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1 Introduction

The multi-device setting. The number of devices per person is proliferating: besides a primary
desktop computer, a user may have a laptop computer, a palm-pilot and a cell phone, all with
Internet access. Such a user may want a digital signature capability on all these devices which, for
convenience and simplicity of key-management, is based on a single certified public verification key
pk associated to the user. The user certainly has the option of downloading the secret signing key
sk, associated to public key pk, from his or her primary device, onto secondary devices. However,
the secondary devices, usually being mobile, have a greater vulnerability to capture and consequent
exposure of the secret key.

Consequences of key exposure. Key-exposure for a digital signature scheme remains unde-
sirable even if the public key can be quickly and effectively revoked, itself a non-trival task. The
reason is that exposure of the signing key means that all signatures ever produced under this key,
even those that were legitimately produced prior to key-exposure, become untrusted: a verifier
confronted with signature cannot be sure of its authenticity, even if the document is dated.

Self-certification. A standard paradigm, that can be employed in this situation, is the follow-
ing. The user creates, for each secondary device j, a new public verification key pk j with associated
secret signing key skj. It certifies pkj by signing it using the primary secret key sk. Rather than
downloading sk onto device j, it provides the device with sk j , together with pkj and its certificate.
The device will produce signatures under skj but include, as part of the signature, the secondary
public key pkj together with its certificate. So verification under pk remains possible. In this paper
we call this self-certification because the user issues himself or herself a certificate.

If the device is captured, the adversary obtains the capabilty to create signatures under sk j .
In that case one might have to revoke pk. But the hoped for gain is that signatures produced by
devices other than j, being under different secondary keys, can still be trusted. The damage caused
by loss of skj has been “localized,” or “contained,” even if not eliminated.

Our work. This paper suggests that underlying the specific solution above is a more general
concept. We distill this to arrive at a notion of a rekeyed digital signature scheme. We provide an
adversary model and a definition of security for such schemes.

We then cast the self-certification scheme outlined above as a rekeyed digital signature scheme
and prove its security. Although simple, we believe this is important for several reasons. It provides
information on details of how the scheme should be implemented that are important to security,
and enables us to understand precisely what are the security attributes that the scheme provably
possesses. It also sets the context for the alternative solutions we discuss next.

A benefit of the generalization is that it provides the perspective to see that self-certification
is not the only solution. We provide a rekeyed digital signature scheme that we call the rekeyed
iterated-root scheme. It is based on the Ong-Schnorr scheme [OS90]. The interest of this and similar
alternative solutions is that they compare favorably with the self-certification scheme with regard
to certain performance attributes, including signing time and signature sizes. (The self certification
scheme results in an increase of the signature size due to inclusion of the secondary public key and
its certificate in the signature, and our rekeyed iterated-root scheme avoids this.) The rekeyed
iterated-root scheme is proved secure in the random oracle model (cf. [BR93a]) assuming factoring
is hard.

We now look at some of these items in some more detail, and then conclude this Introduction
with a discussion of related work.
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Rekeyed signature schemes. A user generates a public key and matching secret key, which in
this context are called the primary public key and primary secret key respectively. The user obtains
a certificate for the primary public key. Rather than use sk directly to produce signatures, the user
uses it to derive sub-keys sk1, sk2, . . ., where skj is viewed as associated to a session with number j,
and is hence also called a session key. This is done via a session-key generation algorithm that on
inputs sk, j returns skj. A signature can be produced using a session key, but remains a signature
relative to the primary public key. (Signatures are verified under the single, fixed primary public
key, regardless of the session key used to produce them, so that certification of the public key is
done only once.) The verification algorithm will indicate not just whether a signature is valid or
not, but the index of the session in which it believes the signature to have been produced. See
Section 2.

Trust assumptions and security goals. We assume that the primary secret key is protected,
but that session keys are vulnerable to exposure. We adopt a model in which the adversary is very
powerful, being able to initiate sessions, expose session keys of its choice, and mount chosen-message
attacks on un-exposed session keys. In the face of this adversary capability we ask for a very strong
security requirement, namely that signatures produced under any un-exposed session key can be
trusted. In other words, if sk i has not been exposed, then it is computationally infeasible for the
adversary to create a message M and candidate signature σ such that the verification algorithm,
on input pk,M, σ, says that σ is valid for M with respect to session i. See Section 2.

Context. The multi-user setting we discussed above is one in which rekeyed encryption could be
used, but there are others. For example the user could issue session keys valid for certain intervals
of time rather than for different devices, or combine these ideas by issuing tickets, valid for certain
intervals, to each device.

The model ideas are inspired by those for forward-secure signatures as formalized in [BM99],
and those for session-key distribution as formalized in [BR94, BR96]. In particular the security
requirement that loss of security of one session not compromise the security of other sessions mimics
the same requirement in the session-key distribution context (cf. [DS81]), but “security” has to be
re-interpreted here.

Self-certification revisited. While the basic idea is the classic one discussed above, attaining
the type of security we target requires that one be careful about implementation. In particular it
is important to include, in a signature, the index of the session in which the signature was created,
and to implement verification, as mentioned above, to return not just a decision bit, but the index
of the session in which it imagines the signature was created. With these amendments, we prove the
expected result that the self-certification scheme meets our notion of security for rekeyed schemes
provided the underlying signature schemes (used to certify the secondary public keys and to produce
signatures under the secondary secret keys) are secure against forgery under chosen-message attack
according to the standard definition of [GMR88]. See Section 3.

The rekeyed iterated-root scheme. A special case of Ong-Schnorr signature scheme [OS90]

is the following. The user has public key a modulus N and a value U = S2h

mod N where the
user’s secret key is S ∈ Z∗

N and h ≥ 1 is a fixed, public integer paremeter. Signatures are created
by applying the Fiat-Shamir transform [FS87] to a 2h-th root based identification protocol. In the
adaptation to rekeying that we propose, the user’s primary public key is N , while the prime factors
of N make up the secret key. Associated to session j is a (secondary) public key Uj. This is not
specified explicitly, but rather implicitly, via the output of a hash function on fixed inputs that
contain the value j. The corresponding (secret) session key Sj is a 2h-th root of Uj that is computed
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using the prime factors of N in the primary secret key. Signatures are computed under Sj as they
would be in the Ong-Schnorr scheme, but include j. (There are several details left out of this
description. In particular one has to deal with the fact that random outputs of the hash function
may not be squares and thus not suitable as public keys. See Section 4 for a full description.)

Conceptually this borrows from the self-certification idea in that there is a secondary public key
associated to each session. Reduction in the signature size is achieved because the secondary public
key is implicit rather than explicit, and also because it is not explicitly certified so no certificate
need be included in the signature. A detailed cost and efficiency comparision between an RSA-
based version of the self-certification scheme and the rekeyed iterated-root scheme is provided in
Section 5, and shows that the latter fares better with respect to all parameters, except perhaps
verification time if one uses a small verification exponent for RSA.

We show that the rekeyed iterated root scheme meets our definition of a secure rekeyed signa-
ture scheme assuming the Ong-Schnorr scheme meets the standard notion of security for a digital
signature scheme, namely unforgeability under chosen-message attack. Known analyses of the Ong-
Schnorr scheme (cf. [OS90, MR02]) then imply that our scheme is secure if factoring is hard. All
these results are in the random oracle model.

Related work. There are two lines of work dealing with key exposure. The first considers
prevention of key exposure. One class of solutions is based on hardware tokens such as secure
co-processors or smartcards. Another class of solutions, originating with [Bla79, Sha79], is based
on the idea of distributing a secret key across multiple devices that. (See for example [DF90,
Des94, HJJ+97], and in another vein, [Sin, MR01].) The second line of work assumes key exposure
will happen and considers damage control. An instance of this is forward-security for signatures,
initiated in [And00, BM99] and continued in [AR00, Kra00, IR01, MMM02]. Systems combining
distribution and forward-security are considered in [AMN01, TT01].

Our setting builds on both lines of work. The primary secret key could be protected using a
method from one of the first lines of work above. These methods however are typically not conducive
to mobility, so we would not wish to directly extend them to secondary devices. Instead, rekeying
is used, providing security properties related to the second line of work above. In particular the
security property we require from our rekeyed schemes can be considered an extension of forward
security in which one gets not just forward-security, but also backward-security, and in fact all-
directions-security, since keys from sessions that may be concurrent and overlapping have security
independent of each other. (One should remember however that the solutions for forward security
from the above-mentioned works are software-only, meaning they assume that any information can
can be compromised, while we assume that the primary secret key will not be compromised.)

Forward-secure schemes based on self-certification were suggested by Anderson [And00], and
these ideas are extended in [BM99, Kra00, MMM02]. Forward-secure schemes based on identifica-
tion were proposed in [BM99, AR00, IR01].

2 Definitions

Conventions. We will use both the standard model and the random oracle model [BR93a].
The computational model in the latter case enhances that in the former case by providing a new
instruction, or call, HO(·, ·), available to all algorithms including the adversary. The instruction
takes input a (description of a) range set R and a string x and returns an element y of R, with
the intended semantics that y is uniformly distributed over R subject to consistency, meaning the
same query made twice results in the same answer.
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Experiment Expuf-cma
ds,F (k)

Begin

1. (pk, sk)
R

← kg(k) ; SM ← ∅

2. Run F on input pk, responding to induced queries as indicated in the table below:

Query Response

HO(R, x)
If HT[R, x] = ⊥ then HT[R, x]

R

← R
Return HT[R, x]

sign(M)
σ ← Sign(sk,M) ; SM ← SM ∪ {M}
Return σ to F

verify(M,σ)
If (Vf(pk,M, σ) = 1 AND M 6∈ SM )

Then w ← 1 else w ← 0

3. Return the bit w computed in the response to F ’s verify query above

End

Figure 1: The experiment measuring the success of uf-cma-adversary F in its attack on digital
signature scheme ds = (kg, sign,vf). The table indicates the types of oracle queries that F can
make and how the experiment responds to them.

All algorithms are randomized unless otherwise indicated. Each definition of security associates
to a given scheme, adversary, and value of the security parameter an experiment that returns 1 if the
adversary is successful and 0 otherwise. The time-complexity of the adversary is by definition the
execution time of the associated experiment plus the size of the code of the adversary, in some fixed
RAM model of computation, and measured as a function of the security parameter. In particular,
the time-complexity of the adversary includes the time to reply to random oracle queries, which
is done by maintaining a table HT[·, ·] with the intended semantics that HT[R, x] is the response
to HO(R, x). Table entries are chosen at random in response to queries. This means that if the
adversary has polynomial time-complexity then, implicitly, the time to sample uniformly from a
set R included in a HO(R, ·) query is polynomial in k. (If it is possible to sample uniformly except
with an exponentially small failure probability, as in the case where R is Z∗

N for some integer N ,
we ignore the failure probability, and assume perfect sampling in polynomial time.)

Digital signature schemes. Recall that a (digital) signature scheme ds = (kg, sign,vf) is
specified by three polynomial-time algorithms. The key generation algorithm kg takes input a
security parameter k and returns a pair (pk, sk) consisting of a public key pk and matching secret
key sk. The signing algorithm sign takes the secret key sk and a message M to produce a signature
σ. We call σ produced in this way a legal signature of M with respect to pk. The (deterministic)
verification algorithm vf takes the public key pk, a message M , and a candidate signature σ, and
returns a bit. We say that σ is a valid signature of M with respect to pk if vf(pk,M, σ) = 1. We
require that for all messages M , any legal signature of M is valid.

Security of a digital signature scheme. The notion of security is unforgeability under
chosen-message attack, as per [GMR88] for the standard model, and [BR93b] for the random
oracle model. Our presentation is unified and differs a little from the usual one for consistency
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with the framework used in later definitions. We consider a uf-cma-adversary F who takes input
pk and is allowed to make certain types of queries. Associated to F and a value k of the security
is an experiment, shown in Figure 1, which returns a bit w indicating whether or not F succeeded.
Within this experiment, F is executed, and replies to its queries are returned according to the rules
rules in Figure 1. For simplicity we assume that F halts immediately after making a verify query,
and that it makes at most one such query. We let

Advuf-cma
ds,F (k) = Pr

[

Expuf-cma
ds,F (k) = 1

]

be the probability that the bit w returned by the experiment equals 1. We say that ds is unforgeable
under chosen-message attack if the function Advuf-cma

ds,F (·) is negligible for all uf-cma-adversaries F
whose time-complexity is poly(k).

The experiment and definition hold either in the random oracle model or the standard one, the
difference being whether or not the HO(·, ·) instruction is invoked. In the experiment, a table HT[·, ·]
is maintained with the intended semantics that HT[R, x] is the response to HO(R, x). We note that
in the experiment, HO(·, ·) queries can be made either directly by the adversary, or indirectly by
algorithms invoked to answer other adversary queries. The indirect queries are “under the rug,”
but it is understood that the experiment responds to them by executing the procedure indicated
for a response to a HO(R, x) query in the table of Figure 1.

Rekeyed digital signature schemes. A rekeyed (digital) signature scheme rkds = (Pkg,Skg,
sign,vf) is specified by four polynomial-time algorithms. The primary-key generation algorithm
Pkg takes input a security parameter k and returns a pair (pk, sk) consisting of a (primary) public
key pk and matching primary secret key sk. The session-key generation algorithm Skg takes input
the primary secret key sk and an integer j ≥ 1 representing a session number, and returns a session
key sk for session j. The signing algorithm sign takes a session secret key sk and a message M
to produce a signature σ. We call σ produced in this way a legal signature of M with respect to
pk. The (deterministic) verification algorithm vf takes the public key pk, a message M , and a
candidate signature σ, and returns a pair (d, i), where d is a bit and i ≥ 1 is an integer. We say
that σ is a valid signature of M with respect to pk and relative to session i if vf(pk,M, σ) = (1, i).
We require that for all messages M , any legal signature of M is valid.

Security of a rekeyed digital signature scheme. We introduce a notion of unforgeability
under breakin attack that is modeled on the notions and definitional ideas of [BM99, BR94, BR96].
We first present the formal definition and then discuss it.

We consider a uf-ba-adversary F who takes input pk and is allowed to make certain types of
queries. Associated to F and a value k of the security is an experiment, shown in Figure 2, which
returns a bit w indicating whether or not F succeeded. Within this experiment, F is executed, and
replies to its queries are returned according to the rules prescribed in Figure 2. For simplicity we
assume that F halts immediately after making a verify query, and that it makes at most one such
query. We let

Advuf-ba
rkds,F (k) = Pr

[

Expuf-ba
rkds,F (k) = 1

]

be the probability that the bit w returned by the experiment equals 1. We say that rkds is
unforgeable under breakin attack if the function Advuf-ba

rkds,F (·) is negligible for all uf-ba-adversaries
F whose time-complexity is poly(k).

The model and definition are for both the standard and the random oracle models. As above,
in the experiment, a table HT[·, ·] is maintained with the intended semantics that HT[R, x] is the
response to HO(R, x), and it is understood that HO(·, ·) queries made indirectly, by algorithms
invoked to answer other adversary queries, are answered by executing the procedure indicated for
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Experiment Expuf-ba
rkds,F (k)

Begin

1. (pk, sk)
R

← Pkg(k) ; j ← 0

2. Run F on input pk, responding to induced queries as indicated in the table below:

Query Response

HO(R, x)
If HT[R, x] = ⊥ then HT[R, x]

R

← R
Return HT[R, x]

start j ← j + 1 ; skj ← Skg(sk, j) ; SM j ← ∅

sign(M, i)
If 1 ≤ i ≤ j then σ ← Sign(ski,M) ; SM i ← SM i ∪ {M}
Else σ ← ⊥
Return σ to F

breakin(i)
If 1 ≤ i ≤ j then s← ski ; B ← B ∪ {i}
Else s← ⊥
Return s to F

verify(M,σ)
(d, i)← Vf(pk,M, σ)
If (d = 1 AND 1 ≤ i ≤ j AND i 6∈ B AND M 6∈ SM i)

Then w ← 1 else w ← 0

3. Return the bit w computed in the response to F ’s verify query above

End

Figure 2: The experiment measuring the success of uf-ba-adversary F in its attack on two-tier
digital signature scheme rkds = (Pkg,Skg, sign,vf). The table indicates the types of oracle
queries that F can make and how the experiment responds to them.

a response to a HO(R, x) query in the table of Figure 2.

Discussion. At any point in the experiment, sessions 1, . . . , j are active. The adversary can create
a new session at any time by issuing a start query, the result of which is that j gets incremented
by 1 and a session key skj is created for the new session. The sign query models a chosen-message
attack: the adversary indicates a message M , and index i of an active session, and will be returned
a signature of M under the session key corresponding to session i. The breakin query models
compromise of a session: the adversary indicates the index i of an active session and is returned
the corresponding session key sk i. The verify query models an attempt at forgery: the adversary
indicates a message M and candidate signature σ, and the experiment sets w = 1 if M,σ is a
successful forgery, and w = 0 otherwise. Letting (d, i) = Vf(pk,M, σ), “successful” means that
that σ is a valid signature of M with respect to pk, meaning d = 1, and also that it was not
legitimately obtained, meaning that the session i was not compromised and no sign(M, i) query
had been issued by the adversary.
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Algorithm Pkg(k)

(pk, sk)← kg1(k)

Return (pk, sk)

Algorithm Skg(sk, j)

(pk2, sk2)
R

← kg2(k)

cert ← sign1(sk, (j,pk2))

skj ← (j,pk2, cert , sk2)

Return skj

Algorithm Sign(sk,M)

Parse sk as (j,pk2, cert , sk2)

σ ← sign2(sk2,M)

σ ← (j,pk2, cert , σ)

Return σ

Algorithm Vf(pk,M, σ)

Parse σ as (j,pk2, cert , σ)

d1 ← vf1(pk, (j,pk2), cert)

d2 ← vf2(pk2,M, σ)

d← d1 ∧ d2

Return (d, j)

Figure 3: Self-certification scheme rkds = (Pkg,Skg,Sign,Vf) associated to digital signature
schemes ds1 = (kg1, sign1,vf1) and ds2 = (kg2, sign2,vf2).

3 The self-certification scheme

Construction. Suppose ds1 = (kg1, sign1,vf1) and ds2 = (kg2, sign2,vf2) are digital signature
schemes. The self-certification scheme associated to them is the rekeyed digital signature scheme
rkds = (Pkg,Skg,Sign,Vf) whose constituent algorithms are described in Figure 3. If the
constituent schemes ds1,ds2 do not use random oracles, neither does the associated self-certification
scheme. If either of the constituent schemes does use its random oracle calls, however, the new
scheme can implement them by issuing its own random oracle calls. Care must however be taken
with regard to exactly how this is done. We will do it as follows. A HO(R, x) instruction issued by
any algorithm X of ds1 is replaced by a HO(R, 1‖x) instruction in any rkds algorithm that calls
X. Similarly a HO(R, x) instruction issued by any algorithm X of ds2 is replaced by a HO(R, 2‖x)
instruction in any rkds algorithm that calls X.

Security. The following theorem says that the self-certification scheme meets our strong notion
of security for rekeyed schemes assuming the constituent digital signature schemes are secure in the
standard sense.

Theorem 3.1 Let rkds be the self-certification rekeyed digital signature scheme associated to
standard digital signature schemes ds1 and ds2. If ds1 and ds2 are unforgeable under chosen-
message attack, then rkds is unforgeable under breakin attack.

The following lemma indicates the concrete security of the underlying reduction. Theorem 3.1 is
an obvious corollary of this lemma.

Lemma 3.2 Let rkds be the self-certification rekeyed digital signature scheme associated to digital
signature schemes ds1 and ds2. To any uf-ba-adversary F we can associate uf-cma-adversaries
F1, F2 such that for all k

Advuf-ba
rkds,F (k) ≤ Advuf-cma

ds1,F1
(k) + QF,start(k) ·Advuf-cma

ds2,F2
(k) . (1)
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Furthermore

TF1
(k) ≤ TF (k) TF2

(k) ≤ TF (k)
QF1,sign(k) ≤ QF,start(k) QF2,sign(k) ≤ QF,sign(k)

for all k.

The basic intuition behind this lemma is standard, being the intuition underlying the idea of
certification. Namely, success in attacking the self-certification scheme can come only via one of
the following: forgery of a certificate for a pair (i,pk2), or forgery of a signature of a message M
under a key pk2 already certified under pk. Lemma 3.2 attests to the fact that a reductionist proof
based on this idea goes through in the strong adversarial models we have defined. Equation (1)
shows, however, that the roles played by the two underlying signature schemes are not equal,
meaning there is some loss of concrete security. A proof of Lemma 3.2 is in Appendix A.

4 The rekeyed iterated-root scheme

Special modulii. We say that N is a (3, 7; 8)-modulus if N = p1p2 is the product of odd primes
p1 < p2 such that p1 ≡ 3 (mod 8) and p2 ≡ 7 (mod 8) (cf. [Wil80, Blu82, GMR88]). It is
convenient to let

SQi
N (v) = v2i

mod N

for i ≥ 0 and any v ∈ Z∗
N . We let ASQRN (u) denote the set of all square roots of a quadratic

residue u ∈ Z∗
N . This set has size exactly four, and contains exactly one quadratic residue, which

is denoted SQR1
N (u). For i ≥ 2 we define SQRi

N (·) recursively, namely

SQRi
N (u) = SQRi−1

N (SQR1
N (u))

for any quadratic residue u.

Factoring. An algorithm mkg is said to be a (3, 7; 8)-modulus generator if on input security
parameter k it returns a triple (N, p1, p2) such that N is a (3, 7; 8)-modulus N satisfying 2k−1 ≤
N < 2k, and p1 < p2 are primes such that N = p1p2. (There are many such generators, differing in
the distributions of their outputs. For example the canonical generator picks the primes p1, p2 at
random and of approximately equal length subject to the necessary constraints and sets N = p1p2.
However, all our results are relative to an arbitrary generator.) Associated to a factoring-adversary
A and value k of the security parameter is the experiment

Experiment Expfactor
mkg,A(k)

(N, p1, p2)
R

← mkg(k) ; (p1, p2)← A(N)
If (p1 = p1 and p2 = p2) then return 1 else return 0

We let

Advfactor
mkg,A(k) = Pr

[

Expfactor
mkg,A(k) = 1

]

.

We say that factoring is hard relative to mkg if the function Adv factor
mkg,A(·) is negligible for all

factoring-adversaries A whose time-complexity is poly(k).

Number theory. We will use this in the rekeyed scheme and in the proofs. If p is a prime and
x is an integer relatively prime to p then we define the quadratic character of x mod p, denoted
QCp(x), to be the Legendre symbol of x mod p, meaning it is +1 if x is a quadratic residue mod
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p and −1 otherwise. If N = p1p2 is the product of primes p1 < p2, and x is an integer relatively
prime to N , then we define the quadratic character of x mod N , denoted QCN (x), to be the vector
[QCp1

(x),QCp2
(x)]. For any Q1, Q2 ∈ {−1,+1} we define the quadratic character class of [Q1, Q2],

denoted QCCN [Q1, Q2], to be the set of integers modulo N with quadratic character [Q1, Q2],
namely

QCCN [Q1, Q2] = { x ∈ Z∗
N : QCN (x) = [Q1, Q2] } .

The sets

QCCN [+1,+1], QCCN [+1,−1], QCCN [−1,+1], QCCN [−1,−1]

form a partition of Z∗
N , and each of these sets has size ϕ(N)/4 = (p1 − 1)(p2 − 1)/4. Note

QCCN [+1,+1] is the set of quadratic residues modulo N .
Some well-known facts are the following. For any Q1, Q2 ∈ {−1,+1} and y ∈ QCCN [Q1, Q2],

the product yy mod N is in QCCN [+1,+1]. For any Q1, Q2 ∈ {−1,+1}, any y ∈ QCCN [Q1, Q2] and
u ∈ QCCN [1, 1], if we let PN,y(u) = yu mod N , then the map PN,y is a bijection from QCCN [1, 1]
to QCCN [Q1, Q2].

We define the following, where N is a (3, 7; 8)-modulus:

QCRN [+1,+1] = 1 QCRN [−1,−1] = −1
QCRN [−1,+1] = 2 QCRN [+1,−1] = −2 .

We call these the quadratic character representatives since for all Q1, Q2 ∈ {−1,+1} we have

QCN (QCRN [Q1, Q2]) = [Q1, Q2] .

Moreover, for any element y ∈ Z∗
N ,

QCN (y ·QCRN [QCN (y)] mod N) = [1, 1] .

The iterated-root scheme. Our rekeyed signature scheme is based on a special case of the
Ong-Schnorr (OS) [OS90], which we call the iterated-root scheme irds. In the OS scheme, the
number of quadratic residues in the public key varies, being one of the parameters of the scheme.
In the iterated-root scheme irds, we fix this number to 1 in order to obtain shorter public and
secret keys, while preserving the overall efficient of the scheme. The iterated-root scheme irds can
also be seen as a generalization of the Micali signature scheme [Mic94], as done in [AR00] in their
construction of a forward-secure signature scheme.

Let us recall the description of the iterated-root scheme irds = (kg,Sign,Vf). It works as
follows. The key generation algorithm, kg, gets as input a security parameter k and returns a
pair (sk,pk). The secret key sk consists of a (3, 7; 8)-modulus N , a random element S in Z∗

N and
the challenge length h. The public key pk consists of the (3, 7; 8)-modulus N and the quadratic

residue U = SQh
N (S−1) = S2−h

. The signing algorithm, Sign, gets as input the secret key sk =
(N,S, h) and a message M and outpus the signature (C,Z) for M . It does so by first picking a
random quadratic residue Y in Z∗

N , making the challenge C = HO({0, 1}h, 〈Y,M〉), and then finally
computing one of the four square roots Z in SQRh

N (Y · U−〈C〉). The verifying algorithm, Vf, gets
as input a message M , the (3, 7; 8)-modulus N and signature (C,Z), and checks whether the latter
is a valid signature for M by re-computing the challenge associated with the value Z, the message
M and the public-key pk. Please refer to Figure 4 for a full description of the base scheme.

One observation worth making here is one made in [AR00] which states that the secret key S
and the value Z need not be quadratic residues in Z∗

N . In fact, there is no way for the verifier to
check that since telling square residues apart from non-square residues in Z∗

N is hard problem in
itself if one does not know the prime factors of N .
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Algorithm kg(k)

(N, p1, p2)← mkg(k)

h← H(k)

S
R

← Z∗
N

U ← SQh
N (S−1)

pk ← (N,U)

sk ← (N,S, h)

Return (pk, sk)

Algorithm Sign(sk,M)

Parse sk as (N,h, S)

R
R

← Z∗
N

Y ← SQh
N (R)

C ← HO({0, 1}h, 〈Y,M〉)

Parse C as C1‖ · · · ‖Ch

e←
∑h

l=1 Cl · 2
l−1

Z ← R · Se mod N

σ ← (C,Z)

Return σ

Algorithm Vf(pk,M, σ)

Parse pk as (N,U)

h← H(k)

Parse σ as (C,Z)

Parse C as C1‖ · · · ‖Ch

Y ← SQh
N (Z)

e←
∑h

l=1 Cl · 2
l−1

Y ← Y · U e mod N

C ← HO({0, 1}h, 〈Y,M〉)

If (C = C) then return 1

Else return 0

Figure 4: The iterated-root signature scheme irds = (kg,Sign,Vf) associated to (3, 7; 8)-modulus
generator mkg and parameter H.

The security of this scheme is captured by the following lemma, whose proof can be easily
adapted from that given in [MR02] for the Micali signature scheme. It also follows as particular
case of the proof of security for the Abdalla-Reyzin forward-secure signature scheme [AR00] by
making T = 1 (in which case forward security implies normal security).

Lemma 4.1 Let irds be the iterated-root digital signature scheme associated to (3, 7; 8)-modulus
generator mkg and parameter H. To any uf-cma-adversary F we can associate a factoring-adversary
A such that for all k

Advuf-cma
irds,F (k) ≤ 2−H(k) +

√

2QF,HO(k) ·Advfactor
mkg,A(k) + 4QF,HO(k)QF,sign(k)/|Z∗

N | . (2)

Furthermore TA(k) ≤ 2 ·TF (k) + O(k3 + k2H(k)) for all k.

The rekeyed iterated-root scheme. Let mkg be a (3, 7; 8)-modulus generator, and let H(·)
be a positive-integer valued function of the security parameter. (Read H as “height”.) The
rekeyed iterated-root signature scheme associated to mkg,H is the rekeyed digital signature scheme
rkirds = (Pkg,Skg,Sign,Vf) whose constituent algorithms are described in Figure 5.

As the code indicates, the primary public key is a (3, 7; 8)-modulus N , while the primary secret
key includes the primes p1 < p2 such that N = p1p2. The session-key generation algorithm, given
the primary secret key and a session index j, uses the random oracle to specify a quadratic residue
U to play the role of a secondary public key for session j. Because the output V of the random
oracle is not guaranteed to be a a quadratic residue in Z ∗

N , we first compute the quadratic character
of V and the factor f that, if multiplying V , results in a quadratic residue U . This is only possible
due to the fact p1 and p2 are part of primary secret key. After this step, we then compute (using
p1 and p2) one of 2h-roots of U and set the secret key for session j to be (N,h, j, S, f). Signing is
done as in the base iterated-root scheme irds. The only difference is that, in addition to C and
Z, the signature also include the session index j and the factor f computed during the session
key generation. The latter is only included in the signature for efficient purposes. Otherwise, the
verifier would need to check the signature (j, C, Z) with respect to all values in {V,−V, 2V,−2V },
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Algorithm Pkg(k)

(N, p1, p2)← mkg(k)
pk ← N ; sk ← (N, p1, p2)
Return (pk, sk)

Algorithm Skg(sk, j)

Parse sk as (N, p1, p2)

h← H(k)

V ← HO(Z∗
N , 〈j〉)

f ← QCRN [QCN (V )]

U ← V · f mod N

T ← SQRh
N (U−1)

S
R

← ASQRN (T )

sk ← (N,h, j, S, f)

Return sk

Algorithm Sign(sk,M)

Parse sk as (N,h, j, S, f)

R
R

← Z∗
N ; Y ← SQh

N (R)

C ← HO({0, 1}h, 〈j, Y,M〉)

Parse C as C1‖ · · · ‖Ch

e←
∑h

l=1 Cl · 2
l−1

Z ← R · Se mod N

σ ← (j, f, C, Z)

Return σ

Algorithm Vf(pk,M, σ)

Parse pk as N

h← H(k)

Parse σ as (j, f, C, Z)

Parse C as C1‖ · · · ‖Ch

Y ← SQh
N (Z)

V ← HO(Z∗
N , 〈j〉)

U ← V · f mod N

e←
∑h

l=1 Cl · 2
l−1

Y ← Y · U e mod N

C ← HO({0, 1}h, 〈j, Y,M〉)

If (C = C) then return 1

Else return 0

Figure 5: The rekeyed iterated-root signature scheme rkirds = (Pkg,Skg,Sign,Vf) associated
to (3, 7; 8)-modulus generator mkg and parameter H.

where V = HO(Z∗
N , 〈j〉), since it does not know which one of them is the quadratic residue. f

allows the verifier to know the factor multiplying the output of the random oracle. Aside from this,
the verification is similar to that of the base iterated-root scheme irds.

Security. The following theorem states that the rekeyed iterated-root signature scheme meets
the strong notion of security for rekeyed schemes assuming factoring (3, 7; 8)-modulus is hard.

Theorem 4.2 Let rkirds be the rekeyed iterated-root digital signature scheme associated to
(3, 7; 8)-modulus generator mkg and parameter H. If factoring is hard relative to mkg then rkirds

is unforgeable under breakin attack.

The following lemma indicates the concrete security of the underlying reduction. Theorem 4.2 is
an obvious corollary of this lemma.
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Lemma 4.3 Let rkirds be the rekeyed iterated-root digital signature scheme associated to (3, 7; 8)-
modulus generator mkg and parameter H. To any uf-ba-adversary F we can associate a factoring-
adversary A such that for all k

Advuf-ba
rkirds,F (k)

≤ QF,start

(

2−H(k) +
√

2QF,HO(k) ·Advfactor
mkg,A(k) + 4QF,HO(k)QF,sign(k)/|Z∗

N |

)

. (3)

Furthermore TA(k) ≤ 2 ·TF (k) + O(k3 + k2H(k)) for all k.

Rather than prove this result from scratch, we use Lemma 4.1. The following lemma says
that it is possible to reduce the security of the rekeyed iterated-root scheme to the security of the
iterated-root scheme, although there is a loss of a factor QF,start(k) in the security. Lemma 4.3
follows directly from Lemma 4.4 and Lemma 4.1, so it suffices to prove Lemma 4.4.

Lemma 4.4 Let mkg be a (3, 7; 8)-modulus generator and let H be the height parameter. Let
irds be the iterated-root digital signature scheme associated to mkg,H, and let rkirds be the
rekeyed iterated-root digital signature scheme associated to mkg,H. To any uf-ba-adversary F we
can associate a uf-cma-adversary F1 such that for all k

Advuf-ba
rkirds,F (k) ≤ QF,start(k)Advuf-cma

irds,F1
(k) . (4)

Furthermore

TF1
(k) ≤ TF (k)

QF1,sign(k) ≤ QF,sign(k)
QF1,HO(k) ≤ QF,HO(k)

for all k.

5 Comparison of two rekeyed signature schemes

We provide in this section a detailed cost and efficiency comparison between an RSA-based version
of the self-certification scheme in Section 3 and the rekeyed iterated-root scheme in Section 4. Our
comparisons are presented in terms of the security parameter k of the rekeyed signature scheme
(i.e., the size of modulus N), the length le of the RSA encryption exponent e and the number of
challenge length h used in rekeyed iterated-root scheme. For security reasons, we assume the length
of RSA decryption exponent parameter d to be in the order of k. The signing and verification time
is expressed in terms of the total number of modular multiplications involved in these operations.
We do not take into account, however, the size of session index as it equally affects both schemes.
Table 1 describes in detail how these two rekeyed scheme compare to one another in terms of signing
time, verification time, signature size, session key size, primary secret key size, and public key size.

Typical values used in practice for parameters k and h are 1024 and 128, respectively. The first
choice of value makes the success probability of all well-known factoring algorithms negligible. The
second choice of value makes the success probability of guessing correctly the challenge C in the
signature of the rekeyed iterated-root scheme negligible. Having these values in mind, one can see
that the rekeyed iterated-root scheme performs better than the RSA-based self-certification scheme
in almost every aspect, except for the verification time, if one uses small verification exponents for
RSA.
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Parameter Self-Certification scheme rekeyed iterated-root scheme

Signing time 2k 3h

Verification time 2le 3h + 1

Signature size 3k + le k + h + 2

Session key size 3k + le 2k + log h + 2

Primary secret key size 4k + le 2k

Public key size k + le k

Table 1: Comparison of an RSA-based self-certification scheme and the rekeyed iterated-root
scheme.
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A Proof of Lemma 3.2

The adversaries F1 and F2 are described, respectively, in Figures 6 and 7.
Adversary F1 takes input a public key pk for digital signature scheme ds1. It will run F on

input pk until the latter makes a verify(M,σ) query. Parsing σ as (i,pk 2,i, cert i, σ), it bets that
the forgery is due to forgery under pk of the certificate cert i, and accordingly ends by making its
own query verify((i,pk2), cert). In order to run F (pk), however, F1 must be able to answer F ’s
queries. It can do this based by choosing the session keys itself and certifying them via its own
sign(·) queries. Answers to breakin(·) or sign(·, ·) queries made by F are easily provided because F1

is in possession of all session keys.
Adversary F2 takes input a public key pk2 for digital signature scheme ds2. It picks a primary

key pair (pk, sk) for ds1, and will run F on input pk. It will answer F ’s queries in such a way that
the secondary public-key pk2,c associated to a certain session c equals the public key pk2 that it
received as input. Parsing the signature σ from the verify(M,σ) query of F as (i,pk 2,i, cert i, σ), it
hopes that i = c, in which case it bets that the forgery is due to forgery under pk 2 of the signature
σ of M , and accordingly ends by making its own query verify(M,σ). The challenge for F2 is to
answer the queries of F and yet retain the possibility that i = c. Its strategy, standard in these
types of situations, is to pick c at random, and give up if asked a breakin(c) query.

The analysis yielding Lemma 3.2 is standard and is omitted.
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Adversary F1(pk)
Begin

1. j ← 0

2. Run F on input pk, responding to induced queries as indicated in the table below:

Query Instructions for F1

HO(R, x)

Parse x as i‖y with i ∈ {1, 2}
If i = 1 then make query HO(R, y) and obtain answer h
Else

If HT2[R, y] = ⊥ then HT2[R, y]
R

← {0, 1}l

h← HT2[R, y]
Return h to F

start

j ← j + 1 ; (pk2,j , sk2,j)
R

← kg2(k)

Make query sign((j,pk2,j)) and let cert j denote the answer obtained

skj ← (j,pk2,j , cert j , sk2,j)

sign(M, i)

If (NOT 1 ≤ i ≤ j) then return ⊥ to F
Else

σ ← sign2(sk2,i,M) ; σ ← (i,pk2,i, cert i, σ)

Return σ to F

breakin(i)
If (NOT 1 ≤ i ≤ j) then return ⊥ to F
Else return ski to F

verify(M,σ)
Parse σ as (i,pk2, cert , σ)
Make query verify((j,pk2), cert)

End

Figure 6: Description of uf-cma-adversary F1 attacking ds1. It runs F as a subroutine. The table
indicates the actions taken by F1 in response to queries made (directly or indirectly) by F .

B Proof of Lemma 4.4

Proof Idea. We use a standard reduction argument. We first assume there exists an adversary
F that breaks the security of the rekeyed iterated-root scheme rkirds. We then show how to
construct an adversary F1 that breaks the security of irds, using F as a sub-routine. F1 starts
by guessing a session c with respect to which F succeeds in outputting a forgery. It then sets the
public key of that period to be related to its own so that a forgery for the rekeyed iterated-root
scheme rkirds gets translated into a forgery for the iterated-root scheme irds. In doing so, F1

has to respond the queries that F makes to its oracles. Since F1 does not have access to these
oracles, it has to simulate them in a way that does not differ from the real experiment definining
the security of the rekeyed iterated-root scheme rkirds.

Proof Details. The adversary F1 against the iterated-root scheme irds is described inFigure 8.
It takes as input a pair (N,U) consisting of a (3, 7; 8)-modulus N and random quadratic residue U
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Adversary F2(pk2)
Begin

1. j ← 0 ; (pk, sk)
R

← kg1(k)

2. c
R

← {1, . . . ,QF,start(k)} ; pk2,c ← pk2

3. Run F on input pk, responding to induced queries as indicated in the table below:

Query Instructions for F2

HO(R, x)

Parse x as i‖y with i ∈ {1, 2}
If i = 2 then make query HO(R, y) and obtain answer h
Else

If HT1[R, y] = ⊥ then HT1[R, y]
R

← {0, 1}l

h← HT1[R, y]
Return h to F

start

j ← j + 1

If (j 6= c) then (pk2,j , sk2,j)
R

← kg2(k)

cert j ← sign1(sk, (j,pk2,j))

If (j 6= c) then skj ← (j,pk2,j, cert j , sk2,j)

sign(M, i)

If (NOT 1 ≤ i ≤ j) then return ⊥ to F
Else

If i = c
Then make query sign(M) and let σ denote the answer obtained
Else σ ← sign2(sk2,i,M)

σ ← (i,pk2,i, cert i, σ)
Return σ to F

breakin(i)
If (NOT 1 ≤ i ≤ j) then return ⊥ to F
If (i = c) then ABORT
Else return ski to F

verify(M,σ)
Parse σ as (i,pk2, cert , σ)
Make query verify(M,σ)

End

Figure 7: Description of uf-cma-adversary F2 attacking ds2. It runs F as a subroutine. The table
indicates the actions taken by F2 in response to queries made (directly or indirectly) by F .

in Z∗
N . It starts by guessing the period with respect to which F will output a forgery and implicitly

sets the public key pkc for session c to be the pair (N,Uc), where Uc = fcU mod N and fc is
a random element in {1,−1, 2,−2}. It does so by returning Uc as the output to the hash query
HO(Z∗

N , c). The factor fc is due to the fact that the output of HO[Z∗
N , j] should be a random element

in Z∗
N . For all other sessions j, it first picks random elements Sj ∈ Z∗

N and fj ∈ {1,−1, 2,−2},
and sets the secret key for that session to be sk = (N,h, i, Si, fi). It also implicitly sets the public
key pkj to be the pair (N,Uj), where Uj = SQh

N (S−1
i ) · fj, by setting the output of the hash query
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HO[Z∗
N , j] to be Uj .

When F makes queries of the type HO[{0, 1}h, x], F1 first parses x to check the session to which
this query refers. If it is for session c, it then forwards it to the hash oracle that was given to it.
If the hash query is for a different session, it first checks whether the same has been asked before.
If so, it returns the same answer that was given to the previous query. If not, then it first pick a
random element in {0, 1}h, records it as the being the response to that query and returns it to F .

Signature queries are answered in a way similar to that used in the response of hash queries.
That is, it first checks whether the signing query is with respect to session c. If so, then it uses its
signing oracle to respond to this query. If not, then F1 can use the secret key that it has generated
for that period to generate the signature.

Whenever F makes a breakin(i) query, F1 first checks that i is a valid index for a session. If i
is not a valid index, then it returns ⊥ to F . Otherwise, it either returns sk i to F if i 6= c or aborts
the program since it does not know the value of the secret key sk c.

Finally, when F makes a verification query verify(M,σ), F1 parses the signature σ as (j, fj , C, Z)
and outputs σ as the forgery for M , by calling its verification oracle on input (M,σ).

Analysis. We first notice that F1 succeeds whenever F does and when its guess for the time period
with respect to which F outputs a forgery is correct. Moreover, F1 makes at most QF,sign(k) to its
signing oracle and at most QF,HO(k) to its hash oracle. The lemma follows easily by noticing that
the running time TF1

(k) is at most TF (k).
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Adversary F1(pk)
Begin

1. Parse pk as (N,U) ; pk = N

2. j ← 0 ; h← H(k) ; c
R

← {1, . . . ,QF,start(k)}

3. Run F on input pk, responding to induced queries as indicated in the table below:

Query Instructions for F1

HO({0, 1}h, x)

Parse x as (j, Y,M)
If i = c then make query HO({0, 1}h, (Y,M)) and obtain answer C
Else

If HT1[{0, 1}
h, x] = ⊥ then HT1[{0, 1}

h, x]
R

← {0, 1}h

C ← HT1[{0, 1}
h, x]

Return C to F

HO(Z∗
N , i)

If HT2[Z
∗
N , i] = ⊥ then

If (i 6= c) then Si
R

← Z∗
N ; Vi ← SQh

N (S−1
i ) else Vi ← U

fi
R

← {1,−1, 2,−2} ; Ui ← fi · Vi mod N ; ski ← (N,h, i, Si, fi)

HT2[Z
∗
N , i]← Ui

Ui ← HT2[Z
∗
N , i]

Return Ui to F

start j ← j + 1 ; Make query HO(Z∗
N , j)

sign(M, i)

If (NOT 1 ≤ i ≤ j) then return ⊥ to F
Else

If i = c then
make query sign(M) and let σ denote the answer obtained
Parse σ as (C,Z) ; σ ← (j, fj , C, Z)

Else
σ ← Sign(sk2,i,M)

Return σ to F

breakin(i)
If (NOT 1 ≤ i ≤ j) then return ⊥ to F
If (i = c) then ABORT else return sk i to F

verify(M,σ)
Parse σ as (j, fj , C, Z) ; σ ← (C,Z)

Make query verify(M,σ)

End

Figure 8: Description of uf-cma-adversary F1 attacking irds. It runs F as a subroutine. The table
indicates the actions taken by F1 in response to queries made (directly or indirectly) by F .
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