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Abstract

The problem we address is how to communicate securely with a set of users (the
target set) over an insecure broadcast channel. In order to solve this problem, several
broadcast encryption schemes have been proposed. In these systems, the parameters of
major concern are the length of transmission and number of keys held by each user’s set
top terminal (STT). Due to the need to withstand hardware tampering, the amount of
secure memory available in the STTs is quite small, severely limiting the number of keys
each user holds. In such cases, known theoretical bounds seem to indicate that non-trivial
broadcast encryption schemes are only feasible when the number of users is small.

In order to break away from these theoretical bounds, our approach is to allow a
controlled number of users outside the target set to occasionally receive the multicast.
This relaxation is appropriate for low-cost transmissions such as multicasting electronic
coupons. For this purpose, we introduce f-redundant establishment key allocations, which
guarantee that the total number of recipients is no more than f times the number of
intended recipients. We measure the performance of such schemes by the number of
transmissions they require, by their redundancy, and by their opportunity, which is the
probability of a user outside the target set to be part of the multicast. We first prove a new
lower bound and discuss the basic trade-offs associated with this new setting. Then we
present several new f-redundant establishment key allocations. We evaluate the schemes’
performance under all the relevant measures by extensive simulation. Our results indicate
that, unlike previous solutions, it seems possible to design practical schemes in this new
setting.
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1 Introduction

1.1 The Problem

The domain we consider in this paper is that of broadcast applications where the transmissions
need to be encrypted. As a primary example we consider a broadband digital TV network,
broadcasting either via satellite or via cable, but other applications such as Internet multicasts
are similar [MQ95].

In this context, the head-end occasionally needs to multicast an encrypted message to some
subset of users (called the target set) using the broadcast channel. Each network user has a
set-top terminal (STT) which receives the encrypted broadcast and decrypts the message, if
the user is entitled to it. For this purpose the STT securely stores the user’s secret keys, which
we refer to as establishment keys. Because of extensive piracy [McC96], the STTs need to
contain a secure chip which includes secure memory for key storage. This memory should be
non-volatile, and tamper-resistant, so the pirates will find it difficult to read its contents. As a

result of these requirements, STTs have severely limited secure memory, typically in the range
of a few KB' [Gem98].

Earlier work on broadcast encryption (cf. [FN94]) was motivated by the need to transmit
the key for the next billing period or the key for the next pay-per-view event, in-band with
the broadcast, since STTs only had uni-directional communications capabilities. The implicit
assumption was that users sign up for various services using a separate channel, such as by
calling the service provider over the phone. In such applications it is reasonable to assume that
the target set is almost all the population, and there are only small number of excluded users.
Moreover, it is crucial that users outside the target set are not able to decrypt the message
since it has a high monetary value, e.g., the cost of a month’s subscription.

However, current STTs typically follow designs such as [CEFH95] which allow bi-directional
communication, where the uplink uses an internal modem and a phone line, or a cable modem.
These new STTs upload the users’ requests and download next month’s keys via a callback
mechanism, and not through the broadcast channel. This technological trend would seem to
invalidate the necessity for broadcast encryption schemes completely. We argue that this is
not the case—there are other applications where broadcast encryption is necessary, such as
multicasting electronic coupons, promotional material, and low-cost pay-per-view events. Such
applications need to multicast short-lived, low value messages that are not worth the overhead
of communicating with each user individually. In such applications, though, the requirements
from the solution are slightly different. On one hand, it is no longer crucial that only users in
the target set receive the message, as long as the number of free-riders is controlled. On the
other hand, it is no longer reasonable to assume anything about the size of the target set.

1.2 Related Work

Fiat and Naor [FN94] were first to introduce broadcast encryption. They suggested methods
of securely broadcasting key information such that only a selected set of users can decrypt this
information while coalitions of up to k£ other users can learn nothing, either in the information-
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theoretic sense, or under a computational security model. Their schemes, though, required
impractical numbers of keys to be stored in the STTs. Extensions to this basic work can be
found in [BC94, BFS98, SvT98].

Recently Luby and Staddon [L.S98] studied the trade-off between the transmission length and
the number of keys stored in the STTs. They assumed a security model in which encryptions
cannot be broken, i.e., only users that have a correct key can decrypt the message. We adopt
the same security model. Their work still addressed fixed-size target sets, which are assumed
to be either very large or very small, and no user outside the target set is allowed to be able to
decrypt the message. A main part of their work is a disillusioning lower bound, showing that

either the transmission will be very long or a prohibitive number of keys need to be stored in
the STTs.

A related line of work goes under the title of “tracing traitors” [CFN94, NP98]. The goal is
to identify some of the users that leak their keys, once a cloned STT is found. This is achieved
by controlling which keys are stored in each STT, in a way that the combination of keys in a
cloned STT would necessarily point to at least one traitor.

Key management schemes for encrypted broadcast networks, which give the vendor the
flexibility to offer program packages of various sizes to the users, can be found in [Wo0098]. The
problem of tracking the location of STTs in order to prevent customers from moving an STT
from, e.g., a home to a bar, is addressed in [GW98].

1.3 Contributions

Our starting point is the observation that the requirement “no users outside the target set
can decrypt the message” is too strict for some applications. For instance, for the purposes of
multicasting electronic coupons, it may be enough to guarantee that the recipient set contains
the target set, and that the total number of recipients is no more than f times the size of the
target set. Service providers can afford a small potential increase in the number of redeemed
coupons, as long as this simplifies their operations and lowers their cost. We call establish-
ment key allocation schemes that provide such guarantees “f-redundant broadcast encryption
schemes”. Relaxing the requirements in this way allows us to depart from the lower bounds of

[LS98).

On the other hand, we have a more ambitious goal when it comes to possible target sets.
Unlike earlier work, we require our schemes to be able to multicast to any target set, not just
those target sets of very small or very large cardinality.

We concentrate on schemes which store only very few keys in each STT. As we mentioned
before, STTs typically have only a few KB of key storage. With a key length of 128 bits this
translates to around 100 keys. Thus, for systems with several million users, it is reasonable
to require the maximum number of keys per user’s STT to be O(logn), where n is the total
number of users, or at most O(n¢), where, say, e < 1/4.

Subject to these constraints, we are interested in several measures of the quality of an
establishment key allocation. The first is the number of transmissions ¢: we can always attain
our requirements trivially if we assign each STT a unique key, but then we suffer a very high
number of transmissions. The second parameter, which we call opportunity, is the proportion
of free riders in the population outside the target set. The opportunity measures the incentive



a customer has to avoid paying (in cheap pay-per-view type services). If the opportunity is
very high, close to 1, there is no incentive for customers to pay, as they can almost surely get
a free ride.

After discussing the basic trade-offs associated with the problem, we present some simple
examples, that show the problem difficulty. We then prove a new lower bound on the tradeoff
between transmission length and number of keys stored per STT, that incorporates the f-
redundancy of our establishment key allocations. We show that the f-redundancy gives us a
substantial gain: for the same number of transmissions ¢ we can hope for only exp(Q(n/tf))
keys per STT, whereas the bound of [LS98] is exp(2(n/t)).

We then present several establishment key allocation constructions, and an approximation
algorithm that finds a key cover with minimal number of transmissions, for any given target
set of users. Since this problem is similar to the minimum set cover problem that is known to
be NP-hard, we cannot expect to find an optimal solution efficiently. Instead we use a greedy
approximation algorithm to find good key covers. We conducted an extensive simulation study
of the problem, from which we present only the interesting results.

Organization: In the next section we formally define the problem and the various parameters
we are interested in. In Section 3 we show some simple solutions. In Section 4 we prove our
new lower bound on the trade-off between the number of keys per user, the redundancy factor,
and the transmission length. In Section 5 we discuss how to find which keys to use given
an establishment key allocation. In Section 6 we show our schemes and the results of their
performance evaluation. We conclude in Section 7.

2 Definitions and Model

Let U be the set of all customers (STTs) connected to a head-end, with || = n. We use K to
denote the target set, i.e., the set of paying customers, and denote its size by |K| = k.

We describe the allocation of the establishment keys by a collection & = {S1, Ss, ...} of key
sets such that US; = U. We associate a unique establishment key e; with each set S; € S. A
key e; is stored in the secure memory of every STT u € S;. Hence the number of keys an STT
u € U stores is equal to the number of sets S; € § it belongs to. Formally,

Definition 2.1 Let S be an establishment key allocation. The degree of an STT u is deg(u) =
|{i:S; > u}|. The degree of a collection S is deg(S) = maxyey deg(u).

Definition 2.2 Given a target set K, a key cover of K is a collection of sets S; € S whose
union contains K:
C(K) Q S such that K g USieC(K)Si-

The minimal key cover is Cuin(K) = C(K) for which |C(K)| is minimal.

Suppose the head-end needs to send a message p to all the members of a target set K. Given
any key cover C(K), the head end encrypts p using the establishment keys e; corresponding to
the sets S; € C(K), and broadcasts each encryption separately.?.

2This method was called the OR protocol in [LS98].
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Table 1: A summary of some simple examples. Bold numerals indicate an optimal parameter.

Definition 2.3 We denote the best possible number of transmissions that the head-end can
use for a target set K by tg = |Coin(K)|. Thus the worst case number of transmissions is
tma.x(S) = INaXg tK

In order to define the redundancy and opportunity measures we need the following technical
definition.

Definition 2.4 We denote the set of recipients of a given key cover C(K) by Re(K) = U{S; €
C(K)} and the total number of recipients by r¢(K) = |Re(K)|.

By the definition of a key cover C(K), every member of the target set K has at least one
of the keys used to encrypt . However, other STTs outside K usually exist, which are also
capable of decrypting the message. All our establishment key allocations are constructed with
a worst case guarantee that there are never too many of these free riders. Formally,

Definition 2.5 An establishment key allocation S is said to be f-redundant if

Tc(K)
k

<f

for every K CU with |K| = k.

A variant measure of redundancy is the actual redundancy f,, which is the proportion of
non-paying customers in the recipient set Rc(K). We are interested in the average case f,, so
we define it as a function of the target set K. Formally,

Definition 2.6 For a target set K with |K| = k the actual redundancy is f, = TC(IZ)_k.

If S guarantees a worst case redundancy factor f, then 0 < f, < f — 1 for any target set K.

Finally, we define the opportunity, 7, as the proportion of non-paying recipients (free riders)
in the non-paying population (0 < 7 < 1). The opportunity measures the incentive a customer
has to avoid paying (e.g., in cheap pay-per-view type services). Again, this is a function of the
target set K.

rc(K)—k.

Definition 2.7 For a target set K with |K| =k the opportunity is n = =

3 Simple Examples

To demonstrate our definitions and the trade-offs associated with the problem let us examine
some simple solutions for the problem. See Table 1 for a summary of the examples.

Example 3.1 The “always broadcast” solution: S = {U}.
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Both the degree, deg(S), and the number of transmissions, tmax(S), required to distribute
the message are optimal and equal to 1 in this case. However, the redundancy is f = n in the
worst case and the opportunity, 7, is always 1. The last two parameters are very bad since the
system gives no incentive for a customer to pay for a program; a single paying customer enables
the entire population a free ride.

Example 3.2 The “key per user” solution: S = {{1},{2},...,{n}}.

Here the degree deg(S) = 1 is optimal, and so are the redundancy f =1, and the opportunity
n = 0. However, the number of transmissions is a very poor tm.x(S) = n.

Example 3.3 The “all possible sets” solution: S = 2¥.

The degree here is an impractical deg(S) = 2"~!, however, all the other parameters are optimal:
tmax(S) = 1, f = 1, and n = 0. This is because every possible target set K has its own
designated key.

4 The Lower Bound

4.1 Tools

Before presenting our lower bound on the degree of an f-redundant establishment key allocation,
we need to introduce some definitions and results which we use in the proof.

We start with covering designs, which are a class of combinatorial block designs. A succinct
description of covering designs can be found in [CD96, Ch. IV.8]. A more detailed survey is
[MM92].

Definition 4.1 A k-(n,d) covering design is a collection of d-sets (blocks) D = {Dy,..., D,}
over a universe of n elements, such that every k-set of elements is contained in at least one
block.

Definition 4.2 The covering number C(n,d, k) is the minimum number of blocks in any k-
(n,d) covering design.

Theorem 4.3 (Schonheim bound) [Sch64] C(n,d, k) > L(n,d, k), where

s =[5zt [ ] = (/)

We also rely on the following result of Luby and Staddon, which addresses strict broadcast
encryption protocols.

Definition 4.4 An establishment key allocation S is called strict for a collection of target sets D
if the sets in D can be covered without redundancy. Formally, Rc(D) = D for all D € D.

Theorem 4.5 [LS98] Let D = { D1, ..., D} be a collection of target sets, with |D;| > d for all
D; € D. Then any establishment key allocation S which is strict for D, and which can transmait
to any D; € D using at most t transmissions, must have

deg(S) > (% - 1) Jin—a)



Remark: The precise statement we use here is a generalization of [LS98, Theorem 12]. In their
original formulation the target sets D; all have a cardinality of exactly d, and the collection D

consists of all (Z) possible d-sets. However, their proof can be easily extended to any arbitrary
collection of target sets, of cardinality d or larger.

4.2 The Bound

Theorem 4.6 LetS be an f-redundant establishment key allocation over a universe of sizen,

for which tmax(S) =t. Then

) =58, (% (/) - 1) [

Proof: For a target set K of size |K| = k, let R(K) be the minimal possible recipient set for
K (or one such set if many minimal recipient sets exist). Consider the collection of minimal

recipient sets

D={R(K): |K|=k}.
Note that covering K f-redundantly, using the ¢’ < ¢ key sets that define R(K), is precisely
equivalent to covering R(K) strictly with (the same) ¢’ key sets. Therefore we see that S is an

establishment key allocation which is strict for D, and can transmit to any R(K) € D using at
most ¢ transmissions. Note also that, trivially, |R(K)| > k for any |K| = k. Thus we can apply

Theorem 4.5 to obtain
‘D‘l/t
deg(S) > (T - 1) /(” — k). (1)

By definition |R(K)| < kf for all K, however, some sets R(K) € D may have fewer than
kf elements. Define a modified collection D' in which each R(K) € D is replaced by some

superset R(K) D R(K) with |R| = kf. Note that |D'| < |D| since R(K;) = R(K>) is possible
when R(K;) # R(K3). But now D' is a k-(n, kf) covering design. Thus we can lower-bound
its size by the Schonheim bound, Theorem 4.3, to obtain

> 1> ks k) > (3) /(). @)

Plugging (2) into (1) and maximizing the expression over the choice of £ yields our result. |1

Using standard estimations of binomial coefficients, and maximizing over k, we can obtain
the following asymptotic estimate.

Corollary 4.7 Let 8 be an f-redundant establishment key allocation over a universe U of
size n, for which ty.x(S) =t. Then deg(S) > exp(Q2(n/tf)). 1

We therefore see that the f-redundancy gives us a substantial gain in the degree: the bound
of [LS98] for strict establishment key allocations is deg(S) = exp(€2(n/t)). In other words, if
we allow a redundancy factor of f we can hope to use only an f’th root of the number of keys
required per STT in a strict establishment key allocation for the same number of transmissions.

6
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Figure 1: The lower bound for the number of transmissions (¢) as a function of the target set
size k, with n = 1024, f = 2, and deg(S) = log, n.

Theorem 4.6 and Corollary 4.7 give a lower bound on the required number of keys an STT
needs to store. As we said before, this is typically a small fixed value which we can reasonably
model by log, n or n°. Thus we are more interested in the inverse lower bound, on the number
of transmissions ¢. Asymptotically we can obtain the following bound.

Corollary 4.8 Let S be an f-redundant establishment key allocation over a universe U of
size n. Then
when deg(S) = O(logn),

> floglogn / ?
tmax(s) = {Q n when deg(S) = O(ne)

flogn)’

The asymptotic bound of Corollary 4.8 hides the constants, and inverting Theorem 4.6
gives a rather unwieldy expression for the lower bound on ¢. Therefore, we choose to invert
Theorem 4.6 numerically and to plot the result, as a function of the target set size &, in Figure 1.
As we shall see in the sequel, the highest point on this curve (¢ & 19 for n = 1024) is significantly
lower than our best constructions, which suffer from a worst case of tmax(S) = 3n/8 = 384 when
n = 1024.

5 Finding a Good Key Cover

An f-redundant establishment key allocation guarantees that an f-redundant cover exists for
every target set K. In particular, singleton target sets K = {u} need to be addressed. Thus, &
must include enough sets S; with |S;| < f so that every user is contained in one of them. For
simplicity, we shall assume that & contains the singletons themselves as sets, i.e., every STT is
assumed to hold one key that is unique to it.

Once we decide upon a particular f-redundant establishment key allocation S, we still need
to show an efficient algorithm to find an f-redundant key cover C(K) for every target set K.
Among all possible f-redundant key covers that S allows, we would like to pick the best one. By



Input: Target set K, establishment key allocation & = {Si,...,Sn}.
0. R+0; C«0

1. Repeat

2 A {S;: % < f}.  (* Candidate sets *)

3. A« S; € A which maximizes [(K N S;) \ R|.

4. R+ RUA; C+ CU{A}.

5. until the candidate collection A is empty.

6. return R, C.

Figure 2: Algorithm f-Cover

“best” we mean here a cover that minimizes the number of transmissions ¢. Trying to minimize
the actual redundancy f, would lead to trivialities: Since we assumed that S contains all the
singletons we can always achieve the optimal f, = 0. Thus, for every target set K, we obtain
the following optimization problem:

Input: A collection of sets S = {S1,...,S,} and a target set K.

Output: A sub-collection Cp,(K) C S with minimal cardinality |Cpi,(K)| such that K C
U{S; € Couin(K)} and | U {S; € Coain(K)}|/|K| < f.

This is a variation of the Set Cover problem [GJ79], and thus an NP-hard optimization
problem. We omit the formal reduction proving this. Moreover, it is known that no approxi-
mation algorithm exists for Set Cover with a worst case approximation ratio® better than Inn
(unless NP has slightly super-polynomial time algorithms) [Fei98].

On the positive side, the Set Cover problem admits a greedy algorithm, which achieves
the best possible approximation ratio of Inn [Joh74, Lov75]. Moreover, the greedy algorithm
is extremely effective in practice, usually finding covers much closer to the optimum than its
approximation ratio guarantees [GW97|. For this reason, our general algorithm f-Cover for
choosing a key cover is an adaptation of the greedy algorithm. See Figure 2 for the details.

Theorem 5.1 If {{1},...,{n}} C S then algorithm f-Cover returns an f-redundant key cover
of K for any target set K.

Proof Sketch: The set R maintains the current cover in the algorithm. In every iteration, when
a set S; is added to the cover, |S; \ R| new users are covered, and |(K N S;) \ R| of them
are target set members that were not included in the cover before. Note that we only add a

set S; if % < f and that the sets (S; \ R) are disjoint for the S;’s chosen in different
iterations. From these observations it is easy to prove that the f-redundancy is kept throughout

the algorithm execution, and in particular, when the algorithm terminates. |

Remarks:

e The candidate set A needs to be re-calculated in each iteration, since a non-candidate set
S; may become a candidate (or vice versa) after some other S; is added to the cover.

3[Hoc95] contains a good discussion of approximation algorithms and in particular a chapter on Set Cover.



e We have not analyzed the worst case approximation ratio of algorithm f-Cover since we
are mainly interested in its average case behavior, which we evaluated by simulations.

e It is easy to see that the time complexity of algorithm f-Cover is O(m?) where m is the
number of sets in S.

In order to make the algorithm even more efficient, we do not use it in its most general
form. Instead, we split the establishment key allocation S into levels, each containing sets of
the same size. Formally, we break S into S = S' US? U -- -, such that |S¢| = k, for some £,
and for all Sf € S°. The algorithm is performed in phases, where only sets belonging to level
S¢ are considered in the candidate set A during in phase ¢. The algorithm starts at the highest
level, the one containing of the largest sets in S. When A is empty at a certain level, the cover
so far, R, and the covering sets, C, are fed to the execution phase of the algorithm in the next
(lower) level.

6 Practical Solutions

6.1 Overview

Our basic goal is to construct an f-redundant establishment key allocation, namely to construct
an S that will satisfy the following requirements: (i) the number of establishment keys per
user (degree) is low; and (ii) |R¢(K)|/|K| < f for every target set K C U. Given such
an establishment key allocation, we evaluate its performance with respect to the number of
transmissions ¢, the actual redundancy f,, and the opportunity 7, using computer simulations.

We are interested in “average” performance, although we do not want to assume any partic-
ular probability distribution over the choice of target sets. To avoid this contradiction to some
extent, we evaluate the performance measures separately for each target set size k, and show
the results as functions of k. Thus, if something is known about target set size (e.g., that sets of
size > n/4 never occur in some application), only portions of the graphs need to be consulted.

Each data point for a target set size k in the graphs represents the mean of the relevant
measure, averaged over r samples of k-sets chosen uniformly at random. We show the 95%
confidence intervals® for each data point, unless the graphical height of the confidence intervals
is very close to the size of the symbols depicted on the curves. We typically use r = 25 samples
per data point.

Unless stated otherwise, we assume that the redundancy is f = 2. We also conducted
experiments with other values of f but they showed qualitatively similar results.

A 95% confidence interval means that the population mean appears within the specified interval with
probability 0.95. See [Jai91] for a precise definition of confidence interval.



6.2 The Tree Scheme

6.2.1 The Scheme’s Description

A simple multi-level establishment key allocation is a balanced tree, that is built by recursively
partitioning the sets of a high level into equally-sized, disjoint sets in the next level. Sets that
form a partition of a single set, one level above them, are considered children of this set in the
tree. The number of keys each ST'T holds in this scheme is only 1 4 log, n, where «a is the arity
of the tree. In the sequel we always assume a binary tree (a = 2).

An important advantage of a tree scheme (besides its simplicity) is that the greedy algorithm
of Figure 2 can easily be made to run in time linear in the size of the cover set, rather than in
the total number of sets in the collection. The idea is to start at the root of the tree (the set
U) and then traverse it either in a DFS or in a BFS order. Whenever an f-redundant set is
found, select it and ignore the subtree under it.

The problem with the tree scheme is its worst case behavior. Consider the case where f = 2
and the collection is a full binary tree. If the target set comprises k = n/4 users such that
no two of them belong to a common set of size 4 or less, then we are forced to use t = n/4
transmissions. It is easy to see that this is the worst possible configuration.

The average behavior of the basic tree is substantially better than the worst case. Figure 3
shows the average number of transmissions on several variants of a tree for a population of
n = 1024 users. We see from the “threshold at sets of size 2” curve in the figure that the peak
of the average t is 164, which is 36% less than the worst case of 256. We explain this threshold
and discuss the different variants of the tree in Section 6.2.2.

We conducted the same tests for larger populations and noticed that the qualitative behavior
does not change significantly, so we omit the details. Here we focus on simulations of small
populations for another reason. We shall see in Section 6.4 that we can capitalize on the
detailed understanding of small populations when we discuss partitioning large populations.
Our results show that breaking a large population into small subgroups and solving the problem
independently for each subgroup results in a good performance trade-off.

6.2.2 “<” or “<”?

A subtle issue in the execution of algorithm f-Coveris whether the inequality in step 2 is strict
(<) or not (<). Assume that f = 2 and that the collection S is a full binary tree. If a set
of size S; with |S;| = 2 is tested using non-strict inequality, and only one member of S; is in
the target set K, then S; is selected as a candidate and may be part of the cover. However,
using a strict inequality gives a better choice, which is to select the singleton containing that
user, thereby reducing the actual redundancy without increasing the number of transmissions.
On the other hand, using strict inequality for larger set sizes tends to increase the number of
transmissions. So, intuitively, we would like to use “<” in the lowest levels of the tree, and use
“<” for sets of size T' or larger, for an appropriate threshold 7. Figures 3, 4 and 5 compare the
performance of a tree scheme when the threshold is varied. Note that the 7" = 2 curve, which
we commented on before, represents using “<” everywhere.

The most striking graph is that of the actual redundancy (Figure 4). We see that when
we use strict inequality in the level of the tree corresponding to sets of size 2 (i.e., the “<”

10



200

100

Number of transmissions

T T T
threshold at sets of size 2
threshold at sets of size 4
threshold at sets of size 8

threshold at sets of size 16
threshold at sets of size 32

—e—
——
—e—i

—a—

Figure 3: The effect of the “<”
n = 1024.

200 300 400 500
Target set size

600 700 800

threshold 7" on the number of transmissions (¢), for a tree with

900

0.8

0.6

0.4

Actual redundancy

0.2

T T T
threshold at sets of size 2
threshold at sets of size 4
threshold at sets of size 8

threshold at sets of size 16
threshold at sets of size 32

—a—
.
—e—
—e—i

Figure 4: The effect of the “<” threshold T on the Actual redundancy (f,) for a tree with

n = 1024.

400 500

Target set size

600 700 800

11

900




T T i
threshold at sets of size 2 —&—
threshold at sets of size 4 —=—
threshold at sets of size 8 —e—

threshold at sets of size 16 —e—
threshold at sets of size 32 —=—

Opportunity

0 L I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Target set size
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threshold is 7' = 4) the actual redundancy, f,, drops dramatically for target set sizes below
n/2. At the same time, the number of transmissions, ¢, remains unchanged. There is also an
improvement in the opportunity, n. Moving the threshold further up improves f, and n at the
cost of increasing t. We found out that, in most cases, and especially when extra keys are added
(see below), it pays to set the threshold at 7" = 8 since the increase in ¢ is very small while
the gain in f, and 7 is substantial. Thus, in all the following simulations we only use strict
inequality for sets of size 4 and below.

Note that choosing 7' = 8 has an effect on the worst case performance since now k& = 3n/8
users can be selected such that no four of them belong to a common set of size 8 and no three
of them belong to a common set of size 4. As a result, we would be forced to use ¢t = 3n/8
transmissions, all at the level corresponding to singleton sets.

When 7" = 8, the peak number of transmissions ¢ is 193 & n/5 (see Figure 3), which means
a 50% improvement over the worst case performance of 384, and achieves actual redundancy
that is always lower than 0.9. However, in most of the range the results are much better. In
particular, if the interesting target set size range is below k = n/5, we get t < n/6, f, < 0.16,
and 7 < 0.04.

6.3 Where Extra Keys are Effective

The basic tree scheme requires only log,n keys to be stored in each STT. Therefore it is
reasonable to consider schemes with slightly more keys: For populations of several millions, we
can afford to keep twice or four times as many keys in an STT.

In this section, we study schemes in which a tree is augmented by additional sets. The
motivation for doing so is clear: by increasing the number of sets (and thereby keys), the
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Figure 6: A histogram of the key sizes used for several target set sizes k, for n = 1024.

probability of finding a smaller cover increases. We are interested in locating the levels where
it best pays to add sets, subject to the constraints on the number of keys per STT.

In order to generate the extra key sets, we start with a “level-degree” profile, which specifies
how many keys each user should hold at each level. For a level with set size k, a degree of d
implies that each user should belong to d — 1 extra sets, in addition to the one basic tree set it
belongs to at this level. Thus we need to be able to generate nd/k sets of size k, such that each
user belongs to exactly d of them. We achieve this by randomly permuting the n users d — 1
times, and for each random permutation we add the users in positions (i — 1)k +1,...,ik as a
set, fori =1,...,n/k.

A vivid explanation for the preferred placement of the extra keys can be found in the
histogram in Figure 6. The histogram depicts the fraction of users covered by keys from each
level of sets, for target sets of four sizes. We used a population of n = 1024 users and a basic
tree scheme with 11 levels. The histogram clearly shows that the small sets are the ones used
most often. As the target set size grows, some larger key sets are also used. However, even
when the target sets are k = 241 and k = 361, i.e., target sets requiring the highest number of
transmissions, relatively few keys are used for sets of size 32 and up. Therefore it seems that
adding key sets at the low levels of the tree is the right approach.

Figures 7, 8, and 9 depict the performance of an 11-level tree (n = 1024) augmented tree
with 9 extra keys. This choice allows us to double the number of keys per level in all the
intermediate levels (1 < |S;| < n). Following the conclusions we draw from the key usage
histogram in Figure 6, these extra keys are distributed as uniformly as possible among the
levels from the bottom (couples) level up to some level £. We varied £ in order to find the most
effective distribution.

We first note that regardless of how the extra keys are distributed, the peak number of
transmissions drops by at least 23% (from 193 down to 147 for the “up to sets of size 2”
distribution) in comparison to a non-augmented tree.

Figure 7 shows that the best ¢ is achieved by distributing the extra keys at the three lowest
levels, i.e., adding couples, quadruplets, and octets. Adding sets of size 16 as well resulted in

13
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Figure 7: Number of transmissions () as a function of the target set size k, with n = 1024,
f =2, 11 levels, and 9 extra keys.

an almost identical performance. However, adding even larger sets gave significantly inferior
performance. Figures 8 and 9 show that this improvement comes at the expense of an increase
in f, for small target set sizes, although the actual redundancy is still well below the guaranteed
worst case of f, < f—1 (=1 when f = 2).

In a similar experiment with 38 extra keys (= 1143 x9), the best ¢ was achieved by spreading
the keys among the lowest 4 levels (up to sets of size 16); the peak ¢ for this experiment was
about 94 transmissions, for target sets of size 271 (= n/3.8), which is 22% lower than the 121
achieved in Figure 7 by the “up to sets of size 8” distribution. We also ran the same experiments
for larger and smaller values of n, with similar results. We omit the details.

Our conclusions from this set of experiments are that (a) adding a few extra keys substan-
tially reduces the number of transmissions ¢, and (b) it pays to add these extra keys at the
lower levels of the tree rather than to distribute them at higher levels as well.

6.4 Partitioning

The results in the previous sections suggest that keys are more “valuable” at the lower levels of
the tree than at the higher levels. Thus, it seems reasonable to discard the keys of the largest
sets (highest levels) altogether, and to use the additional key space for more lower level keys.
We achieve this by partitioning the population, n, into v disjoint partitions of size n/v. The
space occupied by the log, v deleted keys per user is then used to increase the number of low
level sets in each partition.

In this section we concentrate on larger, more realistic user population sizes. However, since
each individual partition is small, we can apply the insight we have gained from our earlier

14
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Figure 8: Actual redundancy (f,) as a function of the target set size k, with n = 1024, f = 2,
11 levels, and 9 extra keys.
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Figure 9: Opportunity (7) as a function of the target set size k, with n = 1024, f = 2, 11 levels,
and 9 extra keys.
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Figure 10: Number of transmissions (¢) as a function of the target set size k, with n = 128K,
f =2, and 18 keys in total.

small-population experiments.

Figures 10 and 11 compare the performance of the a single tree scheme for a population of
128K customers with the performance of schemes that employ the same number of keys (18)
but with v partitions. Within each partition we distribute the log v extra keys to achieve the
lowest peak t; as we have seen before, this means that the extra keys are distributed among the
lowest levels in the tree, thus adding key sets of sizes between 2 and 32. For each value of v we
ran the equivalent of the experiment we discussed in Section 6.3. We report only the results of
the best (lowest peak t) extra-key distribution for each value of v.

Figure 10 shows that the decrease in ¢ is dramatic for a large range of target set sizes.
In particular, the peak ¢ drops by about 36%, from 24337 for a single partition to 15526 for
v = 1024 partitions of size 128 each. Increasing the v further reduces ¢ for some values of .
However, for large target set sizes, and especially those with k£ > n/2, we pay a penalty in
the number of transmissions. For such large target sets we have to use ¢t = v transmissions
instead of one. We argue that as long as v is substantially smaller than the peak ¢, the savings
in ¢ for smaller target sets far outweighs the penalty incurred for large target sets. Moreover,
dealing with targets with & > n/2 can be done by maintaining a single additional broadcast
key together with the partitions’ keys.

Figure 11 shows that partitioning the users increases f, for target sets with £ < n/2.
However, the peak f, actually drops since we no longer use the very large key sets, e.g., those
with size n/2 or n/4. Partitioning also improves the opportunity for & ~ n/2 (graph omitted).

We conclude that partitioning the users is an effective method for designing establishment
key allocations. It is better to discard the large high-level key sets in favor of extra sets at the
low levels. As a rule of thumb we suggest to use at least v &~ y/n partitions, and possibly more
for larger values of n.
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Figure 11: Actual redundancy (f,) as a function of the target set size k, with n = 128K, f = 2,
and 18 keys in total.

7 Conclusions and Future Work

We have demonstrated that by allowing a controlled number of free-riders we are able to design
establishment key allocations that meet the hard limitations placed on secure key storage by
current technology. We do this while addressing the ambitious goal of allowing every possible
subset of users to be a target set (rather than only sets of a small fixed cardinality). We showed
that despite these constraints, our schemes use substantially fewer transmissions than the naive
designs. Moreover, although our schemes guarantee that the ratio between the numbers of free
riders and intended receivers is at most f —1, the achieved redundancy ratio f, is typically much
better than the guarantee. We conclude that our schemes are quite practical for applications
where some free riders may be tolerated.

We have also identified some general design principles for such systems. We found that
adding extra establishment key sets helps, provided that they are added at the low levels. We
also found that partitioning the population into many small partitions is more effective than
handling the whole population at once, since by eliminating the very large key sets we can add
extra keys in each partition without exceeding the key storage limitations.

We believe that more can be done in this area. Our best constructions use five or ten times
more transmissions than our lower bound suggests. Although this may seem like a small gap
asymptotically, it is important in realistic scenarios. Therefore finding either better schemes or
better lower bounds is still interesting.
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