verlag, Berlin Ger-
many.

[4] M. Abdalla, Y. Shavitt, and A. Wool. Towards making broadcast encryption
practical. In M. Franklin, editor, Financial Cryptography’99, volume 1648 of
Lecture Notes in Computer Science, pages 140–157, Anguilla, BWI, February
1999. Springer-Verlag, Berlin Germany.

[5] M. Abdalla, Y. Shavitt, and A. Wool. Key management for restricted mul-
ticast using broadcast encryption. IEEE/ACM Transactions on Networking,
8(4):443–454, August 2000. http://www.michelabdalla.net/pubs.

[6] American National Standards Institute (ANSI) X9.F1 subcommittee. ANSI
X9.63 Public key cryptography for the Financial Services Industry: Elliptic
curve key agreement and key transport schemes, July 5, 1998. Working draft
version 2.0.

[7] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In N. Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, Santa Barbara, CA, USA,
August 1996. Springer-Verlag, Berlin Germany.

124

125

[8] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption. In IEEE, editor, 38th Annual Symposium on
Foundations of Computer Science, pages 394–403. IEEE Computer Society
Press, 1997.

[9] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
notions of security for public-key encryption schemes. In H. Krawczyk, ed-
itor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes
in Computer Science, pages 26–45, Santa Barbara, CA, USA, August 1998.
Springer-Verlag, Berlin Germany.

[10] M. Bellare, O. Goldreich, and H. Krawczyk. Stateless evaluation of pseudoran-
dom functions: Security beyond the birthday barrier. In M. Wiener, editor,
Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Com-
puter Science, Santa Barbara, CA, USA, August 1999. Springer-Verlag, Berlin
Germany.

[11] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chain-
ing message authentication code. In Y. Desmedt, editor, Advances in Cryptol-
ogy – CRYPTO’94, volume 839 of Lecture Notes in Computer Science, Santa
Barbara, CA, USA, August 21–25, 1994. Springer-Verlag, Berlin Germany.

[12] M. Bellare, J. Kilian, and P. Rogaway. Luby-rackoff backwards: Increasing
security by making block ciphers non-invertible. In U. Maurer, editor, Ad-
vances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin Germany, May 1996.

[13] M. Bellare and S. Miner. A forward-secure digital signature scheme. In
M. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 431–448, Santa Barbara, CA, USA,
August 1999. Springer-Verlag, Berlin Germany.

[14] M. Bellare and C. Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In T. Okamoto,
editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture
Notes in Computer Science, pages 531–545. Springer-Verlag, Berlin Germany,
December 3–7, 2000.

[15] M. Bellare and P Rogaway. Optimal asymmetric encryption: How to en-
crypt with RSA. In A. De Santis, editor, Advances in Cryptology – EU-
ROCRYPT’94, volume 950 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin Germany, May 1994. http://www-cse.ucsd.edu/users/

mihir.

[16] M. Bellare and P. Rogaway. The exact security of digital signatures: How
to sign with RSA and rabin. In U. Maurer, editor, Advances in Cryptol-

126

ogy – EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin Germany, May 1996.

[17] M. Bellare and P. Rogaway. Minimizing the use of random oracles in authen-
ticated encryption schemes. In Information and Communications Security,
volume 1334 of Lecture Notes in Computer Science, pages 1–16. Springer-
Verlag, Berlin Germany, 1997.

[18] M. Bellare and B. Yee. Forward security in private key cryptography. Cryp-
tology ePrint Archive, Report 2001/035, 2001. http://eprint.iacr.org/.

[19] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round des.
In E. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740 of
Lecture Notes in Computer Science, Santa Barbara, CA, USA, August 1992.
Springer-Verlag, Berlin Germany.

[20] D. Bleichenbacher. A chosen ciphertext attack against protocols based on
the RSA encryption standard PKCS #1. In H. Krawczyk, editor, Advances
in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, Santa Barbara, CA, USA, August 1998. Springer-Verlag, Berlin Ger-
many.

[21] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984.

[22] C. Blundo and A. Cresti. Space requirements for broadcast encryption. In
A. De Santis, editor, Advances in Cryptology – EUROCRYPT’94, volume 950
of Lecture Notes in Computer Science, pages 287–298. Springer-Verlag, Berlin
Germany, May 1994.

[23] C. Blundo, L. A. Frota Mattos, and D. R. Stinson. Generalized Beimel-Chor
schemes for broadcast encryption and interactive key distribution. Theoretical
Computer Science, 200(1–2):313–334, 1998.

[24] D. Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Num-
ber Theory Symposium (ANTS), volume 1423 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin Germany, 1998. Invited paper.

[25] D. Boneh and R. Venkatesan. Hardness of computing the most significant
bits of secret keys in Diffie-Hellman and related schemes. In N. Koblitz, edi-
tor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in
Computer Science, Santa Barbara, CA, USA, August 1996. Springer-Verlag,
Berlin Germany.

[26] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. In 30th Annual ACM Symposium on Theory of Computing, New
York, NY, May 23–26, 1998. ACM Press.

127

[27] B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Y. Desmedt, editor,
Advances in Cryptology – CRYPTO’94, volume 839 of Lecture Notes in Com-
puter Science, pages 257–270, Santa Barbara, CA, USA, August 21–25, 1994.
Springer-Verlag, Berlin Germany.

[28] J. Cohen, M. Etzel, D. Faucher, and D. Heer. Security for broadband digital
networks. Communications Technology, pages 58–69, August 1995.

[29] C. Colborn and J. Dinitz, editors. The CRC Handbook of Combinatorial
Designs. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-
9868, USA, fifth edition, 1996.

[30] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Advances
in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, Santa Barbara, CA, USA, August 1998. Springer-Verlag, Berlin Ger-
many.

[31] C. Dwork D. Dolev and M. Naor. Non-malleable cryptography. In ACM,
editor, 23rd Annual ACM Symposium on Theory of Computing, pages 542–
552, New Orleans, Louisiana, May 6–8, 1991. ACM Press.

[32] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22:644–654, 1978.

[33] W. Diffie, P. van Oorschot, and M. Wiener. Authentication and authenticated
key exchanges. Designs, Codes and Cryptography, 2(2):107–125, June 1992.

[34] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography, 1998.
Manuscript.

[35] T. ElGamal. A public key cryptosystem and signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory, 31:469–472,
1985.

[36] H. Eriksson. MBone: the multicast backbone. Communications of the Asso-
ciation for Computing Machinery, 37(8):54–60, August 1994.

[37] U. Feige. A threshold of lnn for approximating set cover. Journal of the
Association for Computing Machinery, 45(4):634–652, 1998.

[38] A. Fiat and M. Naor. Broadcast encryption. In D. Stinson, editor, Advances
in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Sci-
ence, pages 480–491, Santa Barbara, CA, USA, August 1994. Springer-Verlag,
Berlin Germany.

[39] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In M. Wiener, editor, Advances in Cryptology

128

– CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, Santa
Barbara, CA, USA, August 1999. Springer-Verlag, Berlin Germany.

[40] E. Gabber and A. Wool. On location-restricted services. IEEE Networks
Magazine, 13(6):44–52, November/December 1999.

[41] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

[42] O. Goldreich. A uniform complexity treatment of encryption and zero-
knowledge. IACR Journal of Cryptology, 6(1):21–53, 1993.

[43] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the Association for Computing Machinery, 33:792–807, 1986.

[44] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Science, 28:270–299, 1984.

[45] T. Grossman and A. Wool. Computational experience with approximation
algorithms for the set covering problem. Euro. J. Operational Research,
101(1):81–92, August 1997.

[46] C. Günther. An identity-based key-exchange protocol. In J-J. Quisquater
and J. Vandewille, editors, Advances in Cryptology – EUROCRYPT’89, vol-
ume 434 of Lecture Notes in Computer Science, pages 29–37. Springer-Verlag,
Berlin Germany, May 1989.

[47] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols.
In H. Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462
of Lecture Notes in Computer Science, Santa Barbara, CA, USA, August 1998.
Springer-Verlag, Berlin Germany.

[48] C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs.
In H. Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462
of Lecture Notes in Computer Science, pages 370–389, Santa Barbara, CA,
USA, August 1998. Springer-Verlag, Berlin Germany.

[49] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company, Boston, MA, 1995.

[50] IEEE P1363a Committee. IEEE P1363a / D9 — standard specifications for
public key cryptography: Additional techniques. http://grouper.ieee.

org/groups/1363/index.html/, June 2001. Draft Version 9.

[51] D. Johnson and M. Peyravian S. Matyas. Encryption of long blocks using a
short-block encryption procedure, November 1996. http://stdsbbs.ieee.

org/groups/1363/index.html.

129

[52] D. S. Johnson. Approximation algorithms for combinatorial problems. J.
Computer System Sci., 9:256–278, 1974.

[53] D. Kravitz and D. Goldschlag. Conditional access concepts and principles. In
M. Franklin, editor, Financial Cryptography’99, volume 1648 of Lecture Notes
in Computer Science, Anguilla, BWI, February 1999. Springer-Verlag, Berlin
Germany.

[54] A. M. Law and W. D. Kelton. Simulation Modelling and Analysis. McGraw-
Hill, 2nd edition, 1991.

[55] C. Lim and P. Lee. Another method for attaining security against adaptively
chosen ciphertext attacks. In D. Stinson, editor, Advances in Cryptology –
CRYPTO’93, volume 773 of Lecture Notes in Computer Science, Santa Bar-
bara, CA, USA, August 1994. Springer-Verlag, Berlin Germany.

[56] L. Lovász. On the ratio of optimal integral and fractional covers. Disc. Math.,
13:383–390, 1975.

[57] M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. In
K. Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume 1403
of Lecture Notes in Computer Science, pages 512–526. Springer-Verlag, Berlin
Germany, May 1998.

[58] B. M. Macq and J.-J. Quisquater. Cryptology for digital TV broadcasting.
Proceedings of the IEEE, 83(6):944–957, 1995.

[59] M. Matsui. The first experimental cryptanalysis of the data encryption stan-
dard. In Y. Desmedt, editor, Advances in Cryptology – CRYPTO’94, volume
839 of Lecture Notes in Computer Science, Santa Barbara, CA, USA, Au-
gust 21–25, 1994. Springer-Verlag, Berlin Germany.

[60] J. McCormac. European Scrambling Systems 5. Waterford University Press,
Waterford, Ireland, 1996.

[61] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilis-
tic cryptosystems. SIAM Journal on Computing, 17(2):412–426, April 1988.
Special issue on cryptography.

[62] W. H. Mills and R. C. Mullin. Coverings and packings. In J. H. Dinitz and
D. R. Stinson, editors, Contemporary Design Theory: A Collection of Surveys,
pages 317–399. John Wiley & Sons, 1992.

[63] S. Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings
of ACM SIGCOMM, September 1997.

[64] M. Naor and B. Pinkas. Threshold traitor tracing. In H. Krawczyk, edi-
tor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in

130

Computer Science, Santa Barbara, CA, USA, August 1998. Springer-Verlag,
Berlin Germany.

[65] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In IEEE, editor, 38th Annual Symposium on Foundations
of Computer Science, Miami Beach, FL, October 19 - 22, 1997. IEEE, IEEE
Computer Society Press.

[66] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In ACM, editor, 22nd Annual ACM Symposium on
Theory of Computing, Baltimore, Maryland, May 14–16, 1990. ACM Press.

[67] PKCS #1: RSA cryptography standard. RSA Data Security, Inc., June 1991.

[68] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowl-
edge and Chosen Ciphertext Attack. In J. Feigenbaum, editor, Advances in
Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science,
Santa Barbara, CA, USA, August 1991. Springer-Verlag, Berlin Germany.

[69] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[70] J. Schönheim. On coverings. Pacific J. Math., 14:1405–1411, 1964.

[71] Certicom research, standards for efficient cryptography group (SECG) —
sec 1: Elliptic curve cryptography. http://www.secg.org/secg_docs.htm,
September 20, 2000. Version 1.0.

[72] Secure hash standard. National Institute of Standards and Technology, NIST
FIPS PUB 180-1, U.S. Department of Commerce, April 1995.

[73] C. Shannon. Communication theory of secrecy systems. Bell Systems Tech-
nical Journal, 28(4):656–715, 1949.

[74] V. Shoup. Personal Communication.

[75] V. Shoup. Lower bounds for discrete logarithms and related problems. In
W. Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233
of Lecture Notes in Computer Science. Springer-Verlag, Berlin Germany, May
1997.

[76] V. Shoup. Using hash functions as a hedge against chosen ciphertext attack.
In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science. Springer-Verlag, Berlin Germany,
May 2000.

131

[77] D. R. Stinson and T. van Trung. Some new results on key distribution patterns
and broadcast encryption. Designs, Codes and Cryptography, 14(3):261–279,
1998.

[78] D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for multicast:
Issues and architectures. Internet Draft, September 1998. Available from
http://www.ietf.org/ID.html.

[79] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using
key graphs. IEEE/ACM Transactions on Networking, 8(1):16–30, February
2000.

[80] Avishai Wool. Key management for encrypted broadcast. ACM Transactions
on Information and System Security, 3(2), May 2000.

[81] A. Yao. Theory and applications of trapdoor functions. In IEEE, editor, 23rd
Annual Symposium on Foundations of Computer Science, pages 80–91. IEEE
Computer Society Press, 1982.

[82] Y. Zheng. Public key authenticated encryption schemes using universal
hashing. Contribution to P1363. ftp://stdsbbs.ieee.org/pub/p1363/

contributions/aes-uhf.ps.

[83] Y. Zheng and J. Seberry. Immunizing public key cryptosystems against cho-
sen ciphertext attack. IEEE Journal on Selected Areas in Communications,
11(5):715–724, 1993.

