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Perspectives on organisms.

Biological time, symmetries and singularities.

June 9, 2017

Springer





To Francis Bailly,
for his humanism in science, his discreet

enthusiasm, his openness to others’ ideas
while staying firm in his principles, his
driven commitment to understand the
thinking of others, his trusting generosity in
the common endeavour to knowledge, his
critical thinking tailored to better advance
beyond the mainstream.





Foreword

by Denis Noble

During most of the twentieth century experimental and theoretical biologists
lived separate lives. As the authors of this book express it, “there was a belief that
experimental and theoretical thinking could be decoupled.” This was a strange di-
vorce. No other science has experienced such a separation. It is inconceivable that
physical experiments could be done without extensive mathematical theory being
used to give quantitative and conceptual expression to the ideas that motivate the
questions that experimentalists try to answer. It would be impossible for the physi-
cists at the large hadron collider, for example, to search for what we call the Higgs
boson without the theoretical background that can make sense of what the Higgs
boson could be. The gigantic masses of data that come out of such experimentation
would be an un-interpretable mass without the theory. Similarly, modern cosmol-
ogy and the interpretation of the huge amounts of data obtained through new forms
of telescopes would be inconceivable without the theoretical structure provided by
Einstein’s general theory of relativity. The phenomenon of gravitational lensing, for
example, would be impossible to understand or even to discover. The physics of
the smallest scales of the universe would also be impossible to manage without the
theoretical structure of quantum mechanics.

So, how did experimental biology apparently manage for so many years without
such theoretical structures? Actually, it didn’t. The divorce was only apparent.

First, there was a general theoretical structure provided by evolutionary biology.
Very little in biology makes much sense without the theory of evolution. But this
theory does not make specific predictions in the way in which the Higgs boson or
gravitational lensing were predicted for physicists. The idea of evolution is more
that of a general framework within which biology is interpreted.

Second, there was theory in biology. In fact there were many theories, and in
many different forms. Moreover, these theories were used by experimental biolo-
gists. They were the ideas in the minds of experimental biologists. No science can
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be done without theoretical constructs. The so-called Central Dogma of Molecu-
lar Biology, for example, was an expression of the background of ideas that were
circulating during the early heydays of molecular biology: that causation was one
way (genes to phenotypes), and that inheritance was entirely attributable to DNA,
by which an organism could be completely defined. This was a theory, except that
it was not formulated as such. It was presented as fact, a fait accompli. Meanwhile
the pages of journals of theoretical and mathematical biology continued to be filled
with fascinating and difficult papers to which experimentalists, by and large, paid
little or no attention.

We can call the theories that experimentalists had in mind implicit theories. Often
they were not even recognised as theory. When Richard Dawkins wrote his persua-
sive book The Selfish Gene in 1976 he was not only giving expression to many
of these implicit theories, he also misinterpreted them through failing to understand
the role of metaphor in biology. Indeed, he originally stated “that was no metaphor”!
As Poincaré pointed out in his lovely book Science and Hypothesis (La science et
l’hypothèse) the worst mistakes in science are made by those who proudly proclaim
that they are not philosophers, as though philosophy had already completed its task
and had been completely replaced by empirical science. The truth is very different.
The advance of science itself creates new philosophical questions. Those who tackle
such questions are philosophers, even if they do not acknowledge that name. That
is particularly true of the kind of theory that could be described as meta-theory: the
creation of the framework within which new theory can be developed. I see creating
that framework as one of the challenges to which this book responds.

Just as physicists would not know what to do with the gigantic data pouring out
of their colliders and telescopes without a structure of interpretative theory, biology
has hit up against exactly the same problem. We also are now generating gigantic
amounts of genomic, proteomic, metabolomic and physiomic data. We are swim-
ming in data. The problem is that the theoretical structures within which to interpret
it are underdeveloped or have been ignored and forgotten. The cracks are appearing
everywhere. Even the central theory of biology, evolution, is undergoing reassess-
ment in the light of discoveries showing that what the modern synthesis said was
impossible, such as the inheritance of acquired characters, does in fact occur. There
is an essential incompleteness in biological theory that calls out to be filled.

That brings me to the question how to characterise this book. It is ambitious.
It aims at nothing less than filling that gap. It openly aims at bringing the rigour of
theory in physics to bear on the role of theory in biology. It is a highly welcome chal-
lenge to theorists and experimentalists alike. My belief is that, as we progressively
make sense of the masses of experimental data we will find ourselves developing the
conceptual foundations of biology in rigorous mathematical forms. One day (who
knows when?), biology will become more like physics in this respect: theory and
experimental work will be inextricably intertwined.

However, it is important that readers should appreciate that such intertwining
does not mean that biology becomes, or could be, reducible to physics. As the au-
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thors say, even if we wanted such a reduction, to what physics should the reduction
occur? Physics is not a static structure from which biologists can, as it were, take
things ‘off the shelf’. Physics has undergone revolutionary change during the last
century or so. There is no sign that we are at the end of this process. Nor would it be
safe to assume that, even if it did seem to be true. It seemed true to early and mid-
nineteenth century biologists, such as Jean-Baptiste Lamarck, Claude Bernard, and
many others. They could assume, with Laplace, that the fundamental laws of nature
were strictly deterministic. Today, we know both that the fundamental laws do not
work in that way, and that stochasticity is also important in biology. The lesson of
the history of science is that surprises turn up just when we think we have achieved
or are approaching completeness.

The claim made in this book is that there is no current theory of biological organ-
isation. The authors also explain the reason for that. It lies in the multi-level nature
of biological interactions, with lower level molecular processes just as dependent
on higher-level organisation and processes, as they in their turn are dependent on
the molecular processes. The error of twentieth century biology was to assume far
too readily that causation is one-way. As the authors say, “the molecular level does
not accommodate phenomena that occur typically at other levels of organisation.” I
encountered this insight in 1960 when I was interpreting experimental data on car-
diac potassium channels using mathematical modelling to reconstruct heart rhythm.
The rhythm simply does not exist at the molecular level. The process occurs only
when the molecules are constrained by the whole cardiac cell to be controlled by
causation running in the opposite direction: from the cell to the molecular compo-
nents. This insight is general. Of course, cells form an extremely important level
of organisation, without which organisms with tissues, organs and whole-body sys-
tems would be impossible. But the other levels are also important in their own ways.
Ultimately, even the environment can influence gene expression levels. There is no
a priori reason to privilege any one level in causation. This is the principle of bio-
logical relativity.

The principle does not mean that the various levels are in any sense equivalent. To
quote the authors again: “In no way do we mean to negate that DNA and the molec-
ular cascades that are related to it, play an important role, yet their investigations
are far from complete regarding the description of life phenomena.” Completeness
is the key concept. That is true for biological inheritance as well as for phenotype-
genotype relations. New experimental work is revealing that there is much more to
inheritance than DNA.

The avoidance of engagement with theoretical work in biology was based largely
on the assumption that analysis at the molecular level could be, and was in principle,
complete. In contrast, the authros write, “these [molecular] cascades may causally
depend on activities at different levels of analysis, which interact with them and also
deserve proper insights.” Those ‘proper insights’ must begin by identifying the enti-
ties and processes that can be said to exist at the higher levels: “finding ways to con-
stitute theoretically biological objects and objectivise their behaviour.” To achieve
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this we have to distance ourselves from the notion, prevalent in biology today, that
the fundamental must be conceptually elementary. As the authors point out, this
is not even true in physics. “Moreover, the proper elementary observable doesn’t
need to be “simple”. “Elementary particles” are not conceptually/mathematically
simple.”

There is therefore a need for a general theory of biological objects and their
dynamics. This book is a major step in achieving that aim. It points the way to some
of the important principles, such as the principle of symmetry, that must form the
basis of such a theory. It also treats biological time in an innovative way, it explores
the concept of extended criticality and it introduces the idea of anti-entropy. If these
terms are unfamiliar to you, this book will explain them and why they help us to
conceptualize the results of experimental biology. They in turn will lead the way
by which experimentalists can identify and characterize the new biological objects
around which a fully theoretical biology could be constructed.

Oxford University, Denis Noble

June 2013



Preface

In this book, we propose original perspectives in theoretical biology. We refer ex-
tensively to physical methods of understanding phenomena but in an untraditional
manner. At times, we directly employ methods from physics, but more importantly,
we radically contrast physical ways of constructing knowledge with what, we claim,
is required for conceptual constructions in biology.

One of the difficult aspects of biology, especially with respect to physical in-
sights, is the understanding of organisms and by extension the implications of what
it means for an object of knowledge to be a part of an organism. The question of
which conceptual and technical frameworks are needed to achieve this understand-
ing is remarkably open. One such framework we propose is extended criticality.
Extended criticality, one of our main themes, ties together the structure of coher-
ence that forms an organism and the variability and historicity that characterize it.
We also note that this framework is not meant to be pertinent in understanding the
inert.

We are aware that our theoretical proposals are of a kind of abstraction that is
unfamiliar to most biologists. An epistemological remark can hopefully make this
kind of abstract thinking less unearthly. At the core of mathematical abstractions, not
unlike in biological experiments, lies the “gesture” made by the scientist. By ges-
ture we mean bodily movements, real or imagined, such as rearranging a sequence
of numbers in the abstract or seeding the same number of cells over several wells.
Gestures may remain mostly virtual in mathematics, yet any mathematical proof is
basically a series of acceptable gestures made by the mathematician — both the ones
described by a given formalism and the ones performed at the level of more funda-
mental intuitions (which motivate the formalisms themselves). For example, sym-
metries refer to applying transformations (e.g. rotating) and order refers to sorting
(eg: the well-ordering of integer numbers and the ordering of oriented time), both of
which are gestures. Since Greek geometry until contemporary physics, symmetries
(defining invariance) and order (as for optimality) have jointly laid the foundation of
mathematics and theoretical physics within the human spaces of action and knowl-
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edge. In summary, the theoretician singles out conceptual contours and organizes the
World similarly as the experimenter prepares and executes scientific experiments.

From this perspective, biological theory directly relates to the acceptable moves,
both abstract and concrete, that can be performedwhile experimenting and reflec-
tiong on biological organisms. Symmetries and their changes, order and its breaking
will guide our approach in an interplay with physics — often a marked differenti-
ation. Again, the question of building a theory of organisms is a remarkably open
one. With this book, we hope to contribute in explicitly raising this question and
providing some elements of answer.

Interactions are as fundamental in knowledge construction as they are in biolog-
ical evolution and ontogenesis. We would like to acknowledge that this book is the
result and the continuation of an intense collaboration of three people: the listed au-
thors and our friend Francis Bailly. The ideas presented here are extensions of work
initiated by/with Francis, who passed away in 2009. We are extremely grateful to
have had the priveledge to work with him. His insights sparked the beginning of the
second author’s PhD thesis which was completed in 2011.

We are also appreciative for the exchanges within the team “Complexité et In-
formation Morphologique” (see Longo’s web page), who included Matteo Mossio,
Nicole Perret, Arnaud Pocheville and Paul Villoutreix. We also extend gratitude
to our main “interlocuteurs” Carlos Sonnenschein and Ana Soto, Marcello Buiatti,
Nadine Peyreiras, Jean Lassègue and Paul-Antoine Miquel. Additionally, we are
grateful to Denis Noble and Stuart Kauffman who not only encouraged our perspec-
tive but also wrote a motivating preface and inspired a joint paper, respectively. We
would also like to thank Michael Sweeney and Christopher Talbot who helped us
with the english grammar.

Paris, june 2013 Giuseppe Longo1
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Chapter 1
Introduction

The historical dynamic of knowledge is a permanent search for “meaning” and “ob-
jectivity”. In order to make natural phenomena intelligible, we single out objects
and processes, by an active knowledge construction, within our always enriched
historical experience. Yet, the scientific relevance of our endeavors towards knowl-
edge may be analyzed and compared by making explicit the principles on which our
conceptual, possibly mathematical, constructions are based.

For example, one may say that the Copernican understanding of the Solar system
is the “true” or “good” one, when compared to the Ptolemaic. Yet, the Ptolemaic
system is perfectly legitimate, if one takes the Earth as origin of the reference sys-
tem, and there are good metaphysical reasons for doing so. However, an internal
analysis of the two approaches may help for a scientific comparison in terms of the
principles used. Typically, the Copernican system presents more “symmetries” in
the description of the solar system, when compared to the “ad hoc” constructions of
the Ptolemaic system: the later requires the very complex description of epicycles
over epicycles, planet by planet . . . . On the opposite, by Newton’s universal laws, a
unified and synthetic understanding of the planets’ Keplerian trajectories and even
of falling apples was made possible. Later on, Hamilton’s work and Noether’s the-
orems (see chapter 5) further unified physics by giving a key role to optimality
(Hamilton’s approach to the “geodetic principle”, often mentioned below) and to
symmetries (at the core of our approach). And Newton’s equations could be derived
from Hamilton’s approach. Since then, the geodetic principle and symmetries as
conservation principles are fundamental “principles of intelligibility” that allow to
understand at once physical phenomena. These principles provide objectivity and
even define the objects of knowledge, by organizing the world around us. As we
will extensively discuss, symmetries conceptually unified the physical universe, far
away from the ad hoc construction of epicycles on top of epicycles.

Physical theorizing will guide our attempts in biology, without reductions to the
“objects” of physics, but by a permanent reference, even by local reductions, to the
methodology of physics. We are aware of the historical contingency of this method,
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yet by making explicit its working principles, we aim at its strongest possible con-
ceptual stability and adaptability: “perturbing” our principles and even our methods
may allow further progress in knowledge construction.

1.1 Towards biology

Current biology is a discipline where most, and actually almost all, research activi-
ties are — highly dextrous — experimentations. For a natural science, this situation
may not seem to be an issue. However, we fear that it is associated to a belief that ex-
periments and theoretical thinking could be decoupled, and that experiments could
actually be performed independently from theories. Yet, “concrete” experimenta-
tions cannot be conceived as autonomous with respect to theoretical considerations,
which may have abstract means but also have very practical implications. In the
field of molecular biology, for example, research is related to the finding of hy-
pothesized molecules and molecular manipulations that would allow to understand
biological phenomena and solve medical or other socially relevant problems. This
experimental work can be carried on almost forever as biological molecular diver-
sity is abundant. However, the understanding of the actual phenomena, beyond the
differences induced by local molecular transformations is limited, precisely because
such an understanding requires a theory, relating, in this case, the molecular level to
the phenotype and the organism. In some cases, the argued theoretical frame is pro-
vided by the reference to an unspecified “information theoretical encoding”, used as
a metaphor more than as an actual scientific notion, [Fox Keller, 1995, Longo et al.,
2012a]. This metaphor is used to legitimate observed correlations between molec-
ular differential manipulations and phenotype changes, but it does so by putting
aside considerable aspects of the phenomena under study. For example, there is a
gap between a gene that is experimentally necessary to obtain a given shape in a
strain and actually entailing this shape. In order to justify this “entailment”, genes
are understood as a “code”, that is a one-dimensional discrete structure, meanwhile
shapes are the result of a constitutive history in space and in time: the explanatory
gap between the two is enormous. In our opinion, the absence or even the avoidance
of theoretical thinking leads to the acceptance of the naive or common sense theory,
possibly based on unspecified metaphors, which is generally insufficient for satis-
factory explanations or even false — when it is well defined enough as to be proven
false.

We can then informally describe the reasons for the need of new theoretical per-
spectives in biology as follows. First, there are empirical, theoretical and conceptual
instabilities in current biological knowledge. This can be exemplified by the notion
of the gene and its various and changing meanings [Fox Keller, 2002], or the un-
stable historical dynamics of research fields in molecular biology [Lazebnik, 2002].
In both cases, the reliability and the meaning of research results is at risk. Another
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issue is that the molecular level does not accommodate phenomena that occur typi-
cally at other levels of organization. We will take many examples in this book, but
let’s quote as for now the work on microtubules [Karsenti, 2008], on cancer at the
level of tissues [Sonnenschein & Soto, 2000], or on cardiac functions at its different
levels [Noble, 2010]. Some authors also emphasize the historical and conceptual
shifts that have led to the current methodological and theoretical situation of molec-
ular biology, which is, therefore, subject to ever changing interpretations [Amzallag,
2002, Stewart, 2004]. In general, when considering the molecular level, the prob-
lem of the composition of a great variety of molecular phenomena arises. Single
molecule phenomena may be biologically irrelevant per se: they need to be related
to other levels of organization (tissue, organ, organism, . . . ) in order to understand
their possible biological significance.

In no way do we mean to negate that DNA and the molecular cascades related to
it play a fundamental role, yet their investigations are far from complete regarding
the description of life phenomena. Indeed, these cascades may causally depend on
activities at different level of analysis, which interact with them and deserve proper
insights.

Thus, it seems that, with respect to explicit theoretical frames in biology, the sit-
uation is not particularly satisfying, and this can be explained by the complexity
of the phenomena of life. Theoretical approaches in biology are numerous and ex-
tremely diverse in comparison, say, with the situation in theoretical physics. In the
latter field, theorizing has a deep methodological unity, even when there exists no
unified theory between different classes of phenomena — typically, the Relativistic
and Quantum Fields are not (yet) unified, [Weinberg, 1995, Bailly & Longo, 2011].
A key component of this methodological unity, in physics, is given by the role of
“symmetries”, which we will extensively stress. Biological theories instead range
from conceptual frameworks to highly mathematized physical approaches, the latter
mostly dealing with local properties of biological systems (e. g. organ formation).
The most prominent conceptual theories are Darwin’s approach to evolution — its
principles, “descent with modification” and “selection”, shed a major light on the
dynamics of phylogenesis, the theory of common descent — all current organisms
are the descendants of one or a few simple organisms, and cell theory — all organ-
isms have a single cell life stage and are cells, or are composed of cells. It would be
too long to quote work in the second and third group: they mostly deal with the dy-
namics of forms of organs (morphogenesis), cellular networks of all sorts, dynamics
of populations . . . when needed, we will refer to specific analyses. Very often, this
relevant mathematical work is identified as “theoretical biology”, while we care for a
distinction, in biology, between “theory” and “mathematics” analogous to the one in
physics between theoretical physics and mathematical physics: the latter mostly or
more completely formalizes and technically solves problems (equations, typically),
as set up within or by theoretical proposals or directly derived from empirical data.

In our view, there is currently no satisfactory theory of biological organization as
such, and in particular, in spite of many attempts, there is no theory of the organism.
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Darwin’s theory, and neo-Darwinian approaches even more so, basically avoid as
much as possible the problem raised by the organism. Darwin uses the duality be-
tween life and death as selection to understand why, between given biological forms,
some are observed and others are not. That is, he gave us a remarkable theoretical
frame for phylogenesis, without confronting the issue of what a theory of organisms
could be. In the modern synthesis, since [Fisher, 1930], the properties of organisms
and phenotypes, fitness in particular, are predetermined and defined, in principle, by
genetics (hints to this view may be found already in Spencer’s approach to evolution
[Stiegler, 2001]). In modern terms, “(potential) fitness is already encoded in genes”.
Thus, the “structure of determination” of organisms is understood as theoretically
unnecessary and is not approached1.

In physiology or developmental biology the question of the structure of determi-
nation of the system is often approached on qualitative grounds and the mathemat-
ical descriptions are usually limited to specific aspects of organs or tissues. Major
examples are provided by the well established and relevant work in morphogenesis,
since Turing, Thom and many others (see [Jean, 1994] for phillotaxis and [Fleury,
2009] for recent work on organogenesis), in a biophysical perspective. In cellular
biology, the equivalent situation leads to (bio-)physical approaches to specific bi-
ological structures such as membranes, microtubules, . . . , as hinted above. On the
contrary, the tentative, possibly mathematical, approaches that aim to understand
the proper structure of determination of organisms as a whole, are mostly based
on ideas such as autonomy and autopoiesis, see for example [Rosen, 1991, Varela,
1979, Moreno & Mossio, 2015]. These ideas are philosophically very relevant and
help to understand the structure of the organization of biological entities. However,
they usually do not have a clear connection with experimental biology, and some of
them mostly focus on the question of the definition of life and, possibly, of its origin,
which is not our aim. Moreover, their relationship with the aforementioned biophys-
ical and mathematical approaches is generally not made explicit. In a sense, our
specific “perspectives” on the organism as a whole (time, criticality, anti-entropy,
the main themes of this book) may be used to fill the gap, as on one side we try to
ground them on some empirical work, on the other they may provide a theoretical
frame relating the global analysis of organisms as autopoietic entities and the local
analysis developed in biophysics.

In this context, physiology and developmental biology (and the study of related
pathological aspects) are in a particularly interesting situation. These fields are di-
rectly confronted with empirical work and with the complexity of biological phe-
nomena; recent methodological changes have been proposed and are usually de-
scribed as “systems biology”. These changes consist, briefly, in focusing on the
systemic properties of biological objects instead of trying to understand their com-
ponents, see [Noble, 2006, Noble, 2011, Sonnenschein & Soto, 1999] and, in partic-

1 By the general notion of structure of determination we refer to the theoretical determination of
a conceptual frame, in more or less formalized terms. In physics, this determination is generally
expressed by systems of equations or by functions describing the dynamics.
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ular, [Noble, 2008]. In the latter, it is acknowledged that, as for theories in systems
biology:

There are many more to be discovered; a genuine “theory of biology” does not yet exist.
[Noble, 2008]

Systems biology has been recently and extensively developed, but it also corre-
sponds to a long tradition. The aim of this book can be understood as a theoretical
contribution to this research program. That is, we aim at a preliminary, yet possibly
general theory of biological objects and their dynamics, by focusing on “perspec-
tives” that shed some light on the unity of organisms from a specific point of view.

In this project, there are numerous pitfalls that should be avoided. In particular,
the relation with the powerful physical theories is a recurring issue. In order to clar-
ify the relationships between physics, mathematics and biology, a critical approach
to the very foundations of physical theories and, more generally, to the relation be-
tween mathematized theories and natural phenomena is most helpful and we think
even necessary. This analysis is at the core of [Bailly & Longo, 2011] and, in the
rest of this introduction, we just review some of the key points in that book. By
this, we provide below a brief account of the philosophical background and of the
methodology that we follow in the rest of this book. We also discuss some elements
of comparison with other theoretical approaches and then summarize some of the
key ideas presented in this book.

1.2 Objectivization and Theories

As already stressed, theories are conceptual and — in physics — largely mathema-
tized frameworks that frame the intelligibility of natural phenomena. We first briefly
hint to a philosophical history of the understanding of what theories are.

The strength of theoretical accounts, especially in classical mechanics, and their
cultural, including religious, background has led scientists to understand them as an
intrinsic description of the very essence of nature. Galileo’s remark that “the book
of nature is written in the language of mathematics” (of Euclidean geometry, to
be precise) is well known. It is a secular re-understanding of the “sacred book” of
revealed religions. Similarly, Descartes writes:

Par la nature considérée en général, je n’entends maintenant autre chose que Dieu même, ou
bien l’ordre et la disposition que Dieu a établie dans les choses crées. [By nature considered
in general, I mean nothing else but God himself, or the order and tendencies that God
established in the created things.] [Descartes, 1724]

Besides, in [Descartes, 1724], the existence of God and its attributes legitimate,
in fine, the theoretical accounts of the world: observations and clear thinking are
truthful, as He should not be deceitful. In this context, the theory is thus an account
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of the “thing in itself” (das Ding an sich, in Kant’s vocabulary). The validity and
the existence of such an account are understood mainly by the mediation of a deity,
in relation with the perfection encountered in mathematics — a direct emanation of
God, of which we know just a finite fragment, but an identical fragment to God’s
infinite knowledge (Galileo).

Kant, however, introduced another approach [Kant, 1781]. In Kant’s philosophy,
the notion of “transcendental” describes the focus on the a priori (before experience)
conditions of possibility of knowledge. For example, objects cannot be represented
outside space, which is, therefore, the a priori condition of possibility for their rep-
resentation. By this methodology, the thing in itself is no longer knowable, and the
accounts on phenomena are given, in particular, through the a priori form of the
sensibility that are space and time. Following this line, mathematics is understood
as a priori synthetic judgments: it is a form of knowledge that does not depend on
experience, as it is only based on the conditions of possibility for experience, but
neither is it based on the simple analysis of concepts. For example, 2+ 3 = 5 is
neither in the concept of 2 nor in the concept of 3 for Kant: it requires a synthesis,
which is based on a priori concepts.

The transcendental approach of Kant has, however, strong limitations, high-
lighted, among others, by Hegel and later by Nietzsche. Hegel insists on the sta-
tus of the knowledge of these a priori conditions, which he aims to understand
dialectically, by the historicity of Reason and more precisely by the unfolding of its
contradictions. Similarly, with a different background, Nietzsche criticizes also the
validity of this transcendental knowledge.

Wie sind synthetische Urtheile a priori möglich? fragte sich Kant, — und was antwortete
er eigentlich? Vermöge eines Vermögens [. . . ]. [How are a priori synthetic judgments pos-
sible?” Kant asks himself — and what is really his answer? By means of a means (faculty)
[. . . ]] [Nietzsche, 1886]

For Nietzsche, it is essential, in particular, to understand the genesis of such “facul-
ties”, or behaviors, by their roots in the body and therefore by the embodied subject
[Stiegler, 2001]. One should also quote Merleau-Ponty and Patocka as for the epis-
temological role of our intercorporeal “being in the world” and for reflections on
biological phenomena (for recent work and references on both these authors in one
text, see [Marratto, 2012, Thompson, 2007, Pagni, 2012]).

In short, for us, the analysis of a genesis, of concepts in particular, is a funda-
mental component of an epistemological analysis. This does not mean fixing an
origin, but providing an attempted explicitation of a constitutive paths. Any episte-
mology is also a critical history of ideas, including an investigation of that fragment
of “history” which refers to our active and bodily presence in the world. And this,
by making explicit, as much as it is possible, the purposes of our knowledge con-
struction. Yet, Kant provided an early approach to a fundamental component of the
systems biology we aim at, that is to the autonomy and unity of the living entities
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(the organisms as “Kantian wholes”, quoted by many) and the acknowledgment of
the peculiar needs of the biological theorizing with respect to the physical one2.

One of the most difficult tasks is to insert this autonomy in the unavoidable
ecosystem, both internal and external: life is variability and constraints, and nei-
ther make sense without the other. In this sense, the recent exploration in [Moreno
& Mossio, 2015] relates constraints and autonomy in an original way and comple-
ments our effort. Both this “perspective” and ours are only possible when accessing
living organisms in their unity and by taking this “wholeness” as a “condition of
possibility” for the construction of biological knowledge. However, we do not dis-
cuss here this unity per se, nor directly analyze its auto-organizing structural stabil-
ity. In this sense, these two complementary approaches may enrich each other and
produce, by future work, a novel integrated framework.

As for the interplay with physics, our account particularly emphasize the praxis
underlying scientific theorizing, including mathematical reasoning, as well as the
cognitive resources mobilized and refined in the process of knowledge construction.
From this perspective, mathematics and mathematized theories, in particular, are
the result of human activities, in our historical space of humanity, [Husserl, 1970].
Yet, they are the most stable and conceptually invariant knowledge constructions
we have ever produced. This singles them out from the other forms of knowledge.
In particular, they are grounded on the constituted invariants of our action, gestures
and language, and on the transformations that preserve them: the concept of num-
ber is an invariant of counting and ordering; symmetries are fundamental cognitive
invariants and transformations of action and vision — made concepts by language,
through history, [Dehaene, 1997, Longo & Viarouge, 2010]. More precisely, both
ordering (the result of an action in space) and symmetries may be viewed as “prin-
ciples of conceptual construction” and result from core cognitive activities, shared
by all humans, well before language, yet spelled out in language. Thus, jointly to
the “principles of (formal) proof”, that is to (formalized) deductive methods, the
principle of construction ground mathematics at the conjunction of action and lan-
guage. And this is so beginning with the constructions by rotations and translations
in Euclid’s geometry (which are symmetries) and the axiomatic-deductive structure
of Euclid’s proofs (with their proof principles).

This distinction, construction principles vs. proof principles, is at the core of
the analysis in [Bailly & Longo, 2011], which begins by comparing the situation
in mathematics with the foundations of physics. The observation is that mathe-
matics and physics share the same construction principles, which were largely co-
constituted, at least since Galileo and Newton up to Noether and Weyl, in the XXth
century3. One may formalize the role of symmetries and orders by the key notion

2 For a recent synthetic view on Kantian frames, and many references to this very broad topic,
in particular as for the transcendental role of “teleology” in biological investigations, one should
consult [Perret, 2013].
3 Archimedes should be quoted as well: why a balance with equal weights is at equilibrium? for
symmetry reasons, says he. This is how physicists still argue now: why is there that particle? for
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of group. Mathematical groups correspond to symmetries, while semi-groups cor-
respond to various forms of ordering. Groups and semi-groups provide, by this, the
mathematical counterpart of some fundamental cognitive grounds for our concep-
tual constructions, shared by mathematics and physics: the active gestures which
organize the world in space and time, by symmetries and orders.

Yet, mathematics and physics differ as for the principles of proof: these are the
(possibly formalized) principles of deduction in mathematics, while proofs need to
be grounded on experiments and empirical verification, in physics. What can we say
as for biology? On one side, “empirical evidence” is at the core of its proofs, as in
any science of nature, yet mathematical invariance and its transformations do not
seem to be sufficiently robust and general as to construct biological knowledge, at
least not at the level of organisms and their dynamics, where variability is one of
the major “invariant”. So, biology and physics share the principles of proofs, in a
broad sense, while we claim that the principles of conceptual constructions cannot
be transferred as such. The aim of this book is to highlight and apply some cases
where this can be done, by some major changes though, and other cases where
one needs radically different insights, from those proper to the so beautifully and
extensively mathematized theories of the inert.

It should be clear by now, that our foundational perspective concerns in priority
the methodology (and the practice) that allows establishment of scientific objectiv-
ity in our theories of nature. As a matter of fact, in our views, the constitution of
theoretical thinking is at the same time a process of objectivization. That is, this
very process co-constitutes, jointly to the empirical friction on the world, the object
of study in a way that simultaneously allows its intelligibility. The case of quantum
mechanics is paradigmatic for us, as a quanton (and even its reference system) is
the result of active measurement and its practical and theoretical preparation. In this
perspective, then, the objects are defined by measuring and theorizing that simul-
taneously give their intelligibility, while the validity of the theory (the proofs, in a
sense) is given by further experiments. Thus, in quantum physics, measurement has
a particular status, since it is not only the access to an object that would be there
beyond and before measurement, but it contributes to the constitution of the very
object measured. More generally, in natural sciences, measurement deals with the
questions: where to look, how to measure, where to set borders to objects and phe-
nomena, which correlations to check and even propose . . . . This co-constitution can
be intrinsic to some theories such as quantum mechanics, but a discussion seems
crucial to us also in biology, see [Montévil, 2014].

Following this line of reasoning, the research program we follow towards a the-
ory of organism aims at finding ways to constitute theoretically biological objects
and objectivize their behavior. Differences and analogies, by conceptual continuities
or dualities with physics will be at the core of our method (as for dualities, see, for

symmetry reasons — see the case of anti-matter and the negative solution of Dirac’s equations,
[Dirac, 1928].
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example, our understanding of “genericity vs. specificity” in physics vs. biology in
chapter 7), while the correlations with other theories can, perhaps, be understood
later4. In this context, thus, a certain number of problems in the philosophy of bi-
ology are not methodological barriers; on the contrary, they may provide new links
between remote theorizing such as physical and social ones, which would not be
based on the transfer of already constructed mathematical models.

1.2.1 A critique of common philosophical classifications

As a side issue to our approach, we briefly discuss some common wording of philo-
sophical perspectives in the philosophy of biology — the list pretends no depth nor
completeness and its main purpose is to prevent some “easy” objections.

PHYSICALISM In the epistemic sense (i.e. with respect to knowledge), physical-
ism can be crudely stated as follows:

the majority of scientists [recognize] that life can be explained on the basis of the exist-
ing laws of Physics . [Perutz, 1987]

The most surprising word in this statement is “existing”. Fortunately, Galileo
and Newton, Einstein and the founders of quantum mechanics, did not rely on
existing laws of physics to give us modern science. Note that Galileo, Copernicus
and Newton where not even facing new phenomena, as anybody could let two
different stones fall or look at the planets, yet, following different perspectives
on familiar phenomena, they proposed radically new theories and “laws”5.
There is no doubt that a wide range of isolated biological phenomena can be
accommodated in the main existing physical theories, such as classical mechan-
ics, thermodynamics, statistical mechanics, hydrodynamics, quantum mechanics,
general relativity, . . . , unfortunately, some of these physical theories are not uni-
fied, and, a fortiori, one cannot reduce one to the other nor provide by them a
unified biological understanding. However, as soon as the phenomena we want
to understand differs radically or are seen from a different perspective (the view
of the organism), new theoretical approaches may be required, as it happened
along the history of physics. There is little doubt that an organism may be seen
as a bunch of molecules, yet we, the living objects, are rather funny bunches of

4 The “adjacent” fields are, following [Bailly, 1991], physical theories in one direction and social
sciences in another. The notion of “extended criticality”, say, in chapter 7, may prove to be useful
in economics, since we seem to be always in a permanent, extended, crisis or critical transition,
very far from economic equilibria.
5 What an unsatisfactory word, borrowed from religious tables of laws and/or the writing of social
links — we will avoid it. Physical theories are better understood as the explicitation of (relative)
reference systems, of measures on them and of the corresponding fundamental symmetries, see
[Weyl, 1983, Van Fraassen, 1989, Bailly & Longo, 2011].
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molecules and the issue is: which theory may provide a sound perspective and
account of these physically singular bunches of molecules? For us, this is an
epistemic, a knowledge issue, not an ontological one.
Such lines are common within physics as well, in particular in areas that are di-
rectly relevant for our approach. For example, the understanding of critical tran-
sitions requires the introduction of a new structure of determination, as classes of
parameterized models and the focusing on new observables, such as the critical
exponents, see chapter 6. Similarly, going from macrophysics (classical mechan-
ics) to microscopic phenomena (quanta) necessitates the loss of determinism,
while the understanding of gravity in terms of quantum fields leads to a radi-
cal transformation of the classical and relativistic structure of space-time (e. g.
by non-commutative geometry, [Connes, 1994]) or radically new objects (string
theory, [Green et al., 1988]). It happens that these audacious new accounts of
quantum mechanics, which aim to unify it with general relativity, are not com-
patible with each other. Moving backwards in time, another example is the link
between heat and motion, which required the invention of thermodynamics and
the introduction of a new quantity (entropy). The latter allowed to describe, in
particular, the irreversibility of time, which is incompatible with a finite combi-
nation of Newtonian trajectories. Notice, though, that the current physical under-
standing of systems far from thermodynamical equilibrium is seriously limited
because there is no general theory of them, see for example [Vilar & Rubı́, 2001].
And biological entities, if considered as physical systems, would most probably
fall at least in this category.

VITALISM For similar reasons, the question and the debates around the notion of
vitalism lead to a flawed approach to biological systems. We exclude, by prin-
ciple, the various sorts of intrinsic teleologism (evolution leading to our human
perfection), internal living forces, encoded homunculi in DNA or alike. From
our theoretical point of view, what matters is to find ways to objectivize the phe-
nomena we want to study, similarly as what has been done along the history of
physics. However, the fear of negatively connoted vitalist interpretations leads
to blind spots in the understanding of biological phenomena, since it hinders
original approaches, strictly pertinent to the object of observation. If the search
for an adequate theory for the living state of matter, in an autonomous inter-
play of differences and analogies with theories of the inert, is vitalism, then the
researchers in hydrodynamics may be shamefully accused to be “hydrodynam-
icists” as, so far, there is no way to reduce to (nor to understand in terms of)
elementary particles that compose fluids, of quantum mechanics say, the incom-
pressibility and fluidity in continua at the core of their science. Those are under-
stood in terms of new or different symmetries from the one founding the theory
of particles (quanta): the suitable symmetries yield radically different and irre-
ducible equations and mathematically objectivize the otherwise vague notions of
fluidity and incompressibility in a continuum. Our colleagues in hydrodynam-
ics are not “dualist” for this, nor they believe in a “soul” of fluids, against the
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vulgar matter of particles. Similarly, in thermodynamics, the founding fathers in-
vented new observable quantities (entropy) and original phase spaces (P, V , T ,
pressure, temperature and volume) for thermodynamic trajectories (the thermo-
dynamic cycle). By this, they disregarded the particles out of which gases are
made. Later, Boltzmann did not reduce thermodynamics to Newton-Laplace tra-
jectories of particles. He assumed molecular chaos and the random exploration
of the entire intended physical space (ergodicity, see chapter 8), which are far
away from the Newton-Laplace mathematical frame of an entailed trajectory in
the momentum / position phase space. The new unit of analysis is the volume of
each microstate in the phase space. He then unified asymptotically the molecular
approach and the second principle of thermodynamics: given his hypotheses, in
the thermodynamic integral, an infinite sum, the ratio of particles over a volume
stabilizes only at the infinite limit of both. In short, the asymptotic hypothesis
and treatment allowed Boltzmann to ignore the entailed Newtonian trajectory of
individual particles and to give statistical account of thermodynamics.
The unity of science is a beautiful project, such as today’s search for a theory
unifying relativistic and quantum fields, yet unity cannot be imposed by a philo-
sophical prejudice. It is instead the result of hard work and autonomous theo-
rizing, followed, perhaps and if possible, by unification. And, if we do not have
different theories, as for different phenomenal frames, there is nothing to unify.

REDUCTIONISM (SCALE) The methodological assumption that we should under-
stand phenomena beginning at the small scales is, again, at odds with the history
of physics. Thermodynamics started at macroscopic scales, as we said. As for
gravitation and quantum fields, once more, in spite of almost one century of re-
search, macroscopic and microscopic are not (yet) understood in a unified frame-
work. And Galileo’s and Einstein’s theories remain fundamental even though
they do not deal with the elementary.
The hope for “theory of everything” aims to overcome, first, this major diffi-
culty, while there is no a priori reason why it would help, for example, in the
understanding of non-equilibrium thermodynamics (except possibly in the case
of black holes thermodynamics, [Rovelli, 1996], a remote issue from ours). Non-
equilibrium thermodynamics remains mainly under theoretical construction and
seems instead particularly relevant for life sciences. Moreover, and this point is
crucial for this critique of reductionism, the current understanding of microscopic
interactions, in the standard model, does not involve a fundamental, small scale;
on the contrary it “hangs” between scales (by renormalization methods):

QFT [Quantum Field Theory] is not required to be physically consistent at very short
distance where it is no longer a valid approximation and where it can be rendered finite
by a modification that is, to a large extent, arbitrary. [Zinn-Justin, 2007]

Another example is the question of (scale) reductionism, which is approached by
[Soto et al., 2008]. In the latter, the key role of time, with respect to biological
levels of organization, is evidenced. We will approach this question in a comple-



12 1 Introduction

mentary way, on smaller time scales — yet with a proper biological time — an
“operator”, we shall say in biology, both in a mathematical sense and by the role
of the historical formation of biological entities.
Finally, scale reductionism is in contrast with the modern analysis of renormal-
ization in critical transitions, see [Longo et al., 2012c], where scales are treated
by cascades of mathematical models with no privileged level of observation. Crit-
ical transitions will be extensively discussed in this book.

The conclusion of this section is that we understand biological theorizing as a
process of constitution of objectivity and, in particular, of organisms as theoretical
objects. Science is not the progressive occupation of reality by more or less familiar
conceptual and technical tools, but the permanent construction of new objects of
knowledge, new perspectives and tools for their organization and understanding,
yet grounded also on historically constructed knowledge and empirical friction.

1.2.2 The elementary and the simple

We mentioned that the points we made above are not philosophical prerequisites for
a genuine intelligibility of biological phenomena, however, the technical aspects we
hinted to in our critique will help us to provide both, we hope, philosophical and
scientific insights. This is our aim as for the notion of “the physical singularity of
life phenomena” developed in [Bailly & Longo, 2011], which we recall and further
develop here. The “singularity” stems both from the technical notion of extended
criticality below and from the historical specificity of living objects. Critical tran-
sitions are mathematical singularities in physics, yet they are non-extended as they
are described by point-wise transitions, see chapter 6.

Biological objects are “singular” also in the sense of “being individual”, that is,
the result of a unique history. One may better say that they are specific (see the
duality in chapter 7 with respect to physics).

In other words, we will widely use insights from physical theories, but these
insights will mainly be a methodological and conceptual reference, and will not be
rooted in an epistemic physicalism. Indeed, our approach may lead almost to the
opposite: we will use the examples from physical theorizing as tools on the way
to construct objectivity, and this will lead us, in some cases, to oppose biological
theorizing to the very foundations of physical theories — typically, by the different
role played by theoretical symmetries (in chapter 7 in particular). Moreover, we will
recall the genericity of the inert objects, as invariant with respect the theory and
the experiments, and the specificity of their trajectories (uniquely determined by the
geodetic principle). And we will oppose them to the specificity (historical nature)
of the living entities and the genericity of their phylogenetic trajectories, as possible
or compatible ones in a co-determined ecosystem, see chapter 7. Yet, the very idea
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of this (mathematical) distinction, generic vs. specific, is borrowed from physical
theorizing.

Further relations with physical theories will be developed progressively in our
text, when needed for our theoretical developments in biology.

Before specifying further our approach to biological objects, we have to further
challenge the Cartesian and Laplacian view that the fundamental is always elemen-
tary and that the elementary is always simple. According to this view, in biology
only the molecular analysis would be fundamental.

As we mentioned, Galileo and Einstein proposed fundamental theories of grav-
itation and inertia, with no references to Democritus’ atoms nor quanta composing
their falling bodies or planets. Then, Einstein, and still now physicists, struggle for
unification, not reduction of the relativistic field to the quantum one. Boltzmann did
not reduce thermodynamics to the Newtonian trajectories of particles, but assumed
the original principles recalled above and unified at the asymptotic limit the two
intended theories, thermodynamics and particles’ trajectories.

Thus, there is no reason in biology to claim that the fundamental must be concep-
tually elementary (molecular), as this is false also in physics. Moreover, the proper
elementary observable doesn’t need to be “simple”. “Elementary particles” are not
conceptually / mathematically simple, in quantum field theories nor in string theory.
In biology, the elementary living component, the cell, is (very) complex, a further
anti-Cartesian stand at the core of our proposal: a cell should already be seen as a
Kantian whole.

In an organism, no reduction to the parts allows the understanding of the whole,
because the relevant degrees of freedom of the parts, as associated to the whole, are
functional and this defines their compatibility within the whole and of the whole in
the ecosystem. In other terms, they are definable as components of the causal con-
sequences of properties of the parts. Thus, only the microscopic degrees of freedom
of the parts can be understood as physical. Further, because of the non-ergodicity
of the universe above the level of atoms, inasmuch at ergodicity is well defined in
this context (see chapter 8), most macromolecules and organs will never exist. Note
also that ergodicity would prevent selection since it would mean that a negatively
selected phenotype would “come back” in the long run, anyway.

As mentioned above and further discussed below, the theoretical frame estab-
lishes the pertinent observables and parameters, i.e. the ever changing and unprestat-
able phase space of evolution. Note that, in biology, we consider the observable and
parameters that are derived from or relative to Darwinian evolution and this is fun-
damental for our approach. Their very definition depends on the intended organism
and its integration in and regulation by an ecosystem. Selection, acting at the level
of the evolving organism in its environment, selects organisms on functions (thus
on and by organs in an organism) as interacting with an ecosystem. The phenotype,
in this sense constitutes the observables we focus on.
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1.3 A short synthesis of our approach to biological phenomena

A methodological point that we first want to emphasize is that we will focus on
“current” organisms, as a result an in the process of biological evolution. Indeed,
numerous theoretical researches are performed on the question of the origin of life.
Most of these analyses use physical or almost physical theories as such, that is they
try to analyze how, from a mix of (existing) physical theories, one can obtain “or-
ganic” or evolutive systems. We will not work at the (interesting, per se) problem
of the origin of life, as the transition from the inert to the living state of matter, but
we will work at the transition from theories of the inert to theories of living objects.
In a sense this may contribute also to the “origin” problem, as a sound theory of
organisms, if any, may help to specify what the transition from the inert leads to,
and therefore what it requires.

More precisely, the method of mathematical biology and biophysical modeling
quoted above is usually the transformation of a part of an organism (more generally,
of a living system) into a physical system, in general separated from the organism
and from the biological context it belongs to. This methodology often allows an un-
derstanding of some biological phenomena, from morphogenesis (phyllotaxis, for-
mation of some organs . . . ) to cellular networks and more, see above. For example,
the modeling of microtubules allows to approach their self-organization properties
[Karsenti, 2008], but it corresponds to a theoretical (and experimental) in vitro sit-
uation, and their relation with the cell is not understood by the physical approach
alone. The understanding of the system in the cell requires an approach external
to the structure of determination at play in the purely physical modeling. Thus, to
this technically difficult work ranging from morphogenesis and phyllotaxis to cellu-
lar networks, one should add an insufficiently analyzed issue: these organs or nets,
whose shape and dynamics are investigated by physical tools, are generally part of
an organism. That is, they are regulated and integrated in and by the organism and
never develop like isolated or generic (completely defined by invariant rules) crys-
tals or physical forms. It is instead this integration and regulation in the coherent
structure of an organism that contributes in making the biologically relevant situa-
tions, which is mostly non-generic, [Lesne & Victor, 2006].

The general strategy we use, is to approach the biological phenomena from dif-
ferent perspectives, each of them focusing on different aspects of biological organi-
zation, not on different parts such as organs or cellular nets in tissues . . . . The aim
is to propose a basis for a partially mathematized theoretical understanding. This
strategy allows us to obtain relatively autonomous progresses on the corresponding
aspects of living systems. An essential difficulty is that, in fine, these concepts are
fully meaningful only in the interaction with each other, that is to say in a unified
framework that we are contributing to establish. In this sense, then, we are mak-
ing progresses by revolving around this not yet existing framework, proposing and
browsing these different perspectives in the process. However, this allows a stronger
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Biology

Origin of life t

Current physical theories

Fig. 1.1: A scheme of the relation between physics and biology, from a diachronic point of view.
Theoretical approaches that focus on the origin of life usually follow the physical line (stay within
existing physical theories) and try to approach the “bifurcation” point. The latter is not well defined
since we don’t have a proper theory for the biological entities that are supposed to emerge. Usually,
the necessary ingredients for Darwinian evolution are used as goals. From our perspective, a proper
understanding of biological phenomena need to focus directly, at least as a first (huge) step, on the
properly biological domain, where the Darwinian tools soundly apply, but also where organisms
are constituted. It may then be easier to fill the gap.

relation to empirical work, in contrast to theories of biological autonomy, without
losing the sense of the biological unity of an organism.

The method we follow in order to progress in each of these specific aspects of life
can mostly be understood as taking different points of view on organisms: we look at
them from the point of view of time and rhythms, of the interplay of global stability
vs. instability, of the formation and maintenance of organization through changes
. . . . As a result, we will combine in this book a few of these theoretical perspectives,
the principal common organizing concepts will be biological time, on one side, and
extended criticality on the other. More specifically, the main conceptual frames that
we will either follow directly or that will make recurrent appearance in this text are
the following:

BIOLOGICAL TEMPORAL ORGANIZATION The idea is that, more than space or
energy, biological time is a crucial leverage to understand biological organiza-
tion. This does not mean that space or energy are irrelevant, but they have a
different role from the one they play in physics. The reason for this will be ex-
plained progressively throughout the book. The approach in terms of symmetry
changes that we develop in chapter 7 provides a radical argument for this point of
view. Intuitively, the idea is that what matters in biological theorizing is the no-
tion of “organization” and the way it is constructed along and, we dare to say, by
time, since biological time will be an operator for us, in a precise mathematical
sense. In contrast to this, the energetic level (say, between mammals of different
sizes) is relatively contingent, as we will argue on the grounds of the allomet-
ric relations, in chapter 2, where energy or mass appear as a parameter. Some
preliminary arguments from physics are provided by the role of time (entropy
production) in dissipative structures [Nicolis & Prigogine, 1977] and by the non-
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ergodicity of the molecular phase space, discussed in [Kauffman, 2002, Longo
et al., 2012b].

EXTENDED CRITICAL TRANSITIONS A large part of our work will use the no-
tion of extended critical transition [Bailly, 1991, Bailly & Longo, 2008, Bailly
& Longo, 2011] to understand biological systems. This notion is relatively com-
plex, in particular because of its physical prerequisites, and we will introduce it
progressively in this book. Notice that it provides a precise meaning to the idea
of the physical singularity of life phenomena.

ENABLEMENT Biologists working on evolution often refer to a contingent state
of the ecosystem as “enabling” a given form of life. A niche, typically, enables a,
possibly new, organism; yet, a niche may be also constructed by an organism. In
[Longo et al., 2012b] et [Longo & Montévil, 2013] an attempt is made to frame
this informal notion in a rigorous context. We borrow here from that work to
correlate enablement to the role of symmetry changes and we provide by this a
further conceptual transition from physics to biology.

ANTI-ENTROPY This aims to quantify the “amount of biological organization” of
an organism [Bailly & Longo, 2003, Bailly & Longo, 2009] as a non-reducible
opposite of entropy. It also determines some temporal aspects of biological orga-
nization. This aspect of our investigation gives a major role to randomness. The
notion of randomness is related to entropy and to the irreversibility of time in
thermodynamics and statistical mechanics. As a result, we consider a proper no-
tion of biological randomness as related to anti-entropy, to be added on top of the
many (at least three) forms of randomness present in physical theories (classical,
thermodynamical, quantum).

1.4 A more detailed account of our main themes: Time
Geometry, Extended Criticality, Symmetry changes and
enablement, Anti-Entropy

The purpose of this book is to focus on some biological phenomenalities, which
seem particularly preeminent, and try to approach them in a conceptually robust
manner. The four points below briefly outline the basic ideas developed and are
meant to provide the reader with the core ideas of our approach, whose precise
meaning, however, can only be clarified by the technical details to which this book
is dedicated.
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1.4.1 Biological time.

The analysis of biological rhythms does not seem to have an adequate counterpart
in mathematical formalization of physical clocks, which are based on frequencies
along the usual, possibly oriented, time. Following [Bailly et al., 2011], we present a
two-dimensional manifold as a mathematical frame for accommodating autonomous
biological rhythms: the second dimension is compactified, that is, it is a circular fiber
orthogonal to the oriented representation of physical time. Life is temporally paced
by both external (physical) rhythms (circadian, typically), which are frequencies,
and internal ones (metabolism, respiration, cardiac rhythms). The addition of a new
(compactified) dimension for biological time is justified by the peculiar dimensional
status of internal biological rhythms. These are pure numbers, not frequencies: they
become average frequencies and produce the time of life span, when used as coef-
ficient in scaling laws, see chapter 2. These rhythms have also singular behaviors
(multi-scale variations) with respect to the physical time, which can be visualized
in our framework. In contradiction with physical situations, the scaling, however,
does not seem to be associated to a stable exponent. These two peculiar features
(pure numbers and fractal-like time series) are the main evidences of the mathemat-
ical autonomy of our compactified time with respect to the physical time. Thus, the
usual physical (linear) representation of time may be conveniently enriched, in our
view, for the understanding of some phenomena of life: we will do it by adding one
dimension to the ordinary physical representation of time.

Besides rhythms, an extended form of present is more adequate for the under-
standing of memory or elementary retention, since this is an essential component
of learning, for the purposes of future action, even in some unicellular organisms.
Learning is based on both memory and “protention”, as pre-conscious expectation.
Now, while memory, as retention, is treated by some physical theories (relaxation
phenomena), protention seems outside the scope of physics. We then suggest some
simple functional representation of biological retention and protention.

The two new aspects of biological time allow to introduce the abstract notion of
“biological inertia”, as a component of the conceptual time analysis of organisms.
Our approach to protention and retention focuses on local aspects of biological time,
yet it may provide a basis to accommodate the long range correlations observed ex-
perimentally, see [Grigolini et al., 2009]. Indeed, this kind of correlations is relevant
for both aspects of our approach to biological time, and fits in the conceptual frame-
work of extended criticality below.

Another aspect of biological time, discussed in chapter 7, is the time constituted
by the cascade of symmetry changes which takes place in extended critical tran-
sitions. In other terms, this time is defined by the ubiquitous organizational trans-
formations occurring in biological matter. Here, time corresponds to the historicity
of biological objects and to the process of biological individuation, both ontoge-
netic and phylogenetic. Indeed, time is no longer the parameter of trajectories in
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the phase, space since the latter is unstable (chapter 8); therefore we will stress that
temporality, defined by the changes of phase space, requires an original insight, in
biology.

1.4.2 Extended Criticality.

The biological relevance of physical theories of criticality is due first to the fact that,
in physics, critical phase transitions are processes of changes of state where, by a
sudden change (a singularity w. r. to a control parameter), the global structure of
the system is involved in the behavior of its elements: the local situation depends
upon (is correlated to) the global situation. Mathematically, this may be expressed
by the fact that the correlation length formally tends towards infinity (e. g. in second
order transitions, such as the para-/ferromagnetic transition). Physically, this means
that the determination is global and not local. In other words, a critical transition
is related to a change of phase and to the appearing of critical behaviors of some
observable — magnetization, density, for example — or of some of its particular
characteristics — such as correlation lengths. It is likely to appear at equilibrium
(null fluxes) or far from equilibrium (non-null fluxes). In the first case, the physico-
mathematical aspects are rather well-understood (renormalization as for the math-
ematics [Binney et al., 1992], thermodynamics for the bridge between microscopic
and macroscopic description), while, in the second case, we are far from having
theories as satisfactory. We present physical critical transitions in chapter 6.

Some specific cases, without particular emphasis on the far from equilibrium
situation, have been extensively developed and publicized by Bak, Kauffman and
others (see [Bak et al., 1988, Kauffman, 1993, Nykter et al., 2008a]). The sand
pile, whose criticality reduces to the angle of formation of avalanches in all scales,
percolation (see [Bak et al., 1988, Laguës & Lesne, 2003]) or even the formation
of a snowflake are interesting examples. The perspective assumed is, in part, com-
plementary to Prigogine’s: it is not fluctuations within a weakly ordered situation
that matter in the formation of coherence structures, but the “order that stems from
chaos” [Kauffman, 1993]. Yet, in both cases potential correlations are suddenly
made possible by a change in one or more control parameter for a specific (point-
wise) value of this parameter. For example, the forces attracting water molecules
towards each other, as ice, are there: the passage below a precise temperature, as de-
creasing Brownian motion, at a certain value of pressure and humidity, allows these
forces to dominate the situation and, thus, the formation of a snow flake, typically.

Critical transitions should also be understood as sudden symmetry changes (sym-
metry breaking and formation of new symmetries), and a transition between two
different macroscopic physical objects (two different states of matter, in the lan-
guage of condensed matter physics), with a conservation of the symmetries of the
components. The specific, local and global, symmetry breakings give the variety
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and unpredictability of organized forms and their regularities (the new symmetries)
as these transitions are constituted by the fluctuations in the vicinity of criticality.
In physics, the point-wise nature of the “critical point” of the control parameter is
an essential mathematical issue, as for the treatment by the relevant mathematics of
“renormalization” in theories of criticality, see chapter 6 and [Binney et al., 1992].

Along the lines of the physical approaches to criticality, but within the frame
of far from equilibrium thermodynamics, we consider living systems as “coher-
ent structures” in a continual (extended) critical transition. The permanent state of
transition is maintained, at each level of organization, by the integration/regulation
activities of the organism, that is by its global coherent structure.

In short, following recent work [Bailly & Longo, 2008, Longo & Montévil,
2011a], but also on the grounds of early ideas in [Bailly, 1991], we propose to ana-
lyze the organization of living matter as “extended critical transitions”. These tran-
sitions are extended in space-time and with respect to all pertinent control param-
eters (pressure, temperature etc.), their unity being ensured through global causal
relations between levels of organization (through integration and regulation). More
precisely, our main theoretical paradigm is provided by the analysis of critical phase
transitions, as this peculiar form of critical states presents some particularly inter-
esting aspects for the biological frame: the formation of extended (mathematically
diverging) correlation lengths and coherence structures, the divergence of some ob-
servables with respect to the control parameter(s) and the change of symmetries
associated to potentially swift organizational changes. However, the “coherent crit-
ical structures” which are the main focus of our work cannot be reduced to exist-
ing physical approaches, since phase transitions, in physics, are treated as “singular
events”, corresponding to a specific well-defined value of the control parameter, just
one (critical!) point as we said. Whereas our claim is that in the case of living sys-
tems, these coherent critical transitions are “extended” and maintained in such a way
that they persist in the many dimensional space of analysis, while preserving all the
physical properties mentioned above (diverging correlation lengths, new coherence
structures, symmetry changes . . . ). In other words, the critical transitions we look at
are to be analyzed as taking place through an interval, not just a point, with respect
to each control parameter. Thus, a living object is understood not only as a dynamic
or a process, in the various possible senses analyzed by physical theories, but it is
a permanent critical transition: it is always going through changes, of symmetries
changes in particular, as analyzed below. We then have an extended, permanently re-
constructed and changing global organization constituted by an interaction between
local and global structures, since the global/local interplay is proper to critical transi-
tions. We consider this perspective as a conceptual tools for understanding diversity
and adaptivity.

Our analysis of extended criticality is largely conceptual, because of the loss of
the mathematics of renormalization, which applies to point-wise phase transitions.
Moreover, there seems to be little known Mathematical Physics that applies to phys-
ically singular, far from equilibrium critical transitions, a fortiori when the transition
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is extended. The other major conceptual and technical difficulty is also due to the
instability of the symmetries involved. The issue we will focus on then, is how to
objectivize biological phenomena, since, in contradiction with the physical cases,
they do not not seem to be theoretically determinable within a specific, pre-given
phase space and this because of the key biological role of symmetry changes.

1.4.3 Symmetry changes and enablement

As a fundamental conceptual transition between theories of the inert and of the
living, we extensively focus on the different role of symmetry changes. Symmetry
changes correspond, in physics, to the transition to a new state of the matter, or,
even, in some cases, to a radical change of theory (recall the transition from the-
ories of particles to hydrodynamics). In biology, instead, we will focus in chapter
7 on their constitutive role: the analysis of symmetry changes provide a key tool
for constructing a coherent biological knowledge. As mentioned above, extended
criticality is based on symmetry breakings and (re)constructions; our understand-
ing of randomness, variability, adaptivity and diversity of life will largely rely on
them. Moreover, in the passage from physics to biology, we will use these perma-
nent dynamics to justify the introduction of “enablement” in [Longo et al., 2012b]
and [Longo & Montévil, 2013], see chapter 8. Life and ecosystemic changes al-
low (enable) new life. (Changing) niches enable novelty produced by “descent with
modification”, a fundamental principle of Darwin’s, while new phenotypes produce
or co-constitute new niches. In our view, enablement is a fundamental notion, often
used in the language of evolution, that we try to frame here in a coherent theoret-
ical perspective. In contrast to the inert, whose default state is, of course, inertia,
organisms interact with the surrounding world by acting (reproduction with mod-
ification and motility), use enabling conditions (are enabled by the environment),
while producing new enabling conditions for further forms of life.

The analysis of enablement will lead us to the final main theme of this book: an
understanding of the increasing complexity of phenotypes, through evolution. Of-
ten by sudden transitions, or by “explosions” as for richness of news phenotypes
(Eldredge’s and Gould’s punctuated equilibria, see [Eldredge & Gould, 1972]), or-
ganisms complexify as for the anatomical structure through evolution. Our aim is
to objectivize this intuition and the paleontological facts supporting it, by a sound
mathematical understanding: anti-entropy will provide a possible quantification of
phenotypic complexity and of its unbiased diffusion towards increasing values. It
only makes sense in presence of continual symmetry changes and enablement.
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1.4.4 Anti-entropy

In chapter 9, we develop our systemic perspective for biological complexity, both
in phylogenesis and ontogenesis, by an analysis of organization in terms of “anti-
entropy”, a notion which conceptually differs from the common use of “negative
entropy”. Note that both the formation and maintenance of organization, as a per-
manent reconstruction of the organism’s coherent structure, go in the opposite di-
rection of entropy increase. This is also Schrödinger’s concern in the second part of
his 1944 book. He considers the possible decrease of entropy by the construction of
“order from order”, that he informally calls negative entropy. In our approach, anti-
entropy is mathematically presented as a new observable, as it is not just entropy
with a negative sign (negative entropy, as more rigorously presented in Shannon
and in [Brillouin, 1956]). Typically, when summed up, equal entropy and negative
entropy give 0. In our approach, entropy and anti-entropy are found simultaneously
only in the non-null critical interval of the living state of matter. A purely con-
ceptual analogy may be done with anti-matter in Quantum Physics: this is a new
observable, relative to new particles, whose properties (charge, energy) have oppo-
site sign. Along our wild analogy, matter and anti-matter never give 0, but a new
energy state: the double energy production as gamma rays, when they encounter in
a (mathematically point-wise!) singularity. Analogously, entropy and anti-entropy
coexist in an organism, as a peculiar “singularity”: an extended zone (interval) of
criticality.

To this purpose, we introduced two principles (existence and maintenance of
anti-entropy), in addition to the thermodynamic ones. These principles are (math-
ematically) compatible with the classical thermodynamic ones, but do not need to
have meaning with regard to inert matter. The idea is that anti-entropy represents
the key property of an organism, even a unicellular one, to be describable by several
levels of organization (also a eukaryotic cell possesses organelles, say), regulating,
integrating each other — they are parts that functionally integrate into a whole,
and the whole regulates them. This corresponds to the formation and maintenance
of a global coherence structure, in correspondence to its extended criticality: orga-
nization increases, along embryogenesis say, and is maintained, by contrasting the
ongoing entropy production due to all irreversible processes. No extended criticality
nor its key property of coherence would be possible without anti-entropy produc-
tion, since always renewed organization expresses and allows the maintenance of
the extended critical transition.

Following [Bailly & Longo, 2009], we apply the notion of anti-entropy to an
analysis of Gould’s work on the complexification of life along evolution in [Gould,
1997]. We thus extend a traditional balance equation for the metabolism to the new
notion as specified by the principles above. This equation is inspired by Gibbs’
analysis of free energy, which is hinted as a possible tool for the analysis of bio-
logical organization in a footnote in [Schrödinger, 1944]. We will examine far from
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equilibrium systems and focus in particular on the production of global entropy as-
sociated to the irreversible character of the processes. In [Bailly & Longo, 2009], a
close analysis of anti-entropy has been performed from the perspective of a diffu-
sion equation of biomass over phenotypic complexity along evolution. That is, we
could reconstruct, on the grounds of general principles, Gould’s complexity curve
of biomass over complexity in evolution [Gould, 1997]. We will summarize and
update some of the key ideas of that work. Once more, Quantum Mechanics in-
directly inspired our mathematical approach: we borrow Schrödinger’s operatorial
approach in his famous equation but in a classical framework. Classically, that equa-
tion may be understood as a diffusion equation. As a key difference, which stresses
the “analogical” frame, we use real coefficients instead of complex ones. Thus we
are outside of the mathematical framework of quantum mechanics and just use the
operatorial approach in a dual way, for a peculiar diffusion equation: the diffusion
of bio-mass over phenotypic complexity.

1.5 Map of this book

It should be clear by now that this book is at the crossroads of (theoretical) physics
and biology. As a consequence, certain passages will use mathematical techniques
that can seem of some difficulty for the non-mathematically trained reader. How-
ever, the main mathematical tools used in this book are very simple and we will try
to explain them both conceptually and intuitively in the text. Similarly, we will refer
to numerous physical ideas that we will explain qualitatively (and for a few of them,
quantitatively). The prevalence of physical concepts will be especially marked in the
chapter 5 and 6, however these concepts will be gradually introduced. In any cases,
the the more technical parts of the book may be skipped at first reading, as suggested
on place, and the qualitative explanations should be sufficient to proceed to our bi-
ological proposals. In general, we do not think at all that, in scientific disciplines,
there is “as much scientific knowledge as there is mathematics”. For example, the
notions of extended criticality and enablement are represented only at a concep-
tual level. Mathematics is used here just when it helps to better specify concepts, if
possible and needed, typically and more broadly to focus on invariance and symme-
tries. it is also used when it has some “generative” role, i. e. when it suggests how
to go further by entailed consequences within or beyond proposed frameworks: the
case of “biological inertia” in chapter 4 is a simple example of the latter form of
entailment.

It is worth mentioning that despite conceptual and formal links between the chap-
ters, most chapters retain a certain level of autonomy and can be read independently.

As for the references we will make to empirical evidences, we will start from
some broadly accepted forms of “scaling”. In chapter 2, we will review them in var-
ious contexts, where our choice of results is motivated by their relative robustness
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and by the theoretical role that they will play later. We will in particular try to assess
their experimental reliability and the variability that is observed. This step is impor-
tant since we will use these observations (including variability) both technically and
conceptually, as examples, in the rest of this book.

Since biological rhythms are associated to relatively robust symmetries, we will
consider the question of biological temporal organization directly, first by analyzing
rhythms, in chapter 3, then by an analysis of the “non-linear” organization of bio-
logical time. More precisely, we first propose a bidimensional reference system for
accommodating biological rhythms, by which we may take scaling behaviors of dif-
ferent nature into account. Then, in chapter 4, we will approach the local structure
of biological time, through the notions of protention and retention, thus providing
an elementary mathematical approach of the notion of “extended present”.

Chapter 5 provides a conceptual (and light technical) introduction on the role of
symmetries in physical theories. This chapter provides some background and exam-
ples to set the subsequent developments. The next chapter, chapter 6, will provide an
elementary introduction to physical critical transitions. Both chapters are intended
to introduce the notions required for the following.

In chapter 7, we will approach the structures of determination of biological phe-
nomena by the notion of theoretical symmetries. This will allow us to contrast the
status of biological objects with the status of the physical objects. As a matter of
fact, for the latter, the theoretical symmetries are stable, while we will characterize
biological processes as undergoing ubiquitous symmetry changes. This will allow
us to provide a proper notion of variability and of biological historicity (as a cascade
of symmetry changes).

Since this perspective yields a fundamental instability of biological objects, our
theoretical proposal “destabilizes” the physical approach to objectivization, for bio-
logical objects. Chapter 8 explores the consequence of this approach on the notion
of phase space in biology (that is on the space of the theoretical determination).
Namely, in this context, the relevant space of description is changing and unpre-
dictable. The notion of “enablement” provides an understanding of biological dy-
namics by adding on top of causality a novel theoretical insight on how the active
default state of living entities continually constructs and occupies new niches and
ecosystems.

In chapter 9, we revisit the quantified approach to biological complexity, as “anti-
entropy”, introduced in [Bailly & Longo, 2009]. By this, we will develop an analysis
of that notion in terms of symmetry and symmetry changes, on one side, and analyze
some regenerative aspects of biological organization on the other side. We will also
discuss the issue of the associated notion of randomness.

We conclude by philosophical reflection on how we moved from physics to biol-
ogy, chapter 10.





Chapter 2
Scaling and scale symmetries in biological
systems

Observations always involve theory.

E. Hubble

Abstract:

This chapter reviews experimental results showing scaling, as a fundamental form
of “theoretical symmetry” in biology. Allometry and scaling are the transforma-
tions of quantitative biological observables engendered by considering organisms
of different sizes and at different scales, respectively. We then analyze anatomical
fractal-like structures, the latter being ubiquitous in organs’ shape, yet with a fair
amount of variability. We also discuss some observed temporal fractal-like struc-
tures in biological time series. In the final part, we will provide some examples of
space-time and of network configurations and dynamics.

The few concepts and mathematics needed to understand allometry and scaling
are progressively introduced, always accompanied by a discussion of the main ex-
perimental findings, either through special cases or more general results. We focus
in particular on the robustness of these empirical observations and the corresponding
variability.

Keywords:

Scaling, variability, allometry, fractals, regulation, criticality.

2.1 Introduction

We propose, in this chapter, a unified picture of the empirical findings on allometry
and scaling in organisms and cells. Although these findings mainly revolve around
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the notion of scale symmetry, they can take various forms. Therefore, we will pro-
vide brief accounts of the conceptual and mathematical basis leading to these em-
pirical inquiries. These short introductions are also needed because they define the
quantities that are tentatively constituted to be robust and biologically relevant.

We want first to emphasize the difference between the allometric relations and
the scaling relationships inside a definite system.

ALLOMETRY In the allometric methodology, the idea is to compare properties of
organisms with different sizes. More precisely the core idea of allometry is that
we can highlight fundamental aspects of biological organization by looking how
quantities, such as various rates, sizes of components . . . , change with respect
to a degree of freedom (the organism mass usually) and more precisely its scale.
This degree of freedom is not in general per se relevant (as a degree of freedom)
to the organism. That is, usually we cannot change, in a relevant way, the mass
of an adult organism (except by changing its organization, usually by obesity).

SCALING This methodology aims at finding scaling relationships as a property
of a system observed at different scales (especially spatial and temporal scales).
Hence, this second approach aims at describing complex geometrical organiza-
tion, usually by introducing a dependence of observed quantities on the resolu-
tion of observation. This can bring out significant results by looking how objects
change as a function on this resolution, instead of “looking at the whole object at
once” or on the average.

An extensive review of the second methodology, in the case of neuronal struc-
tures and activities, has been given in [Werner, 2010], see also [Werner, 2007,
Ribeiro et al., 2010]. Since scaling and criticality, another major issue of this book,
are already well reviewed for neuronal activities, we will, as for now, refer to those
texts as for neuronal examples; more will be said in forthcoming chapters. For sake
of generality, we focus here on the basic physiological properties of cells and organ-
isms.

We are going first to look at allometric properties in biological systems. Then,
we will consider the morphological fractal-like properties, their validity and basic
properties. These properties concern the space organization of biological systems.
Next, we will look at the temporal structure of organisms, by the observation of bio-
logical time series. Then, we will discuss anomalous diffusion as well as biological
networks architectures and dynamics.

Before entering this discussion, we will present the basic mathematical forms
that describe the simplest case of scaling, namely the renowned power laws, and the
reason why they mathematically model scale symmetries. More complex definitions
of scaling usually have these forms as mathematical building blocks.

This chapter deals with a few but fundamental approximate invariants of life, of-
ten highly debated. It requires, as we said, some (simple) mathematics and numerous
references to empirical evidence, which is at the basis of our theorizing. However,
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the philosophically oriented reader may skip, at first reading, the technical details
and move to more theoretical chapters of this book. The conclusion of each section
will summarize some relevant aspects of our presentation.

2.1.1 Power laws

As we said, power laws, that is laws described by functions f such as f (x) = kxα ,
are met almost everywhere when scaling is discussed. We will show in this section
that there is a straightforward mathematical reason that justifies this situation. We
will first present it informally, and a discussion with more technical details and
generality can be found in annex A.1. The mathematics are very simple, it is more
a matter of digesting some notation that true mathematical theorems and, at first
reading, the reader may just try to assimilate it without going into the details of the
(very simple) proofs.

Let us consider a real function f of one variable. Suppose that f has a property of
scale invariance, by which we mean that f is the same, modulo a coefficient when
the variable is observed at different scales. Formally, this condition can be written
as f (λx) = g(λ ) f (x), where λ characterize the change of scale.

This condition can also be seen in terms of symmetry, as an invariance by dilata-
tion: f ◦Dλ = D̃g(λ ) ◦ f .

We will now show semi-informally that under this conditions, and the assumption
that f is continuous, we have f (x) = f (1)xα .

• In this special case, we have f (x1) = f (1)g(x) = g(x) f (1), meaning that f and
g are proportional. We will in the following take an arbitrary value, a, not nec-
essarely 1, as the starting point of the transformation. The aim is now to relate
quantities f (x), for any value of the variable x, to f (a), provided that both f (1)
and f (a) are different from 0. This assumption allows to define α as the unique
value such that f (a) = aα (i.e. α = ln( f (a))

ln(a) ).

• Considering an integer n, we have f (an) = g(an) f (1) and f (an) = f (aan−1) =

g(a) f (an−1) = · · ·= g(a)n f (1). Hence, g(an) = g(a)n.

• If p and q are integers, f (aqp/q)= f (ap)= g(a)p f (1) and f (aqp/q)= f
((

ap/q
)q
)
=

g(ap/q)q f (1). So we conclude that f (ap/q)= g(a)p/q f (1) and g(ap/q)= g(a)p/q.
• This is not sufficient to obtain the value f (x) = f (ay) for every real number y, be-

cause there is no finite algebraic transformation from the rationals to all real num-
bers. Nevertheless, since every real number is the limit of rational numbers and
since we assumed that f is continuous, we can conclude that f (ay) = g(a)y f (1).

• Writing g(a) = aα (i.e. α = ln(g(a))
ln(a) ) we have then f (x) = f (ay) = g(a)y f (1) =

aαy f (1) = xα f (1).
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We understand now that scale symmetry leads directly to power laws. It is note-
worthy that such functions are described by two kinds of quantities: a coefficient,
here f (1), and one or more exponents, α here. This two kinds of quantities will be
the at the core of the empirical results we discuss in this chapter. Notice, moreover
that the exponent is a dimensionless quantity associated to the changing of scale
itself, it determines the dilatation D̃λ α of the observable, associated to the dilata-
tion Dλ of the variable. The coefficient f (1) is associated to the choice of units (of
what 1 is, for the variables and the observable). Another aspect of this coefficient,
in a given choice of units, is that it can be different for different sets of objects that
still share the same symmetry by dilatation. In this case, they are not on the same
orbit for these transformations: they have the same symmetry but are not symmet-
ric for the intended transformation (they cannot be changed into each other by this
symmetry, see below for an elementary example in the case of allometry).

By contrast with the situation of scale symmetry, the paradigmatic situation in-
volving a characteristic scale is of the form exp(−x/x0). Since exp(−λx/x0) =

exp(−x/x0)
λ−1exp(−x/x0): the analog to g depends then crucially on x. From a

more conceptual point of view, the nature of the exponential is to describe the de-
cay (or growth) of a quantity which changes in proportion to its magnitude for a
given translation of the variable. The magnitude of the translation needed to obtain
a decay of a factor e defines then a particular scale.

2.2 Allometry

A foundational approach to allometry can be found in Galileo’s work, [Galileo,
1638]. In his early studies on Dante’s Inferno (“Two lectures on the size of the
Hell”, of the early 1580s) Galileo developed a close analysis of the structure of Hell
and its covering — a major architectural problem as the Hell is a cone, centered
at the center of the Earth with a base angle of 60 degrees. These technical studies
were very much in fashion at the time and, most likely in order to improve his
bibliometrics indices, the young Galileo felt obliged to be involved in them. When
he obtained a tenured position at the University of Pisa, in 1589, he stopped this
work and started his best known commitments (see [Lévy-Leblond, 2007]). In his
“Two Lectures on the size of the Hell”, Galileo mentioned, but did not discuss and
apparently accepted as possible, the peculiar allometric properties of the Devil, who
is 1,200 meters tall, but with the same proportions as a human. These properties
may have later puzzled Galileo, as there are written traces that he refused to send
out reprints of these lectures, when asked.
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It is possible that this mistake enhanced his founding writings on allometry
and relative resistance of materials in [Galileo, 1638], which we briefly summarize
next1.

2.2.1 Principles

As previously stated, the idea of allometry is to look at quantitative properties of
objects of the same “nature” but of different sizes. Consider, for example, a cube of
side length l, and a dilatation of all axes by a factor λ . If L is the length of the edges,
S its surface and V its volume, we have:

L = l λL
S = l2 −→ λ 2S
V = l3 λ 3V

Therefore, we have obtained quantities that have the form alα , where α character-

Fig. 2.1: Allometry for a cube: Doubling the lengths leads to a multiplication by 22 of the surfaces
and a multiplication by 23 of the volume. The corresponding exponents, 2 and 3, characterize in a
very general way the geometrical nature of the objects and property considered.

izes the nature of the quantity observed (a length, a surface or a volume). As we
said before, the exponent α defines the scale symmetry associated to the considered
quantity, whilst the coefficient a determines a class of objects which are symmetric,

1 As soundly pointed out recently by J. M. Lévy-Leblond, Galileo’s early oversight may have
been motivated by the fact that the Devil’s belly button coincides with the center of the Earth, so
the gravitational effects are rather minor on Him (Her?). We also share this thesis, namely that the
widely accepted “Devil’s violation of allometric equations” is a compatible fact with the discussion
below on these equations.
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with respect to the observed quantity. For example, the set C of cubes of side length
l and the set of spheres S of radii l share the same symmetries by dilatation for the
surface (with exponent 2) and the volume (with exponent 3), but they have different
coefficients (fully determined by the value at a given scale, say for l = 1).

More generally, the idea of allometry is to postulate that a class of objects, under-
stood as parameterized in particular by their size (for example their mass, W ), share
a quantitative property A(W, . . .), and that this objects are similar in their consti-
tution. The latter is formulated by saying that A verifies, at least approximately, a
symmetry by dilatation with respect to the parameter W . As a result, the expected
relationship, when everything else remains constant, is A(W ) ' aW α . The latter
relation describes the scale symmetry associated to the considered objects, then un-
derstood as different versions of the same organization for different sizes.

We should notice that this kind of dependency is geometrically fundamental and
for “simple” systems does not lead to a plethora of situations. For example, in clas-
sical thermodynamic, with mass as a parameter, there are two kinds of quantities:
the intensive quantities, with α = 0 (for example temperature, pressure, concentra-
tions, . . . ) and the extensive quantities, with α = 1 (volume, energy, entropy, . . . )2.

In order to show allometry experimentally, the simplest methodology consists in
representing the observable as a function of its parameter in log-log coordinates. In
such a graph, the allometric relation correspond to a straight line, because of the re-
lationship logA(W )' log(a)+α log(W ). This relation also shows that the exponent
appears as the slope of this line. In order to test such a relationship, a broad set of
orders of magnitude is required, because multiplying logW by n requires measuring
a weight W n (from another point of view, the derivative of log tends to 0 when the
variable tends to infinity). There are mainly two situations in biology that meet this
criteria and which correspond to the two main types of allometry: the intraspecific
or ontogenetic allometry (we observe organisms during their development) and the
interspecific allometry (we observe adults of species encompassing a wide range of
adult masses). From a biological point of view, an essential difficulty is to define
A in such a way that A can be expected to be similar for organisms with various
phylogenetic and ontogenetic histories and widely different sizes3.

2.2.2 Metabolism

From the point of view of allometry, metabolism is a very interesting quantity since
it is clearly a global quantity, involving the activity level of the whole organism.

2 The non-extensive thermodynamic approaches try to construct a framework where the situation
is richer, starting from this point of view, see [Tsallis & Tirnakli, 2010] for a review.
3 Going back to the founder of these issues, Galileo applied his remarks to biological organisms,
by observing that the diameter of bones had to grow like the cube, not linearly, since the wheigth
grows like a volume, [Galileo, 1638].
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Besides, it is a quantity that can be measured for a wide class of organisms, in a
similar way. Since the work of [Rubner, 1883] and [Kleiber, 1932], a considerable
amount of studies has been performed focusing on metabolic allometry, also for
historical reasons (see below).

In order to compare the metabolism of different organisms, it is necessary to
consider them at comparable levels of activity. As a result, the levels of activity con-
sidered must be broadly defined, and should not exhibit too much specific effects,
due to ontogenetic or phylogenetic individuation. The main levels of activity used
are:

BASAL METABOLIC RATE (BMR). The BMR is the most used level of activity for
allometry. It corresponds intuitively to a situation of an animal doing nothing in
particular but being awaken. More precisely, the animal is at rest in a conscious
post-absorptive state in a thermo-neutral environment and in the inactive phase of
the circadian cycle. We should notice here that this can imply some difficulties.
For example, ruminants are almost always in an absorptive state. This level is
defined for homeothermic animals, and its analog for poikilothermic animals is
the Standard Metabolic Rate. However, the distinction between the two terms is
sometimes fuzzy in the literature.

MAXIMUM METABOLIC RATE (MMR). The MMR corresponds to a situation at
the maximum level of sustainable exercise.

FIELD METABOLIC RATE (FMR). The FMR is measured on animals in the wild.
As a result it needs specific measurement methodology, in order to not hinder
animal’s activity. Notice that, by definition, it may depend on the field considered,
and on animal’s habits.

In order to observe quantitatively metabolic activity, the simplest method is the mea-
surement of the O2 consumption rate, provided that for aerobic organisms this rate
is assumed to be proportional to respiration, and the latter to metabolism. For plants,
where the metabolic activity consumes and produces oxygen, the observed quantity
is the increase of mass (dry matter). A less frequently used methodology consists
in a calorimetric approach, allowing to directly observe the energy dispersed by
organisms as heat. [Glazier, 2005] is an extensive survey on metabolic allometry.

2.2.2.1 Interspecific metabolic allometry

Allometry of the BMR and metabolic allometry in general has been first tested exper-
imentally in biology by [Rubner, 1883]; and this experimental approach was initially
motivated by a theoretical insight. The idea Rubner followed is that the metabolism,
R, (measured by O2 consumption rate) should be proportional to heat transfers with
the environment. The latter is then assumed to be proportional to the surface of the
body, leading to R ∝ S ∝ l2, where l is a typical length. The mass is also assumed
to be proportional to the volume, so we have W ∝ V ∝ l3 and l ∝ W 1/3. As a result,
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the expected relationship between metabolism and mass was R ∝
(
W 1/3

)2
=W 2/3.

This relationship has been tested experimentally and seemed confirmed on dogs.
Nevertheless, the work of [Kleiber, 1932] lead to a largely different BMR allomet-

ric relationship for adult mammals: an exponent of 3/4. This relation seems to hold
for interspecific allometry, as for the observation of O2 consumption rate among an-
imals [Kleiber, 1961, Schmidt-Nielsen, 1984, Savage et al., 2004], but with different
coefficients R0 for mammals, birds or reptiles (where R ≈ R0W 3/4). For example,
this coefficient is roughly 10 times bigger for mammals than for reptiles, which
comes as no surprise considering the deep metabolic differences between the two
phylogenetic groups. Yet, the remarkable fact is the finding of similar allometric
exponents. In the case of plants, for the observation of dry matter production, the
same relation was also found in [Niklas & Enquist, 2001], with the same coefficient
over 20 order of magnitude4. Nevertheless, notice that, in all cases, the variability
remains high, in spite of the high regularizing effect of the allometric form. For ex-
ample, in [Niklas & Enquist, 2001] the 95 % confidence interval has a width of a
factor 10 (for the metabolism).

Part of these results, however, are challenged by some authors. To understand
the roots of the controversy, recall than any statistical analysis is based on an as-
sumption of independence or controlled dependence between points, which lead to
the weight given for various measurement. [Savage et al., 2004] takes averages on
a per species basis, then gives equal statistical weights for equal log(W ) intervals.
The underlying idea is to give equal weight to all masses, which is the straightfor-
ward way to follow the form of allometric equation. This allows to deal with the fact
that there are more small species than large species. It also indirectly compensates
for phylogenetic correlations, since related species tends to have similar masses5.
[White & Seymour, 2003], on the contrary, focuses on the question of phylogenetic
dependence, but does not take into account the small size over-representation, and
even accentuates it by ruling out species, usually big, where the post absorptive
state was not clearly achieved6. This lead the two studies to find different, statisti-
cally incompatible exponents . . . even though they are based on the same data set,
see [Agutter & Wheatley, 2004] for a fairly balanced review on this issue.

One should note that temperature plays a key role for the metabolic rate. A rule,
derived by theoretical arguments, based on thermodynamics, has been proposed and
tested by [Gillooly et al., 2001]: R ∝ exp( E

kT ). This rule is confirmed by empirical
data, but seems far more scattered than the mass dependence, see §2.2.2.3.

4 This article is especially seen as compelling since one of its author was skeptical about the wide
range validity of such a relationship.
5 This approach is related to the theoretical justification of 3/4 BMR allometric exponent proposed
in [West et al., 1997, West et al., 1999], which emphasizes the scale symmetry aspects as a broad
tendency.
6 As we mentioned earlier, it is indeed extremely difficult, if ever possible, to put animals like
ruminants in a post-absorptive state.
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Maximum metabolic rate, however, yields a higher exponent. For mammals, the
exponent found is 0.87 in [Weibel et al., 2004] and of 0.83 in [Savage et al., 2004];
among mammals and birds, [Bishop, 1999] finds an exponent of 0.88. Even if the
exponent is not stable in the literature, the fact that it is higher that the BMR ex-
ponent is well established. We emphasize that it is obvious that the coefficient R0
for MMR is higher than that of BMR, because in the case where the mass is one,
RMax = R0,Max > RBasal = R0,Basal ; however, the two situations could a priori lead
to similar exponents, like in the comparison of reptiles and mammals. There is,
though, a simple mathematical reason, which is not discussed in the literature, why
the exponent for MMR cannot be smaller than that of BMR: if this was the case, small
animals would have a higher BMR than the MMR. A more biological argument is that
the MMR is influenced by the inertial mass. Indeed the organism needs to move and
it is fair to assume that the energy required for that is proportional to the inertial
mass, which has an allometric exponent of 1.

The field metabolic rate depends on the habits of animals and on their ecological
situation, which can be somewhat different in different habitats. As a result, the
possible scale symmetry is significantly looser than for other metabolism values,
see [Nagy, 2005]. The exponent found is roughly 0.8, but the importance of the
temperature of the environment is emphasized (which comes as no surprise, since it
leads to different contributions of the external surface/volume ratio).

In the special case of hibernation, the exponent seems to be 1, see [Singer et al.,
1995]. If this result is confirmed — which may prove to be difficult because of the
limited number of hibernating species —, it means that the metabolic rate is an
extensive quantity in this very peculiar situation. Hence, we can hypothesize that
in this case the organism behave mostly like a sum of its part. Indeed this global
response is what is expected for a classical (i.e. not complex), physical system. We
can accordingly hypothesize that the corresponding biological integration is weak,
as far as the metabolism is concerned.

2.2.2.2 Intraspecific metabolic allometry

We want to emphasize first that intraspecific allometry actually means ontogenetic
allometry, since the size variability among adults is not sufficient to perform allo-
metric studies. Some pathological cases, such as obesity, dwarfism, . . . , could also
provide mass variability, but associated to very specific changes of organization.

Intraspecific allometry seems far less stable than interspecific allometry. A num-
ber of study has been performed, especially among fishes, where the intraspecific
allometric exponents were found to vary, depending on the species, see for example
[Bokma, 2004]. We have to mention, however, that the latter study does not distin-
guish field metabolic rate and standard metabolic rate, and use highly heterogeneous
data.
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The observation of intraspecific allometry allows to obtain results for single
species7, and, as a consequence, to examine the potential changes of organization
in development through a shift of allometric exponent, or a curve in log-log space.
A study of [Giguere et al., 1988], for example, finds that the routine metabolic rate
of Atlantic mackerel, Somber scombrus, scales isometrically (exponent 1) for fishes
at a larval stage, whilst the juveniles and adults have an exponent of 0.8. Another
study [Moran & Wells, 2007] on the yellowtail kingfish, Seriola lalandi, leads to an
exponent of 0.90. According to the authors, the situation is possibly better described
by a quadratic curve in the log-log space (instead of a linear one), comforting the
idea of possible changes of exponent during ontogeny. A general study, among five
different phyla, [Glazier, 2006], found in particular that the exponent is higher for
pelagic animals in comparison with benthic ones — including a shift when the con-
sidered species has a larval, pelagic lifestyle followed by a benthic adult stage. Such
a shift occurs in the case of mussels, Mytilus edulis, from an exponent 0.9 to 0.7.

The conclusions we can draw from these results is that aquatic intraspecific al-
lometry is correlated to the ecological lifestyle. Beyond this correlation, we want to
emphasize that the variability is dominant; and allows to have extreme variations in
allometric exponents, including for animals with related ecological statuses.

For terrestrial animals too, the situation is not particularly stable. For example,
exponents from 0.62 to 0.68 have been found for different snakes species [Dmi’el,
1970]. A more extensive study of ectotherms, [Glazier, 2009], found an average
basal metabolic rate exponent of 0.83±0.10, where the high scattering of this ex-
ponent distribution is especially noteworthy. Similarly to the interspecific situation,
the active metabolic rate exponent is found to be higher 0.92. A collection of specific
results can be found in [Glazier, 2005].

2.2.2.3 A word on temperature

Temperature has a direct effect on the rate of chemical reactions, and, as a result, can
be assumed to affect directly the metabolism of organisms. This effect is expected
to be large when the body temperatures can be significantly different, for poikilo-
therms8. [Gillooly et al., 2001, Gillooly et al., 2006] propose to consider that the
effect of temperature on metabolism can be deduced, at least as a tendency, from
thermodynamics. Arrhenius equation provides the following relation between the
kinetic constant, k, of a chemical reaction, and its activation energy Ei. In particular,
the latter is assumed to be constant by the authors (independent of temperature and
constant in a given group of organisms) because of the stability of the elementary
reactions involved in respiration:

7 As a matter of fact results for single individuals could also be obtained, but such studies have not
been performed to our knowledge.
8 As a matter of fact, one can also change importantly the temperature of homeotherms, but this
leads to a major global organizational change, namely hypothermia (or hibernation).
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k = Aexp
(
− Ei

kbT

)
(2.1)

where kb is Boltzmann constant and T is the temperature in Kelvin. This leads to a
completed metabolic equation:

R = R0W 3/4 exp
(
− Ei

kbT

)
(2.2)

and if we take a reference temperature T0

R(W,T ) = R(1,T0)W 3/4 exp
(

Ei(T −T0)

kbT T0

)
(2.3)

The results obtained in [Gillooly et al., 2001] is Ei = 0.41 eV to 0.74 eV, with
variations depending in particular on the organism group, with an overall mean of
0.62eV. However, the variability of the data is quite high, even in a given phyloge-
netic group. Still, in relation with the level of activity, most allometric studies have
to take the effect of temperature variations into account, when one has to compare
organisms used to different temperatures.

However, this account is based on the assumption of a symmetry of the molecular
(thermodynamic) activities at different temperature, which is not necessarily met in
biological situations. Actually, even the intraspecific exponents (for mass allometry)
can depend on temperature. In [Glazier, 2005], for example, the Arthropoda Asellus
aquaticus has an exponent of ∼ 0.8 for 10 ◦C to 20 ◦C and of ∼ 0.4 for 25 ◦C to
30 ◦C, whilst Euphausia pacifica has an exponent that remains approximately con-
stant. We can interpret the situation by saying that temperature changes can lead
to organizational changes. Therefore, we have, here, a complete departure from the
analysis above.

Notice also that the temperature of the body is not well defined for some species,
meaning that it is far from homogeneous. For example, tuna have temperature dif-
ferences of 12 ◦C to 15 ◦C, see [Kay, 1998].

2.2.3 Rhythms and rates

Rhythmic processes are another aspect of biological phenomena that allometry can
help to describe. The idea here is to look at processes that occur in similar ways for
a great variety of organisms, and to measure the time τi needed for these processes
to take place. These time intervals are, for example, the beat-to-beat interval of the
heart or the entire lifespan.

The results in the literature, see [Lindstedt & Calder III, 1981, Savage et al., 2004,
Günther & Morgado, 2005], is that τi ∝W 1/4 for interspecific allometry of mammals
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Table 2.1: Allometry of biological rhythms in mammals, this table is es-
tablished using results from [Lindstedt & Calder III, 1981] and represents
τi = τ0W α where W is in kg and τ0 in min.

logτ0 exponent α

Life span in captivity 6.8 0.20
98 % growth time 5.8 0.26
Time for population doubling 5.5 0.26
Time to reproductive maturity 5.5 0.18
50 % growth time 5.3 0.25
Gestation period 5.0 0.25
Time to metabolize fat stores (0.1 % body
mass)

2.2 0.26

Drug half life (methotrexate) 1.8 0.19
Plasma clearance, inulin 0.8 0.27
Blood circulation time −0.5 0.21
Gut beat duration −1.3 0.31
Respiratory cycle −1.7 0.26
Cardiac Cycle −2.4 0.25
Twitch contraction time, soleus −3.0 0.39
Twitch contraction time, extensor digito-
rum longus

−3.5 0.21

and birds, where W is the mass. Note that we can deduce from this relation that the
metabolic rate should scale approximately like W 3/4. Indeed, the metabolic rate has
the physical dimensionality of an energy over a time and we can then approximately
write that energy iss proportional to the mass, thus: R ∝

W
τi

∝ W 3/4.
The metabolic rate is unique for an organism (in a given measure), whilst there

is at the same time a broad variety of rhythms taking place in an organism. More-
over, characteristic times of non-rhythmic phenomena can also be observed. Hence,
a variety of allometric exponents can be observed for the same class of organisms,
which makes temporal allometry especially interesting, a priori. Their theoretical
value is confirmed a posteriori by the approximate stability of the obtained allomet-
ric exponents, see table 2.1. A consequence of this stability is that the average ratio
of two such times does not depend on the mass of the organisms, and then seems to
be an invariant quantity. The average number of iterations of a given rhythm during
the entire life span of an organism is then especially relevant, as a variety of them
remain approximately constant among mammals, for example. The drawback of this
kind of approach is that observables, such as the cardiac rhythm, become undefined
for organisms . . . without a heart (and in particular unicellular ones).

It is usually argued that the maximum spiking rate of neurons does not depend
on the mass of organism, because it is supposed to be determined by the parameters
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of Hodgkin-Huxley’s equation, and this parameters are mostly determined by ion
channels which remains symmetric for animals of different masses, and depend on
the cell. In [Hempleman et al., 2005], allometry is thus found in the neural spiking
pattern for intrapulmonary chemoreceptors, with exponents of 0.22 to 0.26 as for
birds.

Plants, to our knowledge, have less relevant rhythms than animals from the allo-
metric perspective. Nevertheless, [Marbà et al., 2007] considered the demographic
parameters on a wide collection of plants (from phytoplankton to trees) and found
that the times characterizing the mortality rate has an allometric exponent of 0.22
and that the exponent for birth characteristic time is 0.27. As a result, both of them
are close to the usual value of 1/4. Partial results on fishes support also comparable
exponents [Gerkema, 2002].

Interestingly, these aspects directly impact the molecular level. For example,
[Gillooly et al., 2005] found that the nucleotides substitution rates are associated
to exponents of 0.21 to 0.23, depending on the precise phenomenon observed. As a
result, the “molecular clock”, if any, depends directly on the body size (and temper-
ature) of the organisms involved. Temporal allometry also have direct consequences
on the effect of drugs on an organism, see [Boxenbaum & DiLea, 1995, Kirman
et al., 2003] and the discussion in the conclusion of this section below.

2.2.4 Cell and organ allometry

If we consider constituents of an organism (cells or organs, typically), the analysis
of the allometry of their properties, with respect to the mass of the organism, pro-
vides original and compelling insights on their biological meaning. Indeed, it gives
directly a quantitative relation between the considered part and the whole. Here,
we will review some anatomic and metabolic allometric relationship for parts of
organisms.

2.2.4.1 Cell allometry

Let us suppose that an organism of mass W is constituted by a number of cell N(W )

and has a metabolism of R = R0W α (understood here as a respiration rate). We will
first consider two opposite organizational possibilities, as described in [Savage et al.,
2007]. This description will allow to clarify what the logic of the situation is. We
will first remark that a principle of conservation (provided that there is no production
of O2 in the organism and that metabolism occurs in cells) leads to R = ∑Ri, where
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Table 2.2: Allometry of cell types, this table is established on the grounds of results
from [Savage et al., 2007]. αV is the allometric exponent associated to the cells
volume and αN is the exponent associated to the estimated cell number.

Cell type αV αN

Expected 1 0 1
Expected 2 1−α ' 0.25 α ' 0.75
Alveolar macrophages 0.08 0.96
Erythrocytes 0
Fibroblasts 0
Fibrocytes 0.05
Glomerular epithelium 0.05
Goblet cells 0.07
Henle loop cells 0.01
Hepatocytes −0.03
Lung endothelial cells 0 1.00
Lung interstitial cells 0.06 1.08
Lung type I cells 0.05 0.95
Lung type II cells 0 0.98
Proximal convoluted tubules 0.04
Sebaceous gland cells 0.05
Adipocytes (dorsal wall of abdomen) 0.13 0.80
Adipocytes (skin) 0.17
Cerebellar granule neurons 0.14
Cerebellar Purkinje neurons 0.18
Superior cervical ganglion neurons 0.68

Ri is the metabolism of the cell i. In other words, the oxygen consumption of the
organism is the sum of the oxygen consumption of the cells9.

1. If we assume that the mean cell size does not depend of the size of the organism
(mc ∝ W 0), then we have N(W ) = W

mc
∝ W , where mc is the mean of the cells

masses and N is the number of cells. However, in this case, the mean metabolic
rate per cell, Rc, is Rc =

R(W )
N(W ) = R0mcW α−1. As a result, if the cells sizes are

independent of the size of the organism, their metabolism gets lower when we
consider organisms of greater sizes.

2. On the contrary, if we consider that the mean cell metabolic rate stays invariant,
we obtain that N(W ) = R(W )

Rc
= R0

Rc
W α ∝ W α . Then the mean mass of cells be-

9 The hypothesis of conservation is crucial (and also does not seem very problematic): it is this
hypothesis which leads to an additive structure for the oxygen consumption. The same argument
is used for the mass.
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come mc =
W

N(W ) =
Rc
R0

W 1−α ∝ W 1−α . As a result, the cells get bigger when we
consider larger organisms.

These two simple, opposite organizational possibilities have been proposed and
empirically explored by [Savage et al., 2007], in an interspecific comparison among
mammals, and for the basal metabolic rate. We reproduce their findings in table 2.2,
where mc is approached by the cellular volume. These results show that the two
theoretical organizational tendencies seem to be biologically relevant.

2.2.4.2 Organ allometry

Table 2.3: Allometry of organs, intraspecific after [Trieb et al., 1976]
and interspecific [Schmidt-Nielsen, 1984, Wang et al., 2001].

Organs Male rata Female rata Interspecific exponent

Body weight 1 1 1
Prostate 2.13 ND
Testes 1.02 ND
Ovaries ND 0.68
Liver 0.73 0.48 0.87c

Heart 0.67 0.65 0.98c

Kidney 0.67 0.57 0.85c

Thyroid 0.55 0.35
Adrenal 0.55 1.01
Pituitary 0.53 0.53
Lungs 0.47 0.40 0.99c

Spleen 0.47 0.47
Brain 0.16 0.18 0.76b; 0.70c

a Result from [Trieb et al., 1976]
b Results from [Wang et al., 2001]
c Results from [Schmidt-Nielsen, 1984]

The interspecific allometry of organs’ weight is not trivial; it involves different
exponents for different organs, see table 2.3. As a result, the relative weight of or-
gans depends crucially on the adult mass of the organism considered. This approach
provides a limited but general way to characterize organs’ functions, through the
analysis by size dependence [Schmidt-Nielsen, 1984].

The intraspecific approach provides a size-dependency of organ weights, which
differs widely from interspecific allometry. The growth of an organism is indeed nei-
ther isometric (ie: preserving proportions) nor following interspecific relationships
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Fig. 2.2: Illustration of the interspecific and intraspecific allometry of organs sizes. Here, we con-
sider the allometry of brain (LEFT) and heart sizes (RIGHT), see table 2.3. The black line corre-
sponds to interspecific allometry while the colored line corresponds to developmental trajectories
for two different species (with different adult masses). We assumed that they have the same allo-
metric exponent; that is, qualitatively, we assumed that they have the same kind of developmental
trajectory.

(a small dog is, anatomically, very different from an adult rat of the same weight).
On the contrary, developmental organization leads usually to an early growth of vi-
tal organs, providing specific proportions to immature organisms, see table 2.3 and
figure 2.2. Notice that these differences allow in particular the paleontological iden-
tification of juvenile and adults, when the adult size is a priori unknown and varies
largely.

2.2.5 Conclusion

From a practical point of view, the question of allometry can be crucially found in
the problem of pharmaceutical dosages, when no specific study has been performed
before (in a veterinary context but also when going from animal models to humans).
The naive approach of providing a dosage proportional to the mass of the organism
can lead to catastrophic results. The accepted dosage depends, among others, of
the nature of the toxicity involved, and on the mode of administration, the usual
allometric exponents relevant are 0.75 and 1 [Boxenbaum & DiLea, 1995, Kirman
et al., 2003].

Now, from a more theoretical perspective, we saw that interspecific allometry,
and the corresponding scale symmetry, is supported by solid empirical data. The
3/4 exponent for BMR is not only supported by a study on plants over 20 orders of
magnitude, but also by converging results from the study of biological rhythms and
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rates. However, this exponent can only be understood as a broad tendency and, even
in the interspecific case, variability is relatively high.

For intraspecific allometry, however, the situation is far more scattered, phyloge-
netic individuation prevails; and specific exponents (or even exponent shifts) arise.

The differences between interspecific and intraspecific allometries are particu-
larly compelling. They show clearly that a developing animal is not equivalent to
an adult, even under these broad organizational tendencies that allometry allows to
show. From this perspective, the organizational difference between adults and juve-
niles seems in particular characterized by oversized organs.

Notice also that the general consequence of the complex allometric relationships
encountered in biology is that most biological quantities depend in a nontrivial way
on the size of the organism considered. This is also relevant, even when no partic-
ular organizational changes are involved (for example, the mass distribution among
organs depend on the adult size for mammals).

2.3 Morphological fractal-like structures

In this section, we will focus on the geometry of anatomical structures, inasmuch
scale symmetries are involved. Structures exhibiting this kind of symmetries, at least
approximately, are widespread in biology and consequently we will limit ourselves
to a few important examples. We will first introduce the elementary notion of fractal
and fractal dimension; then we will mostly discuss the cases of cellular membranes
and tree-like organs.

2.3.1 Principles

The term fractal was coined by Mandelbrot [Mandelbrot, 1983] for rugged geomet-
ric structures, usually exhibiting a scale symmetry. The fundamental idea of fractals
come from an aspect of usual geometries (based on differential manifold typically)
that has been found to be a limitation. These geometries are based on smooth struc-
tures, with possibly pointwise singularities (punctually undefined or infinite deriva-
tives). As a result, when zooming, this structures invariably lead to a straight line
(in arbitrary dimension, to a linear, flat, structure). However, many situations, let it
be natural phenomena or mathematical constructs, do not seem to have such prop-
erties. On the contrary, when zooming this second type of structures display more
and more details and does not converge towards a smooth linear object.

We should note that this kind of ideas originated first in pure mathematics, in par-
ticular in relation with the issues of conceptual instability that 19th century analysis
encountered. It was in particular thought that any infinite sum of “usual” functions
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should be differentiable; however, Weierstrass constructed the counter-example of a
“monstrous” nowhere differentiable function, constructed by summing cosine func-
tions. Later, using the powerful and brand new set theoretic framework, Cantor con-
structed numerous strange functions and sets, such as a function of one variable
filling the plane or the so called Cantor dust which, in one dimension, has the power
of the continuum (a cardinality property) and is closed but is nowhere dense (see,
for example, [Edgar, 1993] for a collection of historical papers on fractals).

We will now define some of the major kinds of scale symmetric sets that can be
constructed, see, for example, [Le Méhauté et al., 1998, Falconer & Wiley, 2003]
for complete presentations.

2.3.1.1 Scale symmetry for sets

Fig. 2.3: Example of a strictly self-similar fractal, obtained by a simple iterative procedure: the
Sierpiński triangle. Here, the fractal object is encountered at the limit, when the number of iter-
ations tends to infinity. Notice that the figure become more pale when the number of iterations
increases. This can be easily explained by the fact that the fractal structure itself has a null mea-
sure (for the natural measure of the embedding space, here a surface), so that the convergence to a
fractal structure leads to the vanishing of color with iteration.

To approach scale symmetric sets, we first have to define an iterated function
system (IFS). Let D be an open subset of Rn. A contraction is an application S : D→
D such that there exists c ∈]0,1[, with ∀(x,y) ∈ D2, ‖S(x)− S(y)‖ ≤ c‖x− y‖ (the
case of equality defines the notion of similarity10). A finite family of contractions
(Si)i∈J1,nK acts on a non-empty compact11 set F ⊂ D by

10 In this case, the distance between points is conserved, modulo a constant factor, see also below.
11 Here, the compact sets are bounded set stable for taking the limit of converging sequences.
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S (F) =
⋃

i∈J1,nK

Si(F) (2.4)

With these definitions, there exists a unique F , which is called the attractor of the
IFS and is a fixed point of S , so that:

F = S (F) (2.5)

Indeed, F can (and should) be seen as an attractive fixed point by iteration of S
since F can be equivalently defined as:

F =
∞⋂

k=0

S k(E) (2.6)

Now, with these preliminary definitions, we can define sets exhibiting scale sym-
metry, by increasing order of generality (meaning that the symmetry we will con-
sider will be less and less strict). These scale symmetric sets correspond to intuitive
and for a part of them, constructive notions of fractal.

SELF-SIMILAR SETS. Strictly speaking, a self-similar set is the attractor of an IFS

with contractions which are similarities. Similarities conserve all distances (mod-
ulo a global factor) and, as a result, are proportional to euclidean transformations,
the transformation preserving usual geometric shape. The result of a similarity
is (here) a reduced version of the object (which can be translated, rotated and
reflected). However, the name of self-similar fractal is sometimes loosely used
for fractal defined by an IFS, whatever the nature of the contractions involved is.

SELF-AFFINE SETS. This case corresponds to attractors of an IFS composed of
contractions which are affine transformations (the composition of a linear trans-
formation and a translation). This means in particular that these transformations
can deform proportions of objects (linearly).

QUASI-SELF-SIMILAR SETS. This notion describes situations where the above
symmetries are not verified, but are approximately so. A set F is k-quasi-self-
similar if there exists r0 > 0 such that for any subset U ⊂ F , with ‖U‖= r ≤ r0,
there is an application φ : U → F , called a k-quasi-similarity such that:

1
k
‖x− y‖ ≤ r

r0
‖φ(x)−φ(y)‖ ≤ k‖x− y‖ (∀x,y ∈U) (2.7)

This definition means that a part of the set has approximately the same shape
that the whole. We should notice that this kind of approximation concerns all
subsets of F at the same time, with a definite level of approximation, and is thus
different from usual analytic approximations, which tries to obtain an arbitrarily
precise control on the object by considering increasingly small neighborhoods
“successively”.
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STATISTICAL SELF-SIMILAR SETS. Such a set only has a statistical regularity be-
tween scales. This regularity is described by the existence of a fractal dimension
(see next section).

MULTI-FRACTAL SETS. Such a set is similar to a statistical self-similar set; how-
ever, the fractal dimension is not well defined. Instead, different points have dif-
ferent local scaling behavior; and we have a spectrum of fractal dimensions. No-
tice also that the multi-fractal approach is more precise that the fractal one. For
example, when one consider a fractal structure near a ball of the embedding space
one only obtain the dimension of the embedding space, from a strictly fractal
point of view.

We mentioned fractal dimensions in the above definitions; so we will now de-
scribe this notion with more details.

2.3.1.2 Fractal dimension

The fractal dimension(s) is a way to evaluate how convoluted an object is, or more
technically, how densely it occupies space. The classical dimensions are integers: 1
for a line, 2 for a surface 3 for a volume, 4 for a space-time block, . . . . However,
fractal objects, like the Sierpiński triangle in figure 2.3, do not fit in this category.
If we measure the length of Sierpiński triangle’s internal frontier, we get (modulo a
factor 3l where l is the length of the side of the first triangle):

L =
1
2
×1+

(
1
2

)2

×3+
(

1
2

)3

×32 + · · · ∝
(

3
2

)n

(2.8)

This length tends to infinity, in spite of the finite extent of the figure. However
at each iteration we remove 1/4 of the surface, so after n iteration the surface is
S0
( 3

4

)n
, thus the final surface is 0, as physically illustrated by the vanishing of the

color’s intensity in figure 2.3. We understand then, that both points of view, the 1-
dimensional and 2-dimensional measures fail to provide an account of the situation;
and that it is related to exponential drifts (either towards 0 or infinity).

Let us consider a cover of a line of length l with cubes of length r we need ap-
proximately l/r ∝ 1/r cubes. Now, if we want to cover a surface, each cube having a
surface r2, then we need approximately l2/r2 ∝ 1/r2 cubes. In the case of Sierpiński
triangle, see also figure 2.4, we see that we need one cube for each triangle of the
same size. After one iteration, we get 3 times more triangles with half size, so for
cubes of size r = l/2n (which corresponds to n = − log(r)/ log(2)) we need 3n

cubes; thus we obtain that the number of cubes is of the form 3n = 3− log(r)/ log(2) =

1/rlog(3)/ log(2). We can then intuitively identify the dimension of the fractal shape
with log(3)/ log(2).

More generally the box-counting dimension, or Minkowski-Bouligand dimen-
sion of a subset F of a metric space is:
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D(F) = lim
r→0

log(N(F,r))
log(1/ε)

(2.9)

where N(F,r) is the number of balls of radius r needed to cover the set F .
This formula performs just the transformation needed to make the number ap-

pear, which we “manually” identified above. However, since it is defined as a limit,
we see that this dimension has no particular reason to be well defined in all cases.
When it is not well defined, that is when the sequence does not converge to a single
value, we still have bounds for the asymptotic values it can take. As a result, the
situation can be characterized by an infimum and a supremum. This defines a lower
dimension (the infimum) and an upper dimension (the supremum). In such cases,
the scaling properties of the objects are oscillating (not necessarily in a regular way)
when we are zooming.

There is a variety of different definitions of fractal dimensions [Falconer & Wiley,
2003, Le Méhauté et al., 1998], which generally coincide in the case of self-similar
fractals, but do not in more complex cases. The box-counting dimension is not the
best from a mathematical point of view. For example, the rationals have dimension
1 even though they form a countable set which therefore does not “really” occupies
space. A better mathematical notion of dimension than the box-counting dimension
is the Hausdorff dimension. It is based on a parameterized family of measures (in the
sense of measure theory); then the Hausdorff dimension is the critical value of the
parameter which yields neither infinite nor 0 weight to the the set under study. Notice
that in this case, the fractal dimension is a notion associated to measure theory. In the
case of rationals, the Hausdorff dimension is thus 0, which corresponds better to the
intuition. However, the box-counting dimension is particularly useful since it allows
to study empirical cases (with many possible tweaking). For a recent account of the
methodology used to evaluate the properties of experimentally observed structures,
including the various forms of fractal dimensions and the image analysis used, see
[Lopes & Betrouni, 2009].

In estimating fractal dimension of natural phenomena, we generally have access
to a limited range of scale. This range should be large enough to allow genuinely
to claim the validity of a fractal description; however, the term fractal is also used
by experimenters, even in physics, when this condition is not met, see [Avnir et al.,
1998] for a critical discussion12.

2.3.1.3 Definition of fractals

So we have sets with scale symmetries and a notion of fractal dimension. What is
the definition of a fractal then? The situation is not obvious. We could say that it is
a set corresponding to one of the criteria for scale symmetry above. However, flat

12 The case of critical transition, however, display sharp fractality, associated to a sound theoretical
background.
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(a) The shape analyzed (b) Boxes of size l/2

(c) Boxes of size l/4 (d) Boxes of size l/8

Fig. 2.4: Principle of the evaluation of the box-counting dimension illustrated on the Sierpiński
triangle. The finer the resolution becomes, the more holes due to fractality appear. As a result, the
shape is not “full” enough to have the dimension of a surface.

Fig. 2.5: Illustration of topological dimension. TOP, a line can be covered with open balls with
points that are covered 1 or 2 times. BOTTOM, LEFT, there are missing points if we try to do the
same thing in order to cover a surface. BOTTOM, RIGHT, to cover the surface some points are
present in 3 balls.
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structures like a segment or a piece of a plane meet these criteria (the criteria are
just overly complicated to be actually useful to describe them). Worse, they meet all
of them (we see exactly the same thing when zooming in on a flat structure). Recip-
rocally, we could approach the notion of fractal by the notion of fractal dimension,
and associate fractality with non-integer dimensions. However, there exists struc-
tures such as Peano curve that have a convoluted structure; but are nevertheless
space-filling, so have an integer dimension (roughly, this criterion is already better,
though).

We need a more precise criterion to grasp the concept of fractal. To formulate it,
we need to introduce another concept: the concept of topological dimension. The
definition of this notion is the following:

Definition 2.1 (Topological dimension (Lebesgue)). Let us consider a topological
space X . The topological dimension is the integer n, such that for any finite open
cover of X , a finite refinement of this cover can be found where each point of X is
in at most n+1 open sets of the refined cover.

Behind the technical terminology, the idea behind this definition is relatively
straightforward. We are considering open sets, which are intuitively sets without
their boundaries, for example an interval ]a,b[ without a and b. As a result, overlaps
are needed to avoid gaps, see figure 2.5. However, if points are missing in the struc-
ture of X (gaps), then there is no need for overlapping. As a result, the overlaps are
engendered by the local, gapless, degrees of freedom on X . Of course, this dimen-
sion, in general, can be infinite in some cases (when there is no finite n which meets
the criteria, but this can only happen in an infinite dimensional space, when a linear
algebra dimension makes sense).

We understand then that there is a conceptual discrepancy between fractal dimen-
sion (Hausdorff dimension, a metrical notion) and topological dimension (a topo-
logical notion). Mandelbrot then defines fractals as structures where these notions
do not coincide, meaning that they do not lead to the same dimensions:

Definition 2.2 (Fractals). A fractal is a set F with dimH F 6= dimtopo F

Notice that the fractal dimension is not always defined. When it is defined, the fractal
is also called monofractal to emphasize the uniqueness of the dimension (for a given
definition) and to contrast the situation with more complex structures. When the
dimension is not defined, as we said earlier, we nevertheless have an infimum and
a supremum for it. This corresponds, for example, to an oscillation when looking
at smaller scales. Alternatively, multifractals correspond to a situation where the
fractal dimension is not the same when zooming to look at different points.

Since natural objects studied, when fractality is found to be relevant, are limited
to a range of scales, they are usually called prefractal to emphasize this limitation.
However, and anticipating on the following of the rest of this thesis, biological cases
usually do not have the same level of invariance than physical cases, especially



48 2 Scaling and scale symmetries in biological systems

those where fractality is theoretically justified (which is far from being the case
for all reported cases of fractality [Avnir et al., 1998]). As a result, here, we will
prefer the terminology of fractal-like situation. By the later, we mean to qualify
situations where fractality is relevant as a tendency, and certainly more relevant than
smooth geometries, but where the theoretical validity of an actual scale symmetry
is nevertheless dubious because of the variability inside and between subjects and
possibly a range of scales that is too limited.

2.3.2 Cellular and intracellular membranes

The need to use fractal geometries in morphometry, instead of notions using eu-
clidean geometry, historically derived from very practical considerations. A nice
historical example of the difficulties that led to this paradigm shift is provided in
[Weibel, 1994]. In the 1970’s, two different teams tried to evaluate the surface den-
sity of the endoplasmic reticulum in the liver. However, these teams surprisingly
reported largely different results: 5.7 m2/cm3 and 10.9 m2/cm3. This puzzling sit-
uation was clarified by the notion of fractal: if considered fractal, the evaluated sur-
faces depend on the scale of observation (and tends to infinity with increasing mag-
nification, in principle). This approach has been tested [Paumgartner et al., 1981]
and leads to an estimate of the fractal dimension of 2.7 for endoplasmic reticulum’s
surface and of 2.54 for mitochondrial inner membranes. This results where found
for data over 2 order of magnitude (which is a limited range, but nevertheless sub-
stantial13).

Comparisons of fractal-like properties of cell membranes have been investigated
to discriminate between different relevant biological situations. Such investigations
have especially been done with respect to cancer cells, and in order to contribute
to cell type or cells activity classifications. In [Smith et al., 1996], for example, the
fractal dimension reported for the boundaries of Purkinje neurons is 1.89 (in 2d)
whilst the dimension for Spinal cord neurons is 1.62, see also [Losa, 2006] for other
examples. In [De Vico et al., 2009], fractal analysis of cellular (internal and external)
membranes was performed to analyze feline oocytes. Statistical self-similarity has
been found over 2 orders of magnitude. An interesting point in this study is that the
methodology followed by the authors involved different image analysis (basically
different thresholds) in order to focus on different aspects of cellular morphology,
and lead to different fractal dimensions. The authors also remark that, in general,
active states (including cancerous cells) display a higher fractal dimension than in-
activated ones, with some exceptions. One of the exceptions is found in [Losa et al.,
1992], where the fractal dimensions observed for the pericellular membranes of

13 Whether it is sufficient to talk about fractality or not depends on authors.
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leukocytes if of ∝ 1.2 in the normal case and ∝ 1.1 in the case of lymphoblastic
leukemia.

2.3.3 Branching trees

A branching tree is constituted by a starting branch and an iteration pattern: a branch
splits in n sub-branches14. The number of sub-branches can be fixed, in which case
the topology15 of the tree is uniquely determined. However, n can also be random,
uniformly or depending on the number of iterations.

D(1)

L(1)

Fig. 2.6: A binary tree. Here, the branching order is a constant, 2, and the tree is generated deter-
ministically by iterating the pattern encountered in the first branching. Note that the first branching
alone can be insufficient to fully determine the structure, see [Le Méhauté et al., 1998] for more
details on this issue.

14 Leonardo da Vinci inaugurated this analysis. In particular he observed that the sum of the
sections of the sub-branches, in a tree, is equal to the section before branching, since “the nurture in
the branch is divided in the sub-branches” — “ogni biforcazione di rami insieme giunta ricompone
la grossezza del ramo che con essa si congiunge . . . e questo nasce perché l’umore del piu’ grosso
si divide secondo i rami”. Trattato di Pittura, unaccomplished, collected by an anonymous author,
1550.
15 Here, by topology we mean properties that are invariant under smooth transformation.
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The biologically relevant situations are usually cases of branches having tubu-
lar structures, embedded in the usual 3-dimensional space. For some observational
methodologies or some cases, the tree is looked at in 2 dimensions, for example
when using classical microscopy or in special cases like the morphological observa-
tion of the vascular tree of retina. Biological structures have also metrical properties.
The quantities typically considered are the lengths of branches, L, and their diame-
ters, D. The angles between branches are also commonly studied.

The natural question which arises then is the evolution of these lengths with the
branch order, z (the number of branching from the first branch to the considered
branch). These quantities and the aim of morphological measurement will depend
in particular on the model used to understand the shapes encountered. In particular,
[Gabrys et al., 2005] compares symmetrical and asymmetrical models of vascular
morphology. This aspect is especially relevant because the scale range of analysis
(and of potential fractality) is limited and because other structures, associated to
scale dependent morphogenic principles, can exhibit similar features for a limited
range of scales, leading to wrong estimations of fractality.

Generally speaking, there are different methodologies which enable to observe
such structures. The main constraint on the methodologies used is that they need to
be able to observe a geometrical shape in a similar way for a wide range of scales.
The main methodologies are: working on silicone casts of the studied structure (for
lower resolution studies), performing classical microscopy or photography observa-
tions (leading to 2-dimensional projection, but which can sometimes be performed
in vivo), confocal microscopy (in 3D), tomography, . . . The shape can be observed
as a 2-dimensional projection or directly in 3-dimensions, as mentioned before. It is
noteworthy that in general, the branching structure is embedded in the (smooth) geo-
metrical structure of organs or tissues; for example the vascularization of the retina
takes places approximately in a curved 2-dimensional structure (basically a piece
of sphere) [Masters, 2004], and the curvature introduces a particular scale (which
disappears in local analysis).

2.3.3.1 Lungs

Lungs form highly convoluted structures, allowing fast bi-directional gas exchanges.
Their structure vary among phylogenetic classes, but in the case of mammals, their
topological shape is that of a branching tree16. This binary branching allows (for
humans), to go from a single trachea to an observed number of alveoli of 274×106

to 790×106 [Ochs et al., 2004]17, meaning that the number of branching, from the
trachea to an alveolus has a mean of approximately 29.

16 Amphibian, for example, have simpler, more or less convoluted bag-like lungs.
17 This study has been performed on 6 individuals, notice that the variability is high. However, the
size of alveoli has been found to be stable in this study.
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The early approaches to the understanding of the morphological properties of
the lung assumed that a length S (diameter, length of the branch, . . . ) decreases
exponentially with the branch order, i.e. S(z+1) = qS(z) (as reported in [Bassingth-
waighte et al., 1994]). This assumption fits the empirical results for approximately
10 branching levels; but the observed quantities depart clearly from this equation for
smaller scales. In [West et al., 1986], it is argued that there is variability in the distri-
bution of branch sizes of the same order z (instead of the basic factor q), and that this
variability should be scale-free (at least for high values of z). Moreover, the authors
argue that the branches should have sizes of the form qn (see also [Bassingthwaighte
et al., 1994]).

This approach leads to describe the mean evolution of a metric quantity S with
the branch order z with the from: S(z)' z−α

(
A0 +A1 cos

(
2π

ln(z)
ln(q) +φ

))
. This de-

scription coincides well with empirical results [Nelson et al., 1990]. Interestingly,
for the four species studied (rat, dog, hamster and human), the exponents αD (for
the diameters) and αL, are similar among species (as for the lengths of branches),
even if the lung sizes are very different. However, the phase, φ , distinguishes human
from the other species (among these four species). These findings correspond to a
number of branching of ∼ 22, spanning ∼ 2 orders of magnitude for the lengths.

Interestingly, [Canals et al., 2000] argue that the fractal dimension of lungs is
higher in the case of juveniles (1.626±0.157 for males) than for adults (1.547±0.012
for males) in Rattus norvegicus. This result, however, is based on a limited differ-
ence and would need confirmation.

Another study [Boser et al., 2005] shows a significantly reduced fractal dimen-
sion of lungs in the case of asthma; it is also noteworthy that this reduction is higher
in the case of a lethal asthma condition.

It is interesting to mention that the alveolar perimeters also have fractal-like prop-
erties [Witten et al., 1997]. The fractal dimensions found are small; however, they
are noteworthy in particular because they are correlated with the age of the sub-
jects (and significant changes are found in diseases). Numerically, for the less than
16 year old subjects, the mean fractal dimension found is 1.047±0.010, while for
older subjects it is 1.093±0.013. Note also that this supplementary structure is con-
ceptually interesting because it shows the “concatenation” of the lungs tree structure
and the alveolar rugged structure.

2.3.3.2 Vascular system

The vascular system is composed of structures with sizes ranging from the scale of
cm to a few µm. It is composed of the arterial tree, going from the heart to organs
and of the venous tree, from organs to the heart. It’s function is to transport matter to
organs (especially oxygen and nutrient) and from organs (especially carbon dioxide
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and wastes but also hormones, some cells, etc.). It forms a (mostly) closed system,
where exchanges arise at the level of capillaries, between arteries and veins.

A considerable amount of research as been performed to evaluate the geometrical
properties of the vascular system. Retina are particularly studied as they are easily,
non-invasively accessible, mostly bi-dimensional, and medically relevant (for dia-
betes, typically). In [Masters, 2004], the methodological difficulties are discussed
in the case of the retina, and some stability of the fractal dimension is found in this
case around a value of 1.7. In table 2.4, we report other results compiled in [Lorthois
& Cassot, 2010]. The crucial point is that low resolution measurements support a
fractal-like structure with variable fractal dimension, but usually not very far from
2.7 (1.7 if projected). However, the studies looking at capillaries found a space fill-
ing structure, with dimension estimates comparable to the embedding space.

Table 2.4: Evaluations of fractal dimensions for vascular networks. The values reported
here are from [Lorthois & Cassot, 2010]. Note that the sharp differences between the sit-
uations where capillaries are not considered and when they are considered (low and high
resolutions). We do not report, here, the other methodological differences involved in these
measurements (which come from different studies, in different laboratories). CAM stands
for chorioallantoic membrane (this membrane plays a crucial exchange role during devel-
opment for oxygen, calcium, . . . ); and ID stands for incubation days. The scale range of
these studies is mostly around or below 2 order of magnitudes.

Resolution System studied evaluated fractal dimension

Low resolution

Subcutaneous AV 1.70±0.03
Developing CAM (ID 15) 1.42±0.05 – 1.49±0.04
Developing CAM (ID 13–ID 18) 1.1–1.8
Developing CAM (ID 13) 1.26±0.03
Developing CAM (ID 3–ID 6) 1.3–1.68
Developing CAM (ID 6–ID 12) 1.37±0.01–1.54±0.03
Placenta’s arteriala 1.86
Pial vasculature 1.31±0.03
Retinal vasculature 1.70±0.02

High resolution

Subcutaneous capillary 1.99±0.01
Epifoveal vessels 2.00
Developing CAM (ID 14) 1.86±0.01
Hepatic sinusoidal network 2.01±0.01

a The dimension in 2d embedding space is estimated from a 3d result for comparative
purposes.

A study [Risser et al., 2006], which is important because of the technical break-
through mobilized (3 orders of magnitude observed in 3 dimensions), leads to un-
expected results. The vascular system has been found to be fractal-like at small
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(capillary) scales and homogeneous at bigger scale. These findings were highly
unexpected because of the older results in table 2.4. However, the situation was
clarified by [Lorthois & Cassot, 2010] by using considerations on the vascular de-
velopment. The latter is indeed dominated by two different processes: the formation
of a mesh-like structure (capillaries), homogeneous and space filling above a cer-
tain scale, followed by the growth of a fractal-like structure in this capillary mesh18.
They showed that simulated models presenting these features can lead to the results
of [Risser et al., 2006] and that an analysis of cortical vasculature adapted to this
structure seems to confirm it.

In order to discuss the situation further, it is noteworthy to mention that the vas-
cular structure has been hypothesized, for optimality reasons, to follow the Murray
law:

dx
0 = dx

1 +dx
2 (2.10)

where d0 is the diameter of the mother branch and d1 and d2 are the diameters of
the daughter branches. The initial formulation was for x = 3 and corresponded to
an optimization principle taking into account the energy needed to transport the
blood and the energy needed to confine it. However, the experimental results do
not really back this relation up, especially since the data are highly scattered. As a
result, it was proposed to extend this relation for values of x between 1 and 4. Even
in these cases the variability remains high so that multi-fractal analysis should also
be performed. This position is defended in [Zamir, 2001], in reference to results on
the vascular structure of the heart, where multi-fractal analysis seems useful, as its
criteria seems approximately met. This leads to an architectural variability of scaling
in the vascular system, even when considering a part of it that is irrigating a single
organ.

2.3.3.3 Further aspects for these organs

Following the properties above, we can raise the question of the possible geometri-
cal relationship between different tree-shaped organs. In [Maina & van Gils, 2001],
silicon casts have been obtained for the airway, venous and arterial systems of the
lung, for a specimen of domestic pig, Sus scropha. This study focuses on the relation
between these structures and shows that they have statistical correlations in their
geometrical properties (diameter depending on the branching order for example).
These structures obviously meet at the alveolar level (though this is not directly ob-
served in silicon casts), but their geometrical relationship is not limited to this point
(related to their function). The three structures, except the venous system in some
regions, follow each other closely, both with respect to their branching patterns and

18 More precisely, this growth is understood as equivalent to diffusion-limited aggregation, driven
by the blood pressure field in the homogeneous capillary mesh.
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spatial positions. Since a physical fractal growth usually requires some kind of ran-
domness, according to its “singular” nature (that is, by its historical and irreversible
paths and its specific result), these spatial and structural correlations at all scales in-
dicate a correlated growth of these hierarchical structures, observable by abnormal
similarities between them.

We therefore have a kind of “geometrical entanglement” that seems needed to
understand the pulmonary structure. More results would be needed to formulate and
characterize precisely the scope of this developmental “entanglement”, let us note,
however, that it seems to fall in the conceptual framework of [Soto et al., 2008],
where the ontogenetic historicity is argued to be a crucial and irreducible part of
biological structure of determination.

The question of the heritability of the properties of vascular structure has been
studied in [Glenny et al., 2007] for armadillos19. The results, obtained by micro-
sphere deposition, showed that correlations exists between animals originating from
the same litter and the fractal dimension of blood flow distribution. However, the
degree of variability in a litter was still very high, especially in the muscles. Inter-
estingly, this study show that correlations are particularly high between heart and
lung vasculatures.

One can also raise the question of the effects of activity levels on the vascular
fractal dimension. A study, [Sinclair et al., 2000], using also microsphere deposition
methods, establishes a change of the spatial structure of the blood flow in lungs
of horses. More precisely, for the fractal dimension of this structure, they found
high variability among individuals at rest and a change of the dimension between
different levels of exercise. This change consisted in a reduction of the variability
among individuals and a progressive reduction of the fractal dimension from trot to
canter to gallop. This study was performed at low resolutions on four horses.

2.3.4 Some other morphological fractal analyses

The frontier of tumor growth has been reported as a tool for estimating the nature
of the corresponding tumor, see [Baish & Jain, 2000]. It has also been shown that,
at least in a specific case, a high fractal dimension for carcinoma was correlated to
bad prognosis [Delides et al., 2005].

Another interesting kind of morphological fractal-like structure (even though a
dynamical description is better) is at the level of proteins. The fractality by itself
does not come as a surprise in this case, since a crude statistical mechanics descrip-
tion of them is a self-avoiding walk. However, proteins have variations with respect

19 The fact that armadillos have clonal offspring in a litter make it particularly useful for studies
on clonal variability in complex metazoans.
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to their fractal dimension; and exhibit also specific, local, structures [Lewis & Rees,
1985]. As a result, fractality is biologically relevant in this context too.

Chromatin has also been reported to have a fractal-like structure [Bancaud et al.,
2009], allowing to discriminate euchromatin, which has an estimated fractal dimen-
sion of 2.2 and heterochromatin, with 2.6. We will discuss this situation further in
the paragraph 2.5, on anomalous diffusion.

2.3.5 Conclusion

We have seen various aspects and cases of biological structures showing fractal-like
properties in space. This review is, of course, by no means exhaustive; however, we
can point out certain interesting and general aspects. First, the number of orders of
magnitude involved rarely reaches 3, which means that the scope of the observed
fractality is limited. As a result, one should be cautious when we are discussing it as
a scale symmetry. Moreover, the determination of the fractal dimension is not fully
stable: even with a constant methodology (and as [Masters, 2004] points out, even
with the same experimenter) the evaluation of fractal dimensions leads to a high
level of variability.

We can also now draw significant, positive conclusions. First, the space struc-
ture we have seen are clearly highly fractured. Moreover, they also display mea-
sure anomalies: lengths and surfaces should be considered scale dependent and do
not seem to stabilize toward a finite value when observed with increasing preci-
sion. Thus, these hierarchical ( non-homogeneous) and rugged structures are, in a
loose, but nevertheless etymologically sound, sense fractals. In this sense, fractals
are present in an organism from the scales of proteins to the scales of organs.

It is sometimes argued that the geometry of nature in general and of biologi-
cal phenomena in particular is predominantly fractal. Putting aside the difficulties
we discussed, there is an issue, in this point of view, which is that the fractal-like
structures in an organism are widely heterogeneous in their (fractal) dimensions,
geometrical structures, . . . . This point is sufficient to lead to a non-obvious situation
(from a geometrical but also physical point of view). Indeed, most theoretical ap-
proaches depend on a unique parameter, roughly corresponding to a specific scaling
symmetry (for example: Tsallis entropy, fractional derivatives and analysis, anal-
ysis on fractal structures, . . . ). Notice also that these physical and mathematical
accounts are recent and remains somewhat unstable with respect to their physical
applications.

In [Werner, 2010], examples are also provided from the nervous system. These
examples include the neuronal dendritic trees, the white matter distribution, . . . .

Beyond these cases, we will see more fractal structures involving space in chap-
ter 6, on critical transitions. Our global perspective will then allow to frame these
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dynamics and their variability, in terms of continual “symmetry changes”, as an es-
sential component of life structural stability. As for the iterations, which are proper
to fractal formation, we may paraphrase Goethe’s remark, which enables to under-
stand the extensive presence of fractality: “life is the never identical iteration of a
morphogenetic process” — we added the “never identical”, which will turn out to
correspond to symmetry changes. In all the examples above, the variability and ir-
regularity of fractal structures are part of diversity and adaptability, which contribute
to biological robustness in an essential way.

2.4 Elementary yet complex biological dynamics

Fractal or fractal-like structures are not only encountered in space, but also in the
temporal behavior of biological systems. The specificity of fractal-like dynamics
is that they lead to nonstandard statistical situations: instead of the usual reduc-
tion of variance with an increase in statistical sample, quantities like the statistical
mean or the statistical variance diverge (they tend to infinity with the increase of
samples). This situation is relatively counter-intuitive with respect to the classical
notion of homeostasis, which is usually understood as a stabilization around a fixed
mean. However, as we will see, fractal-like dynamics, are nevertheless ubiquitous
in biology, as we said, in particular when we consider processes associated with
physiological regulation. This paradigm shift, as to what biological regulation is, is
discussed at length in [West, 2006].

In order to describe specific examples, we first provide some elementary method-
ological and mathematical background. Then, we will report examples of various
natures. Finally, we will focus on the specific example of cardiac rhythms, and its
peculiar properties, since this case constitutes half the available literature on biolog-
ical fractal dynamics according to [Eke et al., 2002], and thus it allows a fine grained
account of the variability and the statistical structure of biological dynamics.

2.4.1 Principles

The first point we should emphasize is that there are two elementary kinds of tem-
poral structures observed, in comparison to physical time. The first one, commonly
called time series, correspond to a quantity observed at different time points, usually
regularly spaced. The second one is generated by a sequence of equivalent events,
which thus leads to the observation of the time of their occurrence. Of course, the
second category can be mathematically transformed into the first one by consid-
ering s = ∑i δti (where δti is a pulse of magnitude 1 at time ti). The time series,
obtained by this procedure, is then

∫ t
t0 s(t)dt. However, from a theoretical point of
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view there is still an associated peculiarity of the second situation, since such series
can also be expressed as ∆ ti with t = t0 +∑i ∆ ti. In other words, this form of time
series is a purely temporal structure: there is no dimensional quantity involved in its
description other than time.

In order to obtain an intuitive understanding of the situation, and before describ-
ing the analytic tools used to deal with experimental data, it is useful to look at the
historical example of the Weierstrass function [Edgar, 1993].

f (x) = ∑
n

an cos(πbnx) (2.11)

For |a| < 1, since |cos(πbnx)| ≤ 1, the sum converges uniformly, thus f is contin-
uous. However, if we look at the derivative of its terms we get −π(ab)n sin(πbnx),
thus, if ab > 1, we see that the derivative corresponds to a divergent sum at all
points (this is a heuristic argument not a rigorous proof, for the latter see for ex-
ample [Edgar, 1993]). Even though this function has been introduced as a math-
ematical counter-example to the differentiability of continuous functions, it has a
physical meaning: it is a sum of periodic functions with pulsations ωn = 2b−n and
corresponding weights ω

− log(a)/ log(2b)
n . This corresponds to a power-law in the de-

composition of f . As a result, such a process possesses a form of scale symmetry.
To understand another aspect of fractal dynamics, we can consider a classical

example with infinite mean: the St. Petersburg game. In this game, the player tosses
a coin as long as he obtains tails. When he finally gets heads he wins 2n $, where n
is the number of tails obtained before. The mean gain is then 2−121 + · · ·+2−n2n +

· · ·= 1+ · · ·+1+ · · ·= ∞ [Bassingthwaighte et al., 1994]. Experimentally, it means
that the more one plays such a game, the more the statistical means increases. A
similar situation occurs when considering the classical Brownian motion, which has
mean 0 but a variance which diverges (proportionally to n).

With more generality, [Eke et al., 2002] specify two forms of (fractal) processes.
The stationary processes, on one side, for which the statistical description is stable
along time evolution and the non-stationary processes, on the other side, which
simply do not have this property. They propose the fractional Gaussian noise, as
a paradigmatic stationary example, and the fractional Gaussian motion, as a non-
stationary dynamics. The latter can be easily obtained by the summation over time
of a fractional Gaussian noise. Reciprocally, the difference between two consecutive
time points of a fractional Gaussian motion is a fractional Gaussian noise. This
comes as no surprise because when one considers the simplest case of Brownian
motion, the spatial displacement traveled at each time step has a constant probability
distribution. In the notions of Gaussian noise and motion, the word Gaussian refers
to the unstructured distribution of the values of the time series, when the temporal
structure is no longer taken into account (that is to say when one considers properties
that are invariant by data shuffling). We will not discuss these distributions closely
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Fig. 2.7: A sample of beat-to-beat intervals in human. The beat-to-beat interval is given in minutes,
and the time of each beat, in abscissa, is given in hours. Notice the significant variations in this
rhythm, which are in particular characterized by its long-range temporal correlations. An important
consequence of this situation is that evaluating the beat-to-beat interval at different times, even with
a prolonged measurement, will not lead to a stable result. The data come from the Long-Term ST
Database, [Goldberger et al., 2000], note that some unusually long beat-to-beat intervals can be
erroneous (typically a heartbeat is not detected, which leads to an interval of approximately double
length).

since we are primarily interested in the temporal structures of some empirical time
series. Their rather surprising fractal structure motivates our presentation.

We thus present and discuss some statistical quantities characterizing fractal-like
time series. Remark that, in general, the validity of the approach of a process by such
quantities depends of the stationarity or not of the process, see [Eke et al., 2002]. In
the following, we consider a time series f (t).

POWER SPECTRUM This approach to temporal structures in biology is based on
the classical method of Fourier analysis. It consists in describing the time se-
ries f (t), originally given in the time domain, by its Fourier transform f̂ (ω), in
the frequency domain. Then, the power spectrum S corresponds to the squared
weight of each frequency.

S(ω) =

∣∣∣∣
1√
2π

∫
∞

−∞

f (t)e−ıωtdt
∣∣∣∣
2

=
1

2π
f̂ (ω) ¯̂f (ω) (2.12)
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The fractal situation is characterized by a behavior S(ω)' bω−β for large ω . It is
then a behavior associated to scale-free contributions of the various frequencies.
The auto-correlation function is the Fourier transform of the power spectrum. In
the case of a power law for the power spectrum, the auto-correlation function
decays like C(0)−C(h)' hβ−1 (for small h). The fractal dimension of the graph
of the signal is in this case 1

2 (5−β ) for 1 < β < 3, see [Falconer & Wiley, 2003].
In practice, finite time series are used, and the power spectrum is found by FFT

(fast Fourier transform). However, some care is needed in the use of this ap-
proach. In particular, a preliminary interpolation is generally required, and the
high frequencies contributions should be neglected [Eke et al., 2002].
The more qualitative meaning of β is that it describes the distribution of “energy”
among the various frequencies. When all frequencies have the same weight, we
have β = 0 (white noise, see below). Notice that in finite cases, β < 1 is also
possible and corresponds to an anti-correlation between different time points.
−1 < β < 1 corresponds to a domination of high frequencies (the weight of high
frequencies is infinite at the limit). This situation corresponds roughly to a case
of stationarity because the large period behaviors are not relevant. Reciprocally,
1 < β < 3 corresponds to low frequencies (large period) as the dominating con-
tribution (and the infinite case converges), which leads also to a non-stationary
situation. In general, a small value of β means a more noisy time series and a
large β leads to a more regular time series.

DETRENDED FLUCTUATION ANALYSIS (DFA) This method has been introduced
specifically for non-stationary biological series, initially to study DNA structure
and heart rates variability [Peng et al., 1995]. In order to perform such an analy-
sis, one first has to center the time series around its mean, and then to integrate
it. The point of this procedure is to obtain an unbounded time series g with 0
average increase. Indeed, the local variations of rates (heart rate for example)
are usually bounded by the viability domain; however, the accumulated distance
from the mean20 is not necessarily so. Then, the standard deviation of g with
respect to local (linear) trends is computed at various resolutions, n. In other
words, one evaluates the quadratic distance of g to gn, the piecewise (best) linear
approximation of g where the segments are of length n:

F(n) =

√
1
N

N

∑
k=1

[g(k)−gn(k)]
2 (2.13)

Then, in scale-free cases F(n)' nα . Moreover, we have the relation β = 2α−1
for infinite sequences. The interpretation of α can therefore be transferred from
our discussion of the power spectrum and of its exponent β .

20 The accumulated distance from the mean is the distance of the number of heartbeat during a
given time to the mean number of heartbeat during such a time.
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A crucial motivation for the introduction of this approach and its widespread use
in biology is that it allows to study both stationary and non-stationary time series.
Its drawback, however, is that it is usually less precise than more specialized
approaches, dedicated to a specific structure of time series [Eke et al., 2002].

RELATIVE DISPERSIONAL ANALYSIS (RDA) Relative dispersion is the ratio of
standard deviation by the mean, thus leading to a dimensionless quantity. In the
context of fractal time series, RDA consists in evaluating relative dispersion as a
function of the level of coarse graining applied to the time series. Note that it can
only be applied to stationary processes.

The exponents α and β are usually noted in the literature with the same letters as in
this text (with some exceptions).

There are three main kinds of random time series that are used for compara-
tive purposes and they are named after colors. Let us recall that these designations
correspond to the temporal structure of time series (and not to the unstructured dis-
tribution of their values).

WHITE NOISE. This case roughly corresponds to a situation where the time points
are not related to each other. This can be defined by saying, for example, that
the expected value of a process is 0, and the expected correlation between two
different time points is also 0. White noise leads to β = 0, meaning that energy
is equally distributed among all frequencies. This situation also leads to α = 0.5.
This case is illustrated in figure 2.8c, BOTTOM.

BROWN NOISE. This case is equivalent to Brownian motion, where Xt+∆ t = Xt +

Y , where Y has mean 0 (and is stationary). From another point of view, brown
noise is obtained by integrating white noise. Brown noise leads to β = 2, so lower
frequencies have more energy than higher frequency. This qualitative aspect is
logical for a random motion, were the random contribution at each time point is
added to the already existing displacement. We also have α = 1.5. Figure 2.8c,
TOP, corresponds to this case.

PINK NOISE. This case is intermediary between the preceding situations; quanti-
tatively it corresponds to β = 1. As a result, pink noise corresponds to an equal
distribution of energy per octave. We also have α = 1 in this case. In a looser
sense, situations with 0 < β < 2 are also called pink noise.

The dynamics, which corresponds to scale-free behaviours with respect to one of
these analyses, are usually called fractional dynamics or fractal dynamics.

2.4.2 A non-exhaustive list of fractal-like biological dynamics

In this section, we will provide some examples of biological dynamics with long-
range behaviors. This list is far from exhaustive; nevertheless, we took examples at
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(a) Fractal Gaussian motion (UP) with anti-
correlated increment (DOWN).

(b) Brown noise (UP) and white noise (DOWN).

(c) Fractal Gaussian motion (UP) and noise (DOWN).(d) Beat-to beat interval (UP) and its increment
(DOWN).

Fig. 2.8: Some fractal dynamics. In each computer generated case, we represent the Gaussian
motion up and the corresponding noise down. The last case corresponds to empirical data of the
cardiac dynamic. Note that the latter increment does not seem completely stationary.
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various levels of organization, which also correspond to a wide variety of phenom-
ena.

Blood cell number.

In a study [Perazzo et al., 2000], the blood of two sheep has been sampled every
day, for 1000 days, and the number of cells for different cell categories has been
estimated. To the authors surprise, the observed time series are remarkably different
from the main hypothesized structure, namely white noise fluctuations around a
mean value. Indeed, they computed de-trended fluctuations and found a scale-free
behavior of exponents α near 1, see table 2.5 (recall that 0.5 is expected for white
noise and 1.5 for a random walk). A power spectrum analysis shows also that these
long-range correlations take the form of anti-correlations (β < 1), except in the case
of white blood cell which are positively correlated. Note that the intraindividual
variability of the considered exponents is low — that is, they are relatively stable
with respect to their evaluation at different times.

Table 2.5: Blood cells fluctuations of two sheep. We report here the exponents
obtained by de-trended fluctuation analysis, α , and for the power spectrum β .
Let us recall that a scale free situation leads to β = 3−2α . For comparison,
a (standard) random walk leads to α = 0.5 and white noise leads to α = 1.5,
the lowest value of correlation coefficient is 0.995 for 200 days (2 orders of
magnitudes).

Cell categories Sheep 1, α Sheep 2, α Sheep 1, β Sheep 2, β

Red blood cell 0.98 1.00 0.97 0.91
Platelets 1.24 1.11 0.65 0.70
White blood cells 0.83 0.83 1.14 1.16

Cellular respiration.

In [Aon et al., 2008], time series associated to cellular respiration are analyzed.
The two situations under study are a yeast culture and the mitochondrial network of
cardiomyocytes.

For yeast cultures (Saccharomyces cerevisiae under controlled, approximately
constant conditions), the time series under consideration are the concentration levels
of dissolved O2 and CO2. The measurements were performed with a 12 s resolution,
and span 118 h. The cultures seem dominated by a cycle of ' 13 h, whose periodic-
ity, though, is unstable. The analysis of these time series provided a constant relative
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dispersion among scales in both cases, and a power spectrum exponent β = 1.95 for
O2. These results hold in spite of the aforementioned seemingly predominant cycle,
which still generates some subharmonic components, and have been also tested by
a cut off above its scale. i. e. by looking at the behaviors at time scales smaller than
this particular scale. This means that the long-range behaviours are not caused by
this cycle. For CO2, however, the situation was somewhat more complicated since
only small (time) scale behavior (< 1 min) is associated with scale-free behavior
β = 1.45, while larger scale are dominated by white noise. Notice also that con-
sidering a given, specific part of the ' 13 h cycle leads nevertheless to multi-scale
behavior at large scales (beyond the 1 min limit).

Now, let us consider the cardiomyocytes studied in the same article, [Aon et al.,
2008]. Cardiomyocytes, the cells of the cardiac muscle, rely heavily on oxygen
supply for their intense biological activity. Respiration occurs via mitochondria,
which are in a particularly high number in each cardiomyocyte (in comparison
with other cells). The observed quantities are the mitochondrial membrane potential
∆Ψm (observed by two photon microscopy associated to a potentiometric fluores-
cent dye) and the amount of reactive oxygen species (ROS). The time resolution is
110 ms while the duration is 7 min. The corresponding time series have scale-free
behaviours, associated to a power spectrum exponent of β = 1.79. This behavior is
also confirmed by RDA. Interestingly, an isolated mitochondrium only displays such
a behavior for a range of scales much more limited than in a collective situation:
the fractional dynamic occur only at the shorter time scales. Accordingly, the power
spectrum shifts towards a white noise behavior at larger scales and the RDA shows
a loss of correlations across scales.

Lung respiration.

A variety of different quantities associated with lungs respiration can be measured.
The two quantities which have been mainly studied are the inter-breath interval and
the tidal volume. Results of DFA for these two quantities are reported in [Thamrin
et al., 2010]. In all cases, the mean exponents α are below 1 and, except in one
case, above 0.5, so between white and pink noises. The exception is the tidal vol-
ume in non-REM sleep. Indeed, in the decomposition of sleep in different phases,
the first partition criterion is whether rapid-eye movements (REM) are observed or
not. These two situations are physiologically very different in terms of activity. This
is confirmed here by an exponent of 0.8 for REM sleep and 0.5 for non-REM sleep,
in [Thamrin et al., 2010]. For inter-breath intervals [Peng et al., 2002], results are
of 0.68±0.07 for young men and of 0.60±0.08 for elderly men. The measurement
was performed for 2 h (roughly 2000 respiratory cycles), in an inactive awake state.
Here, we see that the tendency is a decrease of the exponents with aging. This ten-
dency is also reported for the women group, but it is more limited. This result quali-
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tatively means that the inter-breath intervals tend to be more random with increasing
age (closer to white noise) and in other words they tend to have less correlations.

Body temperature.

The structure of temperature variations follows also such a behavior. In [Stern et al.,
2009], using DFA the authors find exponents of α ≈ 1.5 for rectal temperature fluc-
tuations, with an increase of this exponent in correlation with age, from 1.42 at 4
weeks to 1.58 at 20 weeks. This tendency is valid both in the mean population and
for individual trajectories of the same subject at different age. This growth, however,
goes with variability, meaning that the exponent decreases for some infants. Another
noteworthy aspect is the absence of correlation of α with room temperature, the
mean body temperature or immunization. The exponent has been also evaluated for
adults in [Varela et al., 2003], but with a different methodology (skin temperature).
The authors found α ≈ 1.3. A positive correlation between the exponent and age
was also noted (from 18 to 83 years).

Some more cases.

In [Labra et al., 2007], the fluctuations of the O2 consumption log increment (r =
log(VO2(t +∆ t)/VO2(t))) has been studied. The shape of the distribution found,
depending on initial conditions, is a double exponential also known as the Laplace
function. This leads to a characteristic “tent” shape when the log of the probabili-
ties is plotted. This study considers different species, which allows to evaluate the
allometric exponent for the standard deviation. The latter is −0.241±0.103, which
is consistent with a temporal allometry following the exponent 1/4 for times. This
structure corresponds to a power law distribution for the fluctuations which has a
structure compatible with allometric relationships.

Other cases showing this kind of fluctuations are the blood pressure [Wagner
et al., 1996], the colonic pressure [Yan et al., 2008], the exploratory behavior of
rats [Yadav et al., 2010], the gait dynamic and the gut dynamics [West, 2006], . . . .
Interestingly, in the case of ocular cascades and fixations on a text, using literate and
illiterate subjects, [Shinde et al., 2011] show that the scale-free dynamic is broken
in association with attentional behavior.

2.4.3 The case of cardiac rhythm

The cardiac rhythm is probably the most studied case of biological time series, as
cardiac rhythm clearly has important medical implications. In particular, a crucial
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motivation in the analysis of beat-to-beat time series is the analysis of properties that
have diagnostic applications. The study of such time series is also highly relevant
for understanding normal physiological dynamics, such as aging, . . . . Usually, the
beat-to-beat interval is more precisely defined as the interval between two R wave,
in an electrocardiogram. These intervals are the easiest to use considering their short
duration and strong magnitude, resembling a Dirac function.

2.4.3.1 Structure of cardiac rhythm

The study of the beat-to-beat interval increment [Peng et al., 1993], which is the
discrete derivative of the beat-to-beat interval21, has shown anti-correlations, with an
exponent of β ′ '−1.01±0.16 in healthy cases and β ′ '−0.54±0.25 in diseased
cases. This results are obtained for over 105 heartbeats, on time series obtained for
a routine behaviour.

An interesting point is raised in [Peng et al., 1995], using DFA on time series
recorded with an ambulatory monitor. The feature observed, called crossover phe-
nomena, is a shift of the exponent between α1 for the short time scale (< 10 beats)
and α2 for the longer time scales. This shift is different in the healthy situations and
in some pathological cases. In the healthy cases, we have α1 >α2 (α1 = 1.20±0.18
and α2 = 1.00±0.13), which means that the short time scale evolution is more regu-
lar than the dynamic at larger time scales. This aspect is interpreted by the authors as
a regularization, at short time scales, by the interactions with the respiratory rhythm.
However, for patients with congestive heart failure, the exponents found are such
that α1 < α2 (α1 = 0.80±0.26 and α2 = 1.13±0.22). This differences are argued
to be able to distinguish the healthy and pathological cases — which means that the
overlap of the two behaviors is limited. The authors remark, however, that the shift
in exponents is not observed in all subjects.

A study [Pilgram & Kaplan, 1999], using data from [Peng et al., 1995] over 24 h,
focused on the power spectrum and its distribution when analyzed locally (in time).
Their findings show that there is an instability of the exponent β for time windows
of the same sizes, but at different temporal positions. This can be understood as
a non-stationarity of the power spectrum, which goes beyond a possible bimodal
distribution (for wake and non-REM sleep). This result is confirmed by multifractal
analysis [Ivanov et al., 2001]. A larger singularity spectrum is found in the healthy
case, leading to a greater complexity of healthy heart rhythm, beyond the sole value
of the exponent described above. Compatible results are also found in [Makowiec
et al., 2006], where healthy aging is also studied and lead to a decreased complexity
in the above sense.

21 This series was studied instead of the beat-to-beat interval because it is roughly stationary whilst
the beat-to-beat interval is not (and DFA was not available yet). Notice that, under regularity hy-
pothesis, the corresponding exponent for the beat-to-beat interval is β = β ′+2.
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In [Kiyono et al., 2004], the authors focused on the fine structure of the (de-
trended) distribution of the time increment corresponding to n heartbeats. This struc-
ture and especially its dependence with the scale n allows to discriminate between
models that have been proposed to understand the variability of the heart rate. These
models are turbulence-like models, called multiplicative cascade, and models based
on criticality. The authors have found non-Gaussian scale invariance for these dis-
tributions, with a shape that is also incompatible with the cascade turbulence like
models, but is, however, a general feature of critical behaviors. These results have
been found for both constant routine protocol and normal daily life, for measure-
ments spanning 24 h.

2.4.3.2 Some factors associated with the cardiac rhythm structure

Age is correlated with a decrease of heart rate complexity or, from another point of
view, with a more regular heart rate [Pikkujamsa et al., 1999], see figure 2.6. How-
ever, as before, the variability, observed by the variations of exponents, remains high
among different individuals. These measurements have been done among subjects
with no observed heart disease. Note that the criterion for a healthy condition given
above, α1 > α2, is also met for these results, and this at all ages. It is also notewor-
thy that the mean difference between these exponents is low for the elderly group.
These results are not isolated and are confirmed by several other studies, such as
[Iyengar et al., 1996].

Table 2.6: Heart rate variability at various ages. The results are from [Pikku-
jamsa et al., 1999], on 24 h measurements on healthy humans. Notice the in-
crease of regularity (loss of complexity) with age. It is also relevant to emphasize
the high level of variability of the measured exponents, which is given here by
the standard deviation.

Quantity Children Young Adults Middle-Aged Elderly
< 15year 15yearto39year 40yearto60year > 60year

β 1.15±0.18 1.12±0.19 1.32±0.14 1.38±0.17
α1 1.06±0.11 1.19±0.14 1.19±0.16 1.15±0.16
α2 0.98±0.06 1.00±0.08 1.07±0.07 1.14±0.07

In [Wilson et al., 2009], the DFA approach lead to significant differences between
a group of healthy subjects having long term sedentary habits (α1 = 1.20±0.16) and
another group doing regular aerobic exercise (α1 = 1.02±0.20). The evaluation of
habits, in this study, is obtained by self-report. The criterion for the sedentary group
is the reporting of less than 1 half an hour seance of exercises intense enough to
break a sweat per month; the members of the active group have had 3 to 4 such
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seances per week. Both regimes have to be sustained for at least a year in order to be
valid. This study is not based on a large statistical sample but it is still interesting.
Another relevant point is that the classical linear statistical analyses do not allow
to show a significant difference between the two groups. This tendency has been
confirmed by different studies, see [Carter et al., 2003] for a review.

An approach of heart rate variability during sleep [Bunde et al., 2000] leads to
DFA exponents of ∼ 0.5 for both light and deep sleep, with less variability for the
observed exponents when the sleep is artificial. Exponents of ∼ 0.85 have been
reported for REM sleep (Rapid eye movement sleep), with, again, a lower variability
of the exponents when the sleep is artificial than when it is spontaneous.

In [Esen et al., 2001], the heart dynamics of young habitual smokers have been
found to exhibit different characteristics than the control group. At rest, in the supine
position, the mean exponents found are β = 1.42±0.36 for smokers and 0.96±0.16
for non-smokers. By contrast, in a standing position, the exponents observed are
1.47±0.25 and 1.27±0.12 respectively. A noteworthy point is that the dynamic of
the heart for smokers is characterized, in particular, by remarkably limited changes
of exponents associated to the postural differences (in comparison with the healthy
situation).

Note also that long-range variations in heart rate are found to be correlated to
body movements, and both of them are also correlated to circadian rhythms [Aoy-
agi et al., 2000]. It has also been shown in [Song & Lehrer, 2003] that heart rate
variability is changed when breathing rate is modified, which is obtained on hu-
mans by conscious control. More precisely, slower respiratory rates lead to a higher
heart rate variability.

To sum this paragraph up, we have seen that all the following factors change the
heart rate scaling properties: age, diseases, the activity habits, sleep stages, smoking,
circadian rhythms, body movements, . . . .

2.4.4 Conclusion

We have seen that a wide class of biological time series has a particular kind of
forms, that can be described as fractal-like and display long-range correlations. The
associated characteristics lead to a change of perspective from the usual mathemat-
ical interpretation of homeostasis. The latter understands the biological regulation
as a relaxation towards a mean and corresponding fluctuations as having a Gaussian
shape. In [West, 2006], this point is especially emphasized and is argued to lead
to paradigm change as for the understanding of biological regulation. In particular,
this approach leads to a further characterization that may be added, typically, to au-
topoiesis, [Varela, 1979], which is based on an understanding biological systems as
processes.
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Note, however, that the relevance of the means, in physiology, has been criti-
cized before these dynamics had been discovered, primarily by perspectives taking
the point of view of the organism. For example, in [Canguilhem, 1972], health is un-
derstood as the ability of an organism to establish, change and adjust its norm. This
perspective is coherent with the relatively recent accounts presented in this section.
We thank also Denis Noble for pointing out to us that in the Chinese medical treaty,
the Mai Jing (∼ AD 300), changes of heart rhythm are considered as healthy while
its stability is understood as pathological.

From the point of view of scale symmetries, we have seen that the exponents
found experimentally are usually associated with an important amount of variabil-
ity. In particular we have seen that aging and serious diseases lead in most cases
to more regular time series, see also [Goldberger et al., 2002a, Goldberger et al.,
2002b]. In the case of the cardiac rhythm, we have seen that there is a variety of
factors which influence the variability of the observed exponents. In particular, the
long-term habits have a relevant effect on them (we have discussed smoking and ex-
ercising), but other factors are also relevant, such as circadian rhythms, body move-
ments, . . . . Variability is also relevant at the intraindividual level and is found in the
study of the variation of the exponent over time, in the same time series.

As a short conclusion to this section, we can safely say that a great variety of
biological time series exhibit (time) scale symmetry and consequently long-range
correlations — this is why these processes are also said to exhibit memory. However,
in spite of the universality usually found in physics in these contexts, we found
that the experimentally observed exponents, in biology are associated with a high
degree of variability, which can, in part, be associated to various observable factors.
In chapter 3 and especially in section 3.4.4, we will come back to these results, in
combination with allometry, and provide an alternative framework for qualitative
analysis, associated to a bidimensional time.

2.5 Anomalous diffusion

The case of structures in space-time is more complex than the situations we dis-
cussed earlier. Indeed, a mathematical account of an object in space and time is very
close to a physico-mathematical description in a proper phase space, by which we
mean that it is very close to a physical full-fledged structure of determination. As a
result, these accounts are usually given almost directly by physical models.

We will limit ourselves to the case of anomalous diffusion in this chapter, and
discuss cases of criticality in chapter 7.

Diffusion corresponds to a macroscopic description of the dispersion, along time
flow, of the spatial distribution of some entities. Microscopically, any diffusion is
based on random paths (of particles or whatever composes the diffusing objects).
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Anomalous diffusion, as the name implies, corresponds to a situation where the
macroscopic description has a singular form.

2.5.1 Principle

A classical diffusion is a diffusion based on a homogeneous space and time and with
homogeneous probabilities of movement in space and time. From a microscopic
point of view, the probabilities of movement are the same for each space-time point
and for each direction, in a Euclidean space. In this situation, the macroscopic equa-
tion describing the evolution of a density ρ subject to diffusion (without sources, or
in other words with a conservation principle) is the following:

∂ρ

∂ t
= D∑

∂ 2ρ

∂x2
i

(2.14)

where D is the diffusion coefficient and the xi are the 3 space directions. Since the
expectation of the distance traveled is 0, only the mean squared distance traveled is
interesting. It has the form:

< (∆x)2 >= D∆ t (2.15)

However, these homogeneity conditions are not always met. In particular, when
the diffusion occurs in a “crowded” medium, space homogeneity can be lost, be-
cause of the space taken by other particles, especially if they have a wide size dis-
tribution. Another relevant situation is the case where space has a fractal structure.
Similarly, in an interacting medium, time homogeneity can be lost, the interactions
“gluing” temporarily the traveling particles. This is particularly relevant when the
times of these “stops” have a power law distribution. Another aspect that can disrupt
classical diffusion is active transports.

The simplest form allowing to describe such situations is the following:

< (∆x)2 >= Γ (∆ t)α (2.16)

where Γ is called the generalized diffusion coefficient. The crucial quantity, here
and as usual, is the exponent α , which determines the precise nature of the observed
phenomenon.

0 < α < 1 defines subdiffusion. This situation corresponds in particular to a dif-
fusion in a crowded environment. Somewhat reciprocally, when subdiffusion is
explained by crowding, that is for inactive molecules, the properties of subdiffu-
sion can be used to assess the crowding of an environment [Weiss et al., 2004].
Alternatively, a recent review, [Berry & Chaté, 2011], argue that subdiffusion is
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better obtained by time trapping (with power law escape probabilities) than by
homogeneous obstacles. Note also that diffusion on fractals [Renner et al., 2005]
can lead to subdiffusion, with an exponent that is not given by the spatial fractal
dimension alone.
This situation is associated with a greater confinement of particles for long-range
displacement, see figure 2.9. At the limit α = 0, the elementary objects are con-
fined (their mean distance traveled is bounded). The other limit, α = 1, corre-
spond to a classical diffusion, see below.

α = 1 corresponds to classical diffusion. classical diffusion is diffusion in an ho-
mogeneous media. Obstacles only change the speed of the diffusion but don’t
change the shape of the corresponding statistical distribution.

1 < α < 2 defines superdiffusion. In this case the transport is faster for long dis-
tances than in the case of classical diffusion. Such a situation is analyzed as active
transport, where energy is used to organize (order) the motion of particles. In the
cell, this situation typically corresponds, for example, to the effect of molecular
motors using energy to crawl on the fibers of the cytoskeleton. Another intracel-
lular example is provided by shuttle streaming in Physarum polycephalum.

α = 2 corresponds to the case of classical transport. It is not really a case of diffu-
sion, and there is a macroscopic velocity associated to this behavior, correspond-
ing to a collective oriented movement.

When α is not an integer, diffusion is called anomalous since it corresponds to
situations where the spatio-temporal structure is non-homogeneous. However, the
deeper reason for this name is the singular nature of the situation, leading naturally
to a description in terms of fractional derivation [West, 2010].

Such behaviours can be empirically studied by single particle tracking (for ex-
ample molecules with fluorescent labels by fluorescence microscopy). Somewhat
reciprocally the spatial structure of the cytoplasm can be assessed by evaluating the
form of the diffusion, for inactive molecules of various sizes.

From a theoretical point of view, anomalous diffusions change the probabilities
of chemical reactions [Aon et al., 2004b] or from a different perspective, change
their kinetics. This is easy to understand since subdiffusion leads to more compart-
mentalization than a classical diffusion. As a result molecules that are produced in
the same region have higher probabilities of interaction. This is for example valid in
the case of the structure of DNA [Bancaud et al., 2009].

2.5.2 Examples from cellular biology

The nature of diffusion in the bacterial cytoplasm has been recently studied, thanks
to the recent progresses in single particle tracking with high spatio-temporal res-
olution. In [Golding & Cox, 2006], the motion of individual fluorescently labeled
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Fig. 2.9: Different forms of diffusion. Here, we represent the standard deviation of the distance
to the initial position as a function of the time interval of diffusion. Notice that the long time
behaviour corresponds to a greater confinement for small α . However, for short time scales a small
α correspond to a faster dispersion.

mRNA is studied in Escherichia coli. The observed motion of this molecule in the
bacterial cytoplasm looks confined for periods and time ending by major jumps,
which is a qualitative description of the behavior of anomalous diffusion. Indeed,
the evaluation of the corresponding anomalous exponent lead to α ' 0.7, which de-
scribes a subdiffusive behavior. This exponent is relatively stable, and robust with
respect to the study of different situations, when, for example, considering mutated
cells, with altered cytoskeletons. This result is confirmed by a power spectrum anal-
ysis of the space trajectories of molecules. This analysis leads to an indirect esti-
mation of α , which is 0.77. The coefficient Γ , however, has a strong dependence
on the specific molecule and cell involved, leading to a large variability. Overall,
with this experimental methodology, based on the diffusion of mRNA, the source of
anomalous diffusion is not assessed. In particular, this approach cannot identify the
relative contributions of the space crowding on one side and of interactions on the
other.

On the other side, [Weiss et al., 2004] uses the property of subdiffusion, measured
for inactive molecules of various sizes, to evaluate the structure of the cytoplasm in
HeLa cells22. In a similar way as for bacteria, anomalous subdiffusion has been ob-
served, with α from 0.59 to 0.84, depending on the size of the used tracer molecule.

22 HeLa cells are an established cell line from human cervical cancer cells, taken from Henrietta
Lacks.
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Again, these results are robust with respect to the disruption of the cytoskeleton
(actin filaments and microtubules).

For particles of bigger sizes, spontaneously appearing lipid granules have been
studied in yeasts [Tolić-Nørrelykke et al., 2004], leading to a comparable exponent
of ∼ 0.75 over a wide range of time scales (10−4 s to 100 s).

Diffusion occurs also in plasma membranes. In [Smith et al., 1999], the properties
of the diffusion of major histocompatibility complex molecules in the membrane
have been evaluated. The result is a coefficient α = 0.49±0.16, with, thus, a large
variability.

In the case of eukaryotic nuclei, the anomalous diffusion correspond also to an
exponent of∼ 0.79 for euchromatin and∼ 0.75 for heterochromatin [Bancaud et al.,
2009]. In both cases, these exponents were found to be independent of the size of
the molecules observed. However, when chromatin is not the main component of
nuclei, this independence is no longer met. Here, we then have anomalous diffusion
associated to a structure with a further symmetry of the anomaly, for different sizes
of particles, associate to the fractality of the structure of DNA.

2.5.3 Conclusion

We have seen some examples of biological situations displaying subdiffusion. Note
that research on anomalous diffusion has made significant progresses recently,
thanks to the development of single molecule tracking methods. These behaviours
have compelling consequences on the understanding of the chemical level (among
other). In particular, subdiffusion leads to a fuzzy compartmentalization, beyond
the stricter connexity loss associated with membranes. This phenomenon thus intro-
duces a distributed heterogeneous spatial organization in the cell, as a crucial deter-
minant of the interaction between its different (spatial) parts. Biologically, it means
that the cell’s cytoplasm and other structures organize the random movements of
smaller components.

2.6 Networks

Approaches in the conceptual and mathematical frame of networks allow to consider
large numbers of different entities, represented by nodes, with specific interactions
among them, represented by edges. The edges may be considered as oriented or not,
depending on the nature of the interactions. Corresponding to this description, both
the structure and the dynamic of networks can be considered.

The subject of networks is an important and extremely active field of research,
both theoretically and experimentally. We will restrict ourselves to very basic as-
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pects of their description and empirical analysis. See, for example, [Lesne, 2006]
for more theoretical frames.

2.6.1 Structures

The structure of a network can typically be approached by the statistical proper-
ties of its number of edge per node. A scale-free network is then a network where
each node follow a statistic of the form k−γ for the number of edges k attached to
it. Resulting from this form, the sub-graphs of a scale-free network have the same
statistical properties than the whole network. There is a wide variety of processes
(iterated network transformations, typically) that can generate such networks. One
of the simplest processes of this kind is a growth with preferential attachment of new
nodes on nodes having already many connections. Since various network structures
can lead to the same statistics, the validity of these approaches should not be the-
oretically overemphasized, as it is not an evidence of common causal mechanisms
[Fox Keller, 2005].

(a) Random graph. (b) Scale free graph.

Fig. 2.10: Example of random and scale-free graphs. In the random graph, in the sense of Erdös-
Rényi, the probability of each edge to be present remains independent of the rest of the graph. In
the scale-free case, however, during graph growth, the nodes that have more edges have a higher
probability to get new edges (this is only one of many ways to illustrate the statistical properties
associated to the situation).

Another statistically interesting quantity is the clustering coefficient and its scal-
ing properties. The local clustering coefficient Ci for a node i is the ratio of the
number of edges among its neighbours Ni with the maximum possible number of
such edges.
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Table 2.7: Statistical properties of some biological networks. These results are
from [Almaas et al., 2007]. Note that the variance is high.

Transcription Metabolic Protein Interaction
E. coli S. cerevisiae E. coli S. cerevisiae S. cerevisiae

γ 2.1±0.3 2.0±0.2 2.0±0.4 2.0±0.1 2.4±0.4
α 1.0±0.2 1.0±0.2 0.8±0.3 0.7±0.3 1.3±0.5

Ci =
2Ni

ki(ki−1)
(2.17)

This quantity, thus, evaluates the local connectivity, around nodes. Then, in a scale-
free situation we have a distribution of the clustering which is expected to follow a
power law: C(k) ∝ k−α .

We present some empirical evaluations of α and γ in table 2.7, for different bio-
logical networks which are found approximately to be scale-free. The networks are
evaluated by high-throughput techniques, and usually the results have a high degree
of imprecision, which can have different forms depending on the technique used
(prone to false positives or not and more or less prone to miss some links). The ap-
proaches used are generally technically based on nucleic acids screening techniques.
For example, the metabolic networks, which represent the chemical reactions, are
estimated by a combination of genetics and biochemical results [Jeong et al., 2000].
The protein interaction networks are in particular evaluated by screening for pro-
tein complexes, which means that only complexes stable enough to last throughout
the manipulation process can be seen. Transcription networks are estimates of the
mutual interactions between gene transcriptions.

It is noteworthy that all these networks represent, in general, relatively arbitrary
slices on the network of molecular interactions — inasmuch this object is well de-
fined. In particular, all the observed networks interact with each other, but also miss
wide classes of interactions. For example, mRNA or sugar are usually not taken
into account. The regularity of the statistical properties evaluated is also challenged
by some authors, on the basis of alternative statistical methods to assess them. In
[Khanin & Wit, 2006], for example, scale-free behaviours are found to be valid only
for a restricted range of scales, whilst this study is based on data that have been
previously claimed to correspond to scale-free networks.

Notice also that the theoretical validity of such networks can be problematic,
since these theoretical objects are not necessarily well defined. In particular, a the-
oretical reason to challenge their definition is the dependence of chemical reactions
on spatial organization, as described in our section on anomalous diffusion. This
means that the ability of molecules to interact in a cell does not depend only on the
chemical structures of these molecules and their potentiality of interaction, even in
a given cellular compartment, as given by membranes.
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A recent study, [Rossberg et al., 2011], has found scaling in the structure of the
trophic links of marine animals (fishes and squids). The approach of this study is,
however, substantially different of what we have already discussed, since it is based
on weighted links. Indeed, the considered function is, for a consumer species, the
number of preys Zc, which have, in its diet distribution, a weight that is higher that
f (0 < f < 1). These quantities are evaluated by the study of stomach’s contents,
meaning that the exceedingly rare preys cannot be taken into account. Since f is
bounded, a change of parameter is used in favor of the diet ratio, r = f/(1− f ),
which tends to infinity when f tends to 1 (this change of variable does not change
much the situation for small f ). Then, the empirical results obtained follow approx-
imately a power law, Zc ∝ r−α , with a mean exponent of 0.54. This exponent is con-
sistent with the community average of Zc for all data sets studied, except one. The
variability for the diet partition function of individual consumer species is, however,
high (this is a community regularity property, not a specie property).

2.6.2 Dynamics

The dynamic of the networks above has been extensively studied theoretically, es-
pecially along the line of the work by Kauffman. The question is typically that of
the nature and the effect of a perturbation. The qualitative classification of the dif-
ferent situations depends on whether a perturbation leads to a return to the previous
situation (stable situation) or whether it leads to a further departure from the initial
situation (chaotic dynamic). Between these two cases, a critical point occurs, where
complex dynamics arise [Kauffman, 1993, Kauffman, 2001, Nykter et al., 2008b].

Since it is technically difficult to assess directly the networks dynamics over time,
an alternative way to show that there is an underlying critical dynamic, in the above
sense, is to look at the time series of the states of the network’s nodes.

The structure of such time series is, however, somewhat difficult to study. Its
analysis requires to consider high dimensional states, where the metric (the notion
of distance) is not obviously given, as one ignores the structure of the network. For
example, in [Shmulevich et al., 2005, Nykter et al., 2008a], the system considered is
the transcriptome, observed by microarrays time course experiments. In particular,
this means that we are not considering individual trajectories (since the cell mea-
sured is destroyed in the process). The trajectories considered are thus collective
behaviours, associated to external perturbations (antigens for macrophages). The
state is then represented by a vector, which corresponds, at a given time point, to the
presence (1) or absence (0) of each RNA. The distance the authors use is the normal-
ized compression distance. It is a based on an effective estimation of algorithmic
complexity (by the compressibility). More precisely, for Boolean vectors x and y,
this distance is:
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NCD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)} (2.18)

where C(u) is the compressed size of u and xy is the concatenation of the vectors
x and y. Recall now that Kolmogorov complexity of a sequence is the size of the
shortest program generating that sequence — an incompressible sequence has thus
a maximal complexity. Kolmogorov complexity, stricto sensu, is not computable.
If Kolmogorov complexity were computable, then we could write a finite program
which would generate sequences of any Kolmogorov complexity, by screening all
possible strings by increasing sizes until finding one with the right complexity: a
contradiction. Another proof may be given by showing that, when trying to im-
plement a program which would compute Kolmogorov complexity, one stumble
quite straightforwardly on the halting problem — the famous undecidable problem
discussed in particular by Turing. Then an approximation is used, usually given
by Lempel-Ziv algorithm, like in the papers we are discussing [Shmulevich et al.,
2005, Nykter et al., 2008a].

Now, the idea used in these articles is to compare the distance between time
points t and t + ∆ t and the distance between time points t + ∆ t and t + 2∆ t. If
this distance shrinks, it means that we have a situation of relaxation, or, in other
words, of stability. On the opposite, if it grows, this means that we have a chaotic
situation and that the perturbation gets amplified. If it stays roughly constant, then
it is evidence that we are in a critical situation (the validity of this classification
and the validity of the approximation is tested by the authors on data generated by
simulation and where the network dynamics is therefore known). The authors finally
find that macrophages exposed to different antigenes have a critical dynamic at the
level of their transcriptome.

A wider study [Balleza et al., 2008] shows similar results for specimen in four
biological kingdoms: bacteria E. coli and B. subtilis, fungi S. cerevisiae, animal D.
melanogaster and plant A. thaliana. The method to show critical behavior, here,
differs from above, and is based on simulation of the result of perturbations, on
the basis of the known (assumed) topology and dynamics of the graphs. Two cases
are studied: either small well-known networks or larger network with heuristically
estimated dynamics. In fine, the dynamics are found to be consistent with criticality.

2.6.3 Conclusion

In this brief description of scale-free networks and critical network dynamics, we
have reported a few very interesting results. They are based on techniques that allow
in particular to assess global properties in situations that can be described as collec-
tions of discrete entities with heterogeneous natures. As a result, these accounts tend
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to be a huge progress with respect to the methodologies that focus on the properties
of elementary components only.

There are, however, limitations in the validity of these results, corresponding
to both empirical (statistical) aspects and theoretical interpretations. Overall, this
research field is recent; the study of “natural” scale-free networks is only approxi-
mately 10 years old, whilst the empirical analysis of networks dynamics is only in its
infancy. The results obtained are nevertheless interesting, but have to be considered
in a cautious perspective.

Let us finally remark that the quantitative relation between the different net-
works that are usually studied in cells is not straightforward. Indeed, a recent study
[Taniguchi et al., 2010] has shown that the number of mRNA and the number of the
corresponding proteins are not correlated at the level of a single cell. Therefore, one
network cannot be used as a proxy for the other.

2.7 Conclusion

This survey of scale symmetries highlighted by experimental results or case stud-
ies has led us to discuss a variety of techniques and empirical situations. Generally
speaking, a wide variety of biological processes is relatively well described by scale
symmetries. By this, however, we only mean that the considered situations are better
described as scale symmetric than having a characteristic scale. This distinction is
mandatory because in almost all cases where the studies are sufficiently comprehen-
sive, relevant (intraindividual, interindividual and/or interspecific) variability in the
scaling exponents have been found. As a result, the scale symmetries under question
should be taken cautiously.

Among these approaches, allometry is somewhat peculiar. It does not describe
(directly) the scaling relations inside an object but compares objects of different
sizes. We have seen that globally and most of the times, allometry follows ap-
proximately an exponent of 1/4, which is a nontrivial situation. Accordingly, the
metabolism scales globally with an exponent close to 3/4. However, the variability
of species with respect to these relations remains high and may correspond to ten
fold variations in the case of the metabolism. Different approaches of the statistical
aspect of the problem lead some authors to argue that other exponents are relevant.
Moreover, if one consider intraspecific allometry, associated with development, we
see that a wide range of allometric relations can be described, including symmetry
shifts (changes of exponent). The relevance of the 1/4 allometry is, however, still
high in interspecific cases, since it is approximately observed for a wide class of
rhythms and rates.

We have then considered morphological fractality in organisms. Again the situ-
ation is approximately described by a (statistical) scale symmetry, which typically
corresponds to the definition of the fractal dimension. The reliability and stability
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of the results is, however, far from perfect, with respect to both interindividual vari-
ability and the intrastructural variations in scaling properties. However, as we have
pointed out, the structures involved are highly discontinuous and intricate; thus, they
loosely correspond to fractal situations. Moreover, their structures clearly lead to an
instability of the measurement of Euclidean notions such as lengths, surfaces . . . ,
which depend on the resolution. As a result, the fractal description is still a consid-
erable progress, but it leads to results that should be taken cautiously.

The dynamics we have considered lead to similar lessons. Multi-scale dynamics
are ubiquitous, and long-range correlations should be taken as the default assump-
tion, which has profound consequences on the theoretical nature of biological reg-
ulation. From the point of view of the measurement, these results are crucial; they
typically mean that the heart rate or the blood cell count change spontaneously and
importantly over time. Even a measurement that is performed and averaged on rel-
atively large time scales is not sufficient to obtain a stabilized value. There, again,
variability of exponents is found both between individuals and inside a given dy-
namic.

It is noteworthy that, for both morphological fractal-like structures and biological
fractional dynamics, the exponents found can be experimentally shown as correlated
to specific factors. In particular, the age is relevant in both cases. For dynamics, ag-
ing is generally related to a more regular dynamic. Other relevant factors are the ac-
tivity habits, diseases, . . . . Again we should recall that all these correlations, which
are sometimes remarkably clear tendencies, are found on a general background char-
acterized by an important variability. It is also noteworthy that, in some cases, other
factors do not influence the observed exponents, whilst one would have expected
they would have.

We omitted in this chapter cases which are analyzed as phase transitions, as they
require a longer introduction. We introduce them in chapter 6, and discuss biological
evidences in section 7.2.

As a final statement, we can say that the situations presented in this chapter are
relatively subtle. Scale symmetries are relevant; they provide an unique insight on
biological phenomena and allow to exhibit and solve instabilities of more classical
measurement. However, they do not match exactly the empirical situation. Variabil-
ity clearly appears almost ubiquitously, or at least as soon as the available data are
sufficient. This variability can be put in relation with various factors, corresponding
in particular to the history of the object considered.

In the following chapter, we will use two of the regularities discussed here. More
precisely we will use temporal allometries to propose abstract geometrical schemes
for biological time. This will also allow us, among other aspects, to propose an orig-
inal approach of the multi-scale structure of biological time series, as described in
section 2.4 above. Finally, the pervasive evidence of symmetry breaking or changes,
in the empirical results presented here, will further justify the theoretical role we
give, in this book, to symmetries and their changes.



Chapter 3
A 2-dimensional geometry for biological time

Abstract:

This chapter proposes a mathematical schema for describing some features of bio-
logical time. The key point is that the usual physical (linear) representation of time
is insufficient, in our view, for the understanding key phenomena of life, such as
rhythms, both physical (circadian, seasonal, . . . rhythms) and properly biological
ones (heart beating, respiration, metabolic, . . . ). In particular, the role of biologi-
cal rhythms do not seem to have a counterpart in the mathematical formalization
of physical clocks, which are based on frequencies along the usual (possibly ther-
modynamical, thus oriented) time. We then suggest a functional representation of
biological time by a 2-dimensional manifold as a mathematical frame for accom-
modating autonomous biological rhythms. The “visual” representation of rhythms
so obtained, in particular heart beatings, will provide, by a few examples, hints to-
wards possible applications of our approach to the understanding of interspecific dif-
ferences or intraspecific pathologies. The 3-dimensional embedding space, needed
for purely mathematical reasons, allows to introduce a suitable extra-dimension for
“representation time”, with a cognitive significance.

Further aspects of the compactified time will be analyzed in section 7.5, where
we will associate this approach to the forthcoming notion of extended critical tran-
sition1.

Keywords:

biological rhythms, allometry, circadian rhythms, heartbeats, rate variability.

1 This chapter is a revised version of [Bailly et al., 2011].
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3.1 Introduction

LIVING phenomena display rather characteristic and specific traits; among these,
manifestations of temporality and of its role are particularly remarkable: devel-

opment, variegated biological rhythms, metabolic evolution, aging, . . . . This is why
we believe that any attempt at conceptualizing life — be it only partially — cannot
avoid addressing such temporal aspects that are specific to it. We will examine this
question from different angles, including temporality, in view of providing a first
attempt at a synthesis.

The intuitive “geometry” of physical time is, since Newton, the understanding of
time as a “straight line”. This was later enriched by the order structure of Cantor type
real numbers, an ordered set of points, topologically complete (dense and without
gaps). Thermodynamics and the theories of irreversible dynamics (phase transitions,
bifurcations, transition to chaos, . . . ) have imposed an “arrow” upon classical time,
by adding an orientation to the topological and metric structure. But it is with rela-
tivity and quantum physics that the theorization of time has led to rather audacious
reflections. In the first case, by means of its famous causality cone, Minkovski space
explains, within the framework of a unified geometry of space-time, the structure of
any possible correlation between physical objects, in special relativity. This is only
one example from a very rich debate which goes so far as to introduce a circular
time (proposed by Gödel as a possible solution to Einstein’s equations).

In quantum physics the situation is more complex or, in any case, less stable.
We go from essentially classical frameworks to a sometimes two-dimensional time,
in accordance with the structure of the field of complex numbers by which Hilbert
spaces are defined, the theoretical loci of quantum description. Feynman’s audacious
temporal “zigzags” are also worth mentioning [Feynman & Gleick, 1967]. This ap-
proach is a very interesting example of intelligibility by means of a “geometric”
restructuring of time: very informally, the creation of antimatter would cause within
the CPT symmetry (charge, parity, time) a symmetry breaking in terms of charge,
while leaving parity unchanged. The global symmetry is then achieved by locally
inverting the arrow of time. Another approach, with similar motivations, is that of
the fractal geometry of space-time, specific to the “scale relativity” proposed by
[Nottale, 1993]: in this frame, time is reorganized upon a “broken” line (a fractal),
which is continuous but non-derivable. Further interesting reflections, along similar
lines, may be found in [Le Méhauté et al., 1998].

Physics however will remain but a methodological reference for our work, be-
cause the analysis of the physical singularity of living phenomena requires a signifi-
cant enrichment of the conceptual and mathematical spaces by which we make inert
matter intelligible, see chapters 1 and 7. One of the new features which we introduce
is the use that we will make of the “compactification” of a temporal straight line.
In short, we will try to mathematically understand rhythms and biological cycles
by means of the addition of “fibers” (a precise mathematical notion, introduced
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below) which are orthogonal to a physical time that remains a one-dimensional
straight line.

From our standpoint, a living being is a true “organizer” of time. By its autonomy
and action, including internal activities, it confers to time a more complex structure
than the algebraic order and the topology of the real numbers. In short, the time
of a living organism, by its specific rhythms and its coupling to environment, inti-
mately articulates itself with that of physics all the while preserving its autonomy.
We would therefore like to contribute to making the morphological complexity of
biological time intelligible, by presenting a possible geometry of its structure, as a
two dimensional manifold.

The first section introduces the theme of biological rhythms. One consequence of
our approach is the possibility of giving, by some mathematically suitable structures
and concepts, a more precise and relevant meaning to notions that are usually treated
in a rather informal fashion and unrelated between one another, such as those of
biological rhythms vs. representation time, physical time, . . . .

3.1.1 Methodological remarks

Let us recall that physical theories, through history, were constructed largely on the
grounds of major dimensional constants (gravitation, the speed of light, Plank’s con-
stant — with dimensions, respectively: acceleration, speed, action — that is energy
times time). What is striking, in biology, is the presence of a few major invariants
with no dimension, given by the rhythms which we will discuss below. We suggest
here to start with these rare invariants, the constants and rhythms which are to be
found in biology, because, beyond these examples and the physico-chemical activ-
ities, the structural stability of living phenomena is not so “invariant”, physically
speaking, as it is profoundly imbued with variability. We will discuss the latter in
the section 3.4.4 and more generally in chapter 7.

Observe also that in physics, time is mostly described as a parameter of the state
functions describing a system. The phenomena encountered in biology, however,
seem to trigger the need of other theoretical strategies and this at many different
temporal levels of organization (physiology, ontogenesis, phylogenesis, . . . ). We
will provide a geometrical scheme of biological time that stresses the crucial role of
time in biology and allows to understand some of the above features mainly through
the use of two theoretical concepts.

The first one, which we will discuss in depth below, is the ubiquity of rhythms
in biological temporal organization. There are indeed only a few features that are
ubiquitous in biology and the iteration of similar processes seems to be one of them.
We will however make a clear distinction between two type of cyclicity encountered
in living systems.
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The second concept is a way to understand the constitution and maintenance of
biological organization, both in phylogenesis and embryogenesis, that has been for-
malized by the notion of anti-entropy in [Bailly & Longo, 2009], see also chapter
9 and 7. That approach allows the addition of a new theoretical aspect of time irre-
versibility in biological systems, that completes and adds up to the thermodynamical
irreversibility driven by the notion of entropy. At the level both of evolution and on-
togenesis, this irreversibility manifests itself by the increase of complexity of the
organism (number of cells, number of cell types, cell networks — neural typically,
geometrical complexity of the organs, constitution of interacting yet differentiated
levels of organization, . . . ).

Methodologically, by a duality with physics, in [Bailly & Longo, 2009] time is
understood as an operator (like energy in Quantum Physics), not as a parameter. We
will go back to that approach in 9, as it turns time into a fundamental observable of
biology (like energy in physics) and it gives meaning to time’s key role in “biological
organization”, since rhythms organize life.

Besides the methodological relevance of our approach to biological time, the
mathematical details contained in this chapter and in the next one are not necessary
for an understanding of the other issues discussed in the rest of this book and may
be skipped at first reading.

3.2 An abstract schema for biological temporality.

3.2.1 Premise: Rhythms

We introduce now a second dimension of time associated with the endogenous inter-
nal rhythms of organisms as defined below. We represent this second dimension over
a “circle”, that is as a compactified dimension (S1 topology2). Thus, this second di-
mension of time is measured by θ , an angle over a circle with a radius Ri (where
Ri is the proper biological time): this circle expresses the temporal circularity, the
iterative component, that is specific to internal rhythms.

3.2.2 External and internal rhythms

We distinguish two types of rhythms associated with biological organization, each
referring to a distinct temporal dimension (below, we will note them as t and θ ,
respectively):

2 The circle is the compactification of the real number straight line, by the addition of a point and
its folding.
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(EXT) “external” rhythms, constrained by phenomena that are exterior to the or-
ganism, with a physical or physico-chemical origin and which may be imposed
by the physical context upon the organism. So these rhythms are the same for
many species, independently of their size. They express themselves in terms of
physical periods or frequencies (seconds, s, frequencies, Hz). Thus the invariants
are dimensional: they are described with respect to the dimension of physical
time (in exp(ıωt)). Examples: seasonal rhythms, the 24 hours-cycle and all their
harmonics and sub-harmonics, the rhythms of chemical reactions which oscillate
at a given temperature, . . . . In short, the theoretical symmetries of these rhythms
are strictly physical.

(INT) “internal” rhythms, of an endogenous origin, specific to physiological func-
tions of the organism, depend on purely biological functional specifications.
These rhythms are characterized by average periods which scale as the power
1/4 of the organism’s mass and, when given as a ratio with the life span of the
organism, which scales in the same way, they are expressed as numbers. The
invariants are therefore pure numbers, with no dimension, see section 2.2. We
propose to describe them with regard to a new compactified “temporal” dimen-
sion θ , with a non-null radius. The numeric values then correspond to a “number
of turns”, independently of the effective physical temporal extension: this moti-
vates their representation as an independent dimension, see also section 7.5. We
will closely analyze some examples: heartbeats, breathings, cerebral frequencies,
. . . .

Even if we may be somewhat repetitive, we will now describe how these rhythms
take place in biological organization, which is precisely what we would like to pro-
vide account for:

• The external rhythms (Ext) are to be identified with physical time (typically mea-
sured by a clock) whose temporal features does not depend of the biological sys-
tem we consider. Key examples include circadian, circannual or tidal cycles. The
effects or the relevance of these cycles depend of course on the organism that we
consider (with possible sexual dimorphism). For example, diurnal and nocturnal
animals are in phase opposition, whereas tides are mainly relevant for marine
organisms, and even more so in the foreshore. Whatever organism we consider,
the period and the phase of these rhythms are the same as they are dependent
on external physical events. In order to be a little more precise, these rhythms
are generally associated with a double process: the physical process, outside the
living system (and which can be very precisely predicted as it is associated to
physical theoretical symmetries) and its “trace” inside the system which is kept
synchronized by so-called “Zeitgeber” (light for circadian cycle for example).
This distinction leads in particular to a specific inertia, encountered for example
in the “jet lags” phenomenon.
Simple chemical oscillations inside an organism will fall in this category as well,
since their period is determined by physical principles, even though their phase
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may depend on a specific organism (a given trajectory) since the organism and
the chemical system may be co-determined.
As a result, this kind of rhythms, and their subharmonics, can be considered in
the usual physical way and mathematically represented by terms like eıωt .

• The second kind of rhythms, the endogenous biological cycles in (Int), does not
depend directly on external physical rhythms. They could be called autonomous
or eigen rhythms and scale with the size of the organism (frequencies brought to
a power−1/4 of the mass, periods brought to a power 1/4), which is not the case
with constraining external rhythms as they impose themselves upon all (circadian
or seasonal rhythms, for example). The internal rhythms are encountered when
we consider the heart rate, the respiratory rate, the mean life span, . . . , see chapter
2, section 2.2 or, for example, [Savage et al., 2004] or [Lindstedt & Calder III,
1981]. These rhythms are naturally associated with the number of their iterations
(they can be seen as dual variables), and these numbers provide a natural way of
speaking of the age of a biological system, yet different from the time measured
by a clock. As an elementary example, a two year old dwarf hamster is old, if not
senile, while a dog is a young adult and a human is a toddler.
We stress that this kind of rhythms leads to the use and the study of pure num-
bers (the total number of heartbeats during the life or an organism, say), instead
of quantities with a physical dimensionality (such as intervals of physical time).
The point is that these numbers seem, at least in most cases, to have invariant
properties3. A clear and impressive example of this is the mean number of heart-
beat (or respiration) during life, which is basically invariant among mammals.
We will further justify this and more examples below.

In summary, endogenous biological rhythms:

• are determined by pure numbers (number of breathing or heart beats over a life-
time, for example) and not, in general, by dimensional magnitudes as is the case
in physics (seconds, Hertz, . . . );

• depend on the adult mass of the organism that we consider, by following the
allometric law τi ∝ W 1/4

f (for heterotherms, the temperature is involved too);
• in our approach, they are analyzed and put into relation to each other by adding

an additional compactified “temporal” dimension (an angle, actually, like in
a clock), in contrast to the usual physical dimension of time, a line, non-
compactified and endowed with dimensionality.

Since these endogenous rhythms co-exist with physical time, we consider a tem-
porality with a topological dimension equal to 2 formed by the direct product of
the non-compactified part, the real straight line of the variable t (the physical time

3 There is still some variability, but this variability appears “naked” when considering these num-
bers, whereas the mass and temperature’s effects come first when considering dimensional quanti-
ties.
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parameter) and, as a fiber upon the latter, the compactified part, a circle S1, where
the variable θ ranges between 0 and 2π , with 0 ∼= 2π . Since we consider a two-
dimensional time, whose second dimension is associated with specific biological
invariants, our approach is very different of the usual approach of biological time in
terms of dynamical systems, which allows to tackle different kind of questions, like
synchronization or stability (see for example the noteworthy book [Winfree, 2001]),
but do not deal with these approximate invariants.

The idea of using supplementary compactified dimensions in theoretical physics
has been introduced by Kaluza and Klein [Overduin & Wesson, 1997], and is still
widely used in unification theories (string, superstring, M-theory, . . . ). There are
of course major differences between these uses of compactified dimensions and
ours. First, they concern mostly the addition of space-dimensions; second, these
dimensions are not observable in physics, whereas they are very much so in biology.
In our approach, the “projection” of this second dimension on physical time leads to
quantities that have the dimension of a time; their mean follows the allometric law,
as such they are parameterized by a mass (or, equivalently, by an energy4).

We insist that the endogenous rythmicities and cyclicities are not physical tem-
poral rhythms or cycles as such, as they are iterations of which the total number is
set independently from the empirical (temporally physical) life span. As we said,
they are pure numbers, a few rare constants (invariants) in biology. Our aim is that
of a geometric organization of biological time which, by the generativity specific
to mathematical structures, would also enable us to derive meaning and to mathe-
matically correlate diverse notions. The text itself constitutes the commentary and
the specification of the following schemata, which are meant to “visualize” the two-
dimensionality which we propose for the time specific to living phenomena.

3.3 Mathematical description

We first consider both external and internal rhythms; later, we will mainly focus
on internal rhythms of organisms. The heart rate of mammals can be considered
as a paradigmatic, running example. We begin by providing a qualitative draft of
our scheme to show its geometrical structure in figure 3.1, then we will quantify its
parameters and explain more extensively their meaning.

4 One may see again the dual role of energy vs. time as parameter vs. operator, the duality w. r. to
Quantum Physics we mentioned and that has been extensively used in [Bailly & Longo, 2009] and
in chapter 9 below.
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3.3.1 Qualitative drawings of our schemata

Following the aforementioned ideas, biological time is a (curved) surface: thus, it
will be described in 3-dimensions (the embedding space). Note that, if we were con-
sidering only biological rhythms, our 2-dimensional manifold would be a cylinder:
the (oriented) line of physical time times the extra compactified dimension. The sit-
uation is more complicated, in view of the further, physical rhythms we want to take
into account. They do not require an extra dimension, but they “bend” the cylinder,
by imposing global (external) rhythms. Thus, a proper biological rhythm is repre-
sented by what we may call a “second order helix”, that is, a helix that is obtained
(is winding) over a cylinder, Ci. This cylinder, in turn, is winding around a bigger
cylinder, Ce, whose axis is the line (τ). As basic reference, we choose orthogonal
Cartesian coordinates. Physical time, which is oriented by thermodynamic princi-
ples of irreversibility and is measured by a clock as in classical or relativistic physic,
will be the first axis (t) of our reference system and will enable the characterization
of instants and the measurement of durations. The second axis, (t ′), will be associ-
ated with the proper irreversibility of biological time (for example the irreversibility
of embryogenesis or, just, of “living”, see 3.5). As such, it will represent the bio-
logical age, or the internal irreversible clock of the organism we consider. It is thus
physical time, but measured by different internal clocks according to the organic:
having lived 10,000 heartbeats for a mouse or an elephant spans very different phys-
ical time length, about 1/50 for one over the other, say, they cover roughly the same
proportion of their respective life span though. The (t) and (t ′) axis are oriented
in the usual way ((t) towards the right and (t ′) pointing upwards). The third axis,
(z), (see 3.1) is generated by the mathematical need of a 3-dimensional embedding
space; yet, we claim that it has a biological meaning that will become clear later, in
section 3.3.2.

The surface of the cylinder Ci is parameterized by t (the physical time) and θ ∈
[0,2π] (the compactified time).

Let’s then take a further step by gradually making explicit the functional depen-
dencies.

• The average progression with respect to (t ′) will be represented by a function
τ

(
t−tb

τi

)
. tb is the physical time of a biological event of reference (time of fe-

cundation for example). τi is a characteristic time of the biological activity of
the adult: for example, the mean “beat to beat” interval under standardized con-
ditions (other reference systems can be chosen such as the mean time taken to
attain 98 % of adult mass, life expectancy, respiratory interval, . . . ). This value
represents, as a function of physical time, the age of the system inasmuch this
age is biologically relevant (see figure 3.2a: the graph of τ lies on the (t × t ′)
plane). τ is a growing function due to the irreversibility of biological time, and
has a decreasing derivative due to the decrease of activity during development
and aging.
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Fig. 3.1: Qualitative illustration of our geometric scheme, as a 2-dimensional manifold. In red, the
global age of the organism τ , in blue its modulation by the physical rhythm φ . Here the surface is
suggested by the accumulation of helices.

We set then:

−→
F τi(t,θ) =




t

τ

(
t−tb

τi

)

0


 (3.1)

• We next consider a physical (external) rhythm of period τe (its pulsation is then
ωe =

2π

τe
) that affects the activity rate of the organism — the circadian rhythm,

for example, leads to τe = 24 hours. This produces a winding spiral or helix, Ce

(see figure 3.2b: here we need the third dimension (z) for the embedding space
of our manifold). In the definition of

−→
G τi(t,θ), Re represents the impact of this

physical rhythm on biological activity:

−→
G τi(t,θ) =

−→
F τi(t,θ)+




0
Re

ωeτi
cos(ωet)

Re
ωeτi

sin(ωet)


 (3.2)
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The term 1
ωeτi

is proportional to the number of iterations of the compactified time
during one period of the physical rhythm, as such it can be considered as the tem-
poral weight of this rhythm for an organism (mean number of heartbeat during
a day, for example), it allows to understand that a year is more important for a
mouse than for an elephant. As a consequence the radius of Ce is proportional to
both the impact Re of this rhythm on biological activity, and on the weight of this
rhythm in terms of number of iterations of the endogenous rhythm considered
during one period of the physical rhythm5.

(a) (b)

Fig. 3.2: Qualitative Illustration of the first components of our model. LEFT, figure (a), the function
τ

(
t−tb

τi

)
, which represents the global age of an organism: this age increases at a greater pace during

development and slows down progressively, see section 3.5. In orange a small mammal (a mouse
for example) and in red a bigger one (an elephant). The life span of the first is shorter than the
one of the second. RIGHT, figure (b), in blue (and yellow), a physical rhythm has been added (this
rhythm is very slow for illustrative purposes). Notice that this physical rhythm has the same period
for both animals, but one of its iteration has a greater (physical time) weight for the smaller animal.

• We can finally add a biological (internal) rhythm, which depends on an increas-
ing function sτi(t) (see figure 3.3). sτi(t) has a proper biological meaning: for
example, if we impose sτi(tb) = 0, with t = tb when the heart begins to beat6,

5 We did not discuss here the phase of this rhythm, as it is not required in the rest of our develop-
ment. Le us just mention here that, in full generality the argument of the periodic term should be
ωet +ϕ , where ϕ = ϕe +ϕs. ϕe is the physical phase of the rhythm and ϕs is the specific phase
shift of a biological object considered, allowing to accommodate diurnal and nocturnal organisms
for example.
6 Let’s remark that, unlike in physics — classical, relativistic or quantum— biological time has
an origin, whatever level of organization we consider. As a result there is no time-symmetry for
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sτi(t) is the number of heartbeats of the organism at time t, and thus the mean
maximum of s, obtained when death occurs, does not depend on the organism we
consider (among mammals, typically). Set then, for

−→
G τi(t,θ) as in equation 3.2:

−→
T τi(t,θ) =

−→
G τi(t,θ)+




0
Ri cos(2πsτi(t)+θ)

Ri sin(2πsτi(t)+θ)


 (3.3)

3.3.2 Quantitative scheme of biological time

Now, a straightforward way to define more precisely s is to use
−→
G τi and more pre-

cisely the length of the curve defined by
−→
G τi . We obtain then for the instantaneous

pulsation, where τ ′ is the derivative of τ (thus d
dt τ

(
t−tb

τi

)
= 1

τi
τ ′
(

t−tb
τi

)
) and the

other components are the derivative of the remaining coordinates in equation 3.3:

dsτi(t)
dt

=

√√√√√α2×12 +




τ ′
(

t−tb
τi

)

τi
− Re

τi
sin(ωet)




2

+

(
Re

τi

)2

cos(ωet)
2 (3.4)

The term α is here for (physical) dimensionality reasons: since our metric has the
dimension of a frequency, and dt

dt = 1, then the derivative of the first component of
the vector in equation 3.2 has no dimension and we need to introduce this coefficient
whose dimension is a frequency7.

When α = 0 we can simplify 3.4 to:

dsτi(t)
dt

=

√√√√√



τ ′
(

t−tb
τi

)

τi




2

+

(
Re

τi

)2

−2
Reτ ′

(
t−tb

τi

)

τ2
i

sin(ωet) (3.5)

Now, if we consider hibernating animals, or frozen organisms, we have situations
where the physical time flows normally but where the biological time almost stops
or even totally stops. For α 6= 0, even in the frozen case, biological time would
flow with d

dt sτi(t) ≥ α . It seems then natural to propose that α = 0. Moreover, for
α = 0, we go back to allometric relations, since, in this case, d

dt sτi(t) is proportional

to 1
τi

. Now, τi is proportional to W 1/4
f , by allometry, and, thus, d

dt sτi(t), which is a

frequency, to W−1/4
f , as it should be.

translations, a fundamental property, in (relativistic) physics for the constitution of invariants, e.g.
energy conservation.
7 This kind of reasoning is commonplace in physics.



90 3 A 2-dimensional geometry for biological time

Another way to express this is to say that physical time per se does not make
biological organization get older: it is only when there is a biological activity (which
in return is of course always associated with physical time) that aging appears.

We can now even give a meaning to the third axis, (z): since τ

(
t−tb

τi

)
is on the

(t× t ′) plane, a positive (z) corresponds to a positive sin(ωet), by equation 3.3, and
it is associated with a slowdown of biological activity (sleep, for example), whereas
the negative values are associated to a faster pace (wake for example).

As a fundamental feature of the model that we will analyze next, we assume that
the speed of rotation with respect to the compactified time is constant, which leads
to a radius Ri = Cst. ∥∥∥∥∥

∂
−→
T τi(t,θ)

∂θ

∥∥∥∥∥= Ri(t,θ) = Cst (3.6)

This assumption “geometrizes” time even further: acceleration and slow-down
will be seen as contraction and enlargement of a cylinder in §3.4.4.2. In that section,
as an application, we will develop a geometrical analysis of biological rate variabil-
ity, and, as an empirical example, we will consider the heart rate of humans. Note
that this radius Ri is the dimension accommodating the biological rhythms, thus it
is not a physical dimension (it is a pure number). Our assumption is consistent with
the idea that each iteration along the compactified time contributes equally to aging.

3.4 Analysis of the model

In this section we will explore the various biological aspects that our approach al-
lows to put together, mainly on the questions of interspecific and intraspecific al-
lometry and on (heart) rate variability.

3.4.1 Physical periodicity of compactified time

Since d
dt sτi(t) provides the frequency of the biological rhythm, it is interesting to

look for a simple analytic expression of the period associated. To do so, we per-
form a Taylor development (under the hypothesis τ ′

(
t−tb

τi

)
� Re) of the inverse of

equation 3.5, and as a result we obtain an approximation of the physical time asso-
ciated with an iteration of the compactified time (the time between two heartbeats
for example):
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1
dsτi (t)

dt

' τi


 1

τ ′
(

t−tb
τi

) +
Re

τ ′
(

t−tb
τi

)2 sin(ωet)


 (3.7)

We can observe several things here. First, for adults we have τ ′
(

t−tb
τi

)
'Cst and

this constant does not depend on the size of the organism we consider. In this case,
the result has the form τi (a+bsin(ωet)). As a consequence, when we consider dif-
ferent species, there is no variation of the ratio ( τib

τia
) between the continuous and the

periodic (with respect to physical time) components of the biological rates. Alterna-
tively, the ratio between the rates of the biological rhythm during the slow period of
the physical rhythm (sleep for example) and during the fast period (wake) does not
depend on the species either. It is noteworthy that this prediction holds experimen-
tally (see for example [Savage et al., 2004] and [Mortola & Lanthier, 2004]).

On the other side, the relationship between this two rates is not linear in intraspe-
cific variations (i.e.: when τ ′ is not constant, mainly during development), and the

variation of the coefficient of the rhythmic component Reτ ′
(

t−tb
τi

)−2
is far greater

than that of the steady (continuous) component τ ′
(

t−tb
τi

)−1
. This mathematical de-

duction agrees with experimental results, as for the tendency, since in [Massin et al.,
2000], for example, it is shown that the continuous component varies like t0.16 while
the sinusoidal part (associated with the circadian rhythm ) varies like t0.75 for hu-
mans (between 2 months and 15 years).

3.4.2 Biological irreversibility

We can now look more precisely at the second axis, (t ′), of our reference system.
Since this aspect of biological time is irreversible and flows in the same direction
than physical time (τ(t) is an increasing function of t),

−→
G τi in equation 3.2 should

increase with respect to this direction. When this condition is met, we will say that
these times are “cofluent”. This can be easily mathematized by looking at the partial
derivative of the (t ′) component of

−→
G τi (obtained with the dot product by the unitary

vector −→e t ′ ) with respect to t:

∂
−→
G τi(t,θ)

∂ t
.−→e t ′ =

1
τi

f ′
(

t− tb
τi

)
− Re

τi
sin(ωet) (3.8)

We obtain then three possible different scenari, assuming that τ ′
(

t−tb
τi

)
tends to

be a constant for adults (and seniors), written τ ′
(

t∞
τi

)
. We then use equation 3.5 to

derive their observable consequences:
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τ ′
(

t∞
τi

)
> Re. In this case, biological age and the physical clock are cofluent, and

the minimum biological rate is achieved during adult sleep (figure 3.3a and 3.3d).

τ ′
(

t∞
τi

)
' Re. In this case, the two times are minimally cofluent, the derivative

tends to zero (during night or winter) when the organism grows older, that is
the rate of the biological rhythm tends to 0 during the (physical) time of little
biological activity. It seems to be particularly relevant for hibernation (figure
3.3b and 3.3e). . . .

τ ′
(

t∞
τi

)
< Re. in this case they are no longer cofluent, the nullification of the bio-

logical rate would appear during development, and, as a result, the slowest bio-
logical rhythm would appear during sleep of young individuals (figure 3.3c and
3.3f).

(a) Cofluent case (b) Minimally cofluent case (c) Non-cofluent case

(d) Cofluent case (e) Minimally cofluent case (f) Non-cofluent case

Fig. 3.3: Illustration of the three scenari. TOP, figures (a, b, c): the scheme
−→
T τi (t,θ) and BOTTOM,

figures (d, e, f), its time derivative
∂
−→
T τi (t,θ)

∂ t . FROM LEFT TO RIGHT: Cofluent case, minimally
cofluent case and non-cofluent case. Since the radius of the compactified time is proportional to its

physical rate when looking at
∂
−→
T τi (t,θ)

∂ t (see §3.4.4.1), the bottom pictures allows to see when the
slowest rate occurs (i.e.: when the radius is the smallest, blue arrow. Here respectively: for adults
in figure 3.3d and 3.3e and for infants in 3.3f).

This abstract cases can be tested with empirical data and the first two cases have
actual biological occurrences (see for example [Hellbrugge et al., 1964, Cranford,
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1983]). We believe that theoretically biological time should be always cofluent so
that the third case should not be realized. Indeed, the existing data, which are mostly
given for humans, confirm that case 3 does not hold (young individuals have slow
rhythms, during sleep typically, which are faster than adults slow rhythms).

It would be nice if our theoretical deduction, which excludes the third mathemat-
ical possibility as irrelevant, like in physical reasoning, were empirically confirmed
in large phyla. Conversely it would be also interesting if this theoretical derivation
leads to the discovery of species where also the third case is realized. In either case,
the generative role of this simple mathematics would follow a paradigm very often
implemented in physics, through history.

3.4.3 Allometry and physical rhythms

When we consider organisms with different adult masses (Wf ), we obtain a variation
of τi according to the scaling relationships (τi ∝ W 1/4

f ), whereas ωe does not change.
As a result, this change corresponds to a dilatation of the (t) axis (as far as f is
concerned) whereas the physical rhythm modifies the geometry of biological time
because the variations it triggers are anchored to the physical value ωe (see figures
3.2a, without physical rhythm, and 3.2b, with physical rhythms.).

Then, it is the interplay between physical rhythms and biological ones that breaks
the symmetry (by dilatation) between organisms of different (adult) masses that have
the same temporal invariants (most mammals for example). As a result, in this sit-
uation, the physical conditions can be seen as constraints or frictions on biological
temporal organization. Our point of view can be compared to the (physically) di-
mensionless time in [West & Brown, 2005], but this latter paper only considers the
autonomous aspect of biological time, thus it does not take into account this impor-
tant interplay.

Of course, another way to illustrate these aspects is to count the lifelong number
of iterations of cycles: as for biological cycles, this number does not vary much
when considering different species, the invariance at the core of our approach,
whereas it is strictly proportional to life span, as for physical cycles.

3.4.4 Rate Variability

Let us first introduce informally the applications and viewpoint we will hint to in
this section, where the data are obtained from a medical database. Our approach to
biological time allows naturally, as we will further specify, to a representation by a
cylinder whose radius is proportional to the cardiac rate. If we assume that n heart-
beats yield a complete rotation around the cylinder, then a faster heart rate would
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appear as a circular outgrowth (a sudden increase in the radius). In this represen-
tation, a healthy individual has a complex cardiac dynamics during the day, with
frequent rhythms’ accelerations of varying length (from seconds to many hours),
see section 2.4. This shows up in the figures by the many circular outgrowths of
different radii. On the contrary, an individual with an artificially regulated cardiac
rate (with a pacemaker, say) gives a relatively smooth cylinder. We will also show a
case which corresponds to a sudden cardiac death, without other particular symptom
than the altered variability of the rate.

Of course we do not provide a theoretical determination of spontaneous biolog-
ical rate variability, but just a geometrical representation. As a matter of fact in our
framework, it is quite straightforward to explore the structure of biological rhythms
and of their variations. More precisely, we can easily and effectively represent raw
datas (for example the series of “beat to beat” interval over time). As a result, we ob-
tain more than a qualitative schema: it is a theoretical grounded representation of the
“anatomy” (including pathological anatomies) of biological time and this anatomy
is infused with variability.

3.4.4.1 Renormalization

First we need to describe how we can use scales in our framework.
If we want to consider n iterations of the compactified time θ as an iteration

of an other view of compactified time θ̃ we obtain θ̃ = θ

n and s̃τi =
sτi
n , then by a

“renormalization” using the principle of constant speed for the compactified time,
one has: ∥∥∥∥∥

∂
−→
T τi(t,θ)

∂θ

∥∥∥∥∥=
R̃i

n
= Cst (3.9)

So R̃i = Rin. This result is exactly (modulo a global dilatation of the (t ′) and (z) axis
by a factor 1

n ) what we obtain if we construct directly our system at the level of n
iterations.

3.4.4.2 More on Rate Variability

If we look at the function obtained by taking the derivative of
−→
T τi(t,θ) with respect

to t, we obtain:

∂
−→
T τi(t,θ)

∂ t
=




t
1
τi

τ ′
(

t−tb
τi

)
− Re

τi
sin(ωet)−2πRis′τi

(t)sin(2πsτi(t)+θ)
Re
τi

cos(ωet)+2πRis′τi
(t)cos(2πsτi(t)+θ)




(3.10)
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Fig. 3.4: Renormalization and principles of variability representation. Here, we consider
∂
−→
T τi (t,θ)

∂ t
and we renormalize the compactified time by n = 10. A change of speed for the iteration m of
the original compactified time appears as a sharp contrast between this iteration and its neighbors:
iteration m−1, m+1, m−10, m+10. As a result, if there is a coherence for 10 successive iterations,
we obtain a fully circular outgrowth or contraction (for an acceleration or a slowdown respectively).

Here, instantaneous heart rate, 2πs′τi
(t), appears directly as the radius of compacti-

fied time, which now has the physical dimension of a frequency.
If the experimental time of each heartbeat is given in a list (t(m))1≤m≤M , we

obtain a discrete empirical version of
∂
−→
T τi (t,θ)

∂ t , renormalized by n:

∂
−→̂
T τi(m)

∂ t
=




t(m)

Â− R̂sin(ωet(m))−2π
n

t(m+1)−t(m) sin
( 2πm

n

)

R̂cos(ωet(m))+2π
n

t(m+1)−t(m) cos
( 2πm

n

)


 (3.11)

where Â is an estimation of n
τi

τ ′
(

t−tb
τi

)
which may be soundly considered constant

during the few days of the measure. R̂ is an estimation of n Re
τi

. Both of these values
are estimated by using equation 3.5 and (t(m))1≤m≤M . We obtain a 2-dimensional
structure by using triangles between adjacent points, that is to say for m≤M−n−1,
the triangles (m,m+1,m+n) and (m,m+n,m+n+1). It is worth mentioning that
this approach allows to obtain an empirical version of

−→
T τi(t,θ) too.

The renormalization by n allows to observe directly the correlations between
n consecutive heartbeats (a full circle) and the contrasts between a group and its
neighbors (see figure 3.4), thus discriminating easily between the sleep situation (no
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(a) A global view (2 days).

(b) Night, groups of 200 beats (c) Day, groups of 200 beats

(d) Night, groups of 600 beats (e) Day, groups of 600 beats

Fig. 3.5: Comparison of the situations during sleep and wake. The point to notice here, is that
the structure tends to become a regular cylinder during night at high scales, whereas the wake is
always complex. (Sample s20011 from The Long-Term ST Database, [Goldberger et al., 2000]).
The series of beat to beat intervals provided by this database is used directly, in our framework,
to estimate the few parameters we need and more importantly to provide the radii involved (each
heartbeat is represented).

correlations wider than' 100 heart beat) and the healthy wake state (correlations at
each scale). The latter is indeed characterized by a succession of randomly spaced
outer circle (see figure 3.5).

Moreover this representation may be useful to study cases of heart diseases and
even aging, since these situations are characterized by an alteration of heart rate
variability. We illustrate this alteration in cases of sudden cardiac death in figure
3.6 computed with data from the The Sudden Cardiac Death Holter Database, see
[Goldberger et al., 2000]. This figure evidentiate the anatomy vs. the pathological
anatomy of heart rhythms and suggests the extension of this approach to other bio-
logical rhythms which are less explored.

• Figure 3.6a is an example of a healthy case, which is characterized by a complex
temporality during wake.
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• In figure 3.6b, (intermittent) pacing leads to an excessively regular cylinder, with
very limited heart rate variability.

• Atrial fibrillation (a kind of arrhythmia, see comments in figure 3.6), in the figure
3.6c, leads to an “hairy” structure, which represents a strong short term random-
ness (few correlations between successive heartbeats).

• Last but not least the figure 3.6d is not associated with a specific diagnosis (put
aside sudden cardiac death at time 9000) but it clearly shows a very simpler
structure than the healthy case.

Our approach allows to discriminate all these various cases by rather striking
geometrical differences. Wavelet analysis is often used for the same purpose, but
the wavelet approach is based on a massive reorganization of the data, through a
decomposition in various components, whereas we only perform a geometrical and
synthetic composition of them.

Fig. 3.6: Comparison between a healthy situation and cases of sudden cardiac arrest. (a) Healthy
case, cf figure 3.5. (b) Female aged 67 with sinus rhythm and intermittent pacing. (c) Female, 72,
with atrial fibrillation. (d) Male, 43, with sinus rhythm. (The data are from samples 51, 35 and 30
from The Sudden Cardiac Death Holter Database, see [Goldberger et al., 2000]).



98 3 A 2-dimensional geometry for biological time

3.5 More discussion on the general schema 3.1.

3.5.1 The evolutionary axis (τ), its angles with the horizontal ϕ(t)
and its gradients tan(ϕ(t))

The central line (τ), see figure 3.1, is the “result” of the various components (phys-
ical time, external and internal rhythms) and we propose that it refers to a “physio-
logical” time associated to the temporal progression of the organism over the course
of its life. In order to better understand the different chronological parts of life, this
“axis” may be decomposed in distinct segments, each being characterized by their
angle, ϕ , with regard to the abscissas (the ϕ angle under consideration then becomes
that of the tangent), connected by zones with a change of curvature around spe-
cific times (t0, t1, t2, . . .). We will qualitatively distinguish five parts (with unequal
lengths). Note that this angle depends on the choice of unit for the physical time.
We can overcome this limitation by choosing the adult angle as 45◦, or similarly but
not identically the period of the adult rhythm.

I Around t00 (which would correspond to the fertilization of the egg that will form
the organism), a new segment begins with a very large angle (80 ◦ for example)
and consequently with a very high gradient. This segment will correspond to
embryogenesis.

II Around t0, there occurs a first curvature of the axis in order to initiate a segment
of which the angle (and the gradient) still remains high (at 60◦, for example).
Time t0 would correspond to birth8 and the following segment to growth (devel-
opment).

III Around t1, we would have a new curvature generating a medium sized angle
(45 ◦ for example) with a gradient approaching 1. t1 would correspond to the
appearance of the reproductive faculty (age of puberty9) and to the entering into
the phase of adult maturity.

IV Around t2, we would have another curvature generating a small angle segment
(30 ◦ for example) with a weak gradient. t2 would correspond to the period of loss
of fecundity (menopause, andropause)10 and to the beginning of aging as such.

V Around t3 the axis becomes horizontal (ϕ = 0, tan(ϕ) = 0) and is definitely bro-
ken. t3 represents the time of death.

Concerning the various durations (namely that of the life span t3 - t0), we know
by the above mentioned laws of scaling generally encountered in biology, that these
durations scale according to the organism approximately by W 1/4

f , where Wf is the
mass of the adult organism.

8 At germination, for plants.
9 At the moment of flowering or of fruit-bearing, for plants.
10 At the end of production, for plants.
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If we now consider vt = tan(ϕ(t)) as being the “speed” of evolution of the phys-
iological time (τ) with regard to the physical time t, we would make the following
remarks which motivate the various gradients of (τ):

• between t00 and t0 this speed is very high: initial cell divisions, morphogenesis,
setting in of the first functionalities;

• between t0 and t1, the speed remains high; it corresponds to growth, to develop-
ment, to the completion of the setting in of functionalities, to a high metabolism;

• between t1 and t2 the speed is moderate; it corresponds to the regularity of the
metabolic reactions, of cellular renewal, etc., that are characteristic of adult age;

• between t2 and t3, the speed is low: lowering of the metabolic rate, of cellular
regeneration, of activity; this corresponds to aging;

• after t3 the speed is null: it is the death of the organism.

Note that this is consistent with the analysis in terms of rates (like heart rate), that
we have performed in the previous section. The point of this discussion is to relate
our approach to the key step in the evolution of the organization of an organism. It is
important to keep in mind that in biology the representation by a mathematical func-
tion, τ in our quantitative scheme, usually masks this kind of qualitative changes,
that we discuss here as sudden changes of the angle.

3.5.2 The “helicoidal” cylinder of revolution Ce : its thread pe, its
radius Ri

In our qualitative analysis (see 3.1) we have a cylinder of revolution Ce, with a radius
Ri, which is winded as a helix having a thread of pe around the (τ) axis, without
touching this axis but faithfully following its changes of direction.

The thread pe of this helicoidal cylinder can be assimilated to a period; it cor-
responds to the external cyclical rhythms imposed upon the organism by its envi-
ronment (annual, lunar, circadian cycles, for instance, see §3.2.2(EXT)), which are
independent physico-chemical rhythms that we have taken into account in the first
paragraph; they are essentially of a physical origin and are imposed upon all organ-
isms exposed to them. The Ri = 0 case will be discussed below.

3.5.3 The circular helix Ci on the cylinder and its thread pi

This circular helix Ci, with a thread pi, is winded around the surface of the cylinder
Ce (it is a “second order” helix because the winding cylinder is also helicoidal). We
consider the thread of this helix (which is also a period) to refer to the compactified
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time θ (the circle which generates this cylinder) introduced here and associated to
the internal biological cycles of the organism. As we stressed several times, these
are relatively independent from the environment. This is the case, for example, of
cardiac and respiratory rhythms, of the rhythms of biochemical cascades, etc. (see
§3.2.2(Int)). Let us also recall that the period associated to these cycles also scale by
W 1/4

f , at least from t1 (and also, in practice, from t0).

3.5.4 On the interpretation of the ordinate t ′

Let us return now to the issue of the interpretation we can give to the ordinate t ′.
In a mathematical sense, it is generated by the compactified fiber of the temporal
rhythms specific to living phenomena. More specifically, it is mathematically neces-
sary as a component of the three-dimensional embedding space of helices produced
by the direct product of the physical time t and of the compactified time θ , which
are, according to our hypothesis, two independent dimensions. We already hinted
to a possible biological meaning of the (z) coordinate. But first and more precisely,
what could the ordinate t ′ correspond to, from a biological standpoint?

If we define a speed for the passing of time τ comparatively to t ′ in a way that
is similar to the definition of vt = tan(ϕ(t)), we will have vt ′ = cotan(ϕ(t)) ; at the
inverse of vt (we have vtvt ′ = 1), this speed is small at first but continues to grow
when t (or τ) grows.

In the case where the organism under consideration is the human being, an inter-
pretation promptly comes to mind. The velocity vt ′ would correspond to the subjec-
tive perception of the speed of the passing of the “specific” or physiological time τ:
at first very slow, and then increasingly rapid with aging. In such case, t ′ would be
the equivalent of a subjective time. One will notice that, from the quantitative stand-
point, if between t1 and t2 (the interval of the adult phase) we confer ϕ with the value
of 45◦ approximately, as we have already indicated above, the speed of the passing
of time τ with regard to objective physical time (vt ) coincides more or less with the
subjective perception of the passing of this time (vt ′ ) (in fact, tan(ϕ)' tanϕ ' 1).

As it is matter, here, of human cognitive judgment of the time flow, we are aware
of its historical contingency. The remarks below, thus, are just informal preliminar-
ies to forthcoming reflections, where the historicity of young vs. old age perception
of time, for example, should be relativized to specific historical cultures and social
frames. We then leave the reader to have any reflection regarding the subjective per-
ception of time during youth and old age. We can imagine that such thoughts will
coincide with ours, if we belong to the same “culture” (time which passes slowly
while young and, later, very quickly. . . ).

In what concerns organisms other than human beings, of which we do not know
if they have a subjective perception of the speed of the passing of physiological time
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τ , it is more difficult to assign a clear status to this dimension of t ′ (although cer-
tain relatively evolved species seem likely to express impatience, for example, or to
construct an abstract temporal representation by exerting faculties of retention and
especially of protention). So would this dimension not begin to acquire a concrete
reality only with the apparition and development of an evolved nervous system (cen-
tral nervous system, brain)? But then what about bacteria, amoebas, paramecia. . . ?

Actually, it may be possible to somewhat objectivize the approach by advancing a
plausible hypothesis regarding the general character of t ′: we could consider that it is
a question of a “temporality” that is associated to the “representational” dimension.
Let us explain.

Since living organisms are endowed with more or less capacity for retention and
protention (possibly pre-conscious “expectation”), we tentatively propose the fol-
lowing qualitative interpretation: the element of physiological time dτ is associated
to the element of physical time dt and to dt ′ by the evident relation dτ2 = dt2+dt ′2.
It stems from this that dt ′2 can be written as dt ′2 = dτ2−dt2 or as

dt ′2 = (dτ−dt)(dτ +dt) (3.12)

It is then tempting to see in the first factor the minimal expression of an ele-
ment of “retention” (for physiological time, relatively to physical time) and in the
second the corresponding expression of an element of “protention”. The product of
the two would generate the temporality component of a “representation” which bor-
rows from the “past” and from the “future”, as constitutive of the flow of biological
time. As all living organisms appear to be endowed with both a capacity for reten-
tion — as rudimentary as it may be — and with a protentional faculty (even more
rudimentary maybe), the generality of the dimension t ′ would be preserved and the
“representational” capacity (at least in this elementary sense) appears as being a
property of living phenomena. We will develop this idea, of protentional and reten-
tional capacity of living organisms in the next chapter. This property, for conscious
thought, could even be extended to subjectivity, in accordance, in the specific case
of the human being, with the phenomenological analysis by which we began: dt ′2

would be a form, as elementary as infinitesimal, of the “extended present”, in the
Husserlian tradition, described by other analyzes, such as the coupling of oscillators
in [Varela, 1999].

Finally, it would be the two-dimensionality t× t ′ — (physical time) × (represen-
tation time) — which would enable to mark out the temporality of living phenom-
ena, which may be represented in the geometrical way as we have described in this
chapter.
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3.5.4.1 Conclusion

In summary, in addition to the objective physical time t (evidently still present and
relevant), we presented a general geometric schema of time from a biological stand-
point, which includes:

• a general temporality of ontogenesis (τ) (the axis);
• a temporality associated to the external rhythms (the helicoidal cylinder winded

around this axis from a distance) that are characterized by the thread pe;
• a temporality associated to the internal rhythms involving a compactification of

time: the helix with a pi thread at the surface of the cylinder.

Our purely theoretical representation allowed though an apparently effective
drawing of rhythms, such as the cardiac ones. Images may matter a lot in orga-
nizing knowledge and it may be worth noting that they came to our mind only after
realizing the purely mathematical need for a second compactified dimension as for
biological time.

As a final deductive remark, we should note that if the radius Ri of the heli-
coidal cylinder becomes null, it will be reduced to a helix winded around (τ) and
the internal cyclicity will tend to disappear as such (there remains only the external
rhythms that are physical). The general schema we have presented concerns mainly
the properties of the animal world, while, we claim, this last case, where Ri = 0,
mainly concerns plants. With rare exceptions, which should be more closely ana-
lyzed, the rhythms of plants (metabolic, chlorophyllian, of action — activation of
organs. . . ) seem completely subordinated to the physical external rhythms. Thus, the
non nullity of Ri, that is, the two-dimensionality of the cylindrical surface, should be
associated to the greater autonomy — the rhythms of the central systems, typically
— and to the autonomous motor capacity which the animal enjoys comparatively to
plants, the two being obviously correlated.

Of course, there is no clear-cut transition, no well-defined boundary between
animal and plant life forms, in particular in the marine flora/fauna. For this reason,
we find the representation of the passing from the one to another in the form of
a continuum to be adequate: the continuous contraction of the helicoidal cylinder
which tends towards being a helix, which is a line (the time of plants). The non
observability of the difference between animal and plant, in some “transitional”
cases, would correspond to an interval of biologically possible measurement, with
no phase transition (of the type of life form) that is clear or discontinuous. Once the
limit, the helicoidal line, is reached, even the three-dimensional embedding space
can be collapsed onto the two dimensions: the rhythm becomes the oscillation of
one measurement (of chlorophyllian activity, for example) with regard to the axis of
oriented physical time (the spiral is flattened into a sine wave, for example) as is the
case in many periodic physical processes.



Chapter 4
Protention and retention in biological systems

Husserl uses the terms protentions and retentions for the intentionalities which
anchor me to an environment. They do not run from a central I, but from my
perceptual field itself, so to speak, which draws along in its wake its own
horizon of retentions, and bites into the future with its protentions. I do not
pass through a series of instances of now, the images of which I preserve and
which, placed end to end, make a line. With the arrival of every moment, its
predecessor undergoes a change: I still have it in hand and it is still there, but
already it is sinking away below the level of presents; in order to retain it, I
need to reach through a thin layer of time.

M. Merleau-Ponty

Abstract

This chapter proposes an abstract mathematical frame for describing a peculiar fea-
ture of cognitive and biological time. We focus here on the so called “extended
present” as a result of protentional and retentional activities (memory and antic-
ipation). Memory, as retention, is treated in some physical theories, such as relax-
ation phenomena, which will inspire our approach, while protention (or anticipation)
seems outside the scope of physics. We then suggest a simple functional represen-
tation of biological protention. This allows us to introduce the abstract notion of
“biological inertia”1.

Keywords:

Memory, Cognition, protention, retention and biological time.

1 This chapter is a revised version of [Longo & Montévil, 2011b].
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4.1 Introduction

The notions of “memory” and “anticipation” are analyzed and formalized here from
a temporal perspective. By this, we propose a simple mathematical approach to re-
tention and protention that are apparently shared by all organisms, albeit rudimenta-
rily. Moreover, in life phenomena, memory is essential to learning and it is oriented
towards action, the grounding of protention. Our approach will allow to propose the
notion of “biological inertia”, a form of “continuation” of ongoing action. The frame
is purely mathematical and abstract: only practitioners will be able to give values to
our coefficients and develop, possibly, concrete applications of the approach, from
cell biology to human cognition. Our aim is to give a precise and relevant meaning
to notions that are usually treated in a rather informal fashion and unrelated between
one another, such as those of time of representation, time of retention and time of
protention.

A long phenomenological tradition introduces an important distinction between
memory and retention, on the one hand, and anticipation and protention on the other.
In short, the common meaning of “memory” seems to essentially refer to a “con-
scious reconstruction” of something that was experienced (very well put by [Edel-
man & Tononi, 2001] as a “brain which sets itself back into a previously experienced
state”). Anticipation would be its temporal opposite — the awareness of an expecta-
tion, of a possible future situation. Memory and anticipation do not, a priori, have a
biological characteristic time, a notion which is essential to our analysis. In our ap-
proach, instead, pre-conscious retention, as a biological phenomenon, is to be seen
as an extension of the present; it is the present which is “retained”, during a brief
interval of time, which we will call a characteristic time, for the aim of the action
and of perception, it is a form of extension of the immediate past into the present.
For example, when listening to a word or a phrase, we retain the part which has
already occurred for a certain (characteristic) duration of time. The mental duration
of a phrase, particularly of a musical “phrase”, is needed for grasping meaning or
a melody (see for example [Perfetti & Goldman, 1976, Nicolas, 2006]): it is the
present which leaves a trace the time necessary for action or, possibly, for subse-
quent awareness. But protention (as preconscious anticipation) is also essential to
appreciate a melody or understand a phrase. When reading, the analysis of saccadic
eye movements demonstrates that we first look at least at half of the word following
the one we are reading, see [Wildman & Kling, 1978]. This protentional behavior
participates in the reconstruction of meaning: we appear to make sure of the mean-
ing of the word we are reading by making a partial guess upon the following word.

Technically, protention will be given by a temporal mirror image, as it extends
retention forwards into time. Protention is, above all, the tropism inherent to action
performed by any life form. This point is at the center of our approach: we call re-
tention and protention these particular aspects of memory and of anticipation that
are specific to all life forms — a sort of present which is extended in both directions.
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Thus we do not limit our analysis to the phenomenological use of these words, inas-
much it limits their meaning to situations that can be examined through conscious
activities. We believe that this extension to pre-conscious activities remains compat-
ible with (and helps to understand) its classical usage, particularly such as described
by [Van Gelder, 1999] and [Varela, 1999], who develop the concepts of intentional-
ity, retention and of protention, introduced and discussed in length by Husserl in his
analysis of human consciousness.

In this chapter, we propose an elementary mathematical model of these inevitably
fuzzy notions, one which is as rudimentary as possible, but one that can nevertheless
support discussions regarding their precise conceptualization and their increasingly
thorough mathematization. As always in our approach, the theory matters more than
the mathematics. Yet, the introduction of the notions of “biological inertia” and
“global protention” are, typically, a consequence of the generative power of mathe-
matics.

For the purposes of our theoretical understanding, we will define some basic
principles and more specific notions, after some methodological preliminaries.

4.1.1 Methodological remarks

Let us recall that in our general approach, also presented and followed in [Bailly
& Longo, 2011, Bailly & Longo, 2008, Bailly & Longo, 2009, Bailly et al., 2011],
our attempted aim is not to reconstruct the physico-mathematical complexity of
some aspects of biology, but to propose firstly and above all a proper biological
perspective. We believe that the theoretical differentiation between theories of inert
and of living phenomena requires, among other things, a change in the relevant
parameters and observables. This chapter is a further example of our approach, and
a short general discussion may help to further clarify it.

As long as the actions of living organisms, including their cognitive perfor-
mances, which occurs the moment that life appears (in this sense, we speak of
protention and of retention in the amoeba or the paramecium), are analyzed within
physical space-time and physical observables, the physico-mathematical takes prece-
dent over the specificity of the biological.

In order to further specify our methodological frame, we go back to an example.
The remarkable mathematics of morphogenesis, a broad issue and references we
already discussed in the introduction to this book, from phyllotaxis to the analysis
of the dynamic structuring of organs, organize the growth of living organisms ac-
cording to physical geodesics. This growth is shaped within physical space-time, by
optimizing, for example, the occupation of physical space, the exchange of energy
by a surface within a volume, . . . . In these cases, the spatio-temporal and energetic
parameters and observables enable a very interesting and often technically very dif-
ficult analysis. This is a relevant approach of the physical complexity of living phe-
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nomena and of its material structures. We could also say the same of analyses of
networks of cells, of which the most complex are neural networks. Informational
interaction, often a gradient of energy, enables to develop a theory, now very rich
from the mathematical standpoint, of these formal networks of which increasingly
important applications are being considered for the construction of machines that
are somewhat intelligent (at last). However, this mathematical approaches are far
from providing a “theory of organisms”, as they focus on local properties, largely
disregarding either the role of the organism which regulates and integrates both or-
gans’ formation and networks’ dynamics, or both. Moreover, cells’ networks form
tissues which form organs which, in turn, integrate both of them, while even the
dialogue between the two scientific communities is far from developed. In short, the
relevant information obtained still misses the integration in an active organism.

Our modest attempt, instead, always tries to propose a perspective for the organ-
ism as a whole, even though, each time, from a specific point of view: so far, we
discussed scaling laws, rhythms, now protention and retention, further on it will be
a matter of global (extended) criticality, of pertinent phase spaces and enablement,
of organismal complexity . . . . A conceptual and mathematical integration between
the relevant morphogenetic and networks’ analyses or alike and our perspectives
would be an interesting project for further work.

In this chapter, the mathematics used will not go beyond a few equations which
could be presented to high school students. What is interesting, in our view, is ap-
proaching biological time according to its own specificity, by starting with some
invariants which appear to be specific to living phenomena, as we did in the pre-
vious chapters, or with properties that are not treated by current physical theories,
such as protention. In chapter 3, we proposed a two dimensional representation of
biological time as a mathematical frame to accommodate the autonomous (internal)
biological rhythms (cardiac, respiratory, metabolic rhythms, . . . ). In the perspective
of this chapter, a conjectural link may be made: one may understand the expec-
tation or anticipation of a rhythm to iterate, as a minimal form of protention. Once
rhythms are installed, the organism is “tuned” to (and “expects”) their iteration. That
is, biological rhythms may be seen as a least form or a possible origin of protensive
capacities.

Before developing a further geometrization of biological-time, we will face yet
another taboo of physicalism in biology: the inverted causality specific to protention.
We will not present a physical theory of teleonomy, but will use as data and prin-
ciple the evidence of protentional behaviors that may be observed in any life form.
When the paramecium, encircled by a ring of salt, tries after many attempts to break
through the obstacle, risking its own life and possibly even succeeding [Misslin,
2003], we can take note of the retention-learning phenomenon and of the ensuing
teleonomic gesture (a protention) and develop an adequate theory (see also [Saigusa
et al., 2008], as for the amoeba). Likewise, when we understand that the brain, prior
to a saccadic eye movement prepares, by a clear anticipation, the corresponding pri-
mary cortex which is apt to receive the new signal (see [Berthoz, 2002]), we propose
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to frame this fact by a suitable conceptualization and possibly some mathematics.
In either case, there is certainly an underlying physico-chemical mechanism which
will one day enable to grasp the phenomenon by means of physical causality, yet,
perhaps, an adequate form of causality which may need to be invented, as often in
the history physics — needless to insist that causes in the relativistic light cone or
as quantum probability’s correlations, were major novelties.

For the moment, let us consider these phenomena as a form of protention to
be analyzed (correlated, formalized, . . . ) by a theory specific to living phenomena,
even if it has no correspondence nor meaning within current physical theories. The
mathematics to be found in the following pages will give us the advantages of for-
malization: it forces to specify concepts and to stabilize them as much as possible
— this is what mathematics is first about. Maybe that which follows is false, but it
should then be possible to say so in relation to a precise formulation.

4.2 Characteristic time and correlation lengths

The notion of “characteristic time”, which we inherit here from physics, appears to
be very important in biology as well: it concerns the unity of the living individual
because, for example, fluxes and their transport entail lengths and, therefore, rel-
evant transport times. We will also speak of characteristic times for retention and
protention.

For example, according to the size of the organism, there appears to be two sorts
of transport processes. For large organisms, it is of a “propagative” type (vp velocity,
along networks and “channels”) with a typical correlation length of Lp = vpτ , where
τ represents the characteristic time. For smaller organisms (cells, for example), it
is rather of a “diffusive” type (diffusion coefficient D, due to molecular diffusion
processes) wiht typical correlation length Ld = (Dτ)1/2.

We stress the difference regarding dependency in function of time: linear in one
case, as a power of 1/2 in the other. Note that anomalous diffusions can also occur,
see section 2.5, which yield different exponents, usually smaller (subdiffusion) and
sometimes bigger, when energy is used for active transport.

Two complementary remarks:

• The size of the organism also affects structures determining the mode of trans-
port, for example the respiratory function (oxygen transport): in the case of small
organisms (insects, for example) the transport is performed by trachea (or even
pores), multitudes of little cylinders where the air diffuses in order to reach the
cells. In the case of large organisms (fishes, mammals), transportation and ex-
changes are performed by means of gills or of lungs, centralized anatomic struc-
tures which present the fractal geometries we evoked above and which enable to
conciliate difficultly compatible constraints (efficiency, steric limitation, homo-
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geneity), and then by various sorts of vascular systems. Transportation, in this
last case, is also much more of a “propagative” type (even if diffusion does play
a role, namely in bronchioles).

• These considerations essentially apply to various structural aspects responding to
identical functions. The functional aspect responds for its part very generally to
common scaling laws (the metabolism which corresponds particularly to oxygen
intake, the various rhythms, the relaxation times, . . . ). It therefore appears that
the modes of transport associated to identical functions can be different and can
correspond to different anatomic structures (trachea, gills, bronchial trees/lungs).
This is the well-known phenomenon of analogy of structures in evolutionary
biology.

Finally, account taken of these remarks, since the characteristic times τ mostly
scale as W 1/4

f , where Wf is the mass of the intended adult organism (see chapter 2,
section 2.2 or [Lindstedt & Calder III, 1981, Savage et al., 2004]), it is necessary to
expect the correlation lengths to scale differently according to the mode of transport:
respectively Lp in W 1/4

f and Ld in W 1/8
f , following the definitions of Lp and Ld .

In the sequel, our characteristic times will more precisely refer to “relaxation
times”, still in analogy to physics (see next footnote), yet in properly biological
frame, that is in relation to retention and protention.

4.2.1 Critical states and correlation length

The physics of criticality and self-organized systems has massively entered the
domain of biology since early ideas by [Nicolis & Prigogine, 1977, Bak et al.,
1988, Kauffman, 1993]; . . . . In chapter 7, we will extend this approach, in direct
reference to far from equilibrium systems, by considering living entities as being in
an “extended critical situation”, beyond the pointwise analysis of critical transitions
proper to physical theories.

Before getting into the details of that matter, it is interesting to consider that
physical criticality is associated with a so-called critical slowdown (see for example
section 6.2.3 for a brief introduction and references): the relaxation time of a system
tends to infinity when it goes near the critical point. The qualitative meaning of these
situations in biology is that the effect of a stimuli would take a relatively long time
to stabilize (or, more generally, the organism would take, in principle, a long time
to “react” or “adjust” with respect to physical systems), if one views life as close
to or in an (extended) critical state – this will be our perspective in chapter 7. In
particular, criticality would lead to very slow cognitive reactions at least under the
assumption that reaction needs a stabilization.

More generally the elaboration/reaction time should necessarily be slow in an
organism with long correlations in space and slow characteristic time of the individ-
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ual components of the system. However, organisms and especially metazoans must
often react quickly and are able to do so. Consequently, biological organization pro-
vides a solution to this paradox. This solution is to compensate this slowness by
preparing the organism to a forthcoming stimulus in advance.

Our analysis of protention and biological inertia will try to provide a simple
framework to approach these properties. Note that, in this perspective, perception
itself is co-determined by this protentional activity — we mentioned the case of
listening, to a tune or also language, at least when “meaning” is involved. More
generally, we understand perception not as an issue of “input elaboration”, but as
the interference of an ongoing protensive activity with the ecosystem.

4.3 Retention and protention.

4.3.1 Principles

We describe retention R by specifying it under the form:

Rk(t0, t) at an instant t of an anterior “event” e of nature k at time t0,

For short and if needed, we will pose that ek
0 = ek(t0) (where t0 ≤ t).

Virtual protention, of an event of the same nature ek
1 = ek

t1 at moment t of an
ulterior instant t1 (t ≤ t1) will be noted VPk(t, t1). However, (actual) protention will
be considered as a function also of retention Rk because, and this is an essential
principle of our approach, in the absence of the retention of an event of nature k there
will be no possible protention for an event of such nature. We will therefore have
Pk(Rk, t, t1) = 0, for Rk = 0. For the sake of simplicity, we described this dependence
of protention on retention as a linear dependence and our (actual) protention, Pk =

RkVPk(t, t1), will express this2. Moreover, in conformity with our previous analyses,
we will pose that this protention is a monotonous increasing function of the retention
in question, that is ∂Pk

∂Rk
≥ 0.

4.3.2 Specifications

On the basis of the distinction made above, we have thus introduced the notions of
retention and of virtual protention, as “immediate” and “passive” memory and an-

2 After reading a draft of this text, L. Manning gave us references to IRM data confirming the
neurophysiological and neuroimaging evidence for protention and the dependence of protention on
retention: [Szpunar et al., 2007, Botzung et al., 2008]. Further, more specific experiments would
be required in order to quantify the coefficients we introduce here and check/adjust the linearity of
this dependence.
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ticipation. This is meant to express the fact these phenomena do not stem from the
intentionality related to a conscious activity of a subject (generally endowed with a
more or less elaborate nervous system), but are proper to simple processes of bio-
logical reaction/stimuli/response, of which many primitive organisms in relationship
to their environment are the locus. To the aim of developing this point of view, we
now introduce distinct concepts by means of simple mathematical functions, mainly
relaxation functions and their combinations3.

More specifically, we will first define the retention function:

R(t0, t) = aR exp
(

t0− t
τR

)
(4.1)

t0 is the time of occurrence of an event which is the object of the retention, t is
the present moment (t > t0); τR is the characteristic time associated to the decrease
of the retention as we move away form the occurrence of the event. Notice that
when τR tends to 0, R(t0, t) tends to 0. aR is a coefficient which can be associated
to an individual or to a species, for example, in comparison to others of which such
faculties are more or less developed.

We propose to use relaxation functions, because the loss of retention, by moving
away from the moment of the intended event, for example the beginning of a phrase
or, more generally, from the beginning of any action (including listening), can be
considered as a sort of gradual “return to equilibrium” — no more affected by the
(sudden) event. This, obviously, does not preclude us from maintaining a memory
of a more long-term past (the initial part of a discourse, for instance): we limit
ourselves to an analysis of the local, pre-conscious effect which contributes to the
extended present of an ongoing activity.

How may we now formally define virtual protention? We propose to make it
mathematically intelligible by means of a temporal symmetry with regard to R, that
is, by changing sign to time t. So we define, by a symmetry adjusted by two new
parameters, aP and τP, a virtual protention. Now, time t1 is the time of the event
to be anticipated and which is in the future of the present instant t (t1 > t) in the
function:

VP(t, t1) = aP exp
(

t− t1
τP

)
(4.2)

The different parameters, aP and τP, play the same mutatis mutandis role as those
which intervene in R (cf fig. A). In particular, τP = 0 leads to VP(t, t1) = 0.

3 Relaxation functions are among the simplest decreasing functions enabling to define a charac-
teristic time τ in physics, they often represent the basic model for the return to equilibrium of a
system that was initially brought out of equilibrium. The speed at which the system returns to the
equilibrium fe of the system’s f function,

(
d f
dt

)
remaining proportional to this interval, that is

d f
dt =− | f− fe|

τ
, where τ is the characteristic time.
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Finally, as we claim that protention depends also on retention, we define (actual)
protention P(t, t0, t1) by the product RVP:

P(t, t0, t1) = R(t0, t)VP(t, t1) = aPaR exp
(

t0− t
τR

)
exp
(

t− t1
τP

)
(4.3)

The (linear) dependence of P on R, according to the principles stated above, em-
phasizes that such a capacity can only exist, phenomenologically speaking, if there
exists, in one form or another, a sort of “memory” R (retention) relative to the event
of which the reiteration or something resembling it is to be anticipated. We are aware
that we are making a strong but empirically plausible hypothesis here, see footnote
2. Thus, the specific traits of this “expectation” of an unknown future, protention, is
not exactly symmetrical with regard to the retention of a known past. And this by
the fact that protention depends on retention — and not conversely — and that, by
its nature, it remains “potential” (it is the expectation of a “possible” event).

In the case where R = 0 (complete absence of retention), the protention is can-
celed out by the fact that there no longer exists any referent enabling to anticipate
the expected event.

Still from the phenomenological standpoint, we will expect that in general τP�
τR, that is, that the characteristic time of retention be greater than that associated to
protention P (in order to “anticipate”, it is first necessary to “remember”, as stressed
above). So the contribution of VP in the definition of P (the second exponential in
τ
−1
P ), evolves more rapidly than that of retention for a same concerned duration. And

we will always have P ≤ aPR, as a function of time t, and this for any value of τP

and τR. P = aPR is achieved only in the very moment that the time to be anticipated
is the actual present, that is for t = t1 and hence exp

(
t−t1
τP

)
= 1.

To make the role of the parameter t more explicit, with regard to the interval
(t0, t1) and to the characteristic times τP, τR, some simple algebraic manipulations
enables to put the expression P in the form of the product of a function of t and of
two coefficients solely dependent on t0 and t1, that is:

P(t) = aRaP exp
(

τR− τP

τRτP
(t− t0)

)
exp
(

t0− t1
τR

)
exp
(

τR− τP

τRτP
(t0− t1)

)
(4.4)

4.3.3 Comments

First, we should notice that τRτP
τR−τP

is an interesting quantity: it has the dimension of
a time and is the characteristic time of P(t).
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Fig. 4.1: Illustration of the basic quantities we define. Notice that protention is a growing function
of time.
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Fig. 4.2: Protention for various values of the ratio c = τP
τR

. We observe that small value of c leads to
a sharp curve near t1 whereas value close to 1 are flat in the interval. We will discuss the biological
meaning of this case in section 4.4.
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When τP tends toward τR, this characteristic time tends to infinity, and respec-
tively τR−τP

τRτP
tends to 0. This means that when τP is close to τR, P(t) is almost sta-

tionary as a function of t.
On the contrary,when τR� τP, minor changes in time strongly affect P(t). More

precisely, P(t) is small when far from t1 (and close to t0), while it is very sensitive
to (small) changes of t, when t is close to t1. This means that, in this condition,
the vicinity of the virtual event is where the effect of protention is important, see
figure 4.2.

It is crucial, however, to understand that protention, for example in the case of a
cognitive situation, is not empirically associated with a change of behavior, but with
the speed of this change of behavior. This suggests a way to approach these quanti-
ties empirically by a comparison of the reaction time between situations where the
event associated with retention (at time t0) occurs and when it does not: in the first
case, a more sudden change is then to be expected close to the expectation time t1.

Alternatively, situations where the event at time t0 occurs but where the event
(at time t1) does not occur allow to evidentiate the presence of protention and to
see a part of its effects. This is, for example, the case of amoeba in [Saigusa et al.,
2008]. However, in many situations, the effect of protentional action will consist in
a “sensitization” to the virtual stimuli with the preparation of a response. This may
lead to no behavioral change when the virtual stimuli does not happen, but leads to
a change of organization associated with the preparation of the response (including
at the sensory level) and possibly to a greater sensitivity to noise.

4.3.4 Global protention

One may wonder when protention is maximal for a given individual. In our ap-
proach, the first possible answer is given by looking at the diagram in figure 4.2:
this quantity is maximal close to t1. However, we can refine the question (and the
answer) by looking at the global amount of protention along the intended interval
[t0, t1]. As protention is both variant and contravariant in the interval of [t0, t1] (see
definition 4.3), this question has a non-obvious answer.

For this purpose, we define the notion of global protention, which is the sum (the
integral) of protention over time, between t0 and t1.

GP(t1− t0) =
∫

∞

−∞

P(t)dt (4.5)

=
∫ t1

t0
P(t)dt (4.6)

Following our specification of protention we can compute the global protention,
which has the following form:
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GP(t1− t0) =
∫ t1

t0
P(t)dt (4.7)

=
aRaPτRτP

τR− τP
exp
(

t0τP− t1τR

τRτP

)

×
[

exp
(

τR− τP

τRτP
t1

)
− exp

(
τR− τP

τRτP
t0

)] (4.8)

=
aRaPτRτP

τR− τP

[
exp
(

t0− t1
τR

)
− exp

(
t0− t1

τP

)]
(4.9)

This quantity has a maximum for:
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(t1 − t0)

τP τR
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ln( τR
τP
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Fig. 4.3: Global protention. When considered as a function of the length of the time interval (LEFT),
there is a maximum which corresponds to the greater effect of the couple Protention/Retention.
RIGHT, we see the global protention as a function of c = τP

τR
.

t1− t0 =
τPτR

τR− τP
ln
(

τR

τP

)
(4.10)

This maximum is a compromise between the need to give the protention time to
have effect (covariant dependence on the size of [t0, t1]) and the need to have instants
in [t0, t1] that are close both to t0 and t1 (contravariance). This result means that there
is a specific duration between the past event and the future event which optimize the
protentional effects. This seems to be consistent with the results in [Saigusa et al.,
2008], since these authors found that a specific value of the delay t1− t0 (in our
notation) leads to a greater protentional effect, that is the functional dependency on
this interval of time has a maximum (a non-obvious fact). In section 4.4 we will go
back to the relevant ratio c = τP

τR
.
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4.4 Biological inertia

Consider now a relaxation phenomenon in physics. It will typically be given by
Φ(t) = d exp

(
t0−t
τR

)
. If time t1 > t0 is given, one may decompose Φ(t) as

Φ(t) = d exp
(

t0− t1
τR

)
exp
(

t1− t
τR

)
(4.11)

The coefficient, not depending on t, that is d exp
(

t0−t1
τR

)
, is the “residual” at time

t1 and it may be understood as a form of “inertia” of the intended relaxed quantity:
typically, it corresponds to “what remains” at time t1 of a compound which decay
with characteristic time τR. This coefficient is constant in the interval and decreases
for increasing t1.

In eq. (4.4), the following factors do not depend on t:

aRaP exp
(

t0− t1
τR

)
exp
(

τR− τP

τRτP
(t0− t1)

)
(4.12)

The first exponential term corresponds to a physical inertia, as it only depends
on τR, the characteristic time of retention, analyzed as a relaxation phenomenon;
let us call it Iϕ(t0, t1). Then, we can consider that the other coefficient of protention
represents a biological inertia, in the interval [t0, t1], depending on the biological
constants aR, aP, τR and τP:

I(t0, t1) = aRaP exp
(

τR− τP

τRτP
(t0− t1)

)
(4.13)

In other words, protention in eq. (4.4) may be considered as a product of a func-
tion of time t, exp

(
τR−τP
τRτP

(t− t0)
)

, modulated by constants and characteristic times,
of a physical inertia Iϕ(t0, t1) and of a “biological inertia” I(t0, t1). This last coeffi-
cient is also independent of t, but depends on the specific organism by the various
indexed constants.

The physical inertia represents the “passive” decay of a physical relaxation phe-
nomena, which makes a perturbation disappear during the return to equilibrium. On
the contrary, the biological inertia coefficient is to be understood as a capacity to
“carry over” the protensive effect. Their names are freely inspired by the inertial
mass as a coefficient of acceleration. Thus and very informally, biological inertia
would be the biologically pertinent coefficient of protention. In section 4.5, by ref-
erences and a discussion, we will say more about this new concept. First a few
technicalities.

We have to check whether our definitions depend on the specific reference we
choose. That is to say if a time origin change:
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t0← t̃0 = t0 +∆ t t1← t̃1 = t1 +∆ t t← t̃ = t +∆ t (4.14)

changes the way we split P in three parts, in equation 4.4. It it then straightforward
to see that:

exp
(

τR− τP

τRτP
(t− t0)

)
= exp

(
τR− τP

τRτP
(̃t− t̃0)

)
(4.15)

exp
(

t0− t1
τR

)
= exp

(
t̃0− t̃1

τR

)
(4.16)

aRaP exp
(
(τR− τP)

τRτP
(t0− t1)

)
= aRaP exp

(
(τR− τP)

τRτP
(̃t0− t̃1)

)
(4.17)

This means that each of this quantities have a sound biological meaning. In sum-
mary, inertia introduces a coefficient which is independent of t. It is, in general,
much smaller than aRaP (and always smaller than aRaP). This coefficient contributes
to the dependence of P in function of t. In particular, it contributes in an essential
manner to the decrease of the protention according to the temporal distance.

4.4.1 Analysis
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c = 0.2 c = 0.01

Fig. 4.4: Biological inertia. LEFT: we plot the factor of the characteristic time of biological inertia
seen as protention (or retention). RIGHT: biological inertia as a function of the length of the time
interval for various values of c.

In order to better understand the sense we attribute to this “inertia” of living
objects, given our preceding remark regarding orders of magnitude of characteristic
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times, we may focus on the ratio c of figure 4.3, that is on c such that τP = cτR. We
consider 0≤ c≤ 1 and rewrite I in the equivalent form:

I(t1− t0) = aRaP exp
(

1− c
cτR

(t0− t1)
)

(4.18)

= aRaP exp
(

1
αR(c)τR

(t0− t1)
)

with αR(c) =
c

(1− c)
(4.19)

Then I has the form of a “long term retention” if c > 0.5 or a “short term reten-
tion” if c < 0.5. Conversely, and maybe even more intuitively, inertia can be also
interpreted (by writing τR =

τp
c and eliminating this time τR) as a “long term virtual

protention”:

I(t1− t0) = aRaP exp
(

1− c
τP

(t0− t1)
)

(4.20)

= aRaP exp
(

1
αP(c)τP

(t0− t1)
)

(4.21)

with αP(c) =
1

(1− c)
(4.22)

Biological inertia would then be both an extended retention, eq. (4.18), and a
virtual protention, eq. (4.20), which are both independent of the time t of the action:
in fact, it depends only on the instants that are relevant to the event retained and
occurring in t0 or which is the object of an expectation (protention towards t1).
It is therefore an inertia which “carries over” the life form from t0 towards t1, by
the preservation of its own structure and its relationship with the environment (see
section 4.5).

The τR = τP case

In the case where the characteristic retention and virtual protention times are equal
(τR = τP = τ and the c from the equation above is equal to 1), the protention P
becomes aRaP exp

( t0−t1
τ

)
. It is therefore independent of the present observation time

t. This holds, of course, within the interval between the moment of the occurrence
of the event in question and the moment t1 where it is mobilized again (since we
still have t0 < t < t1 ). But then, according still to hypothesis c = 1, one has P =

aRaP exp
( t0−t1

τ

)
, with I(t0, t1) = aRaP. Thus, when (τR = τP), only inertia is present

in protention.
We can also clarify this situation by considering that, if the observation time t

is close to the instant t0 of the occurrence of the event (recent retention), then the
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temporal interval for a virtual protention, (t−t1)' (t0−t1), increases; conversely, if
time t is far from t0 (remote retention), the temporal interval involved in this virtual
protention and within which the latter plays its role (the future of the observation
moment t) reduces in magnitude, given that, in this case, the protention P as such
remains independent of t.

These remarks are meant to highlight the fact that, in the latter case, the inten-
sity P of the protention remains invariant, whereas the duration upon which virtual
protention takes place — the future of t — can change in size: t1− t.

4.5 References and more justifications for biological inertia

We have come to propose a mathematical notion of biological inertia through an
apparently arbitrary play of symmetries and calculations, of which we would now
like to better explain the meaning and the objectives. To emphasize the importance
of the concept, but without wanting to make excessive and uncontrolled analogies
with immensely illustrious precedents, let us note that modern physics started off
with a good analysis of inertia, as a “pursuing a state” without aim nor teleology:
Galilean inertia4. Later on, Newton viewed inertial mass as a coefficient of acceler-
ation, in presence of a force.

In biology, this notion can already be found, although rarely, under various forms.
For [Vaz & Varela, 1978] “the lymphoid system has an inertia, which resists at-
tempts to induce sudden and profound deviations in the course of events”. So this is
a weak notion of inertia, close to the “persistence” of structural stability. Likewise,
we could talk about inertia in the case of the notion of “dynamic core” presented
in [Edelman & Tononi, 2000], because it also refers to the continuity/persistence of
individuation (see also [Le Van Quyen, 2003]). This theme is also used by [Varela,
1997], where the term of inertia appears also in the attempt to grasp the “force”,
specific to any organism, enabling its “bringing forth of an identity”.

In our approach, which is inspired by the methods of physics without identifying
with it, we firstly define retention by a relaxation function, which is a physical no-
tion — and can even be considered as adequate to describe the “memory” to which
some often refer in relation to certain physico-chemical activities. Virtual proten-
tion is given then by a temporal symmetry, modulo some adjustment coefficients;
this notion, which has no analogy in physics, is by this, and at least, the “projective”
reflection of retention. Protention follows, as a linear combination of these two val-
ues, in function of time. Then, by a very simple algebraic calculation, we separated

4 Without forgetting Giordano Bruno who had an informal yet quite relevant notion of inertia, a
few years prior to Galileo. It then became possible to understand planetary movements without
God being required to push the planets around at all times. We similarly aim at a concept of inertia
for living phenomena with no reference to “vital impetus” or divine thrust.
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the part containing the temporal variable from the functional definition: what re-
mains is a constant, a function of all other parameters (characteristic times, specific
constants, interval range), which we called biological inertia. As we pointed out,
when retention and protention have the same characteristic times (τR = τP), iner-
tia coincides with protention. We would then say that this is the simplest situations
from a cognitive viewpoint: the organism can only anticipate by means of inertia. In
any case, the proposed notion of inertia appears to clearly specify the informal idea
of “bringing forth of an identity”, with the reference to retention and to protention,
at the minimal cognitive level.

But why would this inertia not simply correspond to the fact of following a
geodesic trajectory, like in physics? Some will say that the amoeba, the parame-
cium, etc., follow a gradient in the same way that a physical object follows the
trajectory dictated by the Hamiltonian, through the principle of least action. It may
appear that such is the case in in vitro experiments where, within a highly puri-
fied environment, the unicellular organism is exposed to one or two very specific
gradients (chemical, thermal, . . . ). On the other hand, in an in vivo situation, in
the ecosystems preferred by such animalcules (and which are very polluted, from
our standpoint) they must “arbitrate” between qualitatively different stimuli: several
physico-chemical gradients, an edible and close bacterium that is not too large, an-
other smaller one, etc. Now the paramecium, say, appears to “learn” (see [Misslin,
2003]), that is, it enjoys at least retention, which contributes to protention (and, af-
ter reading Misslin quoted above and references, one could posit for it τR > τP, or
even τR� τP)

5. And it is difficult to conceive of learning without error, or without
several attempts and without the memory of these attempts (retention), even if such
memory is extremely rudimentary. The subsequent action is therefore one among
many possible ones, from the standpoint of the ecosystem, because it also depends
on the specificity of individual retention (experience). Among these many possible
trajectories, the one it follows has only to be compatible with the ecosystem. No
gradient or physical geodesic is adequate to describe this plurality of possibilities
of evolution, phylogenesis, ontogenesis and of action, which also depends on the
specificity, hence on the history, of the species or of the individual (retention and
biological inertia). Our modest inertial attempt tries to do this, in a way that is as
preliminary as mathematically simple.

In this perspective, we can interpret an increase of (τR− τP) ≥ 0 as a greater
cognitive “complexity”. It appears that the protention, when τR� τP, must account
for more “experience” in order to achieve the objective of the action; it depends upon
a greater amount of lived and retained history, and hence on a greater specificity
(individuality) of the living object. So it better participates to the incessant process
of individuation, which is a play between the richness of retention and the diversity
of possible future trajectories.

5 A paramecium manages the movements of about 2,000 cilia during highly complex swimming
activities; some of its cilia also serve to direct food towards a “mouth” (opening upon the mem-
brane), by means of very articulate movements.
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Another way to associate a growth of complexity to the growth of (τR−τP)≥ 0,
is to consider cases where the global protention is constant. Then the increase of
(τR− τP)≥ 0 means that protention is more localized near t1, with the same global
effect. Then this situation is more “complex”, since the preparation to the virtual
event occurs when it is closer — and the organism must be “quickly ready”. In this
case, it is easier for it to protend another event t ′1, with t ′1 between t0 and t1, since
the organism is not yet fully focused on t1 (the P grows very slowly “for long” and
fastly increases only close to t1). This situation allows the organism to have longer
times of correlation: during the early part of these extended protentional activities,
it may prepare also for other events.

4.6 Some complementary remarks

In this section, we will discuss further aspects associated to protention and retention.
These aspects consitute mostly open issues, which could lead to further investiga-
tions.

4.6.1 Power laws and exponentials

We have chosen here to approach protention and retention by relaxation functions,
which are crucially associated to a particular time scale. However, some aspects
of biological “memory” are often associated to power laws, which define typically
scale-free situations, see for example [Werner, 2010] for cognitive aspects or chapter
2 above for other aspects.

We will next describe four relevant issues, which further justify and allow to
develop our approach to biological time.

• The decay of memory, measured in psychophysics, can take power laws forms,
see [Werner, 2010]. We should notice that this behavior is associated to relatively
long term tendencies; it describes the tail of distributions and not their short term
behavior. In general, such distribution have a small scale cutoff, which also al-
lows integration, and in this chapter we are mostly interested in short term ef-
fects. Interestingly, [Shinde et al., 2011] experimentally finds that the attentional
behavior are typically associated with a specific time scale, whilst situation not
associated to attention are scale free (these results are obtained by observing
saccadic eye movements). In all cases, our approach is compatible with these
empirical results.

• However, the various results on the scale free fluctuations of biological time in-
tervals can lead us to propose that the time constants (τR and τP) can have non-
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stationary behavior, and fluctuate in a scale free manner (as the heart’s rhythm).
In this case we would have local (in time) scale dependent behavior, with tempo-
ral properties that vary with time.

• The allometric behavior of this temporal quantities is a crucial issue. When as-
sociated with usual “physiological” rhythm, protention and retention logically
should follow allometric scaling with exponent 1/4. However, when associated
to neuronal activities the situation can be more difficult to analyze, see section
2.2.

• In fine, our default assumption is that at least a part of protentional activity is
naturally associated to the temporal structure described in chapter 3. This is also
consistent with the idea that the minimal protensive behavior is associated with
the iteration of internal rhythms, as a “bet” of the organism on its own physio-
logical stability.

4.6.2 Causality and analyticity

This subsection is a preliminary analysis, which shows a potential line for future
research.

Under certain conditions, strict causality can be formalized in the following way.
Consider an input I(t) and an output G(t), and, under the assumptions, in particular,
of time translation invariance of the response kernel K, which describes the system,
and of superposition of the answer, one obtains that the relation between them has
the form:

G(t) =
∫

∞

−∞

I(t ′)K(t− t ′)dt ′ (4.23)

Then, strict causality is the following condition t ′ > t ⇒ K(t − t ′) = 0, which
simply means that the future does not influence the output at a given time. This
condition can be simplified by simply saying that τ < 0⇒ K(τ) = 0

Under this assumption, one can show that we can derive properties of analyticity
of the transfer function in Fourier space [Toll, 1956, Bros & Iagolnitzer, 1973]. More
precisely we have:

I(t) =
1√
2π

∫
∞

−∞

Î(ω)eıωtdω (4.24)

G(t) =
1√
2π

∫
∞

−∞

K̂(ω)Î(ω)eıωtdω (4.25)

Then, K̂(ω) is the real boundary of an analytic function of the strict upper half plane
(with ℑ(ω̃)> 0, K̂(ω̃) is analytic). More precisely, for ω̃ = ωr + ıωi,
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K̂(ω̃) = K̂(ωr + ıωi) =
1√
2π

∫
∞

−∞

K(τ)eıωrτ e−ωiτ dτ (4.26)

The analycity is then associated to the exponential decrease allowed by the cancel-
lation of K(τ), for negative τ , and the corresponding decrease of e−ωiτ in the upper
half-plane, where ωi > 0.

Physically, this corresponds to the frequency viewpoint, and Fourier transform,
for ωr, and to Laplace transform and decay viewpoint, for ωi (the combination is
usually called a generalized Laplace transform). Analyticity allows to derive the
Kramers-Krönig relation between the real and imaginary part of a response function,
see for example section 10.9 of[Sethna, 2006].

The most straightforward analogy with protention and retention is in the form of
a quadratic response (where protention is considered as exact, which is conceptually
incorrect):

∫
∞

−∞

∫
∞

−∞

P(t, t0, t1)I(t0)I(t1)dt0dt1 (4.27)

=
∫ t

−∞

∫
∞

t
aRI(t0)exp

(
− t− t0

τR

)
aP exp

(
− t1− t

τP

)
I(t1)dt1dt0 (4.28)

This interpretation corresponds to a situation where the values taken at different
time points yield distinct protentional activities. Another interpretation is, however,
that the whole quantity I is relevant, which gives:

∫ t

−∞

R(t, t0)I(t0)dt0×
∫

∞

t
Pv(t, t1)I(t1)dt1 (4.29)

In this case, we have a causal and an anti-causal transfer function, which cor-
respond to analyticity and non-analyticity in different complex half-plane for the
transfer functions. If we consider that the product should be a sum (which would be
the cumulative effect of retention and protention), then we should have singularities
of an unique transfer function in both half planes.

This discussion in terms of transfer function allows us to illustrate our concepts
from another viewpoint, which is also used in the study of critical phenomena.
Moreover, in this context, we see that this viewpoint allows us to associate pro-
tention to singularities of the transfer function.

4.7 Towards human cognition. From trajectory to space: The
continuity of the cognitive phenomena

The continuity of space-time, which the mathematics of continua proposes and
structures in a remarkable way, from Euclid to Cantor, follows — and does not
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precede — the “perceived” continuity of a figure, of a contour or of a trajectory.
Euclidean geometry is not a geometry of space, it is only a geometry of figures,
with continuous edges, that is of figures made out of continuous lines, constructed
by means of ruler and compass and submitted to translations and to rotations. It is
much later, with Descartes, that geometry finds its constitutive environment in an
abstract space, underlying and independent from the figures which evolve within.
The analytic reconstruction of Euclidean geometry will follow, by means of this
ideal framework, an algebraico-geometrical continuum, organized in Cartesian co-
ordinates. Then, since Cantor, we have a fantastic reconstruction by points of the
underlying continuum, a possible reconstruction, though, not an absolute (see [Bell,
1998] for an alternative topos-theoretic approach, with no points).

Let us now try to grasp a possible constitutive path or even a cognitive foundation
of this phenomenal continuum which is the privileged conceptual and mathematical
tool for the intelligibility of space, on the basis of our analysis of retention and of
protention.

The recent analysis of the primary cortex (see [Petitot, 2008] for a survey) high-
light the role of intracortical synaptic linkages in the perceptual construction of
edges and of trajectories. Neurons correlate themselves locally, along “association
fields” [Field, 1987, Field et al., 1993] composed of smooth (differentiable) curves
that “are grouped together only when alignment fails along particular axes” [Field
et al., 1993]. These neurons are sensitive to “directions”: that is, they activate when
detecting a direction, along a tangent. Then they (pre-)activate other neurons in the
association field (they prepare in advance the spike which is not yet fired). This
preactivation of associated neurons is, in our view, a component of the protensive
activity. Then, neuronal activation follows a specific direction which (re-)constructs
the pertinent line [Petitot, 2008].

Thus, the continuity of an edge or of a trajectory is constructed by “gluing” to-
gether fragments of the world, in the precise geometrical (differential) sense of glu-
ing. In other words, we force a “continuation”, that is the unity by continuity of an
edge by relating neurons which are pre-associated and are, locally, along particular
axes.

Thus, in our view, the phenomenological reconstruction of this continuum is
based on the retention and the protention of a non-existing line, a trajectory of a
physical body. In other words when following, possibly by an ocular saccade, a mov-
ing body, a contour, we “integrate”, in the mathematical sense, the tangents that are
locally associated in the field. The related inertial phenomena of the activation/de-
activation of neurons may be one of its constitutive elements, with inertia as a coef-
ficient of protention.

Thus, ocular movements or saccades which follow a moving body, an edge, play
a crucial role: a retentive/protensive phenomenon originates also in the muscles en-
abling the saccades or in the neurons managing them. As we already mentioned, a
protentional displacement in the receptor field of the cortical neurons precede the
saccades [Berthoz, 2002] and the retention/protentional activity seems based on the
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saccadic systems. The brain prepares itself and anticipates a moving object, of which
the movement is perceived following an ocular saccade, or of which the trajectory
or edge is perceived by running the eye along or over it. This is, in our view, the
keystone of a fundamental protentional activity.

Let’s summarize the cognitive and philosophical consequences of our approach.
First, it should be clear that, for us, the World is not continuous, nor discrete: it is
what it is. Since Newton and Cantor, by specific tools, or, now, in Quantum theories
and Topos Theoretic approaches, we mathematically organized it in various ways,
possibly over different “backgrounds” from Euclid’s or Cantor’s continua, [Bell,
1998]. In our view, the phenomenal continuity of trajectories, of an edge, is due
to the retention of that trajectory, edge, scanned by the eye, which is “glued” with
the protention by the very unit of the cerebral and global physiological activity (the
vestibular system, for example, has its own retention and inertia).

In the case of contours, the specific saccades along the direction of movement or
towards the extreme of a reconstructed segment (for example in Kanizsa’s triangles,
see [Petitot, 2008]) stimulate a specific activation in the association field (a specific
connection between neurons in the field).

It would then be this “gluing” — a mathematically solid concept (at the center
of differential geometry, of which Riemannian geometry is a special case) — that
entails the cognitive effect which imposes continuity upon the world: the image
of the object and of its past position is reassembled (glued by the conjunction of
protention and retention) with that of the object and of its expected position or a
contour is made continuous even when non existing (as in Kanizsa illusions).

We could indeed imagine that an animal with no fovea (the part of the eye which
enables a follow up of a target by a continuous focus), a frog for example, and which
takes spaced out snapshots of an object in movement, would not have the impression
of a continuous movement in the way in which we, the primates, “see” it.

By measuring relaxation and (pre-)activation times of associated neurons it
should be possible to quantify our coefficients in these specific phenomena. Iner-
tial coefficients in particular would yield different values according to the different
protentional capacities in different species (frogs for example may have little inertia
w.r. to these phenomena, if our understanding above is correct).

So the continuity of a trajectory or of an edge is, in our opinion, the result of a
spatio-temporal reassembling of the retentions and protentions that are managed by
global neural activity in the presence of a plurality of activities of such type: mus-
cles, vestibular system, . . . but also the differentiable continuity of the movement
or gesture participates by means of its own play of retention/protention. In short,
by a cognitive process of gluing, we attribute continuity to phenomena which are
what they are (and which a frog surely sees quite differently). Then, by a remark-
able conceptual and mathematical effort having required centuries, we have even
come to theorize, continuous abstract lines, surfaces and their edges, first, and then
even the continuity of environing space, as the background of these structures. And
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this in different ways: Euclid, Cantor, Topos Theory today. The phenomenal conti-
nuity of lines and background spaces is the consequence, we believe, not the cause
of the cognitive/perceptive continuity of the movement and of the gesture, which is
grounded on the unity of protention and retention. Of course, in this perspective, the
continuity of an edge or of a surface would also be the continuity of a movement: the
movement of the saccade or of the hand caressing it, both retained and protended.

Let us note that, in our attempt towards spatialization of time for living phe-
nomena, in this chapter and in chapter 3, — a spatialization/geometrization which,
although schematic, should contribute to its intelligibility — we have proceeded,
in this section, along the opposite approach: a sort of temporalization of space. Its
apparent continuity would be the result of a cognitive activity on time, the extended
present obtained by retention and protention.

In the previous chapter and in this chapter, we have seen two different, origi-
nal aspects of biological time. The first is associated with rhythms, physical and
internals; the second concerns the abnormal local structure of biological time.

In the following chapter, we will provide some more background on symmetries
and symmetry breaking in physics. In chapter 6, we will review physical phase
transitions. These two chapters are mostly meant to be a technical introduction to the
subsequent chapters. In chapter 7, we will return to biology and, from the point of
view of biological time, we will undertake the question of biological historicity and
give a specific meaning to it. This should provide a deeper insight on the biological
structure of determination we are proposing in this book.





Chapter 5
Symmetry and symmetry breakings in physics

Since the beginning of physics,
symmetry considerations have
provided us with an extremely
powerful and useful tool in our effort
to understand nature. Gradually they
have become the backbone of our
theoretical formulation of physical
laws.

Tsung-Dao Lee

Abstract:

Symmetries play a major theoretical role in physics, in particular since the work by
E. Noether and H. Weyl in the first half of last century.

We first present a few examples of how symmetries allow to objectivize physical
phenomena and then a short survey of conceptual and technical aspects of sym-
metries and symmetry breakings, beginning by the role played by Galileo’s group
in the construction of space in modern physics. Then, we provide an account of
Noether’s theorem, which relates invariant quantities and symmetries. A short, but
general classification of symmetry breaking in physics follows. Our purpose is to
describe some aspects of spontaneous symmetry breakings, in order to introduce
critical transitions in the next chapter, where these breakings apply. Last, we will
propose a link between randomness and symmetry breaking.

This brief overview will allow us to draw some preliminary conclusions as well
as hints towards our project, in particular concerning the distinctive consequences
associated to continuous and discrete symmetries and their breakings. We will also
understand, at least partially, why symmetry breaking is associated to specific fea-
tures, such as singularities, and the loss of “standard” behavior in classical physical
dynamics. This will help us to open towards our analysis of the critical singularity
of life.
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5.1 Introduction

In Physics, objectivity is obtained by the co-constitutive use of experiments and
mathematized theories. In order to make further progress towards highly mathema-
tized theories in biology, in particular towards theories of the “living object” or of
the organism as a system, it would help first to understand how such a feat was
achieved in physics.

Physical theories have very general characteristics in their constitution of objec-
tivity, and in particular in their relationship with mathematics. In order to define
space and time, as well as to describe physical objects, physicists ultimately use the
notion of symmetry. Physical symmetries are the transformations that do not change
the intended physical aspects of a system, in a theory. As we shall see, symmetries
allow to define these aspects in a non-arbitrary way.

We do not aim here at an exhaustive review, but we will nevertheless provide a
sufficiently complete account of fundamental physico-mathematical results which
have global consequences in physics, for the purposes of our work in biology. Thus,
this chapter is an introduction to the work in chapter 7, see also [Longo & Montévil,
2011a], and is a preparation to the notion of “extended critical transition”, at the
core of our approach in biology. We will also provide some background on models
used in other chapters, which are related to symmetry breaking.

In other words, we will not develop an exhaustive analysis of the role of symme-
tries in the foundation of physical theories, which can be found in many books, such
as [Van Fraassen, 1989, Bailly & Longo, 2011], but we will provide an overview of
this role, with diverse levels of details. we will also focus on some interesting, partly
technical aspects relevant for the following chapters.

5.2 Symmetry and objectivization in physics

We will first discuss some examples to show how symmetries allow to define physi-
cal objects by the use of mathematics. Then and on this basis, we will discuss more
conceptually the constitution of physical objectivity, in order to contrast it with bio-
logical situations in chapter 7.
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5.2.1 Examples

The following very simple examples show how symmetries may be used to de-
fine and objectivize physical objects. This will hep to specify for the non physicist
what we mean by “theoretical symmetry” and their role in a theory and in an equa-
tional determination. Recall that symmetries form a set of transformations that have
a group structure; that is 1) the set contains a transformation, called identity, which
doesn’t change anything, 2) two symmetries applied successively yield a symmetry
and 3) a symmetry can be inverted.

5.2.1.1 Chemical concentrations

We will first consider the example of an elementary reaction in chemistry (for the
sake of simplicity, we will put temperature and other thermodynamic aspects aside):

A+B−→ D (5.1)

Which has the following dynamic:

d [D]

dt
=−d [A]

dt
=−d [B]

dt
= k [A] [C] (5.2)

What is it that allows to write such equations?

• Firstly we need to define chemical species: A, B and C. From a molecular
viewpoint, their definition requires that all molecules called A behave the same
and differently from B and C. This allows to make the theoretical step from a
molecule A1, and a second one, A2, to two molecules of A; that is to say we can
use A1 +A2 = 2A and so forth. This assumption is a hypothesis of symmetry by
permutation within the set of molecules of species A. Another necessary symme-
try is associated to the conservation of matter, which means that only (chemical)
transformations occur and there is no creation or annihilation of atoms. This is
a time translation symmetry, which leaves the quantity of each kind of atoms
invariant. This justifies that the chemical reaction has to be balanced. Both sym-
metries are needed for equations 5.1 and 5.2 to be meaningful and valid.

• Now, the number of molecules of each species are not sufficient to provide the
theoretical determination of the system. Let us assume that the number the re-
action occurring is determined in a given volume and small time interval by the
molecules which are there. It means in particular that any transformation which
does not transform these quantities, does not change the dynamic. For exam-
ple, the date or the location of an experiment are irrelevant, inasmuch the local
properties of the molecules do not change. This defines what is relevant and ir-
relevant, all irrelevant aspects can be transformed without consequences, which
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means that they also invariantly undergo symmetry transformations (they define
symmetries, for short).

• We assumed above that localization in space is crucial. If the compounds are in
two different vials nothing will happen. Therefore, a symmetry of the distribu-
tion of the compounds over space (homogeneity) is used both theoretically and
experimentally (by mixing) so that the global description by concentrations de-
picts what happens locally (this can be further justified by the notion of entropy).

• We mentioned in introduction that the symmetries allow to determine the spe-
cific trajectory of a given system. In order to obtain this, a further assumption is
needed: the number of molecules produced during a very short time is propor-
tional to the number of reagent of each kind. From another point of view, the
probability for a molecule of A to react is independent of [A], the number of ele-
ments of A, but proportional to [B]. As a result, when [B] doubles, everything else
being kept constant, the same dynamic occurs but twice faster. This symmetry
relates the states and their changes.

We see on this specific case that symmetry assumptions allow to define the space of
description (concentrations) and the specific trajectory inside this space. Therefore,
it is at the core of the constitution of the object as such. In particular, they allow to
define a system as determined by its state and show how a change of (initial or not)
state leads to a transformation of the trajectory.

5.2.1.2 Classical space

As a second example, we briefly discuss how the intelligibility of (classical) physical
space is obtained.

The first point that we have to address is how to define (and quantify) the position
of an object in the physical space, conceptually (almost) from scratch. We don’t aim
here to be exhaustive, but to pinpoints some elementary ingredients that are used to
define space.

• First of all, we need to assign quantities to space. In order to do that, we can
start from a ruler. A ruler is basically a segment (an edge) that has a symmetry by
rotation (which enforces that it is straight). With it, we can define a unit of length.
Now, the distance between two points that are far away can be assessed as the
minimal number of time this ruler has to be put in order to draw a continuous
curve from the first point to the second (or equivalently a straight curve, that is to
say with a symmetry by rotation). In order to measure smaller distances, fractions
of this ruler can be obtained with a compass, which provide fractional lengths.
The fundamental operation that is performed here is to compare space and a
given object, then to assimilate this part of space to this object: they have the
same length and the same direction. By transitivity the same is then said between
two different parts of space.
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Note that this kind of manipulations are not sufficient in order to generate a math-
ematical continuum. In order to understand the physical need for it, it is however
sufficient to assume that the measurement of a length with increasing precision
always ultimately converge to a number.

• Now, in order to get the position of an object, more than just distances is required.
We need a reference system. To do so, we need a first point, corresponding to
an object and which will be the origin, and three other points, defined by other
objects, which define the directions of space. These points can be taken at a
distance of one “unit” from the origin. In order to define the position on the basis
of this points, the last useful concept is that of orthogonality. A definition of
orthogonal crossing is that both lines are axis of symmetry for the figure of the
crossing.
Now the position of any point can be defined as the algebraic (oriented) distance
between the origin and the orthogonal projection of this point along each axis.

• It is crucial to note that the quantities obtained this way are largely arbitrary:
they depend on an arbitrary reference system. Another observer will choose an-
other reference system and therefore obtain completely different results. There is
two ways to overcome this kind of difficulty. Either by enforcing a conventional
unique reference system (which is, by the way, the solution used for physical
units like meters), but this choice would be arbitrary.
The second solution is to make both results compatible. In order to do that, one
uses the first reference system to describe the second one, that is the length of
the second unit of measure and the position of the origin and of the three objects
defining the axes. Assuming that space is linear (euclidean), there is a unique
linear function which transform the objects of reference of the first system to the
ones of the second. Coordinates in the second reference system have this function
implicitly applied from the viewpoint of the first reference system. Therefore, the
correct coordinates in the latter can be obtained by applying the inverse of this
function on the coordinate in the second reference system.
Here, the arbitrariness of one viewpoint is not overcome by an absolute view-
point, but by the unique way to go from one viewpoint to another, and backwards.
In other terms these viewpoints are symmetric.

• Now, fully meaningful physical aspects should not depend on a specific view-
point that is chosen arbitrarily. Thus, fundamental equations should have the
same form in any reference system. In other terms they have to be symmetric
by the transformation of one reference system to another. That does not only
means that the trajectory of an object determined by the equations in one ref-
erence frame should be the same than the one determined in another reference
frame, modulo the change of reference frame. it also means that two scientists
who don’t share any specific reference point should be able to work on the same
equations. Reciprocally, if a fundamental equation depends on specific point in
space, then it means that that space has an origin of some sort that has a real
physical meaning (or that the physicist is making a mistake).
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With this elementary examples, we understand already that physics proceeds by
the identification of the non-identical, whether this is different parts of space or dif-
ferent molecules. This operation is however performed only when the identification
is compatible with the intended understanding. For example, the assimilation of po-
sitions with coordinates is valid inasmuch we keep in mind the above relativity of
these coordinates. Similarly, the definition of concentrations is valid only inasmuch
it is a relevant quantity to describe the chemical reaction. In a heterogeneous system,
like a cell, concentration may not be the relevant quantity.

5.2.2 General discussion

Now, we will go back to full fledged physical theories and discuss things with more
generality. Galileo’s theory provides a simple and historical example of the role of
symmetries that we want to evidentiate. For scholastic physics, the speed at which
a body falls is proportional to the space traveled. Galileo instead proposed that it is
proportional to the time of the fall and that it is independent of the nature (including
the mass) of the empirical object considered (Galileo’s law of gravitation). This idea
together with the “principle of inertia” has been a starting point for the constitution
of space and time in classical physics. More precisely, as a consequence of the anal-
ysis of inertia and gravitation, the geometry of space and time was later described
by the Galilean group1.

A change of this symmetry group, for example by adopting the Poincaré group,
can lead to a very different physical situation, in the case of this example we get the
physic of special relativity involving massive conceptual and physically meaningful
changes, starting with a maximum speed: the speed of light2. We will explain now
what motivated this change.

The general “principle of relativity” states that the fundamental laws of physics,
as equational forms and constants, do not depend on the reference system, as we
hinted in the example of space; they are actually obtained as invariants with respect
to the change of reference system. Now, a specific speed (the speed of electromag-
netic waves in the void) appears in Maxwell’s equations of electromagnetism. To
overcome this contradiction, Einstein modified Galileo’s group and by this trans-
formed this speed into an invariant of mechanics. This change is not benign; among

1 Galileo’s symmetry group is the group of transformations that allows to transform a Galilean
space-time reference system into another. It is interesting to notice that Galileo measured time by
heartbeat, a biological rhythm; the subsequent theoretical and more “physical” measurement of
time were precisely provided by classical mechanics, his invention.
2 The symmetry group of a Euclidean space is the Euclidean group of automorphisms, while
Poincaré’s group corresponds to the automorphisms that define Minkowski’s spaces [Catoni et al.,
2008].
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other things it turns lengths and durations into relative quantities (they depend on
the reference system)3.

Since the 1920s, due to Noether’s theorems (see below), symmetries allow the
mathematical intelligibility of key physical invariant quantities. For example, sym-
metries by time translations are associated with energy-conservation, and symme-
tries by space rotations are associated with the conservation of angular momentum.
Thus, conservation laws and symmetries are in a deep mathematical relation (see
section 5.3 below for technical details). Consequently, the various properties that
define an object (mass, charge, etc.) or its states (energy, momentum, angular mo-
mentum, etc.) are associated to specific symmetries which allow these quantities
to be defined. Depending on the theory adopted, this conceptualization allowed to
understand why certain quantities are conserved or not: for example, there is no lo-
cal energy conservation in general relativity. This explicit reference to the theory
adopted is required in order to produce “scientific objectivity”, independently of the
arbitrary choices made by the observer, such as the choice of time origin, the unit
of measure, etc, but relatively to the intended theory, see the examples above. Thus,
we say that symmetries provide the “objective determination” in physics [Bailly &
Longo, 2011].

Because of the role and implications of symmetries, most contemporary chal-
lenges in theoretical physics lead to the search for the right symmetries and symme-
try changes. The work aiming at the unification of relativistic and quantum theories
is largely focusing on this. In moving from physics to biology we suggest here to
apply a similar approach. That is, we plan to discuss the theoretical symmetries and
their changes that are relevant for biology.

The symmetries that define physical properties allow to understand the physical
object as generic, which means first that any two objects that have the same proper-
ties can be considered as physically identical; in a sense, they are symmetric or in-
variant (interchangeable) in experiments and in pertinent mathematical frameworks
(typically, the equations describing movement). For example, for Galileo, all objects
behave the same way in the case of free fall, regardless of their nature. Moreover,
symmetries allow the use of the geodesic principle, whereby the local determination
of trajectories leads to the determination of the full trajectory of physical objects,
through conservation laws. For example, the local conservation of the “tangent”
(the momentum) of movement, typically yields the global “optimal” behavior of a
moving object; that is, it shows that it must go along a geodesic.

3 The equation for a change of reference frame in special relativity is the following (for an object
moving along the x axis).

t ′ = γ(t− vx/c2) (5.3)

x′ = γ(x− vt) with γ = 1/
√

1− v2/c2 (5.4)
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By this, in classical or relativistic mechanics, a trajectory is uniquely given and
fully deterministic (formally determined). In quantum mechanics the evolution of
the state or wave function (roughly, a probability distribution) is fully deterministic
as well — and determined by Schrödinger’s equation — while measurement follows
this probability distribution (and here appears the indeterministic nature of quantum
mechanics). In conclusion, by symmetries, the trajectory of a generic classical or
quantum physical “object” corresponds to a critical path, a geodesic. In this pre-
cise sense, physical trajectories are specific, while, as we said, physical objects are
generic.

It is crucial to understand that the specificity of the trajectory is needed to objec-
tivize a given generic object: objects can be defined arbitrarily, it is the ability of a
definition to frame the behaviour of an object which makes this definition an objec-
tivation of the intended phenomena. Reciprocally, a specific trajectory only makes
sense with respect to a generic object as abstractly defined and practically measured
in a space of description (phase space).

To better understand the problem of general mathematical theorizing in biol-
ogy, let’s further analyze how, in physics, a concrete problem is turned into robust
models and mathematics. To begin with, physicists try to define the right theoreti-
cal framework and the relevant physical quantities (properties and states) which are
constituted by proper symmetries. As a result, typically, a mathematical framework
is obtained, where one can consider a generic object. In classical mechanics, this is
given by a pointwise object of mass m, speed v and position x, where these quantities
are generic. Now, a generic object will follow a specific trajectory determined by its
invariants and obtained by calculus. A measurement is then made on the experi-
mental object to determine the quantities necessary to specify where this object is in
this mathematical framework, namely, what is its mass, initial position and speed.
And finally, what specific trajectory will the object follow . . . at least approximately.
In classical or relativistic physics, to a given measurement will correspond generic
objects localized near the measurement due to the limited accuracy of this measure-
ment. The measurement can have, in principle, an arbitrary high precision but never
perfect. In quantum mechanics, as we recalled above, the equational determination
(Schrödinger’s equation) yields the dynamics of a probability law4.

In classical dynamics, we face a well-known problem: the specific trajectories,
which mathematically start within the same measurement interval, can either remain
close to each other or disperse very rapidly. The linear situation corresponds to the
first case, whereas the second situation is called “sensitive to initial conditions”
(or chaotic, according to various definitions). Note that even the latter situation may
lead to the definition of new invariants associated to the dynamics: the attractors that

4 In quantum physics, “objects” do not follow trajectories in ordinary space-time, but they do it in
a suitable, very abstract space, a Hilbert space (a space of mathematical functions typically). Yet,
as we said, what “evolves” is a probability distribution.
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have a precise geometrical structure5. In both cases, these trajectories have robust
properties with respect to the measurement.

In quantum physics, the situation is more complex because measurement leads
to non-deterministic behavior. Yet, when approximations on the state function are
performed, it leads to usually stable, robust statistics.

In all cases, a “robust measurement” means invariant or approximately invariant
in a definite mathematical sense, as this concerns the measurement of states and
properties of generic objects along specific trajectories (in quantum mechanics, as
given by Schrödinger equation). Thus, we can finally say that all generic objects,
which lead to a specific measurement, behave in the same way or approximately so,
sometimes statistically. Note that this property of robustness, allowed by the gener-
icity of the object, is mandatory for the whole framework to be relevant, as proof in
natural sciences comes in fine from the empirical. We insist that both genericity for
objects and specificity for trajectories (geodesics) are mathematically understood on
the ground of symmetries.

In conclusion, in the broadest sense, symmetries are at the foundation of physics,
allowing objective definitions of space and time and the constitution of objects and
trajectories. In their genericity (an interchange symmetry), these objects follow spe-
cific trajectories (a consequence of symmetries in the equations and in their oper-
atorial treatment). Genericity of objects and specificity of trajectories are mutually
dependant. Finally, these trajectories are associated with empirical results that are
robust with respect to measurement.

5.3 Noether’s theorem

Noether’s theorem [Noether, 1918] has been first formulated to understand why en-
ergy, which is conserved in classical mechanics, is not locally conserved in general
relativity (see [Byers, 1999] for a historical account6). In order to face this prob-
lem, the theorem proves a relationship between continuous symmetries, with a finite
number of infinitesimal generators, and invariants. The relevance of this relation is
far more general in theoretical physics than the particular yet fundamental issue of
general relativity and energy: it concerns the relation between conservation prop-
erties and symmetries in the equations. Indeed, this approach has been adapted to
various frameworks, and, as a result, is one of the standard tools used in theoret-

5 The notion of attractor proposed, typically, a new object of knowledge, in physics, by the depar-
ture from linearity.
6 Our presentation contains some (mild use of) mathematics in the appendix A.2, yet the reader,
who would prefer to skip it, may just try to grasp the introduction and the statement of the theo-
rem that we present here. This may help to understand the role of symmetries in physics and the
conceptual transition we aim at in biology.
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ical physics, both in order to understand the consequences of original theoretical
propositions and to investigate specific phenomena.

We will now formulate this result in the relatively simple context of classi-
cal mechanics. Let us consider a classical system, governed by its Lagrangian
L (t,q1, q̇1, . . . ,qn, q̇n), where q̇i =

dqi
dt . The state is then described as a 2n dimen-

sional vector, we will write such a state as q̄(t). In order to simplify the notations,
we will write in the following:

L (t,q1, q̇1, . . . ,qn, q̇n) = L (t,qi, q̇i)

Then we define the action. The variational principle applies on this quantity (that
is to say, this quantity is stationary for the actual trajectory, see appendix A.2):

S =
∫ t2

t1
L (t,qi(t), q̇i(t))dt (5.5)

Theorem 5.1 (Noether, classical Lagrangian mechanics). For the above Lagrangian,
let us suppose that S is preserved under the action of a one parameter continuous
group G with infinitesimal generator v = τ

∂

∂ t +φα
∂

∂qα
+ψα

∂

∂ q̇α
. Then, the quantity:

C = τ L +
∂L

∂ q̇α

(φα − q̇α τ) (5.6)

is an invariant of the dynamic (that is to say a quantity with a null derivative with
respect to time).

Example 5.1 (Space translations). We consider space translations along vector u:
x 7→ x+εu. For now, we have left the spatial structure of the system implicit (it was
handled by the possible structure of the Lagrangian). To show the effect of space
translations, we will assume that space has 3 dimensions and that the coordinates are
ordered in the following way: q1,q2,q3 are the three coordinates of a material point,
then q4,q5,q6 is the coordinate of a second point, etc. We will then write ji ( j =
1,2 or 3) the various coordinates that correspond to the j direction. Reciprocally,
for any coordinate α , the corresponding direction is j = α[i] (α modulo i)

The generator of the group is then v= 0 ∂

∂ t +uα[3]
∂

∂qα
+0 ∂

∂ q̇α
. Applying Noether’s

theorem, we get the following conserved quantity:

C = 0L +
∂L

∂ q̇α

(
uα[3]− q̇α 0

)
= uα[3]pα (5.7)

Thus, the symmetry of the action with respect to space translations along vector u
leads to the conservation of the momentum in the u direction.

Then, it is straightforward, by taking a basis of R3, that the invariance of the
Lagrangian by space translations leads to the conservation of momenta.
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Example 5.2 (Time translation ). We consider time translations t 7→ t + ε . The gen-
erator is then v = 1 ∂

∂ t +0 ∂

∂qα
+0 ∂

∂ q̇α
. Applying Noether’s theorem, we get the fol-

lowing conserved quantity:

C = 1L +
∂L

∂ q̇α

(0− q̇α 1) = L − q̇α

∂L

∂ q̇α

=−H (5.8)

Thus, the symmetry by time translations lead to the conservation of energy7.

A couple of remarks are worth making now. First the continuity of the group
under consideration is crucial. Indeed, it is this continuity that allows to preserve,
infinitesimal step by infinitesimal step, the conserved quantity that we obtain as a
result of the theorem. Note also that the boundary conditions are also crucial: it is
with respect to these boundary conditions that the quantities are conserved. In the
Lagrangian classical mechanics, this corresponds typically to the initial conditions.

From a theoretical perspective, the classical Lagrangian (or other formalisms) is
not sufficient per se. The further description of the Lagrangian, besides the symme-
tries of space and time, is in general given by other symmetries, which are the sym-
metries of the fields handling the interactions. The field theoretic version, given in
appendix A.2.2 allows to understand such fields (here, without quantification). The
quantum field theory’s analog of Noether’s theorem, the Ward–Takahashi identity,
shows also that quantities such as the electric charge (in quantum electrodynamics)
are associated to symmetries. It is noteworthy then to understand that this approach
captures an intuitive aspect of the otherwise fuzzy notion of matter (consistent with
the notion of charge used in the field theoretic version for the conserved quantity):
the conservation property, which leads to conservative flows of the quantities con-
sidered and is made possible by the continuity of the transformations.

Note also that, in spite of the wide generality of Lagrangian formalism, the situa-
tion described above is associated to specific symmetries, which correspond here to
the symplectic nature of the geometry of the phase space. It appears, for example,
in equation A.17 and leads to nontrivial relationships.

5.4 Typology of symmetry breakings

After this digging into symmetries, we present in this section some details on the
main different types of symmetry breakings encountered in physics. As already
hinted, our approach in biology gives a major role to symmetry breakings. We thus
provide a classification on the basis of the way in which a symmetry is broken. This
classification is based on [Holstein, 2000] and on further considerations in [Strocchi,
2005].
7 Let us recall that, if the energy of a system is H = 1

2 pα q̇α +V (qi) then the Lagrangian is
L = 1

2 pα q̇α −V (qi)
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EFFECTIVE SYMMETRY BREAKING. It corresponds to a situation where the sym-
metry considered is, in fact, an approximation and where there are relevant per-
turbations. As a result, in particular, the corresponding Noether charges are not
exactly conserved (they have a divergence corresponding to the perturbation).
A slightly different version is also called explicit symmetry breaking. It corre-
sponds to a situation where terms are added (external fields for example), which
explicitly breaks the symmetries of the Lagrangian. In both point of view, the
ground state is changed because of the change of Lagrangian (or Hamiltonian)
symmetries.

SPONTANEOUS SYMMETRY BREAKING (WEAK VERSION). This situation, also
called degenerate ground state, occurs when a problem (typically the potential
or the Hamiltonian) has a symmetry that the state cannot have, because the sym-
metric state does not minimize the potential, for example. The resulting state then
breaks this symmetry.
A typical example of such situations is the Mexican hat potential V (φ) =

2a|φ |2+ |φ |4, illustrated in figure 5.1. This potential indeed has a rotational sym-
metry, since it only depends of the absolute value of φ . Its minimums obey the
necessary condition a|φ |+ |φ |3 = 0, which yields |φ | = 0 or |φ | = √−a when
a < 0. As a result, when a < 0, the minimums correspond to the second equa-
tion, |φ | = √−a. In this case, all minimums are generated by the rotations of
an arbitrarily chosen minimum. For example, in dimension 1 we have two states
φ0 =

√−a and φ0 = −
√−a; in dimension 2, we obtain a circle of radius

√−a,
as illustrated in figure 5.1; in dimension 3, we obtain a sphere; . . .

SPONTANEOUS SYMMETRY BREAKING (STRONG VERSION). In [Strocchi, 2005],
a sharp distinction is made between two kinds of spontaneous symmetry break-
ing, in the above sense. Indeed, depending on the situation, the different states
corresponding to a broken symmetry can be physically changed into each other or
not. The latter case will be qualified as a (strong) spontaneous symmetry break-
ing. This case is obtained typically when there is an infinite number of degrees of
freedom. In this context, the breaking of the symmetry can lead to different be-
haviours, which live in different domains of the phase space. These domains are
formalized as Hilbert space sectors in [Strocchi, 2005], which are in particular
stable with respect to the time evolution and finite fluctuations.
The line of reasoning behind this notion is that of physically possible transforma-
tions are essentially localized (i.e. of finite size) so that different configurations at
infinity cannot be physically interchanged. They can, however, be unstable with
respect to symmetry transformations (which can be a symmetry of the Hamil-
tonian), which is then spontaneously broken. In particular this situation leads to
an alternative version of Noether theorem, where the continuous group involved
has to be a symmetry of a given sector (if it is not the case, the symmetry cannot
physically generate the conserved quantity). We will briefly discuss it in the next
chapter in terms of ergodicity breaking associated to a symmetry breaking phase
transition.
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Fig. 5.1: Mexican hat and (weak) spontaneous symmetry breaking. The Mexican hat potential is a
classic example of a spontaneous breaking of a continuous symmetry. The potential has a rotational
symmetry; however, its minimum is not at the center but at a distance, thus on a circle because of
the rotational symmetry. As result, minimizing the potential for a pointwise object leads to breaking
the symmetry (green point), but energetically free fluctuations can occur (cyan arrow). In particular,
if the system is subject to additive Gaussian noise and has also some dissipation, then the system
will follow an additive Gaussian Brownian motion along the symmetric circle.

ANOMALOUS SYMMETRY BREAKING This case corresponds, in the framework
of quantum field theory, to a situation where there is a symmetry of the classical
action that the quantum field does not manage to maintain after any regulariza-
tion. Depending on the nature of the symmetry considered, it can be theoretically
acceptable (chiral anomaly for example) or not (gauge anomaly). More generally,
the terminology is used when breaking a symmetry but making this breaking (for
example, the order parameter) tend toward zero does not lead again to the sym-
metric situation. In other word, situations when tending to the limit is not the
same as at the limit, the situation is then not continuous.

Note that the presentation in the next chapter will focus on spontaneous symme-
try breaking (in the strong sense).
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5.4.1 Goldstone theorem

Here, we will present a result that shows that a spontaneously broken continuous
symmetry leads to long-range fluctuations (in the language of condensed matter
physics), called Goldstone modes. In the language of particle physics, this result
shows that we obtain massless particles called Goldstone bosons.

The basic idea behind Goldstone theorem can be explained quite simply. Let
us consider a system with a continuous symmetry group G. For example, a lattice
where the state of each spin is described by an angle θi, in which case G is the set
of rotations changing all the θi simultaneously by the same angle. Since the trans-
formations of G are symmetries, they do not change the energy of any part of the
system. The symmetry breaking means that the state of the system does not have this
symmetry (there is a privileged direction θb). Then, a small variation following the
(former) symmetry group (an infinitesimal rotation of all the spins in our example)
does not need energy at the first order, because of the corresponding symmetry of
the potential. In particle physics, one say that this kind of field structure constitutes
a massless particle, because there is no energetic “resistance” to it (the Φ2 term
vanishes).

These fluctuations are peculiar: they basically involve the whole system (in our
example, all spins are simultaneously rotated) which also correspond to the lack of
an Hamiltonian term which would impose a particular length (see the dimensional
analysis in 6.2.1.5). Conceptually, this kind of situation describes a form of stiff-
ness: in a fluctuation, almost all the system is transformed simultaneously and in
the same way. The most practical example is the case of a crystal; the Goldstone
theorem explains its mechanical rigidity, see for instance [Sethna, 2006] for more
illustrations.

θ1 θ2

θ2 − θ1

ψ

gψ

g(x)ψ

Fig. 5.2: Goldstone modes. The states ψ and gψ are symmetric and thus have the same energy.
A long-range fluctuation g(x)ψ which leads to very small local angle discrepancies needs a small
amount of energy. As a result, at the limit, an infinite size fluctuation cost no energy. Typical
examples are the vibration of a crystal, spin waves in a magnet, . . . .
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This result is somewhat more difficult than Noether theorem because it applies to
situation with an infinite number of degree of freedom. Moreover the theorem has
specific hypotheses, which are not met in certain physically very relevant situations.

We use the classical version given in [Strocchi, 2005]. As discussed briefly in
section 5.4, we are in a situation of strong spontaneous symmetry breaking, where
a distinction should be made between different physically valid sectors of the phase
space. These sectors, called Hilbert Space Sectors, are stable with respect to additive
finite perturbations and the time evolution.

Theorem 5.2 (Goldstone). Let us consider G a finite continuous group of symme-
tries of a model. We suppose that this symmetry group is spontaneously broken to
GΦ0 , by a solution Φ0 which is an absolute minimum of the potential. Let us write
HΦ0 the sector of this solution. Then for any infinitesimal generator vα of GΦ0 with
vα 6== 0 we have:

• scattering configurations (behaviour for infinite time) associated to solutions
in HΦ0 , which are solutions of the free wave equation (they are the Goldstone
modes).

• solutions in HΦ0 that in arbitrary large finite volume (in space and time) behave
like free waves (Goldstone-like solutions).

Beyond its predictive aspect, this very general result allows to hypothesize an
underlying spontaneous symmetry breaking when long wavelength modes are ob-
served. Because of its generality, Goldtstone theorem should be considered when
discussing pointwise (continous) symmetry breaking and their properties, including
afar from the critical point.

As a general comment, we see that (finite) continuous symmetries are peculiar.
They allow, by continuity, to propagate invariant quantities (Noether’s theorem) and
generate massless fluctuations (Goldstone theorem).

5.5 Symmetries breakings and randomness

In this section, we will propose a preliminary and informal remark, which may turn
out to be important when stressing the role of randomness in biology. Namely, we
propose that in all existing physical theories each random event is associated to a
symmetry change, as symmetry breaking and reconstruction (new symmetries may
be formed).

A random event is an event where the knowledge about a system at a given time
does not entail its future description; thus, the event is unpredictable, relatively to the
intended theory. In physics though, the description before the event determines the
complete list of possible outcomes: thus, what is unpredictable is a numerical value
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in a pre-given space of observables — modulo some finer considerations as the ones
we will discuss in chapter 8 as for QM and statistical physics, on the dimensions
of the phase space, typically. Moreover, in most physical cases, the theory provides
a metric or, more generally a measure (of probabilities or other measures) which
determines the observed statistics. That one may say: random or unpredictable, but
not so much, as we know a probability distribution. Kolmogorov’s axiomatic sys-
tem for probabilities works this way and provides probabilities for the outcomes.
The various physical cases can be understood and compared in terms of symmetry
breaking.

QUANTUM MECHANICS: the unitarity of the quantum evolution is broken at
measurement, which amounts to say that the quantum state space assumes privi-
leged directions (a symmetry breaking).

CLASSICAL DYNAMICS: the intended phase space contains the set of all possi-
bilities. Elements of this set are symmetric inasmuch they are possible, moreover
the associated probabilities are usually given by an assumption of symmetry; for
example, the sides of a dice or the regions of the phase space with the same en-
ergy. These symmetries are broken at the occurrence of the intended event, which
singles out a result.

ALGORITHMIC CONCURRENCY THEORY: the theory gives the possibilities (a fi-
nite list) but does not provide, a priori, probabilities for them. These may be
added if the physical event forcing a choice is known (but computer scientists,
in programming theory and practice, usually “do not care” — this is the termi-
nology they use, see [Longo et al., 2010]). The point here is to have a programm
that works as intended in all cases.

We thus associated a random event to a symmetry breaking, in the main phys-
ical frames (plus one of linguistic nature: networks’ programming). In each case,
we have several possible outcomes that have therefore a symmetrical role, possibly
measured by different probabilities. After the random event, however, one of the
“formerly possible” situations is singled out as the actual result. Therefore, each
random event that fits this description is based on a symmetry breaking, which can
take different yet precise mathematical forms, depending in particular on the prob-
ability theory involved (or lack thereof). In this line of reasoning, randomness leads
to a distinction between the possible and the actual result (“possible” and “result”
have different specific meaning depending on the theory). The symmetry is then
between the different possibilities and this symmetry is broken when one result is
obtained out of them. This scheme of randomness seems quite general to us.

In the case where probabilities are defined, let us better specify the symmetries
we are talking about. Let’s consider an event X which can be either A, with proba-
bility p or B with probability 1− p. Then, we can consider fA(X) = 1/p if X = A
else fA(X) = 0 and fB(X) = 1/(1− p) if X = B else fB(X) = 0. we see then that fA

and fB have exactly the same expectancy. It is precisely this symmetry that experi-
menters try to show empirically, and that legitimates the probability values.
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Note that random situations following this pattern define a before and an after,
with the symmetry breaking separating them. This before and after may be epistemic
(for chaotic dynamics) or intrinsic (quantum mechanics).

Let’s now review more closely, in a schematic way, how the random events are
associated to symmetry breakings:

QUANTUM MECHANICS: the projection of the state vector (measurement); non-
commutativity of measurement; tunneling effects; creation of a particle . . . .

CLASSICAL DYNAMICS: bifurcations, for example, correspond typically to sym-
metric solutions for periodic orbits. Note that in classical mechanics, “the knowl-
edge of the system at a given time” involve the measurement (inasmuch it limits
the access to the state) and not only the state itself.

CRITICAL TRANSITIONS: the point-wise symmetry change lead to a “choice” of
specific directions (the orientation of a magnet, the spatial orientation of a crystal,
etc.). The specific directions taken are associated to fluctuations. Also, the multi-
scale configuration at the critical point is random, and fluctuating.

THERMODYNAMICS: the arrow of time (entropy production). This case is pecu-
liar as randomness and symmetry breaking are not associated to an event but to
the microscopic description. The time reversal symmetry is broken at the ther-
modynamic limit.

ALGORITHMIC CONCURRENCY: The choice of one of the possible computa-
tional paths (backtracking is impossible).

If this list is exhaustive, as it seems, it is fair to say that random events, in physics,
are correlated to symmetry breakings (and programming follows this pattern). Note
that among all these cases, one doesn’t fit completely in our qualitative discussion
and has a more complex structure: the case of thermodynamics. Indeed, from a
purely macroscopic viewpoint, there is no particular form of randomness associ-
ated to the theory, and provided that a trajectory is defined, it will be determin-
istic (except for critical transitions or similar situations). Randomness appears at
the microscopic level, either understood as chaotic classical dynamics or classical
probabilities (statistical mechanics). Both then correspond to the analysis of their
respective categories. However, this doesn’t explain the arrow of time, which is the
interesting symmetry breaking in this situation. The evolution of a thermodynamic
system is towards a symmetrization of the system, since it tends towards the macro-
scopic state to which correspond the greatest number of microscopic states (they are
symmetric from a macroscopic viewpoint). That is, it tends towards the greatest en-
tropy compatible with other constraints. In this case, randomness is used to explain
a dispersion in the microscopic phase space, therefore it is a process of symmetriza-
tion which breaks the time symmetry but doesn’t create macroscopic randomness.
Macroscopic randomness may still appear if there are different minimums for the
relevant thermodynamic potential, like in phase transitions.

All these symmetry changes and the associated random events happen within the
intended phase space, or, in other words, within the set of possibilities given by the
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intended physical theory. The challenge we will be facing in biology (see 8), is that
randomness manifests itself at the very level of the observables. Critical transitions
are the closest physical phenomenon to the needs of the theoretical investigation in
biology and we will discuss them in next chapter.



Chapter 6
Critical phase transitions

Abstract:

In this chapter, we first present the basic principles of a relatively new area of
physics, the analysis of critical phase transitions and more generally the theory of
criticality. Then, we will introduce some mathematical methods that set the physics
of criticality on robust grounds. We will also discuss briefly some variation on the
theme of criticality such as self-organized criticality, often used in theoretical ap-
proaches to biology. Following the current analyses in physics, we present them
here as point-wise transitions, with respect to (usually) one control parameter. This
will constitute an opening towards the approach to criticality in the following chap-
ters seen as an “extended” phenomenon in biology, that, we propose, is ranging on
a non-trivial interval of definition.

Keywords:

criticality, phase transition, fluctuations, symmetry breaking.

6.1 Symmetry breakings and criticality in physics

In previous chapter, we observed that symmetries are at the core of the definition of
physical objects and of their properties, states and in fine theoretical determination.
Thus, a symmetry change (that is, the breaking of some symmetries and/or the for-
mation of new ones) means a qualitative change of the object considered, or even
a change of physical object, the object being understood as co-constituted by the
theory (and its symmetries) and empirical observations. For example, a well-known
research project in cosmology considers a single force to have existed in the uni-
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verse right after the big bang. Then, the four fundamental forces are assumed to
appeared by successive symmetry breakings, whereby some transformations, which
were symmetries, did not preserve the object invariance anymore1. In other words,
with the cooling of the universe, the system moved to a smaller symmetry group and
qualitatively different forces appeared.

Closer to the scale of biology, materials like water or iron are able to show dif-
ferent properties in different situations. Depending on the temperature and pressure,
water may be a solid, a liquid, or a gas. When liquid, there is no privileged direction
(the system is isotropic, that is to say symmetric by rotations), whereas ice has a
crystalline structure with spatially periodic patterns. This implies that the system
is no longer symmetric by continuous rotations: it has a few privileged directions
determined by its crystalline structure which means that it has a smaller symmetry
group (less spatial symmetries). Similarly, iron can have paramagnetic behaviour
(the system is not magnetized) or ferromagnetic behaviour (it is magnetized). In
most cases, one can distinguish a more disordered phase at high temperature, where
entropy dominates, and a more ordered phase, where energy dominates. These situa-
tions can be discriminated by an order parameter which is 0 in the disordered phase
and different from 0 in the ordered phase2. The physics of criticality focuses on this
kind of phase transitions, i.e., state changes (see [Toulouse et al., 1977, Binney et al.,
1992], two classics among many texts on this matter, also quoted below).

To sum the situation up, one may understand certain changes of states in terms
of spontaneous symmetry breaking, see section 5.5. That is, one may give a group
of transformations G, which yields the symmetries of the initial situation, the dis-
ordered phase, and no longer of the subsequent one, the ordered phase, where the
group of transformations that are symmetries changes. Here, order precisely means
that a specific “direction” has been “chosen” and do not respect the initial symmetry.
The direction(s) of a crystal or the poles of a magnet. The symmetry of the second
phase is restricted to a subgroup G1 of G. In general, then, the definition of the
macroscopic state requires the introduction of a supplementary variable, called the
order parameter, which gives the strength and direction of the symmetry breaking,
for example the global field of a magnet. Typically, this parameter takes uniformly
the value 0 in the disordered phase, which is symmetric by G and is different of 0 in
the ordered phase, which is no longer symmetric by G.

Now, in physics, the change of state, or phase transition, occurs always mathe-
matically at a point of the parameters’ space. This point is called the critical point.
This point-wise nature stems, among other reasons, from the Boolean nature of the
validity of symmetries: the symmetry of the ordered phase is macroscopically valid,
before the phase transition, then suddenly it gets broken. The critical point is asso-

1 The Higgs mechanism is an example of this situation; in this case, the symmetry breaking in the
abstract electroweak space (for example) leads to different masses for bosons and as a consequence
to a very short range for weak interaction and a long range for electromagnetism.
2 Here, order means low entropy, or less symmetries, and disorder means high entropy, and more
symmetries, where symmetries are counted in terms of macroscopically equivalent “microstates”.
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ciated with a sudden change of behavior due to the change of symmetry between
the disordered and ordered phase. At the critical point, between these two states, a
peculiar behavior appears which is due to the singularities of the state functions. For
example, the order parameter is non-analytic because it goes from a constant 0 to
a finite quantity, by a finite change. More technically, the critical point represents
a singularity in the partition function describing the system3. In the case of iron’s
paramagnetic-ferromagnetic transition, this allows to deduce the divergence of some
physical observables, such as magnetic susceptibility. The reader should note that
this form of singularity, associated to the specific shape of the divergence towards
the infinite quantities at the critical point, is a core aspect of physical criticality.

This peculiar situation leads to a very characteristic behavior at the critical point
[Jensen, 1998]:

1. Correlation lengths tends to infinity, and follow a power law, as for continuous
phase transitions. That is, for a vector x and an observable N, if we note by < .>r

the average over point r in space, then < N(r+ x)N(r)>r −< N(r)>2
r∼ ‖x‖α .

This is associated with fluctuations at all scales leading in particular to the failure
of mean field approaches (in these approaches, the value of an observable at
a point is given by the mean value in its neighborhood or, more precisely, its
mathematical distribution is uniform). We will come back to this below, in section
6.2.1.5.

2. Critical slowing down: the time of return to equilibrium of the system after a
perturbation tends to infinity, see section 6.2.3.

3. Scale invariance: the system has the same behavior at all scales. This property
leads to a fractal geometry and means that the system has a specific symmetry
(scale invariance itself). The method of renormalization is used to evidentiate this
behaviour.

4. The determination of the system is global and no longer local.

These properties are the key motivations for the biological interest of this field of
physics. The global “coherence structure” that is usually formed at critical tran-
sitions provides a possible understanding, or at least, an analogy for the unity
of an organism. In the current terminology, it gives a form of “global determi-
nation or causation”: the global structure has a causal role on its “components”.
Also, power laws, so frequent in biology as we discussed in chapter 2, are ubiqui-
tous in critical phenomena. They are mathematically well-behaved functions (e. g.
f (x) = xα ) with respect to the change of scale [typically, λ is the scale change in
f (λx) = λ α f (x) = λ α xα , a power law in α], and they yield scale symmetries, see
section 2.1.1 or more the mathematically oriented annex A.1. In our example, scale
changes just multiply the function f by a constant λ α . Now, a power law depends

3 This function is non-analytic at the critical point, which means that the usual Taylor expansions,
linearizations or higher order approximations do not actually provide an increasing approximation,
we will go back to this point in section 6.2.1.2.
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on a quantity without physical dimension (α in the notation above). In critical tran-
sitions, these quantities are called critical exponents and describe how the change
of scale occurs. In our terminology, they describe the properties due to the objective
determination of a phase transition because they are the invariants associated with
the scale symmetry.

Specific analytic methods, called renormalization methods, are used to theoret-
ically establish these quantities [Delamotte, 2004]. These methods, which we will
discuss more extensively in section 6.2.2 below for the interested reader, consist in
analyzing how scale changes transform a model representing the system, and this
analysis is made “asymptotically” toward large scales. One may deduce the critical
exponents from the mathematical operator representing the change of scale. The key
point is that a variety of models ultimately lead to the same quantities, which means
that they have the same behavior at macroscopic scales. Thus, they can be grouped
in so-called universality classes. This analytic feature is confirmed empirically, both
by the robustness of its results for a given critical point and more stunningly by the
fact that very different physical systems happen to undergo the same sort of phase
transitions; that is, they are associated with the same critical exponents, thus with the
same scale symmetries. Finally, there exist fluctuations at all scales, which means,
in particular, that small perturbations can lead to very large fluctuations.

The physical situation is that in the disordered phase the system is macroscop-
ically symmetric. Still it has coherent fluctuations limited in size. Now, the spatial
extent of fluctuations increases when the system gets closer to the critical point. At
this point coherent fluctuations encompass the whole system (whatever its size, that
is they to infinity) and when crossing this point, the system is finally dominated by a
macroscopic order that arose from these fluctuations (metaphorically we could say
that the system is stuck in a fluctuation so large that it gets beyond infinity, which
does not prevent smaller fluctuation to occur).

To conclude, the transition through a specific point of the parameters’ space, i.e.,
a transition between two very different kinds of behavior is associated in physics to
a change of symmetries. At this point, the system has very peculiar properties and
symmetries. Symmetries by dilation (by a coefficient λ as above) yield a scale in-
variance. This latter invariance is associated to a global determination of the system
and the formation of a “structure of coherence”. As observed above, this allows to
describe a global determination of local phenomena and a unity that goes beyond the
idea of understanding the global complexity of a system as the sum of many local
behaviors or by adding more and more local, possibly hidden, variables. For some
physical phenomena this theoretical framework presents peculiar and very relevant
forms of “systemic unity”.

A well-known example is given by an Ising spin lattice. This is a mathematical
lattice, where the field value of each element of the lattice, Φi, can either be 1 or
−1. We assume that the Hamiltonian, which determines the system, is symmetric
by the global permutation of these two directions (namely by the transformation g,
with g(1) = −1 and g(−1) = 1). Physically, this assumption also means that these
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two signs, at least at this scale, are arbitrary labels (the resulting algebraic structure,
that is, the fact that there is two different signs, however, is not arbitrary). Thus,
if the system is disordered, it follows globally the symmetry group4 O(1), which
corresponds to this permutation and identity. However, if this symmetry is broken
for the global system, we have a macroscopic distinction between these two orien-
tations. This distinction can be taken into account by the order parameter Φ = 〈Φi〉,
the mean of the spins. When Φ = 0, the symmetry is macroscopically respected.
However, when Φ 6= 0, Φ is either positive or negative, and the symmetry is bro-
ken by the state of the system, and replaced by the trivial subgroup which contains
only the identity, {1}. We will provide a further, more mathematical, insight into the
mathematics of Ising models, in section 6.2.1.2 below.

As for now, observe that, in this case, we have considered a discrete symmetry.
The simplest extension to a continuous symmetry is the O(2) symmetry, which
leads to an order parameter that can be written in the form ρeıθ and models a circle.
In this case, the Hamiltonian does not depend on a global multiplication by a phase
factor eıθ . In general, the cases of O(n) symmetries are especially widely studied.
Their breaking corresponds to the usual “choice” of an oriented direction in an n
dimensional real space, and appears, for example, to the magnetization of magnets.
We can, however, easily provide alternative examples. The liquid crystals in LCD

screens are nematic, which leads to the determination of a direction but not of an
orientation (an angle from 0 to 180◦).

This theoretical framework has also been applied to a possible understanding of
life phenomena. In the next chapter, we will survey some of these approaches but
we will mostly look at biology through a different insight into the symmetries of bi-
ological criticality. In particular, we will still refer to critical transitions, but we will
describe them as given on a interval or a (dense) subset of an interval and possibly
controlled by several parameters. The main aim of these chapter is to prepare the
following one on the analysis of biological processes in terms of extended critical
transitions: an organism is always in a transition, beginning with each individual
mitosis. We claim that this transition is “critical” in the terms specified here. As
for now, we thus discuss more closely the mathematical approaches to criticality in
physics. Also a qualitative understanding of the technical issues in this chapter may
suffice to follow the main discussion in the next one.

6.2 Renormalization and scale symmetry in critical transitions.

We present here the basic mathematical ideas and techniques that have been used in
the current analyses of critical phase transitions.

4 O(n) is the group of symmetry of the sphere in dimension n.
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6.2.1 Landau theory

Landau theory is a remarkably straightforward approach of second order phase tran-
sitions5. This theory, in spite of its simplicity, provides information on the basic
properties of such situations. In particular, Landau theory allows a first account of
the relation between symmetry breaking and phase transitions and gives a first ac-
count, valid only in certain cases, of the singular behavior at the critical point.

6.2.1.1 Statistical mechanics

We will first recall basic aspects of statistical mechanics. The point here is mainly to
show the general relation between fluctuations, on the one side, and susceptibilities
and heat capacities on the other side.

The key function that governs a systems behavior is the partition function, see
for example [Sethna, 2006]:

Z = ∑
s∈states

exp(−βEs) (6.1)

where Es is the energy of the state s, and β is roughly the inverse of the temperature:
β = 1

kbT . The probability to obtain a state s is then:

P(s) =
exp(−βEs)

Z
(6.2)

The theoretical crucial point, here, is that the states with the same energy have the
same probabilities (they are symmetric from a statistical perspective). This is usu-
ally justified by an assumption of ergodicity of the microscopic trajectories. As a
result, statistical mechanics is related to the geometry of the phase space in high
dimensions.

Note that the temperature just “tunes” the impact of energy on the probabilities
distribution. At temperature ∞ (β = 0), all states have the same probability which
amounts to ignore the consequences of energy. On the contrary, when tending to 0
temperature (β → ∞), only the minimum energy states are possible (the probability
of the other states vanish), so that energy directly determines the possible states. At
and near 0 temperature (but not exclusively), other approaches are needed because
fluctuations in energy are engendered by quantum uncertainty; this leads to quantum
phase transitions, which are a very active and promising research field. We will not
describe them here, see for example [Belitz et al., 2005].

5 In Ehrenfest classification, a transition of order n has its first discontinuity for a derivative of
order n of the free energy. In the modern classification, first order transition involve a latent heat,
while second order transition do not.
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The equivalents to the usual thermodynamic functions are then obtained from
the partition function. We provide next the extensive version of these quantities;
however, at the thermodynamic limit, it is their intensive version that is actually
relevant. It can be obtained by dividing the results by n, the number of elementary
objects or in an experimentally more practical way, by V the volume or a mass m.:

ENERGY. The mean energy is obtained as follows:

−∂ lnZ
∂β

=− ∂Z
∂β

1
Z

(6.3)

=− ∑
s∈states

−Es exp(−βEs)
1
Z

(6.4)

= ∑
s∈states

P(s)Es (6.5)

= 〈E〉 (6.6)

ENERGY FLUCTUATIONS. A similar reasoning leads to:

〈(∆E)2〉= 〈(E−〈E〉)2〉=−∂ 2 lnZ
∂β 2 (6.7)

HEAT CAPACITY. Heat capacity is the energy needed to increase the temperature
of the system.

C =
∂ 〈E〉
∂T

=
1

kBT 2 〈(∆E)2〉 (6.8)

This relation is particularly interesting; it relates the heat capacity to the energy
fluctuations.

HELMHOLTZ FREE ENERGY.

F =− lnZ
β

(= 〈E〉−T S) (6.9)

ENTROPY.

S =−∂F

∂T
(6.10)

If one introduces another parameter B (which can be a vector), for example asso-
ciated to an external field, then a similar reasoning allows to define the correspond-
ing susceptibility. This can be introduced by Es =−∑i B.Φs,i +E ′s.

MAGNETIZATION. We consider the magnetization along the u direction of the
field (u.B denotes the scalar product along direction u); the reasoning is then the
same than the one for the mean energy:
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〈Φ .u〉(β ,B) =− ∂F

∂ (B.u)
(6.11)

SUSCEPTIBILITY. The susceptibility corresponds to the ability of an external field
to to change the internal field of the object.

χi(β ) =
∂ 〈Φ .u〉
∂ (B.u)

=− ∂ 2F

∂ (B.u)2 (6.12)

FIELD FLUCTUATIONS. In this case we will detail the calculus which relates the
susceptibility to the fluctuations.

− ∂ 2F

∂ (B.u)2 (6.13)

=
1
β

∑
s∈states

β ∑
i

u.Φs,i
∂ exp(−β (Es−∑i B.Φs,i))/Z

∂ (B.u)
(6.14)

= ∑
s∈states

β

(
∑

i
u.Φs,i

)2
exp(−β (Es−∑i B.Φs,i))

Z
(6.15)

− ∑
r,s∈states

β

(
∑

i
u.Φs,i

)(
∑

i
u.Φr,i

)
exp(−β (Es−∑i B.Φs,i +Er−∑i B.Φr,i))

Z2

(6.16)

= β ∑
s∈states

(
∑

i
u.Φs,i

)2

P(s)− ∑
s∈states

∑
r∈states

(
∑

i
u.Φs,i

)
P(s)

(
∑

i
u.Φr,i

)
P(r)

(6.17)

= β

〈(
∑

i
u.Φs,i

)2〉
−β

〈
∑

i
u.Φs,i

〉2

(6.18)

χu(β ,B) = β

〈(
∆ ∑

i
u.Φs,i

)2〉
(6.19)

6.2.1.2 Some general remarks on phase transitions

As already mentioned, a very classical example for the study of phase transition is
the Ising model, which is described by the Hamiltonian:

Es = ∑
i< j

2Ji jφiφ j +∑B jφ j (6.20)
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where Φ = ±1. Simulations of this model with coupling constant of 1 for neigh-
bours in 2 dimension are given in figure 6.1. This model is particularly important
because exact solutions are known in dimension 1 and 2 (without external field).

It is straightforward that the partition function is analytic when there is a finite
number of spin, in the Ising model. More generally, this result also holds directly,
even when an infinite number of states is generated by a symmetry of the Hamil-
tonian, with a finite number of elementary objects. The general point is then that
finite-size systems have analytic partition function, and thus all the above (pre-
)thermodynamic functions are analytic (the only “dangerous” operation is the ap-
plication of the logarithm, but it is applied on a finite sum of exponentials with the
same positive coefficient). By contrast, the order parameter, typically one of the Φ .u,
has a non-analytic behavior, since,it is different from 0 in the ordered phase and has
non-isolated zeros (the whole ordered phase). As a result, no phase transition occurs
in finite-size systems, and the transition occurs only at the thermodynamic limit6.

In general, the partition function (and all thermodynamic functions) are analytic
except at the critical point. When mathematically extended to the whole complex
plane (abstract complex temperatures), the non-analyticity propagates to a set of
non-isolated, dense zeros, which touches the real line at the critical point. This struc-
ture is a vertical line for isotropic Ising model (Lee-Yang approach), but can be far
more complex in the case of anisotropic magnets [van Saarloos & Kurtze, 1984].
This point of view can be used to characterize finite-size phase transition (in the
isotropic case), by the density of complex zeros.

Another crucial aspect is that a spontaneous symmetry breaking, in this context,
leads to an ergodicity breaking. Indeed, without entering in many details, Boltz-
mann approach to entropy assumes that the most probable states are those that have
a maximum entropy (with given constraints); however, the symmetry breaking con-
fines the system in a given direction of the order parameter, whilst other states are
symmetric in particular with respect to their entropy (following the above descrip-
tion). This confinement of the microscopic phase space is precisely the situation that
we called strong symmetry breaking in section5.4, and that is described by [Stroc-
chi, 2005]. The description in terms of ergodicity breaking means that the mean
time evolution (which is constrained by a given breaking of the symmetry) is not
equivalent to the mean on the phase space (which is not constrained by it).

6.2.1.3 Landau theory

Landau theory allows to straightforwardly approach phase transitions from their
thermodynamic description. This approach is based on an almost self-contradictory
point of view, since it assumes that a limited development makes sense whilst the

6 At least in the usual sense. For small finite-size systems, other definitions can be used. This field
is an active research topic.
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considered function is typically non-analytic at the critical point. We will further dis-
cuss this question below. Another limitation is analyzed in [Sen, 2010], which tries
to distinguish the situation where this approach can be used at least as a heuristic
and when it cannot, depending on the properties of the symmetry breaking.

We will suppose that the system depends only on the temperature T and the exter-
nal field B. We will assume that B= 0. We will also suppose that the thermodynamic
functions are symmetric with respect to the change of sign of Φ , so that the thermo-
dynamic potential verifies F (−Φ) =F (Φ) (O(1) symmetry). In the following, all
quantities are considered intensive. Considering this symmetry, the limited expan-
sion in Φ , near Φ = 0, of the thermodynamic potential only has even terms (the odd
terms would break the symmetry of the free energy):

F = F0 +
1
2

aT tΦ2 +
1
4

cT Φ
4 aT = a t =

T −Tc

Tc
cT = c > 0 (6.21)

The equilibrium state Φ0 of the system minimizes the thermodynamic potential
F , we consider then:

(
∂F

∂Φ

)

Φ0

= atΦ0 + cΦ
3
0 = 0 (6.22)

This yields:

Φ0 =±
√

a
c
(−t)1/2 T < Tc (6.23)

Φ0 = 0 T > Tc (6.24)

We will now consider that an external field can be present, which will allow us
to compute the zero field susceptibility, and therefore the fluctuations of the order
parameter.

F = F0−BΦ +
1
2

atΦ2 +
1
4

cΦ
4 (6.25)

Thus we have at equilibrium:
(

∂F

∂Φ

)

Φ0

=−B+atΦ0 + cΦ
3
0 = 0 (6.26)

We differentiate this equality with respect to B at zero external field.
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0 =−1+at
∂Φ0

∂B
+3c

∂Φ0

∂B
Φ

2
0 (6.27)

∂Φ0

∂B
=

1
at +3cΦ2

0
(6.28)

This leads to:

χ(T,0) = β
〈
Φ

2〉−β 〈Φ〉2 =
1
2a (−t)−1 T < Tc

1
a (t)

−1 T > Tc
(6.29)

Thus, the susceptibility and the fluctuations diverge when we are getting closer to
the critical point.

These results, the divergence of the derivative of the order parameter and of the
fluctuations, are at odd with the hypotheses of regularity that we assumed in order
to perform the limited expansion, at the first step of this model. Physically, this
corresponds also to the issue of only approaching the system by its macroscopic
properties, namely by the macroscopic value of the order parameter. Moreover, it is
also not obvious that the dependencies on T of the different functions, in particular
F0, are regular (because of the fluctuations at the critical point).

This approach is related to the microscopic description by the mean field theory,
which simply assumes that the interaction of one element with a second one, Φi say,
can be considered as an interaction with the mean value of this quantity 〈Φ j〉. This
approach, by elementary means (in fine a consistency equation), allows to predict
possible phase transitions from the definition of the Hamiltonian, and then to find
some of their properties. However, the arguments we discussed above for Landau’s
approach are still relevant: this approach does not allow to take the contribution
of the fluctuations into account. As a result, its validity is limited and incorrect
predictions occur, such as missing phase transitions or wrong behaviour near critical
points.

6.2.1.4 First approximation of the fluctuations

In order to take the fluctuations into account, we consider that Φ is a function of the
position r, which is simply written Φ(r) but leads also to the consideration of a free
energy density F ′. Then, we limit ourselves to the second derivatives and use the
symmetries of the the system, which leads to:

F ′ = F ′
0−B(r)Φ(r)+

1
2

atΦ2(r)+
1
4

cΦ
4(r)+g

(
∂Φ(r)

∂ r

)2

(6.30)

Here, we have assumed that the mixed partial derivatives are irrelevant and that the
system is isotropic. Moreover, g > 0, so that the situation without fluctuations is
favored (they give a lower potential).
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As usual, we look at the derivative of the free energy with respect to Φ , which is
now a function, at the equilibrium point:

(
∂F ′

∂Φ

)

Φ0

=−B(r)+atΦ(r)+ cΦ
3(r)+2g∇

2
Φ(r) = 0 (6.31)

Then we differentiate it with respect to the value of the external field at another
position B(r2). We use the generalized susceptibility χT (r,r2) =

δΦ(r)
δB(r2)

−δ (r− r2)+
(
at + c3Φ

2(r)+2g∇
2)

χT (r,r2) = 0 (6.32)

The generalized susceptibility is proportional to the correlation function (the com-
putation is similar to the one for the susceptibility and it relation with fluctuations),
and we assume translation invariance so that:

(
at + c3Φ

2(r)+2g∇
2)G(r− r2) = kbT δ (r− r2) (6.33)

Assuming Φ(r)'Φ0, we obtain:
(

1
ξ 2(t)

−∇
2
)

G(r− r2) =
kbT
2g

δ (r− r2) (6.34)

with:

ξ (t) =

√
g
2a (−t)−1/2 T < Tc√

g
a t−1/2 T > Tc

(6.35)

We can solve the latter by Fourier transform. It leads to:

G(‖r‖) ∝
e−

‖r‖
ξ (t)

‖r‖d−2 (6.36)

The quantity ξ (t) is thus the correlation length of the system. As expected, it di-
verges at the critical point. More details on this derivation can be found in [Altland
& Simons, 2006, Schulte-Frohlinde & Kleinert, 2001]. Technically, this derivation
is the first perturbative correction to the Landau theory. Note, that the Φ4 terms is
not taken into account in the fluctuation (except through the equilibrium value)

6.2.1.5 Ginzburg criterion

The Ginzburg criterion tests the consistency of the Landau theory by verifying that
the fluctuations determined in this framework are not strong enough to break its
validity. We will follow the reasoning in [Als-Nielsen & Birgeneau, 1977], a more
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extensive discussion can be found in[Schulte-Frohlinde & Kleinert, 2001], both in
the Landau Framework and in the renormalization framework, which allows to pro-
vide a better determination of these fluctuations.

The criterion checks what quantitatively determines the value of Φ over the mag-
nitude of the fluctuations, that is an appropriate volume Ω .

(δΦ)2
Ω �Φ

2
Ω (6.37)

We will write t = T−Tc
Tc

in the following. In order to assess the strength of the
fluctuations, the correct volume is given by the characteristic length ξ (t), so that
Ω = ωξ . This region is indeed the region where the spins are correlated, so that we
have a local order that may depart from the global mean.

(δΦ)2
Ωξ
�Φ

2
Ωξ

(6.38)

N(Ωξ (t))χ(t)kbT � N(Ωξ )
2
Φ

2
0 (t) (6.39)

χ(t)kbT � N(Ωξ )Φ
2
0 (t) (6.40)

we use d, the dimension of space

χ(t)kbT � ξ (t)d
Φ0(t)2 (6.41)

We use equations 6.35, 6.29 and 6.23 so that:

1
ta

kbT �
(g

a
(t)−1

)d/2 a
c
(−t) (6.42)

We are only interested by the behavior at the critical point so for small t

1� t
4−d

2 (6.43)

We thus observe that the criterion is met for d > 4 and not met for d < 4. d = 4 is
then called the critical dimension. For d > 4, the Landau approach is thus consistent,
whilst it is inconsistent for d < 4. Note that we have made some important assump-
tions, in particular on the isotropy of the system. Anisotropy can change the situa-
tion [Als-Nielsen & Birgeneau, 1977]. We want to emphasize that the consistency
of Landau theory is a limited result (other problems may arise); on the opposite its
inconsistency for d < 4 is a definitive answer (modulo the other hypotheses on the
system).

A qualitative and heuristic approach can also be done by dimensional analysis,
on the basis of equation 6.30.
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∫ 1
2

atΦ2(r)+
1
4

cΦ
4(r)+g

(
∂Φ(r)

∂ r

)2

dr (6.44)

To show the internal structure of this object, we divide by g

∫
a′tΦ2(r)+ c′Φ4(r)+

(
∂Φ(r)

∂ r

)2

dr (6.45)

We can now perform a dimensional analysis with respect to space, assuming this
quantity has no spatial dimension.

∫ (
∂Φ(r)

∂ r

)2

dr→ [Φ ] = L
2−d

2 (6.46)
∫

a′tΦ2(r)dr→ [a′t] = L−2 (6.47)
∫

c′Φ4(r)dr→ [c′] = Ld−4 (6.48)

• If we set a′t = 0 and c′ = 0, we have what is called a free massless field. In this
case, the equation is space-scale invariant, in association with the exponent 2−d

2 .
• With a′ 6= 0 and c′ = 0 , we have a free massive field. The above scale invariance

is broken by the Φ2 term. We get then that the characteristic length of the system

is proportional to
√

1
at , which is consistent with the result in equation 6.35. The

term a′t, however, vanishes at the critical point, and the corresponding length
diverges.
Looking the system from a greater distance means that the lengths shrink. We
thus see that the “mass” term a′ gets larger in the process. This means simply
that when we are looking at the system from a long distance, the correlations
vanish (except at the critical point).

• With a′ 6= 0 and c′ 6= 0, the Φ4 term also breaks the (naive) scale invariance,
when d 6= 4.
Using the same reasoning than above, the coupling “constant” c′ gets larger when
d < 4. Which means that it is not limited to local interactions. On the contrary,
when, d > 4, this coupling constant vanishes at large scales, which justifies the
fact that this term (and the corresponding fluctuations) can be neglected at large
scales. This also means that the system does not generate more and more relevant
interactions.

We understand also that, for d < 4, there is an instability of the behavior of the
system associated to the Φ4 term (at the critical point), since this term increases
exponentially with the scale.

As a general conclusion, we can say that the crucial point for the Ginzburg crite-
rion is the interplay between the local terms (derivation) and global terms (integra-
tion). The latter leads to the dependence on the spacial dimension of the system.
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6.2.2 Some aspect of renormalization

(a) T < Tc (b) T > Tc

(c) T ' Tc

Fig. 6.1: Simulation of the Ising Model. From a large distance, we have an homogeneous gray block
for T > Tc. For T < Tc, here, the white spins dominate the system, and the system is ordered. Near
the critical point, we have, for all sizes, clusters where the different signs of spin dominate, leading
to a fractal distribution. Note that the simulation near the critical point needs an important amount
of iterations because the relaxation time diverges, see section 6.2.3.
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In order to go beyond the Landau theory and the perturbative approach that can
be used to estimate the fluctuations, an original approach is needed. This approach is
called renormalization and, can be seen as a (highly) refined and quantitative version
of the dimensional analysis we have just performed.

The basic idea behind renormalization is that, when more and more interactions
are relevant (typically when d < 4 in the above case) and when the system fluctuates
strongly, we can nevertheless understand its behavior by looking how its equational
description (the Hamiltonian, or the partition function, but it can also be an evolution
function, over time) changes when we integrate a part of the contributions to this
description. This could be seen as a reduction of the number of degree of freedom
of the system, but this alone would be pointless because the number of degree of
freedom is infinite. The point is then more rigorously to observe the change of the
equational form, its stability, and crucially its parameters (the coupling constants
typically).

Renormalization then succeeds when this operation allows to obtain an equa-
tional stability with vanishing quantities (coupling constants), which are then irrele-
vant, and non-vanishing quantities, which are relevant and correspond to the asymp-
totic scaling behavior of the system. Here, we will focus on statistical mechanics,
but renormalization is also crucial in quantum field theory.

Before going further, let us discuss briefly the situation in quantum field theory.
In this theory, Divergences occur in particular with respect to small space-scales
(equivalently high energy). The conceptual question is then how can “long” range
interactions be approached whilst we cannot compute them (integrate them) from ar-
bitrarily small length scales up. Renormalization allows to answer this question by
saying that the equational forms stay the same when we integrate the couplings over
a larger set of scales, and we mostly need to change the coupling constants by doing
so (this is of course a highly simplified discussion). The key here is the stability
of the equations with scale changes, this stability removes the need of an explana-
tion at a fundamental scale, as the equations remains coherent from the bottom up.
Renormalizability of a quantum field theory is then crucial because its failure leads
to the appearance of new parameters when we extend the scale domain of integra-
tion, which is then incoherent because the going from arbitrary scales to a given
scale would lead to an arbitrary large quantity of parameters for the same scale. The
result is then that we need to know at which scale we should start (and what happens
at this scale). A crucial example to this issue is quantum gravitation, which typically
leads to non-renormalizable theories [Zinn-Justin, 2007], and leads to an attempt of
a theorization at a fundamental scale, namely string theory. The other three funda-
mental interactions have, however, been formalized as renormalizable theory in the
standard model.

We will now describe the principle of renormalization in the statistical mechanics
context. One should note that there are different versions of this method. Typically,
the renormalization can be performed in real space or in momentum space, after
a Fourier transform. Moreover, renormalization can start from the upper critical
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dimension, where the mean field approximation is valid (4, in the situation discussed
above) and approach the other dimensions 4− ε as an expansion over ε , or to be
performed more directly, . . . .

6.2.2.1 Principle of renormalization

Here, we will follow the presentation of the basic steps of the method which is
given in [Lesne, 2003]. Another general account can be found in [Fisher, 1998]; a
technical presentation is also given in [Zinn-Justin, 2007].

We first consider a small scale a, corresponding, for example, to the resolution
of the measurement apparatus or to an estimated minimal scale of the system (when
such a scale is known). This scale corresponds to the microscopic description of the
system. We will also consider a macroscopic scale of observation, L. We will work
on a family of models M , indexed by the scale at which they describe the same
physical system S . These models have a subjective flavor, since they usually are
highly simplified versions of the physical situation7.

The reductionist stance is not relevant, since the choice of a minimum scale a
determines the sub-systems of S that we regard as elementary, and this choice is
arbitrary and can even be based on the resolution of the measurement apparatus.
These elementary parts can be described by a small number of quantities, noted s.
These sub-systems typically have a linear extension of magnitude a and will be de-
scribed as points in the model Ma. In this model, the state of S will be described by
a configuration s̄≡ (s1, . . . ,sN), which provides the states of all elementary compo-
nents. In the example of lattices that we described above, one has si = Φi. Typically,
N =

(L
a

)d in dimension d. We can then define for a model Ma:

• The phase space E = {s̄}, which is the set of possible configurations (and thus
depends on a and N).

• The evolution or structure function describing the system (depending on the static
or dynamic nature of the problem): F(s̄). It is thus a function on E , which deter-
mines the behavior of the system (statistical weights in the static case, evolution
rules in the non-equilibrium case, probability transitions, . . . ). F ∈F depends on
the scale. In the statistical mechanics framework, F is usually a partition function
(and thus indirectly the Hamiltonian).

7 In the case of quantum field theory, the precise description at a smallest scale is not even avail-
able. Some physicists think that this description is epistemologically necessary on the basis of a
reductionist stance. However, such a description is not technically necessary, precisely because of
the renormalization method which we are exposing here, in the context of statistical mechanics
— see, for example, the Ising model of magnets: the magnetic interactions are only local, and
the states have only binary possibilities, [Zinn-Justin, 2007]. see also [Longo et al., 2012c] for a
qualitative discussion.
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The renormalization methods are based on three basic operations: a decimation,
scale changes and parameter transformations. The principle of renormalization is
then to iterate a correct combination of these operations. This combination is called
the transformation of renormalization. The core idea is then to analyze the effect of
this transformation and more precisely of its iterations in the space of models.

• The decimation is a procedure which handles the effects of a change of resolution
a→ ka on the configurations s̄ ∈ E . This operation is performed by grouping the
elementary constituents of scale a (coarse-graining) and is represented formally
by a function s̄′ = Tk(s̄).
This operation allows to reduce the number of degrees of freedom of the system
by a factor kd in dimension d (or equivalently, with a constant N, to increase
linearly the scope of observation by a factor k). By performing this transforma-
tion, we lose all information on scales smaller than ka. Since Tk is chosen partly
arbitrarily, one should try to keep as much information on the smaller scales as
possible. This can be obtained by focusing on the elements that can be considered
qualitatively as crucial.

• The scale changes do not change the minimal scales of the model, the aim of
this operation is to keep the same phase space and to highlight the properties
of self-similarity. In order to do so, one determines a family (usually unique)
(k,kα2 , . . . ,kαn)k≥1, which verifies the following property: when multiplied to
the parameters of the models (including the spatial scale) they lead to a nontrivial
limit when k→ ∞.
These exponents can be chosen a posteriori in certain cases.

• The effective parameters are used to replace the former parameter in order to
describe the same physical system in spite of the former transformations. We
transform then F in Rk(F) so that Rk(F) describe the statistics or the evolution
of Tk(s̄). Rk is called the renormalization operator and acts on the F . It is crucial
here that (a part of) the structure of the interactions is taken into account in this
step.

The notion of covariance is then essential, because it refers to the conditions on
the transformations of the various aspects of the model for it to describe the same
physical object. It comes into play, for instance, with respect to the consideration of
the systems symmetries.

A particularly strong notion is then the notion of invariance by renormalization,
which can be written as: Rk(F∗) = F∗. It corresponds, therefore, to a fixed point by
renormalization, and to an exact scale invariance (asymptotically): the system has
a property of self-similarity. This notion is very powerful because of the following
reasons:

• All models which converge towards the same fixed point by renormalization have
the same properties for large scales. This consideration leads to the notion of
universality class.
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• The characteristic scale ξ ∗, associated to a fixed point is either 0 or infinite be-
cause kξ ∗ = ξ ∗. In the first case, the fixed point corresponds to a limit situation,
where there is no coupling between the (sufficiently renormalized) components
of the system seen at large scales. In the second case, we have a critical situation.

• In the case of a critical phenomenon, the analysis of Rk near the fixed point F∗

determines the asymptotic scaling laws of the different situations which converge
towards this fixed point. The critical exponents are, in particular, determined by
the eigen values provided by the linearization of Rk in the neighbourhood of F∗.

The latter point leads to the notion of class of universality, which regroup models
having the same behavior by renormalization. This allows to distinguish among vari-
ants of a model, what changes lead to relevant or irrelevant contributions. Overall it
is the relatively strong robustness of classes of university that makes this approach
especially powerful, as it allows to show that even simple models can provide a
genuine account of the critical behaviour.

An elementary example is the (nearest neighbor) Ising model. We will not de-
velop the corresponding calculation (which are not particularly difficult in dimen-
sion 1 or 2). Then, the assumption of a scale invariant minimum of F leads to a
unique parameter K(k) with K(a)= βJ. Then, we obtain two degenerate fixed point:
K∗0 = 0 and K∗1 = ∞. They can be interpreted straightforwardly: the first fixed point
corresponds to a situation with β = 0 (T = ∞) and, therefore, to no coupling be-
tween the different elements of the system. On the contrary, the second fixed point
corresponds to T = 0, and, therefore, to an ordered situation. Physically, this means
that since in both cases the correlations have a limited range, corresponding to the
different temperatures; the large scale equational form is not concerned with these
scale limited aspects, and the situation collapses to one of these fixed points. In di-
mension 2, we have a critical point at a finite temperature, which separate the basin
of attraction of the two aforementioned fixed points.

It should be clear that the “philosophy” of renormalization basically departs for
standard reductionism, as there is no privileged level, there is no reduction to pre-
sumed “elementary and simple” theoretical entities at the bottom of reality. The
cascades of models may start at any scale, in the intended frame.

6.2.3 Critical slowing-down

In a critical situation, a system needs qualitatively more time to stabilize than a
normal situation. This phenomenon is called critical slowing-down. It is one of the
aspects of the long range or global correlations in critical phase transitions: in a
sense, the entire structure is involved in relaxation phenomena and produces slow
decays of the effect of perturbations. Once more, this is one of the reasons, both for
the autonomous physical interest of these phenomena in physics and for their resem-
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blance with the “global” nature of biological organisms. In the next chapter we will
go further than this and other aspects of physical criticality by looking at biological
processes, as we said, as extended (permanent, ongoing) critical transitions.

We will illustrate the phenomenon of critical slowing-down with an elementary
mathematical example in the context of bifurcation theory, following the presenta-
tion in [Scheffer et al., 2009]. This context is simple and sufficient to understand the
basic ideas underlying critical slowing down in general. Let us consider a dynamical
system with a pitchfork bifurcation:

dx
dt

=−x(α + x2) (6.49)

When α < 0, the system has three equilibrium points: x0 = 0 and x±1 = ±√−α .
Otherwise, it has only one equilibrium point: x0 = 0. We can obtain the stability of
the system by looking at its second derivative:

d2x
dt2 =−dx

dt

(
(α + x2)+2x2) (6.50)

Thus, at the point x0, we have d2x
dt2 = − dx

dt α; therefore, a perturbation is amplified
when α < 0 and stabilized when α > 0. At the point x1, when defined, we have
similarly d2x

dt2 = dx
dt 2α , so that x1 is stable when α < 0. When α > 0 it is anyway not

defined. The same analysis applies, mutadis mutandis, for x−1. As a result, when x0
is stable, the other points are not defined, and when they are defined x±1 are stable
and x0 is unstable.

Assuming that xi is stable and that we are near the equilibrium, we can write
x(t) = xi + ε(t) where ε remains small. In general, a linearization near the equilib-
rium leads to:

dxi + ε

dt
= f (xi + ε) (6.51)

dε

dt
= f (xi)+ ε

∂ f
∂x

(xi) (6.52)

which in our example yields (we have b−a > 0):

dε0

dt
=−αε0

ε±1

dt
= 2αε±1 (6.53)

The latter equations defines exponential decreases of ε over time, characterizing a
fast return to equilibrium.

When approaching the critical point, however, the characteristic times of recov-
ery, 1

α
and 1

2α
tend to ∞. At the bifurcation point we have:
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dx
dt

=−x3 (6.54)

So that the dynamic starting from a perturbation a at time t = 0 is

2
x2 −

2
a2 = t (6.55)

Thus, we get a relaxation of the form t−1/2 and the return to the equilibrium follow
a power law, which is slower than any exponential decrease.

Fig. 6.2: Bifurcation and critical slowdown. In green (below), the relaxation of the system dis-
cussed at a generic point. In blue (above), we represent the relaxation at the bifurcation point.

We will now consider, as an example, that this dynamical system is subject to
additive noise (which leads to Langevin equation). We will show that the slowdown
has dramatic consequences. We rewrite the dynamics:

dx
dt

=−x(α + x2)+ζ (t) (6.56)

Then, we get near “normal” stable equilibrium, for x = xi + ε

dxi + ε

dt
=

∂ f
∂x

(xi)ε +ζ (t) (6.57)

We write − 1
τi
= ∂ f

∂x (xi). This yields:
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dε

dt
=− 1

τi
ε +ζ (t) (6.58)

ε(t) = exp
(
− t

τi

)[∫ t

−∞

ζ (t ′)exp
(

t ′

τi

)
dt ′
]

(6.59)

ε(t) =
∫ t

−∞

ζ (t ′)exp
(

t ′− t
τi

)
dt ′ (6.60)

We assume that ζ is in fact a random process, following a white Gaussian noise
distribution with standard deviation σ :

ε(t)2 =
∫ t

−∞

∫ t

−∞

ζ (t ′)ζ (t ′′)exp
(

t ′− t
τi

)
exp
(

t ′′− t
τi

)
dt ′dt ′′ (6.61)

〈ε(t)2〉=
∫ t

−∞

∫ t

−∞

〈ζ (t ′)ζ (t ′′)〉exp
(

t ′− t
τi

)
exp
(

t ′′− t
τi

)
dt ′dt ′′ (6.62)

Our white noise assumption leads to no correlation between different time points

〈ε(t)2〉=
∫ t

−∞

〈ζ (t ′)2〉exp
(

2
t ′− t

τi

)
dt ′ (6.63)

〈ε(t)2〉= τi
σ2

2
(6.64)

Thus, the variance of ε is proportional to τi. It therefore tends towards ∞ when 1
τi

tends to 0 (that is to say when the parameter tends to the bifurcation point).
Critical slowing-down is a fundamental property; it makes the convergence of

straightforward Monte-Carlo simulations8 of critical phenomena exceedingly slow.
Moreover, [Scheffer et al., 2009] argue that the slow decay of the effect of perturba-
tion can be used to detect the vicinity of a critical point in a complex system. This
approach has been used to study the dynamic of molecular networks in cells, see
section 2.6.2. Qualitatively, in statistical physics, critical slowdown corresponds to
the fact that the system has to be understood as global so that the relaxation involve
destabilization and restabilization at long ranges.

Note also that self-organized criticality usually relies (implicitly or explicitly)
on a feedback equation, based on the value of the order parameter [Sornette et al.,
1995]. The critical slowing-down gets in the way of this feedback and, therefore,
justifies the necessary slow input needed for criticality to be observed in these sys-
tems.

8 i.e. using pseudo randomness and the probabilities given by the partition function.
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6.2.4 Self-tuned criticality

A situation that illustrates well the high level of sensitivity of a critical system is the
model of hair cells described by [Camalet et al., 2000] that we will discuss again
latter in a more biological perspective, in section 7.2.2.2. The basic idea is that the
hair bundles of these cells oscillates spontaneously because their dynamic is close to
a Hopf bifurcation. This situation, however, cannot be understood as spontaneously
appearing (it is a point in the parameter space), so a second dynamical system is
needed which tunes the system to the bifurcation point.

Let us consider a dynamical system x(t) controlled by a parameter C. When
C >Cc the system has a stable fixed point, however for C <Cc the system oscillates
spontaneously. We are interested in the systems output with respect to a stimulus
which has a frequency ν = ω

2π
. Therefore, we will consider the Fourier decomposi-

tion of the output: x(t) = ∑xneinωt . Near the Hopf bifurcation, the mode n =±1 is
prevalent. We can then write, for a stimulus f (t) = f1eiωt + f−1e−iωt :

f1 = A (ω,C)x1 +B(ω,C)|x1|2x1 + . . . (6.65)

where A (ω,C) and B(ω,C) are functions with complex values.
For C < Cc, the system oscillates spontaneously with an amplitude |x1|2 '

∆ 2 (Cc−C)
Cc

where ∆ is a characteristic magnitude. Moreover, we have A (ωc,Cc) = 0,
for C =Cc and ω = ωc, the form of the output is then:

|x1| ' |B|−
1
3 | f1|

1
3 (6.66)

The gain is then:

r =
|x1|
| f1|
∼ | f1|−

2
3 (6.67)

We see that the gain becomes arbitrary large for small stimuli. The output has thus
a linear component A (ω,Cc) ' A1(ω −ωc), at first order. It, however, remains
predominantly non-linear when the linear component remains small with respect to
the cubic component.

When this situation is not verified, that is when:

ω−ωc| � | f1|
2
3
|B| 13
|A1|

(6.68)

The output has the form:

|x1| '
| f1|

|(ω−ωc)A1|
(6.69)

and the gain, |x1|/| f1|, no longer depends on f .
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A system near a Hopf bifurcation behaves thus as a highly selective filter with
an important gain for weak stimuli. For stronger stimuli, the system is less selective
but has also a weaker gain.

We introduce now a second equation in order to maintain C near Cc, but without
an explicit dependence on the latter (because Cc depend of the critical frequencies
and thus is different for different cells):

1
C

∂C
∂ t

=
1
τ

(
x2

δ 2 −1
)
, where δ is a typical amplitude (6.70)

When no external force is applied, this equation leads to Cδ , where the system
oscillates spontaneously with an amplitude |x1| ' δ . If δ is small in comparison
with ∆ , we are near the bifurcation since:

Cδ −Cc

Cc
'
(

δ

∆

)2

(6.71)

As a result there are two kinds of responses: for short stimuli in comparison with
τ , the system stays at Cδ and leads to the above discussed non-linear response. For
long stimuli, it maintains |x1| ' δ .

6.2.4.1 Remarks on reductionism and renormalization

In critical transitions, by renormalization, the intelligibility of the phenomenon has
an “upward” flavor since renormalization is based on the stability of the equational
determination when one considers only a part of the interactions occurring in the
system. That is, the understanding of the global situation may seem to be given in
terms of its (elementary) components. Now, the “locus of the objectivity” is not in
the description of the parts but in the stability of the equational determination when
taking more and more interactions into account. This is also true for those critical
phenomena, where the parts, atoms for example, can be objectivized extrinsically
to the renormalization and have a characteristic scale. In general, though, only scale
invariance matters and the contingent choice of a fundamental (atomic) scale is ir-
relevant. Even worse, in quantum fields theories, the parts are not really separable
from the whole, as this would mean to separate an electron from the field it gener-
ates. Thus, there is no relevant elementary scale which would allow one to get rid
of the infinities. Moreover, this would be rather arbitrary, since the objectivity needs
the inter-scale relationship, see for example [Zinn-Justin, 2007].

In short, even in physics there are situations where the whole is not the sum of
the parts because the parts cannot be summed on. This is not specific to quantum
fields as it is also relevant for classical fields, in principle. In these situations, the
intelligibility is obtained by the scale symmetry. This is why fundamental scale
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choices are arbitrary with respect to these phenomena, see [Longo et al., 2012c] for
further discussions.

6.3 Conclusion

We have seen that symmetry and symmetry breaking have fundamental conse-
quences on the determination of the behavior of objects. Theoretical symmetries (of
the Lagrangian, here) correspond to conserved quantities, which are the properties
of physical objects and allow their theoretical determination.

On the contrary, at a spontaneous symmetry breaking critical point, the loss of the
determination of both phases behaviors leads to a particular determination, which is
associated to the non-analyticity of the partition function. More precisely, the critical
point constitutes a singularity in the determination of the system because it is right
between two different behaviors, characterized by different relevant macroscopic
phase spaces.

The strength of these singularities can be of different magnitudes; because of this,
an original method, renormalization, can be required, depending on the Ginzburg
criterion. This qualitatively corresponds to the bigger averaging nature of models in
higher spatial dimensions since the higher the dimension of space, the more neigh-
bors a point has. When this averaging is insufficient, renormalization methods are
necessary to take into account the global structure of determination of the system
that results from the coupling between fluctuations and local averages.

In the following chapter, we will go back to biology and discuss the role played
by symmetries and criticality in our theoretical proposal for understanding the phe-
nomena that this field aims to understand.





Chapter 7
From physics to biology by extending criticality
and symmetry breakings

The artificial products do not have any
molecular dissymmetry; and I could
not indicate the existence of a more
profound separation between the
products born under the influence of
life and all the others.

L. Pasteur

Abstract

In comparison to modern physics, symmetries play a radically different role in biol-
ogy. By arguing on the relation between symmetries and conservation and stability
properties in physics, we posit that the dynamics of biological organisms, in their
various levels of organization, are not “just” processes, but permanent (extended, in
our terminology) critical transitions and, thus, symmetry changes. Within the limits
of a relative structural stability (or interval of viability), variability is at the core of
these transitions. And biological adaptivity and diversity are a consequence of it1.

Keywords:

symmetries, systems biology, critical transitions, levels of organization, coherent
structures, downward causation, variability.

1 This chapter discusses and expands ideas first presented in [Longo & Montévil, 2011a].
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7.1 Introduction and summary

Asynthetic understanding of the notion of organism requires drawing strong cor-
relations between different levels of organization as well as between the global

structure and the local phenomena within the organism. These issues should govern
any systemic view on biology. Here, we sketch an approach in which the living state
of matter is interpreted as a permanent “transition”, conceived as an ongoing or ex-
tended and critical transition. A large amount of very relevant work pertaining to the
Theories of Criticality in physics, that we discuss in the previous chapter, has been
successfully applied to biology, as we hint below. The mathematical core of these
theories rests upon the idea that a “phase transition,” which can be either critical
or not, may be described as a point along the line where the intended control pa-
rameter runs. For example, the ferromagnetic / paramagnetic transition takes place
for a precise value of the temperature, the Curie temperature. Mathematically, this
is expressed by the “point-wise” value of this temperature, i.e., one mathematical
point in this parameter’s space. When the temperature decreases and passes through
that point, the magnetic orientation organizes along one direction and magnetism
appears. When the temperature increases through that point, disorder prevails and
magnetism disappears. We call a (phase) transition truly critical when it forms a
global system, where the Ginsburg criterion is typically not met, see 6.2.1.5 and
[Longo et al., 2012c]. This corresponds to the appearance of a “coherent structure”,
that is to say space and/or time correlations at all scales. These correlations at the
transition point give a “global” aspect to the new physical object. As we already
observed, the physics of criticality constructed new objects of knowledge, by de-
limiting and singling out some familiar structures, never or badly analyzed before:
the coherent structure of percolation, of a ferromagnetic material, a . . . snow flake
after the transition from suspended, homogeneous, water to the new symmetries of
coherently linked ice crystals . . . .

In contrast to known critical transitions in physics, biological entities, in our view,
should not be analyzed just as transient over a point of a phase change; instead,
they permanently sustain criticality over a non-zero interval and this with respect to
many control parameters (time, temperature, pressure . . . ). This represents a crucial
change of perspective. First, the mathematical tools used in physics for the analysis
of criticality, i.e, the renormalization methods, essentially use the point-wise nature
of the critical transitions. Secondly, symmetries and symmetry breakings radically
change when enlarging the mathematical locus of criticality from one point to a
non-zero interval. These symmetry changes make a key theoretical difference with
respect to the few cases in physics where the transition seems extended (see foot-
note 12, below). Our approach may be seen as a move from physics to biology by
an analysis of the radically different symmetries and symmetry breakings at play in
their respective theoretical frames. In particular, we will focus on physical vs bio-
logical criticality in terms of symmetries and then apply this method to the analysis
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of the difference between physical and biological “objects” as well as of physical vs
biological “trajectories”.

In short, in our perspective, living entities are not “just” processes, but something
more: they are lasting, extended critical transitions, always transient toward a con-
tinually renewed structure. In general, physical processes do not change fundamen-
tal symmetries: to the contrary, they are mostly meant to preserve them. Typically,
conservation properties (of energy, of momentum) are symmetries in the equations
of movement. Critical transitions are an exception to the preservation of symmetries
in physics; their “extension” radically changes the understanding of what biological
processes are. This perspective also proposes a possible way of overcoming a key
issue in the analysis of the complexity of the living state of matter.

As for the construction of physico-mathematical or computational models, it is
difficult to take the global structure of an organism into consideration, with its cor-
relations between all levels of organization and in all lengths, including the many
forms of integration and regulation. Thus, the complexity of the living unity is often
modeled by the stacking of many but simple elementary processes. Typically, these
formal systems deal with many observables and parameters. Since the framework is
classical in a physical sense, these variables are local, i.e. they depend on point-wise
values of the intended phase space. Instead, conceptual and mathematical dependen-
cies in biology should be dealt with as “global” ones, where variables may depend
on systemic or non-local effects. In physics, these dependencies are a relevant as-
pect of critical transitions, and they are even more so in biology, where criticality is
extended.

7.1.1 Hidden variables in biology?

In classical and relativistic physics, once the suitable “phase space” and the equa-
tions that mathematically determine the system are given, the knowledge of the
point-wise position-momentum of the intended object of analysis allows to describe
in principle the subsequent dynamics. This is “in principle” since physical measure-
ment, which is always approximated, may produce the phenomenon of deterministic
unpredictability, in particular in the presence of non-linear mathematical determina-
tion2. Moreover, not all “forces” in the game may be known and there may be “hid-
den variables” (like the frictions along the trajectory of bouncing dice). Yet, these
theories are deterministic and, once all pertinent variables and forces are assumed to
be known, it is the epistemic lack of knowledge which yields classical randomness.
In other words and per se, a dice follows a “geodesic”. This is a unique, optimal and
“critical” path, completely determined by the Hamiltonian and may be computed as

2 More generally, unpredictability may appear when the dynamics is determined by an evolution
function or equations that mathematically represent “rich” interactions. Non-linearity is a possible
mathematical way to express them.
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an optimum of a Lagrangian functional3. This very beautiful paradigm, which may
be summarized as the “geodesic principle”, may be further grounded on symmetries
by an analysis of conservation principles, as we hinted above, see section 5.3.

In order to compare this situation with other fields of physics and subsequently
to biology, we refer to the point-wise or local nature of the mathematical variables.
Cantorian (and Euclidean) points are limit conceptual constructions; that is, they are
the limit of a physical access to space and time by an always approximated mea-
surement, i.e., an “arbitrarily small” interval. Yet, their perfect theoretical “locality”
makes all classical dynamics intelligible (in principle). So, if something is unknown,
one expects that by adding enough observables and/or more variables with definite
values at any given time, one could increase knowledge, since the values of these
observables are intrinsic and independent of the context.

The situation is rather different in Quantum Mechanics. The simultaneous, per-
fect, point-wise knowledge of position and momentum (or energy and time) are,
in principle, forbidden because indeterminacy is intrinsic to the theory. Moreover,
suppose that two quanta interact and form one system and that they later separate
in space. Then, acquiring knowledge regarding an observable quantity by perform-
ing a measurement on one of these quanta produces an instantaneous knowledge of
the value of the measurement made on the other, i.e., the two quanta are “entan-
gled”4. This feature of the theory has several consequences: for instance, variables
cannot always be associated to separated points and quantum randomness is intrin-
sic. That is, under the form of Schrödinger equation, the “determination” gives the
probability to obtain a value by measurement. Within this theoretical framework,
quantum randomness differs from the classical one: two interacting dice which later
separate obeying independent statistics, while the probability values of an observ-
able of two previously interacting quanta are correlated. This is the so called “vi-
olation of Bell inequalities”, which has been empirically verified repeatedly since
the experiments described in [Aspect et al., 1982]. Quantum entanglement requires
considering some phenomena as being “non-local” and inseparable by any physical
measurement (“non-separability”).

Since the ’30s, some have found this situation unsatisfactory and have searched
for “hidden variables” like in the epistemic approach to randomness and determina-
tion of classical and relativistic physics — a flipping coin goes along a geodetics,
yet we do not know all hidden variables (forces, frictions . . . ). The idea is that the
hidden variables corresponding to quantum mechanical observables have definite
(point-wise/local) values at any given time, and that the values of those variables are
intrinsic and independent of the device used to measure them. A robust result has

3 These are mathematical operators, that is, functions acting on functions that contain all known
physical information concerning the energy state of the system.
4 This property was considered an inconsistency or incompleteness of the theory, in the seminal
paper [Einstein et al., 1935]; it turned out to be a fundamental fact in quantum mechanics, [Aspect
et al., 1982], and a key property of quantum vs. classical randomness as we hint next, see also
[Longo et al., 2010].



7.2 Biological systems “poised” at criticality 175

instead shown that these assumptions contradict the fundamental fact that quantum
mechanical observables need not be commutative [Kochen & Specker, 1967]. More-
over, even when assuming the existence of, or the need for, hidden variables, these
would be “non-local” (that is depending on remote, but theoretically inseparable
points) and thus, far from the point-wise/local usual mathematical or set-theoretic
treatment of variables.

The difference between the classical and quantum frameworks has the following
consequence: quantum systems may have a proper systemic unity for at least two
reasons. Conjugated observables (position and momentum) are “linked” by joint
(in-)determination. Entangled quanta remain a “system”, in the sense of their non-
separability by measurement5.

Can this perspective help us in biology? On technical grounds, surely not, or
rather not yet. Perhaps, “entangled molecular phenomena” or “tunnel effects . . . in
the brain” may clarify fundamental issues in the future. However, theoretical ideas in
quantum mechanics may at least inspire our attempts in system biology, in particular
by considering the methodological role of symmetries and symmetry breakings in
this area of physics.

A living organism is a system. And entanglement, non locality, non-separability,
superposition, whatever these concepts may mean in biology, may present them-
selves both at each specific level of organization and in the interactions between
levels of organization. In an organism, physiological interactions among cells, tis-
sues, organs do not simply sum each other up: they are “entangled”, “non-local”,
“non-separable” . . . they are “superposed” (see the examples described by [Noble,
2006, Soto et al., 2008]). Thus, the theoretical and mathematical approaches to biol-
ogy cannot be based only on a continual enrichment of “local” views: mathematical
models cannot work just by assuming the need for more and more variables, possi-
bly hidden to the previous models. A global view of the system and of its symme-
tries is required. In the previous chapters, the physics of criticality suggested to us a
beautiful frame where the symmetry changes, at the point-wise limit of the critical
transitions, allow to construct and analyze new theoretical objects. In the present
context, the differences in the role of symmetries and their breakings will help in
clarifying and facilitating the passage from physics to biology.

7.2 Biological systems “poised” at criticality

Before progressing to our theoretical development, we give here some precise back-
ground on the approaches of biological phenomena in terms of physical criticality.

5 Superposition should also be mentioned, see [Silverman, 2008].
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The title of this section refers to a recent survey [Mora & Bialek, 2011], which
emphasizes the omnipresence of criticality in biological systems6. The term poised
stands for the fact that criticality is typically a non-generic behavior and, in this
case, it describes point-wise transitions, as usual in physics where a trajectory is
given by a one dimensional parameter, but where the system seems to “stay at or
near” the critical transition. As a result, this situation is not observed spontaneously,
in its classical form proper to physics; the surprising result is then that criticality is
observed, as if the biological system was “poised” at these specific points. Criticality
is then obtained experimentally by an original methodology, that we will describe
before providing some biological examples.

7.2.1 Principle

Usually, statistical mechanics is used to determine macroscopic behaviors (thermo-
dynamic equations) by knowing the symmetries of the interactions of elementary
components (or in other words the microscopic Hamiltonian). Let us recall that,
in the case of critical phenomena, the macroscopic behavior is not thoroughly de-
scribed by classical thermodynamics and is better described as a scale symmetry
(or more generally a conformal symmetry), in particular determined by the criti-
cal exponents. These observable quantities are obtained by renormalization in the
asymptotic limit of large scales, see chapter 6.

Here, however, the strategy is different. Since the “microscopic” objects are usu-
ally bigger than in condensed matter physics (cells, birds, . . . )7 and are in a smaller
number, thus their individual trajectory can be observed. From this observation, the
statistical structure of a collective phenomenon can then be inferred, and, from the
latter, a technical transfer in terms of statistical mechanics can then be performed.
From this transfer, an abstract “Hamiltonian” and “temperature” are defined. These
objects, here, have only a statistical meaning, in particular there is no particular
reason for them to have the same physical dimensionality than their usual physical
counterparts. In particular, heat transfers cannot be performed in the usual sense,
so that this temperature is not measurable by a thermometer — even one abstracted
from the physical dimension of temperature. The formal and mathematical mean-
ing of these objects corresponds, however and mutatis mutandis, to their statistical
mechanical counterpart.

The mathematics, behind what we have just described, are the following simple
equations, for a microscopic state σ :

6 An introduction to the theoretical aspects of physical criticality have been provided in the previ-
ous chapter, chapter 6.
7 Note that statistical mechanics is also used for nebula and galaxies, thus for even bigger objects.
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P(σ) =
1
Z

exp
(
−H (σ)

kT

)
Z = ∑

σ

exp
(
−H (σ)

kT

)
(7.1)

More details can be found in section 6.2.1.1.
Thus, assuming that the measurement is performed at a fixed temperature, by

defining k so that kT = 1, and conventionally assuming Z = 18, we get:

H (σ) =− log(P(σ)) (7.2)

Of course, additional assumptions are required to actually determine a “Hamil-
tonian” from data. These assumptions essentially concern the symmetries of this
functional and depend of the specific features of the system under study. General
assumptions, however, are that H is stationary (does not change with time) and that
only means and pairwise contributions should be taken into account in the Hamilto-
nian. These symmetries allow then to go from the data to an estimated Hamiltonian.

With such a Hamiltonian and the equations 7.1, a “natural” macroscopic degree
of freedom is then the “temperature”. The theoretical collective behavior can then
be mathematically analyzed, depending on this parameter, and quantities such as
susceptibilities can be evaluated. Finally, the observed statistical distributions can
be localized in the parameter space. It is then in this sense that biological systems
are surprisingly found at or near critical points, or “poised” at criticality in the words
of [Mora & Bialek, 2011].

Other aspects of criticality are of course observable, such as the effects of per-
turbations, the spatial distribution of states (or better of energy in the above formal
sense), . . . .

7.2.1.1 Some examples

We will now describe some biological situations, where this methodology has been
applied. These examples correspond to recent studies, because the simultaneous
observation of a large number of states is required, and such a feat has been only
recently made possible.

Flocks of birds.

The collective behavior in flocks of birds and similar systems such as schools of fish
have recently raised considerable interest. Indeed, such situations are not dominated
by the behavior of a single individual but are nevertheless able to adapt swiftly to
environmental conditions, such as the presence of a predator. This interest originates

8 All these assumptions, except the first one, do not lead to a loss of generality because the situation
is not related to physical dimensionalities.
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also from the recent finding, in [Cavagna et al., 2010], of signs of criticality in their
spatio-temporal statistical structure.

This kind of system is understood as described by states that are the position
and velocities of each bird, in 3d. The statistical mechanical interpretation of the
situation is that birds tend to mimic their neighbors’ speed, in a way similar to
the tendency of elementary magnets to align with their neighbors in an Ising spin
glass (because of the magnetic field)9. In this sense, the “temperature”, as described
above, is the propensity of birds to ignore their neighbors (a temperature of 0 means
that they follow strictly their neighbors while temperature ∞ means that they are
completely independent).

In [Cavagna et al., 2010], it is mainly the correlation of birds velocities that is
studied. More precisely, both the correlations of the absolute values of speed and the
orientations are evaluated, in function of the spatial distance of birds. Two important
results are to be mentioned:

• First, there are strong correlations at small distances and anti-correlations at
longer distances. Let us recall that anti-correlations are not the contrary of cor-
relations (which is uncorrelated behavior or in other words independence). Anti-
correlation is the opposite of correlation in the algebraic sense; but also implies
a high level of coherence. In the case of birds, it intuitively means that if a large
spatially structured subgroup has its speed that varies coherently (with respect
to the group) in a direction, then an other spatially structured subgroup has a
variation in the opposite direction (these considerations are not limited to combi-
nations of two subgroups; we have considered this case for illustrative purposes).

• The other key result of this study is that the correlation functions, for both speeds
and orientations, follow power laws, so that C(r) ∝ rγ in the infinite size limit.
However, in this case, the situation is even more remarkable than usual scale-
free behaviors, since the evaluation of γ is remarkably close to 0. This means
that there is almost no decrease of correlations with distance. From another per-
spective, the correlation function does not depend (much) on the size of the flock,
if written in the form C( r

ξ
). In this equation, ξ is the characteristic length and is

found to be proportional to L, which is the size of the flock. This relation holds
for both orientations and magnitudes of velocities.

These results are found for flocks of sizes spanning approximately one order of
magnitudes, which is limited; however, as we said, the situation has very strong
signatures of criticality in this range. These results strongly suggest that the system
should be considered critical.

9 This situation is, however, somewhat more complicated than spin lattices, because the collective
structure concerns velocities, so that it changes also the positions of the objects in space, whilst in
spin lattices these positions are fixed, and only the fields vary.
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Neural network of the retina.

We do not discuss this case with much details, but we nevertheless provide a basic
description of its properties, following [Mora & Bialek, 2011]. The (salamander)
retina is used as a paradigmatic case since it allows the recording of a relatively high
number of neurons (' 40 neurons in current experiments) during a large interval
of time. The basic modeling technique of the situation is then the following. The
activity of each neuron, i is recorded, so that its state σi for time windows of a given
length ∆τ is defined to be either 1 if a spike (or more) is recorded or −1 if no spike
is recorded.

The collective, statistical behavior of the system is then approached as equivalent
to the Ising model, which allows to fit the means and the two points correlation
functions of the model on the observed data.

H (σ) =−∑
i

hiσi−∑
i< j

Ji; jσiσ j (7.3)

The observed results exhibit a peak for the susceptibility with respect to the “tem-
perature” parameter. This maximum converges towards the temperature of the ob-
served data (conventionally set to 1), when considering systems of greater sizes.
This support the hypothesis that the system is poised at criticality. Another aspect
of the situation which is consistent with criticality, is the distribution of probability
of global activity, which follows approximately a power law (with an exponent 1).
The empirical results are closer to this relationship when the number of neurons
observed is larger.

Percolation in myofibril mitochondria.

In [Aon et al., 2003] and [Aon et al., 2004a], the state of mitochondria (depolariza-
tion and concentration of ROS10) in a myofibril of a cardiomyocyte is understood
as, and found experimentally to be, approximately equivalent to the physical situa-
tion of percolation. A clarification, here, is needed; these studies consider a limited
depolarization, and, as a result, do not involve the permeability transition pores or
intracellular C2+

a overload [Aon et al., 2003]. This point is crucial since it means
that we are not considering transitions, usually not reversible, towards a state close
to cellular death. Instead, these processes are understood as “regenerative” by the
authors, inasmuch they allow to control excessive ROS leaks by decreasing mito-
chondria activity by depolarization.

Now, the mitochondrial system of a myofibril is approached as an approximately
bi-dimensional lattice, where each square of the lattice is occupied by one or two

10 Reactive Oxygen Species, we mentioned these observables earlier, in subsection 2.4.2.
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mitochondria. The evaluated quantities are then the ratio of depolarized mitochon-
dria, their spatial distribution, the effect of a perturbations (by a local increase of
ROS concentration), and particularly characteristic times. When global depolariza-
tion occurs, these observed aspects are consistent with the physical universality class
of 2d percolation transition (which thus leaves fractal like clusters of polarized mi-
tochondria, as in percolation). In [Aon et al., 2004a], these features are argued to
explain oscillations of mitochondria depolarization observed in [Aon et al., 2003]
and discussed also in section 2.4.2.

In conclusion, the critical state is the “ordinary” state for these biological phe-
nomena. They may then be interpreted as being “poised at criticality”. In our per-
spective, though, these cases and more below are better understood as cases of “ex-
tended criticality”, a notion that we will present in this chapter: the processes is
not bouncing around an always identical critical point, but moves from one criti-
cal point to another in a (mathematically dense) subset of a extended interval of
criticality, with respect to all pertinent parameters.

7.2.2 Other forms of Criticality

In the literature, there are other forms of criticality that are argued to be relevant
in the study of biological systems, and used to describe particular spatio-temporal
situations. They usually more or less revolve around the idea of a stabilization with
respect the point-wise nature of criticality.

7.2.2.1 Self-organized criticality

The basic idea behind self-organized criticality is that the critical point is understood
as an attractor of the dynamic of the system [Jensen, 1998]. The paradigmatic, first
example of this kind of situations is the sand pile model [Bak et al., 1988], which is
an automaton. This model is defined by the following basic rules: when there is too
much difference between adjacent grains heights, the grain that is too high falls, and
the grains are added slowly so that the system has sufficient time to relax between
two perturbations. This system spontaneously converges towards a critical situation,
where the size of the avalanches follows a power law distribution. Notice that, for
large systems, this behavior means that the input has to be infinitely slow.

The pitfall of this approach is that the criticality obtained this way remains valid
only for a point. This fact is “hidden” by the association of this point with a conser-
vation property. In this sense, then, the critical behavior remains specific and can be
mathematically analyzed as a standard form of criticality [Sornette et al., 1995]. In
this analysis, the suitable parameter is associated to a feedback mechanism, based
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on the value of the order parameter. This reasoning also explains why the system
needs to have a slow input in order to exhibit criticality.

From an empirical point of view, which, here, is ours, the concept of self-
organized criticality leads to focus on the observation of avalanches. We will now
provide some biological examples, where self-organized criticality is useful for the
analysis of the situation.

The first example is the detailed analysis of respiration, and of the flow of oxygen
in the lungs. During exhalation, peripheral airways, in the lungs, tend to close up.
Reinflation then leads to the progressive reopening of these airways. The resulting
phenomenon is then a succession of jumps, corresponding to these re-openings,
which are caused by the pressure differences. This dynamic can be observed by
measuring the airway resistance. The two observed distributions, in [Suki et al.,
1994], are then the time intervals between jumps and the magnitude of the jumps.
Both of them, according to the results of this study, follow power laws over 2 orders
of magnitudes, with exponents 2.5±0.2 and 1.8±0.2, respectively. This dynamic is
argued to correspond to a situation where the openings occurs in bursts, the opening
of one branch being followed by an avalanche of successive opening. In particular,
by modeling this process, the authors also show that it leads also to a power law for
the air volume increase of the lungs, which corresponds to an exponent 1.1±0.2.
The size of the volume freed by an avalanche can therefore be extremely large.

In [Phillips, 2009a, Phillips, 2009b], some aspects of protein folding are shown to
be equivalent to self-organized systems. In particular, this approach allows to focus
on long-range interactions and to understand their consequences on the structure and
physical properties of proteins, such as hydrophobicity. Another quantity associated
with scaling is the solvent-accessible surface area which follows statistically power
laws, depending on the amino acids involved.

7.2.2.2 Self-tuned Criticality

The sensitivity of hair cells to stimuli of the order of magnitude of thermal noise
can be understood by the proximity of the system to a Hopf bifurcation [Camalet
et al., 2000, Balakrishnan & Ashok, 2010]. However, this situation is not generic; the
authors thus introduce a second dynamical system, which determines the behavior of
the parameter and leads to a convergence of the first system towards its bifurcation
point.

In this situation, the gain is highly non-linear, and diverges for small inputs, see
section 6.2.4 for more details on the mathematics involved. It has the following
form:

r =
|x1|
| f1|
∼ | f1|−

2
3 (7.4)
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where f1 is the first coefficient of the input (by Fourier analysis) and x1 is the corre-
sponding coefficient of the output, the spatial displacement of the “hairs”.

This amplification occurs for the critical frequency, which depends on the pre-
cise values of the parameters. These parameters differ from cell to cell, so that the
cochlea is globally able to react to a wide class of sound frequencies. However, the
value of the parameter of the first system at bifurcation point is not a parameter of
the second system, so that the self-tuning of the system is generic.

7.2.2.3 “Attached” criticality

A particularly interesting theoretical and empirical situation is analyzed in [Machta
et al., 2011]. Plasma membranes fluctuate in relation with a critical point observed
at a temperature of 22 ◦C, on giant plasma membrane vesicles, which are separated
from living cells. In the context of a cell, the membrane has relatively large hetero-
geneities in particular in the form of lipid rafts, associated to proteins, receptors,
and disordered lipid structures . . . . The third element that comes into play is the
cytoskeleton, which is attached to the plasma membrane and seems necessary to
observe these heterogeneous structures.

The question then arises as to how these large heterogeneities are sustained. A
related aspect is that temperatures below the critical point, in isolated membranes,
lead to a phase separation, between the liquid ordered and liquid disordered phases.
This transition is not observed in the context of the cell. The idea developed in
[Machta et al., 2011], is then that these peculiar, relatively large scale structures
are explained by the features of the critical point and the interaction of the critical
fluctuations with the cytoskeleton. Indeed, even though the system is not at the crit-
ical point, it remains not far from it in physiological temperature, 37 ◦C (one should
recall that the physically relevant quantities are in K). At these temperatures, the crit-
ical fluctuations have ranges consistent with observations (for isolated membranes).
The cytoskeleton comes into play by forcing the behavior of determined points of
the plasma membrane. below the critical temperature, this prevent the system from
undergoing the phase transition by limiting the size of homogeneous clusters, whilst
at physiological temperatures it stabilizes the fluctuations, and bestow them a larger
lifetime. This also leads to an explanation of the confinement observed in the diffu-
sion of the lipid rafts and allows at the same time interactions over large distances.
Both feats are possible because of the formation of a pavement of the membrane
by relatively thin frontiers (allowing fast diffusion) and bounded surfaces where the
lipid rafts are confined.
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7.2.3 Conclusion

We have seen some examples of biological situations interpreted with the methods
of physical criticality. Note that this is not an exhaustive list. We have also seen other
examples analyzed in terms of criticality in chapter 2, as in networks in section 2.6.2
or as an interpretation of heart rhythms, in section 2.4.3.1.

When considering biological criticality, the amount of studies is limited for prac-
tical reasons. The number of units that one needs to observe is indeed approximately
(L/l)d×T/τ , where L is the spatial extend of the object, d is the dimension of space
(1, 2 or 3) and l is the spatial resolution, T is the duration of the measurement and
τ the temporal resolution. This should be put in contrast with the fact that an em-
pirical evidence of scaling requires large objects, precisely because of the collective
and multi-scale nature of such structures. These technical limitations prevent us
from actually discussing the question of variability in these systems. Note that as
for physical criticality no variation is allowed for the critical exponents since they
are the specific invariants of these systems, see chapter 6.

Nevertheless, the results we have reported are compelling. They show in partic-
ular that collective behaviors occurs in biology, and they look comparable to the
physical situation of criticality. In a sense, this logic is reinforced by the very limita-
tion of these approaches. Indeed, they require a certain homogeneity of the objects
considered (birds, neurons, membrane, mitochondria . . . ), but, even in these cases of
relative homogeneity of the constituents, the biological cases exhibit an extension
of criticality, whereas the physical situations corresponding to strongly collective
behaviors are usually met only on a single point of the parameter space (with a one-
dimensional parameter) and the chances of being poised at it are mathematically 0
(and the chances of being near it are small).

7.3 Extended criticality: the biological object and symmetry
breakings

In the previous chapters, we presented some basic ideas concerning the role of sym-
metries in physics and, in particular, their relevance in understanding critical transi-
tions. In view of the interest of criticality in biology and by looking at the organism
as a peculiar “coherent structure”, our idea is to understand the biological unity in
relation to symmetry changes, along the lines of theories of criticality. In order to do
so, it may be worthwhile to look at the symmetries which may be involved in biolog-
ical theorizing. As it should be clear by now, the concept of symmetry is used here
in a more fundamental context than when used in a purely spatial way. By the latter
we mean, for instance, discussing the bilateral symmetry of some “bauplans”. This
kind of use is the main one where the concept of symmetry is explicitly applied
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in biology. In physics, one mostly deals with fundamental or theoretical symme-
tries as typically given by the equations, see chapter 5. Recall, for example, that the
already mentioned fundamental principle of energy conservation corresponds to a
time translation symmetry in the equations of movement, see section 5.3. This use
of symmetries also justifies the soundness of empirical results: Galilean inertia is a
special case of conservation of energy and it may be empirically verified. In biology,
as in any science, a missing analysis of invariants may give unreliable results and
data. For example, early measurements of membrane surfaces gave very different
results, since their measure is not a scale invariant property: as in fractal structures,
it depends on the scale of observation. More details on this question are given in
chapter 211. In other words, in physics, both the generality of equations and the very
objectivity of measures depend on theoretical symmetries and their breakings, such
as scale invariants and scale dependencies.

As discussed in chapter 6, critical transitions in physics are mathematically ana-
lyzed as isolated points12.

In our approach to biological processes as “extended critical transitions”, “ex-
tended” means that every point of the evolution/development space is near a crit-
ical point. More technically, at the mathematical limit, the critical points form a
dense subset of the multidimensional space of viability for the biological process13.
Thus, criticality is extended to the space of all pertinent parameters and observables
(or phase space), within the limits of viability (tolerated temperature, pressure and
time range, or whatever other parameter, say for a given animal), see [Bailly et al.,
1993, Bailly & Longo, 2008, Bailly & Longo, 2011]. In terms of symmetries, such a
situation implies that biological objects (cells, multicellular organisms, species) are
in a continual transition between different symmetry groups; that is, they are in tran-
sition between different phases, according to the language of condensed matter14.
These phases swiftly shift between different critical points and between different
physical determinations through symmetry changes.

Our perspective approaches the mathematical nature of biological objects as a
limit or asymptotic case of physical states: the latter may yield the dense structure

11 Let us recall a precise example that we discussed in section 2.3.2. In [Weibel, 1994], a “histor-
ical” example is given as for the different results that are obtained according to different experi-
mental scales (microscope magnifications). One team evaluated the surface density of the liver’s
endoplasmic reticulum at 5.7 m2/cm3 the other at 10.9 m2/cm3 (!).
12 The Kosterlitz-Thouless transition in statistical physics presents a marginally critical interval;
that is, it is a limit case between critical and not critical behaviour. It presents correlations at
large scales, as critical features, but with no symmetry changes. Thus, this particular situation is
not a counter-example to our statement (the essentially point-wise nature of the proper physical
transitions), in view of a lack of symmetry changes that are essential to our notion of extended
criticality.
13 Here, in a more practical sense, dense means that for every small volume of the intended phase
space being considered, there is a critical point in such volume.
14 The dense set of symmetry groups may be potentially infinite, but, of course, an organism (or a
species) explores only finitely many of them in its life span, and only viable ones.
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we attribute to extended criticality only by an asymptotic accumulation of critical
points in a non-trivial interval of viability — a situation not considered by current
physical theories. In a sense, it is the very principles grounding physical theories
that we are modifying through an “actual” limit. In short, biological objects are
analysed here in terms of partial but continual changes of symmetry within an in-
terval of viability, as an extended locus of critical transitions. Thus, a biological
object is mathematically and fundamentally different from a physical object. In par-
ticular, this mathematical view of “partial preservation through symmetry changes”
is a way to characterize the joint dynamics of structural stability and variability
proper to life. We then consider this characterization as a tool for the mathematical
intelligibility of fundamental biological principles: the global/structural stability is
crucially associated with variability.

A first consequence of these permanent symmetry changes is that there are very
few invariants in biology. Mathematically, invariants depend on stable symmetries.
Structural stability in biology, thus, should be understood more in terms of correla-
tions of symmetries within an interval of the extended critical transition, rather than
on their identical preservation. It is clear that the bauplan and a few more properties
may be “identically” preserved. Yet, in biology, theoretical invariants are continu-
ally broken by these symmetry changes. A biological object (a cell, a multicellular
organism, a species) continually changes symmetries, with respect to all control
parameters, including time.

As a fundamental example of symmetry change, observe that mitosis yields dif-
ferent proteome distributions, differences in DNA or DNA expressions, in mem-
branes or organelles: the symmetries are not preserved. In a multi-cellular organism,
each mitosis asymmetrically reconstructs a new coherent structure, also in the sense
of the physics of critical transitions: a new tissue matrix, new collagen structure,
new cell-to-cell connections . . . . Now, mitosis is one of the fundamental biological
processes, associated to Darwin’s first principle “descent with modification” or re-
production with variation (the second is selection). And a multi-cellular organism
undergoes millions or billions of mitosis each day.

This variability, under the mathematical form of symmetry breaking and consti-
tution of new symmetries, is essential both for evolution and embryogenesis. The
interval of criticality is then the “space of viability” or locus of the possible struc-
tural stability.

The changes of symmetries in the dense interval of criticality, which provide a
mathematical understanding of biological variability, are a major challenge for the-
orizing. As a matter of fact, we are accustomed to the theoretical stability warranted
by the mathematical invariants at the core of physics. These invariants are the result
of symmetries in the mathematical (equational) determination of the physical ob-
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ject. This lack of invariants and symmetries corresponds to the difficulties in finding
equational determinations in biology15.

As a further consequence of our approach, phylogenetic or ontogenetic trajecto-
ries cannot be defined by the geodesic principle. Indeed, they are not theoretically
determined by invariants and their associated symmetries. Trajectories are contin-
ually changing in a relatively minor but extended way. Moreover, we expect the
rate of these changes themselves not to be regular with respect to physical time, so
that some temporal region can be “calm” while others correspond sudden burst of
changes.

Biology may be considered to be in an opposite situation with respect to physics:
in contrast to physics, in biology, trajectories are generic whereas objects are spe-
cific [Bailly & Longo, 2011]. That is, a rat, a monkey or an elephant are the specific
results of possible (generic) evolutionary trajectories of a common mammal ances-
tor — in other words each of these individuals is specific. They respectively are the
result of a unique constitutive history, yet a possible or generic one [Bailly et al.,
1993, Bailly & Longo, 2011].

The evolutionary or ontogenetic trajectory of a cell, a multicellular organism or
a species is just a possible or compatible path within the ecosystem. The genericity
of the biological trajectories implies that, in contrast to what is common in physics,
we cannot mathematically and a priori determine the ontogenetic and phylogenetic
trajectory of a living entity be it an individual or a species. In other words, in biology,
we should consider generic trajectories (or possible paths) whose only constraints
are to remain compatible with the survival of the intended biological system. Thus,
phylogenesis and embryogenesis are possible paths subject to various constraints,
including of course the inherited structure of the DNA, of the cell and the ecosystem.
The specificity of the biological object, instead, is the result of critical points and of
symmetry changes of the system considered along its past history (evolutive and
ontogenetic). These constitute the specific “properties” of this object, which allow
to define it. A rat, a monkey or an elephant or their species are specific and cannot be
interchanged either as individuals nor as species. A living entity is the result of its
history and cannot be defined “generically” in terms of invariants and symmetries
as it is done for physical objects.

This situation has a particular meaning when we consider time translation and
time reversal symmetries. In physics, time symmetries correspond to the maintain-
ing of the system’s invariant quantities that define the geodesics, that is mainly the
conservation of energy. In biology both symmetries are broken. In particular, evo-

15 In a rather naive way, some say this by observing that any (mathematized) theory in biology has
a “counterexample”. This conceptual instability of the determination may be understood by the
minor role played by conservation properties, in terms of stable symmetries. Yet, it goes together
with the “structural stability” of biological entities, which is largely due to the stabilizing role
of integration and regulation effects between different levels of organization. The autonomous
functionality of organisms is another way to approach their structural stability, see [Moreno &
Mossio, 2015]
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lutionary and ontogenetic paths are both irreversible and non-iteratable; there is no
way to identically “rewind” nor “restart” evolution or ontogenesis. This corresponds
to the breaking of time translation and reversal symmetries. In particular, this lack
of time symmetries is associated with the process of individuation, understood here
as the specificity of cells, organisms and species (as much as this latter notion is
well defined). It is crucial to understand that time plays a particular role in this ap-
proach, since the history of all the changes in symmetry is not reducible to a specific
trajectory in a given space. Thus,

The sequence of symmetry changes defines the historical contingency of a living
object’s phylogenetic or ontogenetic trajectory.

Biological processes are more “history based” than physical processes. Usual
physical processes preserve invariants, whereas extended critical transitions are a
permanent reconstruction of organization and symmetries, i.e., of invariants. This
situation also points to a lack of symmetry by permutation. For example, even in a
clonal population of bacteria, different bacteria are not generic, because they are in
general not interchangeable, i.e., they cannot be permuted. This allows to understand
biological variability in a deeper way than the usual (Gaussian or combination of
Gaussians) random distribution for a set of observables.

Consider, say, organs (and organelles). Some organs have a functional role that
can be expressed in a physical framework, particularly when energy or matter trans-
fers are concerned. This functional role can lead to restrictions on the variability
of the cells that constitute the organ. At least for certain aspects of their behavior
and on average, these restrictions make cells behave symmetrically. In other words,
the cells in an organ or in a tissue of an organ behave, in part and approximately,
like generic objects with specific trajectory (geodesics). They may approximately
be interchangeable, like physical objects.

The simple case of cells secreting a protein such as erythropoietin (EPO) un-
der specific conditions indicate that on average, a sufficient amount of the protein
must be produced, independently of the individual contribution of each cell (which
become “relatively” generic). Since the result of these cells’ production is additive
(linear), their regulation does not need to be sharp. Even if some cells do not produce
EPO there is no functional problem as long as a sufficient quantity of this protein is
secreted at the tissue level. However, when cells contribute to a non-linear frame-
work as part of an organ, the regulation may need to be sharper. This is the case,
for example, for neuronal networks or for cell proliferation where non-linear effects
may be very important. In the latter case, regulation by the tissue and the organism
seems to hold back pathological developments, like cancer, see [Sonnenschein &
Soto, 1999]. This point of view can possibly be generalized in order to understand
the robustness of development.

The role of physical processes in shaping organs is crucial; for example, ex-
changes of energy (or matter) force/determine the optimal (geodesic) fractal struc-
ture of lungs and vascular systems. Organs in an organism may even be replaced by
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man-made artifacts (as for kidneys, heart, limbs, etc.). As biological entities, organ-
isms and even cells are specific or, at most, weakly generic given that they can be in-
terchanged only within a given population or tissue and only sometimes. In general,
they are not generic, and by their specificity they cannot be replaced, even not by
an artifact — structurally. In other words, they are not an invariant of the theory nor
of empiricity. This is why, empirical evidence requires constraining conditions that
“symmetrize” as much as possible the organism and its context [Montévil, 2014].

In summary, in critical transitions one may consider variables depending on
global processes because of the formation of coherent structures. For example, there
may be functional dependencies on a network of interactions, which cannot be split
into a sum of many local dependencies (local variables). Thus, the search for more
variables would not take into account this fundamental property of biological sys-
tems, the global dependency of many processes, which is instead considered from
the perspective of extended critical transitions. Moreover, symmetries in physics al-
low to define generic objects which follow specific trajectories (the latter allowing
to find invariants in terms of symmetries, which are robust with respect to mea-
surement). On the contrary, in biology, the continual symmetry changes lead to
generic trajectories that remain compatible with the survival of the system. The
generic/specific duality with respect to physics helped us understand this key issue,
in relation to extended criticality — which is a form of “relatively stable instability.”
In other words, it is stability under changes of symmetries in an interval of viabil-
ity. In a sense, the biological object is also defined by its symmetries but in a very
different way: as we said, it is the specific result of a history, where its dynamics is
punctuated by symmetry changes. This makes it “historical” and contingent.

7.4 Additional characteristics of extended criticality

In physics, criticality implies more than a symmetry change; in our perspective, it
also leads to peculiar behaviors at the critical point that is relevant to biology. The
first property observed at this point is a global determination, instead of a simply
local one. More precisely, the singularities involved in criticality lead to a change
of the level of organization in a very strong sense. Also in physics, in view of the
mathematical divergence of some observables, the singularities break the ability of
the “down level” to provide a causal account of the phenomena. Thus, they lead to
the need for a “top level” of description to overcome this difficulty. In mathematical
physics, this upper level can be found in the renormalization operator (it is the ab-
stract level of changing scale). In biology, instead, the upper level is the functional
unity of an organism. As a result, the existence of different levels of organization
is a component of our notion of extended critical transition. “Downward causation”
may find the right frame of analysis in this theoretical context.
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The permanent reconstruction of these levels of organization is mathematically
represented by the density of the critical points and by the continual changes of
determination (symmetry changes) in the passage between these points within the
interval of extended criticality.

The second property is the presence of power laws which seem to be ubiqui-
tous in biology. They appear regularly especially when regulation is concerned, see
chapter 2 for a comprehensive review of those laws, and on the limitation of these
approximate symmetries.

Extended critical transitions also concern the relevant lengths of local and global
exchanges, the temporalities mobilized for such exchanges and biological rhythms.
To summarize, the extended critical situation, in biology, has at least the following
characteristics [Bailly & Longo, 2008, Bailly & Longo, 2011]:

1. A spatial volume enclosed within a semi-permeable membrane;
2. Correlation lengths of the order of magnitude of the greatest length of the above

referred volume;
3. A metabolic activity that is far from equilibrium and irreversible, involving ex-

changes of energy, of matter and of entropy with the environment, as well as
the production of entropy due to all these irreversible processes, see [Bailly &
Longo, 2009];

4. An anatomo-functional structuration in levels of organization that can be au-
tonomous but also coupled to each other. They are “entangled” in the sense de-
fined by [Bailly & Longo, 2009, Soto et al., 2008]. These levels are likely to
be distinguished by the existence of fractal geometries (membranous or arbores-
cent), where the fractal geometries can be considered as the trace (or a “model”)
of effective passages to the infinite limit of an intensive magnitude of the system
(for example, local exchanges of energy16). The different levels of organization
induce, and are a consequence of, the alternation of “organs” and “organisms”,
such as organelles in cells, which, in turn, make up the organs in multicellular
organisms. Organisms stay in an extended critical transition, while organs (or,
at least, those exchanging energy or matter) are partially “optimally shaped” by
the physical exchanges. Note also that fractal geometries essentially manifest in
organs that are also the privileged loci of endogenous rhythms (see below). Cor-
relation lengths are manifested both in and between these levels17. Likewise, the

16 The fractal dimension of some organs may be calculated by optimizing the purely physical
exchanges within the intended topological dimension (for example, the maximization, within a
volume, of surfaces for lungs, or of volumes for the vascular system, [West et al., 1997]), and it
may be subjected to constraints in terms of stericity and homogeneity, as in the cases mentioned
(lung, vascular system, kidney, etc).
17 The term “entanglement” in [Soto et al., 2008] does not correspond, of course, to the physical
meaning of “quantum entanglement” as expressed by Schrödinger’s treatment of the state function
and the inseparability of quantum measure, yet it may be appropriate because there is no way
to isolate one of the organs mentioned above (e.g. put a brain in a flowerpot) and perform any
reasonable physiological measure on it.
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various biological “clocks” are coupled, and in some cases even synchronized,
within and between these levels.

With the purpose of providing biological temporality with a structuring of the
mathematical type, we will consider two other aspects as being specific to extended
criticality.

• The two-dimensionality of time, discussed in chapter 3:

1. One dimension is classical and is parameterized according to the line of real
numbers limited by fertilization on one side, and death on the other. This
dimension is linked to the bio-physicochemical evolution of the organism in
relation to an environment.

2. The other dimension is compactified, i. e. it is parameterized on a circle.
This second dimension is linked to the organism’s endogenous physiologi-
cal rhythm that is manifested through numeric quantities without dimension
such as the mean total number of heartbeats and respirations during the life-
time of mammals. These are the interesting interspecific invariants and they
are “pure” numbers, not frequencies (they have no dimension; they are the “to-
tal number of . . . ”). They become frequencies (with the inverse of time as a
dimension), according to the average lifespan. The extra dimension is needed
exactly because the invariant phenomenon is not defined by a period which
has the dimension of time, but by this new invariant observable. Recall, for
example, that, on average, the identical (invariant) number of total heartbeats
give different frequencies according to the different lifespans of an elephant
or of a mouse.

Moreover, the temporality of extended criticality involve protention (i.e. pre-
conscious expectation) and retention (i. e. pre-conscious memory) as described
in chapter 4, which can be seen as breaking of conservation of information in
cognition: pretension uses but also modifies memory.

• The confinement within a volume of a parameter space (such as temperature,
pressure, etc) of n dimensions of which 3 are spatial and 2 temporal and whose
measure is different from 0 (see above).

7.4.1 Remarks on randomness and time irreversibility

The “arrow of time”, that is the idea that time is oriented and irreversible, has been
definitively introduced in physics by thermodynamics. Entropy growth as energy
dispersal (see chapter 9) is omnipresent in physics, yet fully understood only in ther-
modynamics and statistical mechanics. The equations of movement, from classical
to relativistic physics, are time reversible: planets may go in the current direction or
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the inverse one, nothing would change in the related theories. Conservation princi-
ples and Noether’s theorem, based on time and space translation symmetries, guar-
anty the scientific soundness of classical and relativistic reversible dynamics. Even
Schrödinger equation is time reversible: irreversibility steps in by measurement, in
the occasion of a symmetry breaking.

As for biology, it is fair to say that no properly biological process may be con-
ceived as reversible: if your preferred theory allows to see evolution or embryogen-
esis played backwards in time, then forget it18.

In order to stress the relevance of extended criticality also in the understanding
of biological time, we propose here a “conjecture”, concerning both physics and
biology.

We claim first that, in all the theories of the inert we mentioned, irreversibility
appears in presence of random events.

Let’s try to express this by a case list. Irreversibility of time is associated to
random events, in physics:

1. Classical dynamics: unpredictability with respect to the theory (randomness) sets
an epistemic orientation to time. It is true that we cannot retrodict either, yet the
situation introduces a fundamental asymmetry, as we can keep records of the
past. See also the next point.

2. Thermodynamics:
Macroscopically: entropy production,
Microscopically: diffusion as random paths, or ergodic trajectories.

3. Quantum Mechanics: projection of the state vector (measurement); non-commutativity
of measurement; creation of a particle; tunneling effects . . .

4. Critical transitions: the point-wise symmetry change is associated to fluctuations;
the transition may be reversed, but not the symmetry changes (or, more precisely,
they cannot be recovered).

All these phenomena are of course present in biology. In particular, energy ex-
change and transformation are omnipresent in organisms, with the inevitably as-
sociated energy dispersal, thus entropy production (see chapter 9). The associated
irreversibility of time is then of physical nature and may be seen a first form of “ob-
servable time”, an irreversible, thermodynamical time. Yet, biological processes are
enriched by another “observable of time”, the time due to the proper irreversibility
of these very processes: phylogenesis, embryogenesis, ontogenesis19. Let’s be more
specific. We see two reasons to admit such a second observable, in our theory.

First, the setting up of organization, in evolution and embryogenesis, but its main-
tenance in ontogenesis as well, is always associated to a slight increase of disorder,

18 The state of a cell, even a cancer cell, may be “reversed”, by changing its environment. Similarly,
one may recover from a disease, but the cell and the organism have got older in this process.
19 These two observables of time may sit in the same dimension, yet differ. In physics, the dimen-
sion of energy contains several different observables: potential, kinetic energy and more.
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thus of entropy. At each mitosis, at each construction/reconstruction of an organ-
ism, growth and change are always slightly disordered, all the while increasing or
maintaining order (by anti-entropy, an issue to be discussed at length in chapter 9).
Moreover, as for (pre-)conscious activities, protention and retention are asymmetric
and impose an arrow to time, see chapter 4.

Second, following our remark in section 5.5, the extended criticality of organisms
forces cascades of random events, associated to symmetry changes. Thus, if we are
right, it produces a cascades of locally irreversible events and a global irreversibility
of time in the extended time-interval of criticality.

In the next chapter, we will give another reason to analyze time as “doubly irre-
versible” in biology: randomness shows up at the very construction of the space of
possibilities (the phase space of observables and parameters). This means that the
theory must embed in itself a further form of randomness, as irreversible multifur-
cations.

7.5 Compactified time and autonomy

Beyond the dimension of usual, irreversible, physical time, we proposed, in chapter
3, a second temporal dimension, to be added to physical time, and which allows to
accommodate biological rhythms. This dimension is compactified (i. e. the added
dimension has the topology of a circle) and is associated with the allometry of inter-
nal rhythms (τ ∝ W 1/4). As a result, this supplementary time dimension is first jus-
tified by an allometric scale symmetry. We examine here the interplay of stabilities
and instabilities of (some) biological rhythms, in reference to biological extended
criticality.

This symmetry, however, takes only into account the broad tendencies among
species sharing similar physiological traits. From a closer point of view, we can look
at the time series generated by the iterations of the compactified time and parameter-
ized by physical time, for a specific organism. This approach, in our 2-dimensional
framework, is described, in particular, in section 3.4.4. Considering their variability,
this kind of precise trajectories, for a given internal rhythm, is not determined by
the allometric symmetry alone. The slight, but continual symmetry changes, in an
organism, that is its extended criticality, contribute to the determination of actual
biological rhythms, as we explain next.

In order to better understand the situation, we will first recall how periodic behav-
iors (oscillators) are determined in physics and we will then analyze the situation in
biology. The core point that we want to emphasize is the relationship between the pe-
riodicity of physical phenomena and energy (and its conservation). The other reason
why we provide these examples is that the form of elementary repetitive phenomena
provides a paradigmatic and usually ubiquitous example of the consequences and of
the nature of our theoretical framework.
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7.5.1 Simple harmonic oscillators in physics

Oscillatory behaviors in physics have multiple forms. However, the simplest of
them, the simple harmonic oscillator, is usually a key and paradigmatic model since
it regularly appears, at least as a first approximation, in a wide range of situations.

A reason, why such behaviors regularly appear, is that it is a general linear ap-
proximation of a behavior near equilibrium, meaning that it is valid near equilibrium
as soon as that the latter is well defined and the associated functions are sufficiently
regular.

7.5.1.1 Classical oscillator

If we consider a classical conservative system near a local stable equilibrium at
x = 0, we obtain:

m
d2x
dt2 = f (x)' f (0)+

∂ f
∂x

(0)x (7.5)

'−kx (7.6)

Indeed, the condition for stable equilibrium leads to f (0) = 0 and to k > 0. The

general solution for such a system is x(t) = acos(
√

k
m t + φ), where a depends on

the initial energy of the system and φ depends on the direction in phase space of the
initial state. The corresponding energy is

E = H =
1
2

m
(

dx
dt

)2

+
1
2

kx2 (7.7)

as a result the simple harmonic oscillator is a system which continuously transfers
its energy from kinetic energy to potential energy and then the other way round. The
time an iteration takes depends only on the relative “strength” of kinetic energy (the
inertial mass, m) and of potential energy (the coefficient k).

7.5.1.2 Quantum oscillator

The quantum harmonic oscillator is somewhat different. Its behavior is still deter-
mined by energy; however, the structure of determination and, in particular, the
nature of the objects used are different. The Hamiltonian is given by:
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Ĥ =
1

2m
p̂2 +

1
2

kx̂2 (7.8)

with x̂ψ(x) = x.ψ(x); p̂ =−ıh̄
∂

∂x
(7.9)

Possible measures verify Ĥ ψ = Eψ (7.10)

Solving this system leads to discrete energy levels: En = h̄
√
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)
and cor-

respondingly a set of frequencies fn = 1
2π

√
k
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(
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)
. Again, the behavior of the

system is determined by energy, but in this context energy is quantized and has
a minimum which is different from zero, meaning that the system is never at the
corresponding classical equilibrium point20. More generally, quantum physics in-
troduces wave-particle duality, in particular through the De Broglie relation: f = E

h .

7.5.1.3 Concluding remarks on physical oscillators

We saw that in both cases, the simple harmonic oscillator is characterized by its
symmetric form, for energy, of the momentum and the position contribution. Their
respective weight in energy leads to the determination of the period of the phe-
nomenon. This example shows how, in fundamental physics, the “repetitive behav-
iors” have their properties determined by energy, with its underlying symmetries as
conservation properties.

The result of these accounts is that the period of such physical phenomena is
determined by the form of energy. More precisely, these periods are determined by
the ratio of the coefficients, in the Hamiltonian, corresponding to the contributions
of position and momentum. In both cases, the period depends then on parameters
characterizing the properties of the objects (the mass and the coefficient k). The
consequence of this theoretical origin of the period is that its values are robust and
rooted in the properties of objects. The further consequence of this situation is then
that these phenomena have an intrinsically regular relationship with physical time
(which have been conceptualized and mathematized precisely for this purpose).

Of course, physical oscillators are not limited to these cases, which are the most
elementary ones. More complex situation can occur, in particular by introducing
non-linearities (linearity almost directly leads to a superposition of harmonic oscil-
lators).

20 This kind of quantum behavior leads to quantum fluctuations, even at 0 K. temperature.
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7.5.2 Biological oscillators: symmetries and compactified time

In the case of biological internal rhythms, however, energy conservation does not
seem to be able to determine the trajectory of the iterative process21, since there is
no underlying symmetry corresponding to a possible energetic determination; that
is, energy conservation properties do not suffice to determine the process. Let us
consider, for example, the case of the heart rhythm. This rhythm is neither fully
determined by the properties of the heart (insofar they are defined) nor by direct
response to a well defined requirement in “energy” of the organism. On the con-
trary, the determination of the heart rate involves the full complexity of both the
heart organ and the regulation associated to the behavior of the whole organism. For
example, the various activities of organs are related to the history of the organism
at different time scales. As a result, the determination of the heart rate depends also
on the environment of an organism. More precisely it depends on the complex re-
lationship of the organism with its environment, including protention and retention,
as described in chapter 4 — protensive activities are crucial for heart rhythms. More
globally, it entirely reflects the extended critical processes which are at the core of
its dynamics.

In other words, the theoretical determination of the dynamics of an organ, such as
the heart, involves the activity of the whole organism22. As a result, the symmetry
changes in the organism break any geodetic determination of the heart trajectory
(beat to beat interval, here). This situation leads to the lack of a complete theoretical
determination of this trajectory with respect to physical time. From a slightly shifted
point of view, the generic trajectories of the organism influence the trajectories of
the heart, breaking possible regularities with respect to physical time. Our point
here is not to say that there would be some violation of energy conservation in an
organism, but to say that there is no invariant form (symmetry) in the determination
of something like a heart rate, at least insofar this determination involves the whole
organism.

The symmetry we have proposed in chapter 3 to accommodate such a rhythm,
including allometry, is based on the iterative nature of the organ considered and
on the pure number of their total iterations (an interspecific approximate invariant).
This further motivates the strategy we proposed to approach this kind of fundamen-
tal “biological oscillator” as based on the introduction of a supplementary temporal
structure (generated by the second time dimension), irreducible to the usual physi-
cal time. We did so, precisely because of the lacking energetic determination. Now,
this conceptual change, from the physical oscillators to the “biological oscillator”
— or in more precise terms, biological iterator — allows to understand the peculiar
features of heart rate variability. This features are associated to an instability of the

21 Understood as a trajectory parameterized by the usual physical time
22 In general, the precise aspects of the activity of the organism that are directly relevant for a
particular organ depend of course on the nature of the organ.
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beat to beat (physical time) interval during wake, instability which can have differ-
ent forms depending on age, activity, possible pathologies, . . . (see section 3.4.4.2).

As a result, our mathematical approach in chapter 3 should be understood as dif-
ferent from the usual physical approaches. The framework is based on very general
tendencies (symmetries), such as allometry and the regularity of the physical, exter-
nal rhythms (based on a regularity among mammals, birds, . . . ), but the engendered
mathematical structure, suggested by these basic symmetries, does not suffice to
provide objective, specific trajectories. On the contrary, the observed trajectory of a
specific organism, with its crucial instabilities, can be embedded in our framework
in a “natural” way, and is therefore a “projection” of (a part of) the extended critical
interval of an organism life-span. This operation allows to show the specificity of
the biological object by geometrically emphasizing the qualitative features of a tra-
jectory, which can also be seen as the structure(s) of its variability. In other words,
our approach stressed the the various shapes of its relationship with physical time
and its complex interplay between regularities (basic symmetries) and irregularities
(critical transitions), within a global, organismal, structural stability (by regulation
and integration).

7.5.3 Conclusion

The aspects we described provide a supplementary justification to the introduction
of a second temporal dimension. Indeed, the points we raised and our more gen-
eral framework leads to understand the inadequacy of the theoretical determination
of biological trajectories with respect to the physical time only. Physical time is
the parameter where energy conservation, which governs physical oscillators, is de-
scribed as an invariant quantity and it is largely insufficient to analyze biological
time and “oscillators”.

Moreover, we pointed out the role of a time trajectory associated to a specific
biological object, since our 2-dimensional framework allows to represent and study
the complex and diverse relationships between physical time and biological proper
rhythms. This kind of trajectory is associated to the individuation of the organism at
various time scales; it includes both “spontaneous” variations and association with
various factors. It soundly takes place in an extended interval of criticality, i. e. of
(regulated and integrated) symmetry changes.

7.6 Conclusion

Since ancient Greece (Archimedes’ principle on equilibria) up to Relativity The-
ory (Noether’s and Weyl’s work) and Quantum Mechanics (from Weyl’s groups to
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the time-charge-parity symmetry), symmetries have provided a unified view of the
principles of theoretical intelligibility in physics. We claimed here that some major
challenges for the proposal of mathematical and theoretical ideas in biology de-
pend, in principle, on the very different roles that symmetries play in biology when
compared to physics. The unifying theoretical framework in biology is neither asso-
ciated to invariants nor to transformations preserving invariants like in (mathemati-
cal/theoretical) physics. It focuses, instead, on the permanent change of symmetries
that per se modify the analysis of the internal and external processes of life, both in
ontogenesis and evolution.

In a sense, variability may be considered as the main invariant of the living state
of matter (yet it is not the only one!). In order to explain it, we proposed to consider
the role played by local and global symmetry changes along extended critical transi-
tions. In extended criticality, dynamically changing coherent structures as global en-
tities provide an understanding of variability within a global, extended stability. The
coherent structure of critical phenomena also justifies the use of variables depending
on non-local effects. Thus, an explicitly systemic approach may help in avoiding the
accumulation of models and hidden variables. In conclusion, the notion of extended
criticality provides a conceptual framework, to be further mathematized, where the
dynamics of symmetries and symmetry breakings provide a new, crucial role for
symmetries in biology with respect to physics.

It should be clear that by focusing on symmetry changes and variability, as core
notions for understanding life adaptivity and diversity, we do not forget biologi-
cal structural stability and autonomy, under ecosystemic and internal constraints.
No extended criticality would ever be possible without the integrating and regulat-
ing activities proper to an organism and its relation to the ecosystem. Actually, the
main motivation we provided to look at criticality, was derived from the role of the
coherent structures that are witnessed at critical transitions in physics. These struc-
tures, though changing along all control parameters in a biological organism, are the
mathematical representation of the organismal (changing) stability, its internal and
external coherence, as a whole.

This chapter is a major turning point for our perspective. Its conclusion directly
concerns the nature of the mathematical accounts that we can provide on biological
organization, given the instability of biological symmetries.

In the following chapter, we will explore the consequences of our analysis on the
notion of phase spaces, discuss causality and introduce the notion of enablement.





Chapter 8
Biological phase spaces and enablement

Abstract

This chapter analyzes, in terms of critical transitions, the phase spaces of biological
dynamics. The phase space is the space where the scientific description and deter-
mination of a phenomenon is given. We first hint to the historical path that lead
physics to give a central role to the construction of a sound notion of phase space,
as a condition of possibility for physico-mathematical analyses to be developed. We
then argue that one major aspect of biological evolution is the continual change of
the pertinent phase space and the unpredictability of these changes. This analysis
will be based on the role of theoretical symmetries in biology and on their critical
instability along evolution. Our hypothesis deeply modifies the tools and concepts
used in physical theorizing, when adapted to biology. In particular, we argue that
causality has to be understood differently, and we discuss two notions to do so: dif-
ferential causality and enablement. In this context constraints play a key role: on
one side, they restrict possibilities, on the other, they also enable biological systems
to integrate changing constraints in their organization, by correlated variations, in
un-prestatable ways. This corresponds to the formation of new phenotypes and or-
ganisms.

Keywords:

Conservation properties, symmetries, biological causality, phase space, unpredictabil-
ity, enablement.
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8.1 Introduction

As a major guideline for our work, we used the perspective proposed by H. Weyl and
B. van Fraassen: XXth century physics has been substituting to the concept of law
that of symmetry. Thus, the concept of symmetry may be “considered the principal
means of access to the world we create in theories”, [Van Fraassen, 1989].

In this chapter, we will discuss the question of biological phase spaces in relation
to critical transitions and symmetries1.

In order to understand the peculiarities of biological theorizing, we will first
shortly recall the sense of “phase spaces” in physics. A phase space is the space
of the pertinent observables and parameters in which the theoretical determination
of the system takes place2. As a result, to one point of the phase space corresponds
a complete determination of the intended object and of the features that are relevant
for the analysis.

Aristotle and Aristotelians, Galileo and Kepler closely analyzed trajectories of
physical bodies, but without a mathematical theory of a “background space”. In
a sense, they had the same attitude as Greek geometers: Euclid’s geometry is a
geometry of figures with no space. It is fair to say that modern mathematical physics
(Newton) begun by the “embedding” of Kepler and Galileo’s Euclidean trajectories
in Descartes’ spaces. More precisely, the conjunction of these spaces with Galileo’s
inertia gave the early relativistic spaces and their invariant properties, as a frame
for all possible trajectories — from falling bodies to revolving planets3. In modern
terms, Galileo’s symmetry group describes the transformations that preserve the
equational form of physical laws, as invariants, when changing the reference system.

Along these lines, one of the major challenges for a (theoretical) physicist is
to invent the pertinent space or, more precisely, to construct a mathematical space
which contains all the required ingredients for describing the phenomena and to
understand the determination of its trajectory, if any. So, Newton’s analysis of tra-
jectories was embedded in a Cartesian space, a “condition of possibility”, Kant will
explain, for physics to be done. By this, Newton unified (he did not reduce) Galileo’s
analysis of falling bodies, including apples, to planetary orbits: Newton derived Ke-
pler’s ellipsis of a planet around the Sun from his equations. This is the astonishing
birth of modern mathematical-physics as capable of describing exactly (and pre-
dicting, many hoped) the theoretical trajectory, once given the right space and the
exact boundary conditions. But, since Poincaré, we know that if the planets around

1 We revise extensively and develop here early joint work with Stuart Kauffman [Longo et al.,
2012b] and a subsequent paper [Longo & Montévil, 2013].
2 Note that this definition is a little more inclusive than the usual meaning of the expression in
physics, as physicists mostly refer to the space given by momentum and position, or by energy and
time.
3 The Italian Renaissance painters invented the mathematical “background” space by the perspec-
tive, later turned into mathematics by Descartes and Desargues, see [Longo, 2011b].
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the Sun are two or more, prediction is impossible due to deterministic chaos. Even
though the planets trajectories are fully determined by Newton-Laplace equations,
the non-linearity of this equations yields the absence almost everywhere of analytic
solutions and forbids predictability, even along well determined trajectories at equi-
librium.

As a matter of fact, Poincaré’s analysis of chaotic dynamics was essentially
based on his invention of the so-called Poincaré section (analyze planetary orbits
only by their crossing a given plane) and by the use of momentum as a key ob-
servable. In his analysis of this early and fundamental case of deterministic chaos,
as it will be later called, stable and unstable trajectories in the position-momentum
phase space, nearly intersect infinitely often, in “infinitely tight meshes” and are also
“folded upon themselves without ever intersecting themselves”, (1892). Since then,
in physics, the phase space is mostly given by all possible values of momentum and
position, or energy and time. In Hamiltonian classical mechanics and in Quantum
Physics, these observables and variables happen to be “conjugated”, a mathemati-
cal expression of their pertinence and tight relation4. These mathematical spaces are
the spaces in which the trajectories are determined. Even in Quantum Physics, when
taking Hilbert’s spaces as phase spaces for the wave function, Schrödinger’s equa-
tion determines the dynamics of a probability density. The indeterministic aspect of
quantum mechanics appears when quantum measurement projects the state vector
— and gives a probability, as a real number value.

It is then possible to give a broader sense to the notion of phase space. For ther-
modynamics, say, Boyle, Carnot and Gay-Lussac decided to focus on pressure, vol-
ume and temperature, as the relevant observables: the phase space for the thermo-
dynamic cycle (the interesting “trajectory”) was chosen in view of its pertinence,
totally disregarding the fact that gases are made out of particles. Boltzmann later
unified the principles of thermodynamics to a particle’s viewpoint and later to New-
tonian trajectories by adding the ergodic hypothesis. Statistical mechanics thus, is
not a reduction of thermodynamics to Newtonian trajectories, rather, as we said al-
ready, an “asymptotic” unification, at the infinite time limit of the thermodynamic
integral, under the novel assumption of “molecular chaos” (and ergodicity). In sta-
tistical mechanics, ensembles of random objects are considered as the pertinent ob-
jects, and observables are derived as aspects of their (parameterized) statistics.

It should be clear that, while the term phase space is often restricted to a posi-
tion/momentum space, we use it here in the general sense of the suitable or intended
space of the mathematical and/or theoretical description of the system. In this sense
the very abstract Hilbert space of complex probability densities is a phase space for
the state function in Quantum Mechanics, very far form ordinary space-time.

Now, in biology, the situation poses several new challenges. Along the lines of
[Kauffman, 2002, Bailly & Longo, 2008, Longo et al., 2012b], we will argue the fol-
lowing: in contrast to existing physical theories, where phase spaces are pre-given, if

4 One is the position and the other takes into account the mass and the change of position.
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one takes organisms and phenotypes as observables in biology, the intended phase
spaces need to be analyzed as changing in unpredictable ways through evolution.
Our approach allows to understand this phenomenon by stressing the peculiar bi-
ological relevance of critical transitions and the related role of symmetry changes.
It then adds a new form of proper biological randomness on top of the two main
physical treatments of randomness that we will also discuss.

A further and major challenge is then posed, or made explicit, to the study of bi-
ological phenomena. We will motivate it by different levels of analysis. Of course,
our result is a “negative result”, but negative results may open the way to new sci-
entific thinking, in particular by the very tools proposed to obtain them, [Longo,
2012]. Our tools are based on the role of symmetries and criticality, which will also
suggest some possible ways out. In particular, we will add to this frame the notion of
“enablement”, as a further conceptual tool for the analysis of biological processes.

8.2 Phase Spaces and Symmetries in Physics

We understand the historically robust “structure of determination of physics” (which
includes unpredictability, thus randomness) by recalling that, since Noether and
Weyl, physical laws may be described in terms of theoretical symmetries in the
intended equations (of the “dynamics”, in a general sense, see chapter 5 and below).
These symmetries in particular express the fundamental conservation laws of the
physical observables (energy, momentum, charges . . . ), both in classical and quan-
tum physics. And the conservation properties allow us to compute the trajectories
of physical objects as geodetics, by extremizing the pertinent functionals (Hamil-
ton principle applied to the Lagrangian functionals). It is the case even in Quantum
Mechanics, as they allow to derive the trajectory of the state function in a suitable
mathematical space, by Schrödinger equation.

As we said, only with the invention of an (analytic) geometry of space (Descartes),
could trajectories be placed in a mathematically pre-given space, which later became
the absolute space of Newtonian laws. The proposal of the more general notion of
“phase space” dates of the late XIX century. Then momentum was added to spatial
position, or energy to time, as an integral component of the analysis of a trajectory.
This allowed to apply the corresponding conservation properties, thus the corre-
sponding theoretical symmetries. In general, the phase spaces are the right spaces
of description in the sense that they allow one to soundly and completely specify
“trajectories”: if one considers a smaller space, processes would not have a deter-
mined trajectory and could behave arbitrarily with respect to the elements of the
description (for example, ignoring the mass or the initial speed in classical me-
chanics). Adding more quantities would be redundant or superfluous (for example,
considering the color or flavor, in the usual sense, in classical mechanics).
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In other words, in physics, the observables (and parameters), which form the
phase space, derive from the choice of the (pertinent/interesting) invariants / symme-
tries, possibly by a suitable mathematization of trajectories. That is, they derive from
the invariants and the invariant preserving transformations in the intended physical
theory. So, Poincaré’s momentum is preserved in the dynamics of an isolated sys-
tem, similarly as Carnot’s product pV is preserved at constant temperature while p
and V may vary. Again, one uses these invariants in order to construct the “back-
ground space” where the phenomena under analysis can be accommodated. Thus,
the conceptual construction of the phase space follows the choice of the relevant
observables and invariants (symmetries) in the physico-mathematical analysis.

In summary, the historical and conceptual development of physics went as fol-
lows:

• analyze trajectories
• pull-out the key observables as (relative) invariants (as given by the symmetries)
• construct out of them the intended phase space.

Thus, physical (phase) spaces are not “already there”, as absolutes underlying
phenomena: they are our remarkable and very effective invention in order to make
physical phenomena intelligible [Weyl, 1983, Bailly & Longo, 2011].

As H. Weyl puts it, the main lesson we learn from XX century physics is that the
construction of scientific objectivity (and even of the pertinent objects of science)
begins when one gives explicitly the reference system (or the phase space with its
symmetries) and the metric (the measurement) on it. We do not consider anymore
ether or phlogiston as pertinent observables nor parameters, thus they have been
excluded from our phase spaces. The role of symmetries is also exemplified by
the passage form the Galileo group to Lorentz-Poincaré group that frame Relativity
Theory, as it characterizes the relevant physical invariants (in particular the new one,
the speed of light) and invariant preserving transformations (Poincaré group) in the
phase space.

In summary, the modern work of the theoretical physicist begins by setting the
phase space and the measure in it, on the grounds of the observables he/she con-
siders to be essential for a complete description of the intended dynamics — in the
broadest sense, like in Quantum Physics, where quanta do not go along trajectories
in ordinary space-time, but the wave or state function does, in a Hilbert space.

As for the formal foundation, from Descartes’ spaces up to the later more general
phase spaces (Hilbert spaces or alike), all these spaces are finitistically (axiomati-
cally) describable, because of their symmetries. That is, their regularities, as invari-
ants and invariant preserving transformations in the intended spaces (thus their sym-
metries), allow a finite description, even if they are infinite. Consider, say, a tri- (or
more) dimensional Cartesian space, since Newton our preferred space for physics.
It is infinite, but the three straight lines are given by symmetries (they are axes of ro-
tations) and their right angles as well (right angles, says Euclid, are defined from the
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most symmetric figure you obtain when crossing two straight lines)5. When adding
the different groups of transformations (the symmetries) that allow to relativize the
intended spaces, one obtains the various physical theories that beautifully organize
the inert matter, up to today.

Hilbert and Fock’s spaces require a more complex but conceptually similar defi-
nition, in terms of invariants and their associated transformations. These invariants
(symmetries) allow to handle infinity formally, possibly in the terms of Category
Theory. Note that symmetries, in mathematics, have the peculiar status of being
both invariant (structural invariants, say) and invariant preserving transformations
(as symmetry groups).

In summary, symmetries thus allow to describe infinite spaces and mathematical
structures, even of infinite dimension, in a very synthetic way, by the finitely many
words of a formal definition and of a few axioms. We will argue for the intrinsic
incompressibility of the phase space of intended observables in biology: no way to
present it a priori, as a time invariant system, by finitely many pre-given words.

8.2.1 More lessons from Quantum and Statistical Mechanics

As we observed, quantum mechanics takes as state function a probability density
in possibly infinite dimensional Hilbert or Fock spaces. More generally, in quan-
tum mechanics, the density matrix allows to deal also with phase spaces which are
known only in part. In such cases, physicists work with the part of the state space
that is known and the density matrix takes into account that the system can end up
in an unknown region of the state space, by a component called “leakage term”. The
point is that this term interferes with the rest of the dynamics in a determined way,
which allows us to capture theoretically the situation in spite of the leakage term.

In Quantum Field Theory (QFT) it is even more challenging: particles and
anti-particles may be created spontaneously. And so one uses infinite dimensional
Hilbert’s spaces and Fock spaces to accommodate them. Of course, quanta are all
identical in their different classes: a new electron is an electron . . . they all have the
same observable properties and underlying symmetries. Also, the analysis by Feyn-
man diagrams allows us to provide the participation in the quantum state of each
possible spontaneous creation and annihilation of particles (and, basically, the more
complex a diagram is, the smaller its weight). The underlying principle is that ev-
erything that can happen, for a quantum system, happens, but only a limited number
of possibilities are quantitatively relevant.

In statistical mechanics one may work with a randomly varying number n of par-
ticles. Thus, the dimension of the state space stricto sensu, which is usually 6n, is

5 More generally, modern Category Theory defines Cartesian products in terms of a symmetric
commuting diagrams.
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not pre-defined. This situation does not, however, lead to particular difficulties be-
cause the possibilities are known (the particles have a known nature, that is relevant
observables and equational determination) and the probabilities of each phase space
are given6. In other terms, even if the exact finite dimension of the space may be
unknown, it has a known probability — we know the probability it will grow by
1, 2 or more dimensions, and, most importantly, they are formally symmetric. The
possible extra particles have perfectly known properties and possible states: the per-
tinent observables and parameters are known, one just misses: how many? And this
becomes a new parameter . . . (see for example [Sethna, 2006], for an introduction).

In these cases as well, the analysis of trajectories or the choice of the object to
study (recall the role given to momentum or the case of the thermodynamic cycle
or the probability density for QM) lead to the construction of the pertinent phase
space, which contains the proper observables and parameters for the trajectories
of the intended object. Then, as mentioned above, the symmetries of the theories
allowed synthetic, even axiomatic, definitions of these infinite spaces, even with
infinite or fluctuating dimensions. In other words, the finite description of these
spaces of possibly infinite dimension, from Descartes to Quantum spaces, is made
possible by their regularities: they are given in terms of mathematical symmetries.
And, since Newton and Kant, physicists consider the construction of the (phase)
space as an “a priori” of the very intelligibility of any physical process.

8.2.2 Criticality and Symmetries

Critical transitions are particularly interesting with respect to phase spaces and their
symmetries. As we know, they are characterized by a change of global behavior of a
system, which is largely understood in terms of symmetry changes. More precisely
there is two different symmetry changes for critical transitions: the change from the
ordered versus disordered phase and the symmetry at the critical point.

Recall, for example, from 6, that spin lattices phase transitions are understood,
from a purely macroscopic point of view, as a change of phase space: a parameter
(the order parameter which is the global field in this example) shifts from being de-
generate (uniformly null) to finite, non zero quantities. In other words, a new quan-
tity becomes relevant. From a microscopic point of view, this quantity, however, is
not exactly new: it corresponds to aspects used for the description of the micro-
scopic elements of the system (a field orientation, for example). In the equational
determination of the system as a composition of microscopic elements, there is no
privileged directions for this observable. In the disordered phase (homogeneous, in

6 In general, n changes either because of chemical reactions, and it is then their rate which is
relevant, or because the system is open, in which case the flow of particles is similar to an energetic
flow, that is the number of particles plays the same role than energy: they are both fluctuating
quantities obeying conservation laws.
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terms of symmetries), the order parameter, that is the average of the field, is 0. How-
ever, in the ordered phase, the state of the system has a global field direction and its
average departs from 0.

The appearance of this observable at the macroscopic level is understood thanks
to an already valid observable at the microscopic level, and by changing macro-
scopic symmetries. That is, at the critical point, the point of transition, we have a
collapse of the symmetry of the macroscopic orientations of the field (the symmetry
is verified when the field is null). This change corresponds to the formation of a
coherence structure which allows microscopic fluctuations to extend to the whole
system and in fine to lead to a non null order parameter, the global field, after the
transition. The system at the transition has a specific determination, associated to
this coherence structure. Depending in particular on the dimension of space see
section 6.2.1.5, this physical process can require a specific mathematical approach,
the renormalization method, which allows to analyze the characteristic multi-scale
structure of coherence, dominated by fluctuations at all scales, proper to critical sit-
uations. In all cases, this situation is associated to a singularity in the determination
of the system, which stems from the order parameter changing from a constant to a
non-zero value.

As a matter of fact, the concept of extended critical transition in 7 has been
proposed initially to account for the specific coherence of biological systems, with
their different levels of organization. The notion of different levels of organization
is rather polysemic. It refers usually to the epistemic structuring of an organism by
different forms of intelligibility, thus, a fortiori and if mathematically possible, by
different levels of determination or mathematical description (molecular cascades,
cells’ activities and interactions, tissues’ structures, organs, organisms . . . ). In the
context of extended criticality, however, we propose to objectivize the levels of or-
ganization and especially the change of level by the mathematical breaking of the
determination at one fixed level, by singularities. This approach sheds an original
light on the notion of level of organization, as the new level corresponds to a cou-
pling between scales and not simply to a higher scale, see [Longo et al., 2012c], an
issue that we will not discuss here.

Recall that the core hypothesis of extended criticality is that, while physical sys-
tems have a mainly point-wise criticality, organisms have ubiquitous critical points
(dense in a viability space, for example). Note that, in physics, the critical point can
be an attractor: this is the paradigm of self-organized criticality. In our approach,
the interval of extended criticality may be given with respect to any pertinent pa-
rameter. Its main properties along this line are given in chapter 7 (see also [Bailly &
Longo, 2008, Bailly & Longo, 2011]). In this context, the different levels of organi-
zation are presented by fractal or fractal-like structures and dynamics, as proposed
by Werner and others, see [West, 2006, Werner, 2010, Longo et al., 2012c]. More
recent applications of this concept may be found in [Lovecchio et al., 2012]. Note
also that criticality enables a multi-scale heterogeneity to take place, which is usu-
ally impossible under the constraints of “normal” physical states. This heterogeneity
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is of interest for biological symmetry changes, as hinted in [Werner, 2010, Machta
et al., 2011].

As discussed in 7, a crucial aspect of extended criticality is given by the role of
symmetries and symmetry changes in biological dynamics. The density of critical
points leads to omnipresent symmetry changes. Now, this has consequences for the
very constitution of the scientific object. Physical objects are generic inasmuch dif-
ferent objects with the same equational determination will behave in the same way,
and this way is determined by the specific trajectory provided precisely by the equa-
tions, a geodetic in the intended phase space. These specific trajectories, possibly
after some transformations, allow to state that objects behave the same, both in the
theory and in experiments (i.e. they have invariant properties). The trajectory is thus
obtained by using theoretical symmetries (conservation principles, see above) and
in fine it allows to define physical objects as generic, because they are symmetric
(interchangeable, or they behave the same way).

In contrast to this core perspective in physics, variability, adaptability and diver-
sity are at the core of biological objects and their dynamics. In this book, we pro-
posed to capture this, by suggesting that biological objects do not have sufficiently
stable theoretical symmetries, and, thus, that their trajectories are not specific. That
is, there are no sufficiently stable symmetries and corresponding invariants, as for
phenotypes, which would allow to determine the evolutionary dynamics of the ob-
ject. On the contrary, and as we claimed in several places above, the biological ob-
ject follows a possible evolutionary trajectory, which may be considered generic, or
a “possible” one. Conversely, the living entity is not generic but specific, since it is
determined by a historical cascade of symmetry changes (see chapter 7 and [Longo
& Montévil, 2011a]). In our approach, the inversion of generic vs. specific is a core
conceptual duality of biological theorizing vs. physical one. It deeply modifies the
status of the object.

The starting assumption in this approach to evolutionary trajectories is based
on Darwin’s first principle (and default state for biology, [Sonnenschein & Soto,
1999]: Descent with modification. Darwin’s other principle, selection, would make
little sense without the first7.

Notice that Darwin’s first principle, descent with modification, may be under-
stood as a non-conservation principle as for phenotypes (see 8.5): any reproduction
yields (some) changes. It is crucial for us that this applies at each individual cellular
mitosis. As a matter of fact, each mitosis may be seen as a critical transition. In a
multicellular organism, in particular, it is a bifurcation that yields the reconstruction
of a whole coherence structure: the tissue matrix, the collagen’s tensegrity struc-

7 Note that some physicists claim to use a Darwinian scheme in order to understand physical
systems where modification are purely quantitative. Our discussion in chapter 7 allows to un-
derstand the gap between the physical cases and actual biological evolution where modification
involve changes of the theoretical symmetries. Of course, the notion of critical transition, where
the symmetries of a physical object may change, provides a conceptual connection (or a point of
“conceptual critical transition” . . . .
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ture, the cells’ networks and dialogue in general. And this besides the symmetry
breakings due to proteome and DNA variations, which we will further discuss. In
short, in view of the “density” of mitoses in the life interval of an organism, we
may already consider this phenomenon at the core of biological analysis in terms
of extended criticality. And mitoses are the fundamental processes of life, both uni-
and multicellular life.

In this context, the mathematical un-predefinability of biological phase space we
discuss below will follow by comparing the physico-mathematical constructions of
trajectories and phase spaces to the needs of biology, where theoretical symmetries
are not preserved. Let us recall that we work in a Darwinian frame and consider
organisms and phenotypes as the pertinent observables.

8.3 Non-ergodicity and quantum/classical randomness in
biology.

We will discuss here the issue of “ergodicity” as well as the combination of quan-
tum and classical random phenomena in biology. By ergodicity, we broadly refer to
Boltzmann’s assumption in the 1870’s that, in the course of time, the trajectory of
a closed system passes arbitrarily close to every point of a constant-energy surface
in the given phase space. This assumption allows to understand a system without
taking into account the details of its dynamics.

From the molecular viewpoint, the question is the following: are (complex) phe-
notypes the result of a random exploration of all possible molecular combinations
and aggregations, along a path that would (eventually) explore all molecular possi-
bilities, most later excluded by selection?

In physics, an easy combinatorial argument shows that at levels of complexity
above the atom, for example for molecules, the universe is grossly non-ergodic, that
is it does not explore all possible paths or configurations. Following an example in
[Kauffman, 2002], the universe will not make all possible proteins length 200 amino
acids in 10 to the 39th times its lifetime, even were all 10 to the 80th particles making
such proteins on the Planck time scale. So, their “composition” in a new organ,
function or organism (thus, in a phenotype) cannot be the result of the ergodicity of
physical dynamics8.

The point is that the lack of ergodicity presents an immediate difficulty for the
(naive) reductionist approach to the construction of a phase space for biological
dynamics, as given in purely molecular terms. In order to understand this, let’s con-
sider the role of ergodicity in statistical mechanics. A basic assumption of statistical

8 Notice here that this argument only states that ergodicity in the molecular phase space does not
help to understand the biological dynamics of phenotypes. The argument does not preclude the
trajectories from being ergodic in infinite time. We can then say that infinite time ergodicity is
biologically irrelevant and can take this irrelevance as a principle.
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mechanics is a symmetry between states with the same energetic level, which al-
lows to analyze their probabilities (on the relevant time scales). This assumption is
grounded on a hypothesis of ergodicity as for the dynamics of the particles: at the
infinite time limit, they “go everywhere” in the intended phase space, and they do
so homogeneously (with a regular frequency). In this case, the situation is described
on the basis of energetic considerations (energy conservation properties, typically),
without having to take into account the Newtonian trajectory or the history of the
system.

In biology, non-ergodicity in the molecular phase space allows to argue that the
dynamic cannot be described without historical considerations, even when taking
only into account molecular aspects of biological systems. A fortiori, this holds
when considering morphological and other higher scale biological aspects (the phe-
notypes in the broadest sense). In other terms, non-ergodicity in biology means that
the relevant symmetries depend on a history even in a tentative phase space for
molecules, which is in contrast with (equilibrium) statistical mechanics.

To sum the situation up, non-ergodicity prevents us to symmetrize the possible
dynamics. With respect to a Darwinian phase space, most complex things will never
exist and don’t play a role, [Kauffman, 2002]. The history of the system enters into
play and canalizes evolution.

Note that some cases of non-ergodicity are well studied in physics. Symmetry
breaking phase transitions is a simple example: a crystal does not explore all its
possible configurations because it has some privileged directions and it “sticks” to
them. The situation is similar for the magnetization of a magnet, see [Strocchi, 2005]
for a mathematical analysis. A more complex case is given by glasses. Depending on
the models, the actual non-ergodicity is valid either for infinite time or is only tran-
sitory, yet relevant at the human time scales. Crucially, non-ergodicity corresponds
to a variety of possible states, which depend on the paths in the energetic land-
scape that are taken (or not taken) during the cooling. This can be analyzed as an
entropic distance to thermodynamic equilibrium and corresponds to a wide variety
of “choices”. However, the various states are very similar and their differences are
relatively well described by the introduction of a time dependence for the usual ther-
modynamic quantities. This corresponds to the so-called “aging dynamics” [Jensen
& Sibani, 2007]. The example of glassy dynamics shows that the absence of a rele-
vant ergodicity is not sufficient in order to obtain phase space changes in the sense
we will describe, because in this example the various states can be understood in an
a priori well-defined phase space and are not qualitatively different.

Note, finally, that an ergodic trajectory is a “random”, yet complete, exploration
of the phase space. However, ergodicity does not coincide with randomness, per se:
a step-wise random trajectory (i.e. each step at finite time is random), does not need
to be ergodic, since ergodicity, in mathematical physics, is an asymptotic notion.

Now, biological dynamics are a complex blend of contingency (randomness),
history and constraints. Our thesis here is that biological (constrained) randomness
is essential to variability, thus to diversity, thus to life.
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The most familiar example is provided by meiosis, as gametes randomly inherit
chromosomes pairs from the parents. Moreover, chromosomes of a given pair may
exchange homologous portions and, so far, this is analyzed in purely probabilistic
terms. It is a well established fact that DNA recombinations are a major contribution
to diversity. However, all aspects of meiosis depend on a common history of the
mixing DNA’s and viable diversity is restricted by this history, starting with the
common history as organism of the same “species”.

A finer analysis can be carried on, in terms of randomness. In a cell, classical and
quantum randomness both play a role and “superpose”. Recall first that, in physics,
classical and quantum randomness differ: different probability values (thus mea-
sures of randomness) may be associated to classical events vs. (entangled) quantum
events. Bell inequalities distinguishes them (see [Aspect et al., 1982]).

Some examples of biologically relevant quantum phenomena are electron tun-
neling in cellular respiration [Gray & Winkler, 2003], electron transport along
DNA [Winkler et al., 2005], quantum coherence in photosynthesis [Engel et al.,
2007, Collini et al., 2010]. Moreover, it has been shown that double proton transfer
affects spontaneous mutation in RNA duplexes [Ceron-Carrasco et al., 2009]. The
enthalpic chaotic oscillations of macro-molecules instead have a classical nature,
in physical terms, and are essential to the interaction of and with DNA and RNA.
Quantum randomness in a mutation is typically amplified by classical dynamics
(including classical randomness), in the interaction between DNA, RNA and the pro-
teome (see [Buiatti & Longo, 2013] for a discussion). This kind of amplification
is necessary in order to understand that changes at the nanometer scale impact the
phenotype of the cell or of the organism. Moreover, it may be sound to consider the
cell-to-cell interactions and, more generally, ecosystem’s interactions as classical,
at least as for their physical aspects, yet affecting the biological observables, jointly
with quantum phenomena.

Poincaré discovered the destabilizing effects of planetary mutual interactions, in
particular due to gravitational resonance (planets attract each other, which cumu-
lates when aligned with the Sun); by this, in spite of the deterministic nature of
their dynamics, they go along unstable trajectories and show random behavior, in
astronomical times (see [Laskar J., 1994]). In [Buiatti & Longo, 2013], by analogy,
the notion of “bio-resonance” is proposed. Different levels of organization, in an
organism, affect each other, in a stabilizing (regulating and integrating), but also in
a destabilizing way.

A minor change in the hormonal cascade may seriously damage a tissue’s coher-
ence and, years later, cause or enable cancer. A quantum event at the molecular level
may be amplified by cell to cell interaction and affect the organism, whose changes
may downwards affect tissues, cells, metabolism. Note that Poincaré’s resonance
and randomness are given at a unique and homogeneous level of organization (actu-
ally, of mathematical determination). Bio-resonance instead concerns different epis-
temic levels of organization, thus, a fortiori and if mathematically possible, different



8.3 Non-ergodicity and quantum/classical randomness in biology. 211

levels, yet interacting, of determination or mathematical description (molecular cas-
cades, cells, tissues, organs, organisms . . . ).

In evolution, when a (random) quantum event at the molecular level (DNA or
RNA-DNA or RNA-protein or protein-protein) happens to have consequences at the
level of the phenotype, the somatic effects may persist if they are inherited and
compatible both with the ever changing ecosystem and the “coherence structure”
of the organism, that is, when they yield viable Darwin’s correlated variations. In
particular, this may allow the formation of a new function, organ or tool or different
use of an existing tool, thus to the formation of a new properly relevant biological
observable (a new phenotype or organism). This new observable has at least the
same level of unpredictability as the quantum event, but it does not belong to the
quantum phase space: it is typically subject to Darwinian selection at the level of the
organisms in a population, thus it interacts with the ecosystem as such. Recall that
this is the pertinent level of observability, the level of phenotypes, where biological
randomness and unpredictability is now to be analyzed.

We stress again that the effects of the classical / quantum blend may show up
at different levels of observability and may induce retroactions. First, as we said,
a mutation or a random difference or expression in the genome, may contribute to
the formation of a new phenotype. Second, this phenotype may retroact downwards,
to the molecular (or quantum) level. A molecular activity may be excluded, as ap-
pearing in cells (organs / organisms) which turn out to be unfit — selection acts at
the level of organisms, and may then exclude molecular activities associated to the
unfit organism. Moreover, methylation and de-methylation downwards modify the
expression of “genes”. These upwards and downwards activities contribute to the
integration and regulation of and by the whole and the parts. They both contribute
to and constrain the biological dynamics and, thus, they do not allow to split the
different epistemic levels of organization into independent phase spaces.

We recall that our choice of the biologically pertinent observables is based on the
widely accepted fact that nothing makes sense in biology, if not analyzed in terms
of evolution. We summarized the observables as the “phenotype”, that is, as the
various (epistemic) components of an organism (organs, tissues, functions, internal
and ecosystemic interactions . . . ).

Thus, evolution is both the result of random events at all levels of organization
of life and of constraints that canalize it, in particular by excluding, by selection, in-
compatible paths — where selection is due both to the interaction with the ecosys-
tem and the maintenance of a possibly renewed internal coherent structure of the
organism, constructed through its history. So, ergodic explorations are restricted or
prevented both by selection and by the history of the organism (and of the ecosys-
tem). For example, the presence and the structure of a membrane, or a nucleus, in
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a cell canalizes also the whole cellular activities along a restricted form of possible
dynamics9.

In conclusion, the “canalizing” role of history and selection, which excludes what
is incompatible with the ecosystem and/or with the internal coherence of the organ-
ism, coexists with the various forms of randomness we mentioned. We find it critical
that neither quantum mechanics alone, nor classical physics alone, account for evo-
lution. Both seem to work together. Mutations and other molecular phenomena may
depend on random, acausal, indeterminate quantum events. Thus they may inter-
fere or happen simultaneously to or be amplified by classical dynamics, as well as
by phenotype - phenotype interaction. In this amplification, evolution is also not
completely random, as seen in the similarity of the octopus and vertebrates’ camera
eye, independently evolved (see below). Thus, evolution is both strongly canalized
(or far from ergodic) and yet indeterminate, random and acausal. Our key point is
then that random events, in biology, do not “just” modify the (numerical) values of
an observable in a pregiven phase space, like in physics (even in the broad sense
mentioned above, as in statistical physics). They modify the very phase space, or
space of pertinent biological (evolutionary) observables, the phenotypes.

8.4 Randomness and phase spaces in biology

Recall that we understand randomness in full generality as unpredictability with re-
spect to the intended theory. As the practice of physics shows, this is a relativized
notion, for example in the quantum vs. classical randomness debate. In either case,
randomness is “measurable” and its measure is given by a probability. In pre-given
spaces of possibilities (the pertinent phase spaces), modern probability theory is
usually treated in terms of Lebesgue Measure Theory. More precisely, the measure
(the probabilities) is given in terms of (relative) probabilities defined by symmetries
with respect to the observable in a prestated phase space, as for the 6 symmetric
faces of a fair dice. A more sophisticated example is the microcanonical ensemble
of statistical mechanics, where the microstates with the same energy have the same
probability (are symmetric or interchangeable), on the grounds of the ergodic hy-
pothesis. In either case, the random event results in a symmetry breaking: one out
of the six possible (symmetric) outcomes for a dice, the random exploration of a
specific microstate in statistical mechanics (see section 5.5).

Recall that, by “theoretical symmetries”, in biology, we refer both to the phe-
nomenal symmetries in the phenotype and to the “coherence structure” of an organ-
ism, a niche, an ecosystem, in the broadest sense. In some cases, these symmetries
may be possibly expressed by balance equations, at equilibrium or far from equi-

9 See [Machta et al., 2011] for an analysis of the molecular spatial heterogeneity in the membrane
as enabled by the coupling of phase transition fluctuations and the cytoskeleton.
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librium, like in physics, or just by the informal description of its working unity as
balanced processes of functions, organs and global autopoietic dynamics [Varela
et al., 1974, Mossio & Moreno, 2010]. Under all circumstances, a permanent explo-
ration and change is at the core of biology, or, as Heraclitus and Stuart Kauffman
like to say: “Life bubbles forth”. Yet, it does so while struggling to preserve its rela-
tive stability and coherence. We gave a more exact sense of this by the correlations
between symmetry breackings and randomness in 5.5.

We need to understand this rich and fascinating interplay of stabilities and in-
stabilities. Extended critical transitions in intervals of viability, the associated sym-
metry changes and bio-resonance may be a core tool for this: they yield coher-
ence structures and change them continually, through epistemic levels of organiza-
tion. Bio-resonance integrates and regulates the different levels within an organisms,
while amplifying random effects due to transitions at one given level. At other lev-
els of organization, these random events may yield radical changes of symmetries,
coherent structures and, eventually, observable phenotypes.

In biology, randomness enhances variability and diversity. It is thus at the core of
evolution: it permanently gives diverging evolutionary paths, as theoretical bifurca-
tions in the formation of phenotypes. We also stressed that variability and diversity
are key components of the structural stability of organisms, species and ecosystems,
alone and together. Differentiation and variability within an organism, a species and
an ecosystem contribute to their diversity and robustness, which, in biology, intrinsi-
cally includes adaptiveness — and, thus, it should be better called “resilience”, see
[Lesne, 2008]. Thus, robustness or resilience depend also on randomness and this by
low numbers: the diversity in a population, or in an organ, which is essential to their
resilience by adaptiveness, typically, may be given by few individuals (organisms,
cells). This is in contrast to physics, where robustness by statistical effects inside a
system is based on huge numbers of elementary components, like in thermodynam-
ics, in statistical physics and in quantum field theory [Lesne, 2008]. Actually, even
at the molecular level, the vast majority of cell proteins are present in very low copy
numbers, so the variability due to proteome (random) differences after a mitosis,
yields new structural stabilities (the new cells, possibly their differentiation in an
organism) based on low but differing numbers.

Moreover, there exists a theoretical trend of increasing relevance that considers
gene expression as a stochastic phenomenon. The theory of stochastic gene expres-
sion, usually described within a classical frame, is perfectly compatible, or it actu-
ally enhances our stress on randomness and variability, from cell differentiation to
evolution10. In these approaches, gene expression must be given in probabilities and
these probabilities may depend on the context (e. g. even the pressure on an embryo,
see [Brouzés & Farge, 2004]). This enhances variability even in presence of a stable
DNA.

10 A pioneering paper on this perspective is [Kupiec, 1983]: recent surveys may be found in [Paldi,
2003, Arjun & van Oudenaarden, 2008, Heams, 2014].
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Besides the increasingly evident stochasticity of gene expression, contextual dif-
ferences may also force very different uses of the same (physical) structure. For ex-
ample, the crystalline in a vertebrate eye and the kidney and their functions use the
same protein [Michl et al., 2006], with different uses in these different context. Thus,
if we consider the proper biological observable (crystalline, kidney), each pheno-
typic consequence or set of consequences of a chemical (enzymatic) activity has an
a priori indefinite set of potential biological uses: when, in evolution, that protein
was first formed, there was no need for life to build an eye with a crystalline. There
are plenty of other way to see, and animals do not need to see. Similarly, a mem-
brane bound small protein, by Darwinian pre-adaptation or Gould’s exaptation, may
become part of the flagellar motor of a bacterium, while originally it had various,
unrelated, functions [Liu & Ochman, 2007]. Or, consider the bones of the double
jaw of some vertebrates that evolved into the bones of the middle ears of mammals
(one of Gould’s preferred examples of exaptation), see [Allin, 1975]. A new func-
tion, hearing, emerged as the “bricolage” (tinkering) of old structures. There was
no mathematical necessity for the phenotype nor for the function, “listening”, in the
physical world. Indeed, most complex things do not exist in the Universe, as we
said.

Evolution may also give divergent answers to the same or to similar physical con-
straints. That is, the same function, moving, for example, or breathing, may be bio-
logically implemented in very different ways. Trachea in insects versus vertebrates’
lungs (combined with the vascular system), are due both to different contexts (dif-
ferent biological internal and external constraints) and to random symmetry changes
in evolutionary paths. Thus, very different biological answers to the “same” physi-
cal context make phenotypes incomparable, in terms of physical optima: production
of energy or even exchanging oxygen may be dealt with in very different ways, by
organisms in the “same” ecosystem.

Conversely, major phenomena of convergent evolution shape similarly organs
and organisms. Borrowing the examples in [Longo et al., 2012b], the convergent
evolutions of the octopus and vertebrate eye follow, on one side, random, possi-
bly quantum based acausal and indeterminate mutations, which contributed to very
different phylogenetic paths. On the other, it is also ”not-so-random” as both eyes
converge to analogous physiological structures, probably due to physical and biolog-
ical similar constraints — acting as co-constituted borders or as selection. The con-
vergent evolution of marsupial and mammalian forms, like the Tasmanian wolf (a
marsupial) and mammalian wolf are other examples of convergent, not-so-random
components of evolution, in the limited sense above.

In conclusion, randomness, in physics, is ”constrained” or mathematically han-
dled by probabilities, in general with little or no relevance of history, and analyzed
possibly by decorrelating events from contexts. In biology, histories and contexts
(sometimes strongly) canalize and constraint random evolutions.
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That is, randomness may be theoretically constrained, in physics, by probability
values in a pre-given list of possible future events; in biology, it is constrained by
the past history and the context of an event.

8.4.1 Non-optimality

Given the lack of ordered or orderable phase spaces, where numbers associated to
observables would allow comparisons, it is hard to detect optimality in biology,
except for some local organ construction. In terms of physical or also biological ob-
servables, the front legs of an elephant are not better nor worst than those of a Kan-
garoo or a bear: front podia of tetrapodes diverged (broke symmetries differently)
in different biological niches and internal milieu. And none of the issuing paths is
“better” than the other, nor follows physical optimality criteria, even less biological
ones: each is just a possible variation on an original common theme, just compatible
with the internal coherence and the co-constituted ecosystem that enabled them.

In general, thus, there is no way to define a real valued (Lagrangian) functional
to be extremized as for phenotypes, as this would require an ordered space (ordered
by a real valued functional), where “this phenotype” could be said to be “better”
than “that phenotype”. The exclusion of the incompatible, in a given evolutionary
context, in no ways produces the “fittest” or “best”, in any physico-mathematical
rigorous sense. Even Lamarckian effects, if they apply, may contribute to fitness,
not to “fitter”, even less “fittest”. Only “a posteriori” can one say that “this is bet-
ter than that” — and never “best” in an unspecified partial upper semi-lattice: the a
posteriori trivial evidence of survival and successful reproduction is not an a priori
judgment, but an historical one. Dinosaurs dominated the Earth for more than 100
millions years, leaving little ecological space to mammals. A meteor changed evolu-
tion by excluding dinosaurs from fitness: only a posteriori, after the specific conse-
quences of that random event, mammals may seem better — but do not mention this
to the mammals then living in Yucatan. The blind cavefish, an “hopeful monster”
in the sense of Goldschmidt, a posteriori seems better than the ascendant with the
eyes, once it adapted to dark caverns by increasing peripheral sensitivity to water
vibrations, a new or strongly enhanced phenotype. This incomparability a priori
corresponds to the absence of a pre-given partial order among phenotypes, thus of
optimizing paths, simply because their space is not pregiven. At most, sometimes,
one can make a pair-wise a posteriori comparisons, which may be often associated
to experimental situation, with controlled, simple conditions. This incomparability
is also due to the relative independence of niches, which are co-constituted by or-
ganisms.

More generally, conservation or optimality properties of physical observables
(the various forms of physical energy, for example) cannot help to determine the
evolutionary trajectory of an organism. No principle of “least free energy” (or “least
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time consumption of free energy”, if it applies) can help to predict or understand
completely the evolution of a proper and specific biological observable, nor of an
organism as object of selection. At most, some organs, where exchanges of energy
are the key functions, may be partially analyzed in terms of an optimizing physical
dynamics: morphogenesis as a sometimes mathematically beautiful contribution to
phyllotaxis and organogenesis. In other words, the analysis of physical forces may
help to determine, by “optimality” principles, the dynamics only locally, typically
the form of some organs, where exchanges of matter or energy dominate (lungs, vas-
cular system, phyllotaxis . . . ). Their forms partly follow optimality principles (dy-
namical branching, sprouting or fractal structures or alike, see [Jean, 1994, Fleury,
2000, Bailly et al., 1988]). In these cases, physical forces (the pushing of the em-
bryonic heart, respiration . . . , tissue matrix frictions . . . ) must be understood as fun-
damental dynamical constraints to biology’s default state: proliferation with varia-
tion and motility. Then selection applies at the level of phenotypes and organisms.
Thus, the resulting form is incompletely understood by looking only at the physi-
cal dynamical constraints, since those dynamics depend also on the integration and
regulation in and by the organism, including its DNA. Moreover, variability and di-
versity (the irregularity of lungs, of plants organs in phyllotaxis . . . ) contribute to
robustness in an essential way. They are not “noise” as in crystals’ formation, but
they are at the core of adaptivity and biological resilience.

Moreover, a given physical ecosystem may yield very different organisms and
phenotypes, by variability and adaptivity, as reproduction with variation and selec-
tion. As Darwin says, descent implies modification, even without being prompted
by the environment. This does not forbid to think that, in some cases, modifications
may be also prompted by the environment; the simplest example is given by the
accelerating (bacterial) mutations under ecosystemic stress.

8.5 A non-conservation principle

The phylogenetic change underlying evolution may be understood in terms of a
“non-conservation principle” of biological observables. Darwin proposed it as a
principle, to which we extensively referred: descent with modification, on which
selection acts. This is the exact opposite of the symmetries and conservation prop-
erties that govern physics and the related equational and causal approaches. There
is of course structural stability, in biology, which implies similar, but never identical
iteration of a morphogenetic process. As for organisms, this has been extensively de-
scribed as autonomy under constraints, autopoiesis and alike — yet, without change,
the early autopoietic systems would still be at the first bacterium, see [Moreno &
Mossio, 2015] for a recent insight and account . That is, evolution requires also and
intrinsically this non-conservation principle for phenotypes in order to be made in-
telligible. In particular, one needs to integrate randomness, variability and diversity
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in the theory in order to understand phylogenetic and ontogenetic adaptability and
the permanent exploration and construction of new niches.

In a sense, we need, in biology, a similar enrichment of the perspective as the
one quantum physicists dared to propose in the ’20th: intrinsic indetermination was
introduced in the theory by formalizing the non-commutativity of measurement
(Heisenberg non-commutative algebra of matrices) and by Schrödinger equation
(the deterministic dynamics of a probability law). We propose here an analysis of
indetermination at the level of the very formation of the phase space, or spaces of
evolutionary possibilities, by integrating Darwin’s principle of reproduction with
modification and, thus, of variability, in the intended structure of determination.

As a further consequence, the concept of randomness in biology that we are
constructing mathematically differs from physical forms of randomness. Indeed,
we cannot apply a probability measure to it because there is no pregiven space of
possible phenotypes in evolution (nor, we should say, in ontogenesis, where mon-
sters appear, sometimes hopeful from the point of view of evolution). The lack of
probability measures may resemble the “do not care” principle in algorithmic con-
currency, over computer networks, mentioned above (and networks are fundamen-
tal structures for biology as well). However, the possible computational paths are
pre-given and, moreover, processes are described on discrete data types, which are
totally inadequate to describe the many biological dynamics that are better analyzed
by mathematics of continua. Indeed, the sequential computers, in each node, are
Laplacian Discrete State machine, as Turing first observed [Longo et al., 2012a], far
away from organisms.

In summary, in biology, the superposition of quantum and classical physics, bio-
resonance, the coexistence of indeterminate acausal quantum molecular events, with
somatic effects, and of non-random historical and contextual convergences do not
allow to invent, as physicists do, a mathematically stable, pre-given phase space, as
a “background” space for all possible evolutionary dynamics.

Random events break symmetries of biological trajectories in a constitutive way.
A new phenotype, a new function, organ . . . organism, is a change (a breaking and
a reconstruction) of the coherence structure, thus a change of the symmetries in the
earlier organism. Like in physics, symmetry changes (thus breakings) and random-
ness seem to coexist also in life dynamics, but they affect the dynamics of the very
phase space.

Our approach to the biological processes as extended critical transitions fits with
this understanding of biological trajectories as cascades of symmetry changes 7. Of
course, this instability goes together with structural stability and is even an essential
component of it: each critical transition is a symmetry change and it provides vari-
ability, diversity, thus adaptivity which is at the core of biological viability. Even
an individual organism is adaptive to a changing ecosystem, thus biologically ro-
bust, by the ever different re-generation and remodeling of its parts. The sensitivity
to minor fluctuations close to transition, which a signature of critical phase transi-
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tions, enhances adaptivity of organisms (DNA methylation may affect even adaptive
behavior, [Kucharski et al., 2008]).

Recall now the historical and conceptual path that lead physics to invent modern
mathematization, by first focusing on some key invariants of trajectories, Galileo’s
inertia as momentum conservation, typically, then by considering them as funda-
mental observables for the deterministic/determining phase space, with respect to
the intended parameter, space in this case. In view of the remarks above, it seems
impossible to extract relevant invariants concerning the specific structure of pheno-
types or organisms and construct with them a space of all possible phenotypes. It
may be even inadequate as variability is one of the main theoretical invariants in
biology, beginning with individual mitoses. This does not forbid to propose some
general invariants and symmetries, yet not referring to the specific aspects of the
phenotype, as form and function. This is the path we followed when conceptualiz-
ing sufficiently stable properties, such as biological rhythms (3), extended criticality
( 7) and anti-entropy ( 9).

We follow by this physics’ historical experience of “objectivizing” by sufficiently
stable concepts. In biology, these must encompass change and diversity. As a mat-
ter of fact, our investigations of biological rhythms, extended criticality and anti-
entropy are grounded also on variability. In a long term perspective, these concepts
should be turned all into more precisely quantified (and correlated) mathematical
invariants and symmetries, in abstract spaces. This is what we hinted as for the two
dimensional time of rhythms and as for anti-entropy (see next chapter, 9), by imitat-
ing the way Schrödinger defined his equation in Hilbert spaces. That is an abstract
phase space for the quantum state function far away from ordinary momentum or
energy, parameterized over space or time. Abstract properties such as extended criti-
cality and anti-entropy do not refer to the invariance of specific phenotypes, but they
are themselves relatively stable, as they seem to refer to the few invariant properties
of organisms. Their analysis, in an eventually quantified space of extended critical-
ity, may give us a better understanding of objects and trajectories within the ever
changing space of phenotypes.

8.6 Causes and Enablement

We better specify now the notion of enablement, proposed in [Longo et al., 2012b]
and already used above. This notion may help to understand the role played by
ecosystemic dynamics in the formation of a new observable (mathematically, a new
dimension) of the phase space. Examples are given below and we will refine this
notion throughout the rest of this chapter.

In short, a niche enables the survival of an otherwise incompatible/impossible
form of life, it does not cause it. More generally, niches enable what evolves, while
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evolving with it. At most, a cause may be found in the “difference” (a mutation, say)
that induced the phenotypic variation at stake, as spelled out next.

This new perspective is motivated, on one side, by our understanding of phys-
ical “causes and determinations” in terms of symmetries, along the lines above of
contemporary physics, and, on the other side, by our analysis of biological “trajecto-
ries” in phylogenesis (and ontogenesis), as continual symmetry changes. Note that,
in spite of its replacement by the language of symmetries, the causal vocabulary still
makes sense in physics: gravitation, for example, causes a body to fall (of course,
Einstein’s understanding in terms of geodetics in curved spaces, unifies gravitation
and inertia in terms of symmetries and conversations properties, it is thus more gen-
eral). Gravitation instead, in embryogenesis, say, is a (fundamental) constraint, not
a cause11.

In biology, without sufficiently stable invariances and symmetries at the level
of organisms, thus without (possibly equational) laws for evolutionary dynamics,
“causes” positively and completely entailing, at least in principle, these dynamics
cannot be defined. As part of this understanding, we will discuss causal relations
in a restricted sense, that is, in terms of “differential causes”. In other words, since
symmetries are unstable, causality in biology cannot be understood as “entailing
causality” as in classical and relativistic physics and this will lead us to the proposal
that in biology, causal relations are only differential causes. If a bacterium causes
pneumonia, or a mutation causes a monogenetic diseases (anemia falciformis, say),
this is a cause and it is differential, i.e. it is a difference with respect to what is fairly
considered “normal”, “healthy” or “wild” as biologist say as for the genome, and it
causes a “ pathology” or an abnormal phenotype.

A classical mistake is to say: this mutation causes a mentally retarded child (a
famous genetic disorder, phenylketonuria), thus . . . the gene affected by the muta-
tion is the gene of intelligence, or . . . here is the gene that causes/determines the
intelligence, [Weiss, 1992, Stewart, 2004], or that encodes for (part of) the brain.
In logical terms, this consists in deducing from “notA implies notB” that “A im-
plies B” (or from “not normal A implies not normal B”, that “normal A implies
normal B”): an amazing logical mistake. All that we know is a causal correlation of
differences12.

We then propose to consider things differently. The observed or induced differ-
ence, a mutation with a somatic effect, say, or a stone bumping on someone’s head,
or a carcinogen (asbestos), does cause a problem; that is, the causal dictionary is
suitable to describe a differential cause - effect relation. The differential cause mod-

11 In microgravity, the less constrained cell’s reproduction generates more variability in the cy-
toscheleton, ongoing work by the ESA groupe in Rome, lead by Bizzarri.
12 Schrödinger, in his 1944 book, was well aware of the limits of the differential analyses of the
chromosomes and their consequences: “What we locate in the chromosome is the seat of this
difference. (We call it, in technical language, a ’locus’, or, if we think of the hypothetical material
structure underlying it, a ’gene’.) Difference of property, to my view, is really the fundamental
concept rather than property itself.”, p.28.
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ifies the space of possibilities, that is the compatibility of the organism with the
ecosystem. In other terms, it modifies the “enablement relations”. This is for us the
way an organism, a niche, an ecosystem may accommodate a phenotype, i.e. when
the modified frame becomes viable for a new or different phenotype (a new organ
or function, a differentiated organism).

We are forced to do so by the radical change of the default state in biology. Iner-
tial movement, or, more generally, conservation principles in physics, need a force
or an efficient cause to change13. In biology, in contrast to physics, the default state
guaranties change: reproduction with variation and motility, [Longo et al., 2015].
Differential causes “only” affect the intrinsic (the default) dynamics of organisms,
which are a priori “active”. More precisely, in our view, the differential causes mod-
ify the always reconstructed coherence structure of an organism, a niche, an ecosys-
tem. So enablement is modified: a niche may be no longer suitable for an organism,
or an organism for the niche, or a new niche and organism may be formed, by a dif-
ference. That is, a change in a niche, due to a differential physical cause (a climate
change, for example), may negatively select existing organisms while enabling the
adaptive ones, since the enablement relations differ.

Differential analysis are crucial in the understanding of existing niches. Short
descriptions of niches may be given from a specific perspective (they are strictly
epistemic): they depend on the “purpose” one is looking at, say. And one usually
finds out a feature in a niche by a difference, that is, by observing that, if a given
feature is modified, the intended organism dies. Then, as long as niches are com-
pared by differences, one may not be able to prove that two niches are identical or
equivalent (in enabling life), but one may show that two niches are different. Once
more, there are no symmetries organizing over time these spaces and their internal
relations.

In summary, while gradually spelling out our notion of enablement, we claim
that only the differential relations may be soundly considered causal. Moreover,
they acquire a biological meaning only in presence of enablement. In other words:

1. In physics, in presence of an explicit equational determination, causes may be
seen as a formal symmetry breaking of the equations. Typically, f = ma, a sym-
metric relation, means, for Newton, that a force, f , causes an acceleration a,
asymmetrically. Thus, one may consider the application of a Newtonian force
as a differential cause14. This is so, because the inertial movement is the “de-
fault“ state in physics (”nothing happens” if no force is applied). This analysis

13 See the revitalization of the Aristotelian distinction efficient vs. material cause, in [Bailly &
Longo, 2011]: following the terminology of quantum physics, the first may change states, the
second affects properties.
14 In an informal/naive way, one may say that Einstein reversed the causal implication: a space cur-
vature “causes” an acceleration that “causes“ a field, thus a force (yet, the situation is slightly more
complicated and the language of symmetries and geodetics is the only rigorous one, in particular
in reference to Lorentz-Poincaré group of symmetries).
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cannot be globally transferred to biology, inasmuch the default state is activity,
symmetries are not stable and, thus, one cannot write equations for phylogenetic
trajectories (nor break their symmetries).

2. As recalled several times, the default state in physics is inertia. In biology instead,
the default state is “activity”, as proliferation with variation and motility. As a
consequence, an organism, a population, a species, does not need a cause to be
active, e.g. to reproduce with modifications and move, and possibly occupy a
new niche15. That is, an organisms only needs to be enabled in order to survive
by changing. Moreover, in our terms, this default state involves continual critical
transitions, thus symmetry changes, up to phase space changes.

Consider for example an adjacent possible empty niche, for instance Kauff-
man’s example of the swim bladder (see for example [Kauffman, 2002, Kauffman,
2012, Longo et al., 2012b]), formed by Gould’s exaptation from the lung of some
fishes. Is it a boundary condition? Not in the sense this term has in physics, since
the swim bladder may enable a (mutated) worm or a bacterium to live and evolve,
according to unpredictable enabling relations. That is, the observable features of the
swim bladder to be used by the new organism to achieve functional closure in its en-
vironment may be radically new, possibly originating for both in a quantum based
acausal/indeterminate molecular event and by correlated variations: the niche and
the bacterium functionally shape each other. As discussed above, the combination
of various forms of (physical and biological) randomness modify the set of observ-
ables (the new organ, the new bacterium), not just the values of some observables.

Once more, in physics, energy conservation properties allow us to derive the
equations of the action/reaction system proper to the physical phenomenon in a pre-
given phase space. Random event may modify the value of one of the pertinent
observable, not the very set of observables. Typically, a river does co-constitute its
borders by frictions, yet the observables and invariants to be preserved are well-
know (energy and/or momentum), the game of forces as well. It may be difficult
to write all the equations of the dynamics and some non-linear effects (frictions
. . . ) may give the unpredictability of the trajectory. Yet, we know that the river
will go along a unique perfectly determined geodetics, however difficult it may be
to calculate it exactly (to calculate the exact numerical values of the dynamics of
the observables). Yet, a river never goes wrong and we know why: it will follow a
geodetics. An onto- or phylogenetic trajectory may go wrong, actually most of the
time it goes wrong. We are trying to theoretically understand “how it goes”, between
causes and enablement.

In summary, enablement and proliferation with variation and motility as default
state are at the core of the intelligibility of life dynamics. They conceptually frame
the development of life in absence of a pre-definable phase space.

15 Energy or matter, of course, is needed in order to reproduce, but it is not a cause. As we spell
out in 9, in biology energy is a parameter, like in allometric equations, it is not an “operator”, like
in physics.
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As we recalled, niches and phenotypes are co-constituted observables. Typically,
the organism adjusting to / constructing a new niche may be a hopeful monster,
that is the result of a “pathology” [Dietrich, 2003, Gould, 1977]. Now, notions of
“normal” and “pathological” makes no sense in physics. They are contextual and
historical in biology; they are contingent yet fundamental.

These differing notions may also help to distinguish between enablement and
causality, as the latter may be understood as a causal difference in the “normal” web
of interactions. In evolution, a difference (a mutation) may cause a “pathology”, as
hopeful monster. This monster, which is such with respect to the normal or wild
phenotype, may be killed by selection or may be enabled to survive by and in a new
co-constituted niche. A dark cavern may be modified, also as a niche for other forms
of life, by the presence of the blind fish. And the contingent monster becomes the
healthy origin of a speciation.

Thus, besides the centrality of enablement, we may maintain the notion of cause
— and it would be a mistake to exclude it from the biological dictionary. As a matter
of fact, one goes to the doctor and rightly asks for the cause of pneumonia — not
only what enabled it: find and kill the bacterium, please, that is the cause. Yet, that
bacterium has been enabled to grow excessively by a weak lung, a defective immune
system or bad life habits . . . Ṫherefore, the therapy should not only concern the
differential cause, the incoming bacteria, but investigate enablement as well [Noble,
2009]. And good doctors do so, without necessarily naming it.

Finally, following [Sonnenschein & Soto, 1999], by our approach we under-
stand cancer as being enabled by a modified “society of cells” (the concerned tis-
sue, organ, organism). A carcinogen affecting the organism (typically, the epithelial
stroma, [Sonnenschein & Soto, 1999, Maffini et al., 2004]) deferentially modifies
the “normal” tissue-niche for the cells and its coherence structure. The less con-
trolled cells’ default state, proliferation with variation, may then lead to the abnor-
mal proliferation, possibly with increasing variation (as an elementary example, a
teratoma has a larger number of cell types than a normal tissue).

8.7 Structural stability, autonomy and constraints

Organisms withstand the intrinsic instability / unpredictability of the changing phase
space, by the relative autonomy of their structural stability. They have an inter-
nal, permanently reconstructed autonomous coherent structure, Kantian wholes (in
Kant’s sense, see [Kant, 1781, Longo & Perret, 2013]), or Varela’s autopoiesis, that
gives them an ever changing, yet “inertial” structural stability. We proposed to un-
derstand a component of this inertia for organisms in terms of biological protention,
in chapter 4. They achieve a closure in a functional space by which they reproduce,
evolve and adapt by changing alone or together out of the indefinite and unorderable
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set of functions, or by finding new uses of pre-existing components to sustain their
activity in the ongoing co-evolution in the ecosystem.

The niche is indefinite in features prior to proliferation with variation and selec-
tion revealing what will co-constitute “task closure” for the organism. The niche
allows the tasks’ closure by which an organism survives and reproduces.

Organisms and ecosystems are structurally stable, also because of their con-
strained autonomy, as they permanently and non-identically reconstruct themselves,
their internal and external constraints. They do it in an always different, thus adap-
tive, way. They change the coherence structure, thus its symmetries. This recon-
struction is random, but not completely as it heavily depends on constraints, such as
the proteins types imposed by the DNA, the relative geometric distribution of cells in
embryogenesis, interactions in an organism, in a niche. Yet, the autopoietic activity
is based also on the opposite of constraints: the relative autonomy of organisms. In
other words, organisms transform the ecosystem while transforming themselves and
they can stand this continual changes because they also have an internal preserved
coherent structure (Bernard’s “milieu intérieur”). Its stability is maintained also by
slightly, yet constantly changing internal symmetries, which enhance adaptivity, be-
ginning with individual cellular mitosis in a multicellular organisms.

As we said, autonomy is integrated in and regulated by constraints, within an
organism itself and of an organism within an ecosystem. Autonomy makes no sense
without constraints and constraints apply to an autonomous unity. So constraints
shape autonomy, which in turn modifies constraints, within the margin of viability,
i.e. within the limits of the interval of extended criticality.

A way to understand the impossibility of a complete a priori description of ac-
tual and potential biological organisms and niches may be the following. Recall first
the role of observable invariants and conservation properties in establishing physi-
cal phase spaces, since Galileo’s inertia and the corresponding symmetry group, in
chapter 5. Then, recall how this allowed finite definitions, in terms of symmetries, of
abstract, possibly infinite, phase spaces. As a consequence of our analysis in terms
of symmetry breakings, any given, possibly complete description of an ecosystem is
incompressible, in the sense that any linguistic description may require new names
and meanings for the new unprestatable functions. These functions and their names
make only sense in the newly co-constructed biological and historical (even lin-
guistic) environment. There is no way to define them a priori with finitely many
words. The issue then is not infinity, but incompressibility by the lack of invariant
symmetries, which we described in relation to extended criticality.

8.8 Conclusion

We recalled here the role of invariance, symmetries and conservation properties
in physical theories, as also hinted in chapter 5. Our preliminary aim, here and in
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chapter 7 has been to show that the powerful methods of physics that allowed to
pre-define phase spaces on the grounds of the observables and the invariants in the
“trajectories” (the symmetries in the equations) do not apply in biology.

In biology, symmetries at the phenotypic level are continually changed, begin-
ning with the least mitosis, up to the “structural bifurcations” which yield specia-
tions in evolution. Thus, there are no biological symmetries that are a priori pre-
served, except and for some time, some basic structures such as bauplans (still more
or less deeply modified during evolution). There are no sufficiently stable mathemat-
ical regularities and transformations to allow an equational and law like description
entailing the phylogenetic and ontogenetic trajectories. These are cascades of sym-
metry changes and thus just cumulative historical dynamics. And each symmetry
change is associated to a random event (quantum, classical or due to bio-resonance),
at least for the breaking of symmetries, while the global shaping of the trajectory,
by selection say, is also due to non-random events. In this sense biological trajec-
tories are generic: they are just possible ones and yield a historical result, that is
an individuated, specific organism (see chapter 7, [Bailly & Longo, 2011, Longo &
Montévil, 2011a]).

In other words, this sum of individuals and individualizing histories, co-constituted
within an ever changing ecosystem, does not allow a compressed, finite or formal
description of the space of possibilities, that is, of the actual biological phase space
(functions, phenotypes, organisms): these possibilities are each the result of an un-
predictable sequence of symmetry breakings. This situation is in contrast to the
invariant (conservation) properties which characterize physical “trajectories”, in the
broad sense (extended to Hilbert’s spaces, in Quantum Mechanics).

An immense literature has been tackling “emergence” in life phenomena. Yet, in
the technical analyses, the strong and dominating theoretical frames inherited from
mathematical physics (or even computing) do not seem to have been abandoned. In
approaches from Artificial Life to Cellular Automata and various very rich analysis
of dynamical systems, the frame for intelligibility is a priori given under the form,
often implicitly, of one or more pre-defined phase spaces, possibly to be combined
by adequate mathematical forms of products (Cartesian, tensorial products . . . ). A
very rich and motivated frame for these perspectives is summarized in [Drake et al.,
2007]. Well beyond the many analysis which deal with equilibrium systems, an
inadequate frame for biology, these authors analyze interactions between multiple
attractors in dissipative dynamical systems, possibly given in two or more phase
spaces (the notion of attractor is a beautiful mathematical notion, which requires ex-
plicit equations or evolution functions — solutions with no equations — in pertinent
phase spaces in order to be soundly presented). Then, two or more deterministic, yet
highly unpredictable and independent systems, which interact in the attractor space,
may “produce persistent attractors that are offsprings of the parents. . . . Emergence
in this case is absolute because no trajectories exist linking the child to either parent
(p. 158) . . . [The] source [of emergence] is the creation, evolution, destruction, and
interaction of dynamical attractors (p. 179)”.
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This analysis is compatible with ours and it may enrich it by a further compo-
nent, in pre-given interacting phase spaces. Yet, we go somewhat beyond pre-given
phase spaces, by a critical perspective, which, per se, is a tool for intelligibility. Be-
low, we will hint again to further possible (and positive) work, besides negating the
possibility of an a priori and compressed mathematical description of (combined)
spaces of evolution.

In summary, in our approach, the intrinsic unpredictability of the very Phase
Space of phylogenetic (and ontogenetic) dynamics is due to:

1. physical and properly biological randomness, including bio-resonance, due to
interacting levels of organization, as a component both of integration and regu-
lation, in an organism, as well as of amplification of random fluctuations in one
level of organization through the others;

2. extended criticality, as a locus for the correlation between symmetry breaking
and randomness;

3. cascades of symmetry changes in (onto-) phylogenetic trajectories;
4. enablement, or the co-constitution of niches and phenotypes, a notion to be added

to physical determination.

These phenomena are also crucial in order to understand life persistence, as they
are at the origin of variability, thus of diversity and adaptability, which are an inte-
gral part of life stability. Our theoretical frame, in particular, is based on reproduc-
tion with variation and motility as proper default state for the analysis of phylo- and
ontogenesis. Selection shapes the bubbling forth of life by excluding the incompat-
ible.

By the lack of mathematically stable invariants (stable symmetries), there are no
laws that entail, as in physics, the biological observables in the becoming of the
biosphere. In physics, the geodetic principle mathematically forces objects never
to go wrong. A falling stone follows exactly the gravitational arrow. A river goes
along the shortest path to the sea, it may adjust adjust its path by nonlinear well
definable interactions as mentioned above, but it will never go wrong. These are
all geodetics. Even though it may be very hard or impossible to compute them,
they are unique, by principle, in physics. Living entities, instead, may follow many
possible paths, and they go wrong most of the time: most organisms are extinct,
almost half of fecundations in mammals do not lead to a birth, an amoeba does not
follows, exactly, a curving gradient — by retention it would first go along the former
tangent, then correct the trajectory, in a protensive action. In short, life goes wrong
most of the time, but it “adjusts” to the environment and changes the environment,
if possible: it is adaptive. It maintains itself, always in a critical transition, that is
within an extend critical interval, whose limits are the edge of death. It does so by
changing the observables, the phenotypes and its niche — in the sense of Darwinian
correlated variations of organisms and ecosystems. Thus, it is the very nature and
phase space of the living object that changes, in contrast to physics.
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We must ask new scientific questions and invent new tools, for this co-constitution
by organisms as they co-evolve and make their worlds together. This must be seen
as a central component of the biosphere’s dynamics. The instability of theoretical
symmetries in biology is not, of course, the end of science, but it sets the limits of
the transfer of physico-mathematical methods, as taught us from Newton onward, to
biology. Kant already doubted of this, [Kant, 1781]. In biological evolution we can-
not use the same very rich interaction with mathematics as it has been constructed
at the core of physical theories. However, mathematics is a human adaptive con-
struction: an intense dialogue with biology may shape for it new scientific paths,
concepts, structures, as it did with physics since Newton.

By providing some theoretical arguments that yield this “negative result”, in
terms of symmetries and critical transitions, we hope to have provided also some
tools for a new opening. Negative results marked the beginning of new sciences
in several occasions: the thermodynamic limit to energy transformation (increasing
entropy), Poincaré’s negative result (as he called his Three Body Theorem), Gödel’s
theorem (which set a new start to Recursion Theory and Proof Theory) all opened
new ways of thinking, [Longo, 2012]. Limits clarify the feasible and the non fea-
sible with the existing tools and may show new directions by their very nature, if
these limits have a sufficiently precise, scientific content.

The scientific answer we propose to this end of the physicalist certitudes, is based
on our analysis of symmetry changes in extended critical transitions and on the
notion of “enablement” in evolution (and ontogenesis). Enablement concerns how
organisms co-create their worlds, with their changing symmetries and coherence
structures, such that they can exist in a non-ergodic universe.

Our thesis is that evolution, as a “diachronic process” of becoming (but ontoge-
nesis as well), “enables”, but does not cause, unless differentially, the forthcoming
state of affairs. Moreover, Galileo and Newton’s entailed trajectories mathematized
Aristotle’s “efficient cause” only. Instead, in our view, in biological processes, such
entailed causal relations must be enriched by “enablement” relations, plus differ-
ential, physical, often quantum indeterminate, causes.

Life is caught in a causal web, but lives also in a web of enablement and radical
emergence of life from life, whose intelligibility may be largely given in terms of
symmetry changes and their association to random events at all levels of organiza-
tion.

As hinted in 8.5, a long term project would be to better quantify our approaches
to two dimensional time for rhythms, to extended criticality and to anti-entropy (see
next chapter 9), in order to construct from them an abstract phase space based on
these mathematically stable properties. The dynamical analysis should follow the
nature of Darwin’s evolution, which is an historical science, not meant to “predict”,
yet giving a remarkable understanding of the living. Thus, the dynamics of extended
criticality or anti-entropy should just provide the evolution of these state functions,
or how these abstract observables may develop with respect to the intended param-
eters, including time. And this, without being “projectable” on specific phenotypes,
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even not in probabilities, as it is instead possible for Schrödinger’s state functions
in Quantum Mechanics. To this purpose, one should give a biologically interesting
measure for extended criticality and describe in a quantitative way, in the abstract
space of extended critical transitions, the qualitative evolution of live. In a prelimi-
nary way, we have been able to do so, by following Gould’s analysis of increasing
biological complexity, that is in the analysis of the evolutionary dynamics of a global
observable we will call anti-entropy, 9.





Chapter 9
Biological order as a consequence of
randomness: Anti-entropy and symmetry
changes

Abstract:

In this chapter, we introduce the notion and the analysis of phenotypic complexity,
as anti-entropy, proposed in [Bailly & Longo, 2009] and develop further theoretical
consequences. In particular, we analyze how randomness, an essential component
of biological variability, is associated to the growth of biological organization, both
in evolution and in ontogenesis. Our approach, in particular, will focus on the role
of global entropy production and will provide a tool for a mathematical understand-
ing of some fundamental observations by S.J. Gould on how phenotypic complexity
increases, on average, along random evolutionary paths, without a bias towards an
increase. We also propose a preliminary analysis of biological regenerative pro-
cesses, which allows to associate entropy production of adults to anti-entropy, by
considering “collisions” between entropy and anti-entropy. Lastly, we analyze the
situation in terms of theoretical symmetries, in order to further specify the biological
meaning of anti-entropy as well as its strong correlations to randomness1.

Keywords:

entropy production, macroevolution, metabolism, regeneration, variability, random-
ness, anti-entropy

9.1 Introduction.

Notions of entropy are present in different branches of physics, but also in infor-
mation theory, biology . . . even economics. Sometimes, they are equivalent under

1 Part of these ideas have been presented in [Longo & Montévil, 2012].
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suitable transformations from one (more or less mathematized) domain to another.
Sometimes, the relation is very mild, or may be at most due to a similar mathemat-
ical expression. For example, one often finds formulas describing a linear depen-
dence of entropy from a quantity formalized as −∑i pi log(pi), where the pi are a
measure of the probability of the system to be in the i-th (micro-)states. Yet, differ-
ent theoretical frames may give very different physical meanings to these formulas:
somehow like a wave equation describing water movement has a similar mathemati-
cal formulation as Schrödinger’s wave equation (besides some crucial coefficients),
yet water waves and quantum state/wave functions have nothing to do with each
other.

Besides the formula, another element seems to be shared by the different mean-
ings given to entropy. The production of entropy is strictly linked to irreversible
processes.

But . . . what is entropy? The notion originated in thermodynamics. The first law
of thermodynamics is a conservation principle for energy. The second law states that
the total entropy of a system will not decrease other than by increasing the entropy
of some other system. Hence, in a system isolated from its environment, the entropy
of that system will not decrease.

More generally, in physics, increasing entropy corresponds to energy dispersion
(or diffusion). And here we have the other feature shared by the different views on
entropy: in all of its instances, entropy is linked to randomness, since diffusion, in
physics, is based on random walks. Thus, energy, while being globally preserved,
diffuses. In particular, heat flows from a hotter body to a colder body, never the
inverse, and this by random particles’ walks. Only the application of work (the im-
position of order) may reverse this flow. As a matter of fact, entropy may be locally
reversed, in some cases, by pumping energy. For example, a centrifuge may separate
two gazes, which mixed up by diffusion. This separation reduces the ergodicity (the
amount of randomness, so to say) of the system, as well as its entropy.

Living beings construct order by absorbing energy. In Schrödinger’s audacious
little book, What is life? [Schrödinger, 1944], it is suggested that organisms also use
order to produce order, which he calls negentropy in the second part of his book, that
is entropy with a negative sign. And this order is produced by using the order of the
chromosomes’ aperiodic structure (his first conjecture) and by absorbing organized
nutrients (don’t we, the animal, eat mostly organized fibers?). Of course, a lot can
be said, today, against these tentative theorizations by the great physicist, yet they
suggest interesting paths for thought — in particular the second part.

But is really entropy the same as disorder? There is a long lasting and sound
critique, in physics, of the “myth” of entropy as disorder. F. L. Lambert (see
http://entropysite.oxy.edu/, especially [Lambert, 2007]) is a firm ad-
vocate of this critical attitude. This is perfectly fair since entropy is “just” energy

http://entropysite.oxy.edu/
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dispersal in physics, regardless of whether the system is open or closed2. Yet, as
explained in [Hayflick, 2007], “in physics, a lowered energy state is not necessarily
disorder, because it simply results in the identical molecule with a lowered energy
state. The fact that such a molecule might be biologically inactive may not concern
the physicist, but it definitely does concern the biologist . . . .” In this perspective,
it is then sound to relate entropy also to disorder in biological dynamics: a lesser
activity of a molecule may mean metabolic instability, or, more generally, less co-
herent chemical activities of all sorts. As a consequence, this may result in less
bio-chemical and biological order.

In either case, though, and by definition, entropy has to be related to energy dis-
persal. As a matter of fact, the analysis of heat diffusion in animals and humans
has a long history that dates back to the ‘30s, [Hardy, 1934]. Since then, several
approaches tried to bridge the conceptual gap between the purely physical perspec-
tive and the biologist’s concern with organization and with its opposite, disorder, in
particular when increasing, in aging typically [Aoki, 1994, Hayflick, 2007, Marineo
& Marotta, 2005, Pezard et al., 1998].

Let us now summarize the perspective of this chapter in a very synthetic way:
phylogenetic and ontogenetic processes may be globally understood as the “never
identical iteration of a morphogenetic process”. The conjunction of inheritance and
randomness is at the core of that “ never identical iteration”. By adding selection and
following Gould’s remarkable insight, we will in particular understand below the
increasing complexity of organisms along evolution, as the result of a purely random
diffusion in a suitable phase space (and its definition is the crucial issue). A short
analysis of development, though, will first stress the role of entropy in ontogenesis.

9.2 Preliminary remarks on entropy in ontogenesis.

In an organism, the internal entropy production has in primis a physical nature, re-
lated to all thermodynamic processes, that is to the transformation and exchange
of matter and energy. Yet, we will add to this a properly biological production for
entropy: the production due to all irreversible processes, including biological (re-
)construction. In other words, we also consider both embryogenesis and cell re-
placement and repair (ontogenesis, globally) from the point of view also of entropy
production as they constitute irreversible processes: that is, while producing or re-
producing organization, an organism also produces entropy, as “disorganization” —
this is one of our key points in this section.

Observe first that, in a unicellular organism, entropy is mostly released in the ex-
terior environment and there are less signs of increasing disorder within the cell. Yet,

2 However, the argument that disorder is an epistemic notion, not suitable to physics, is less con-
vincing, since classical randomness, at the core of entropy, is also epistemic (see above and [Bailly
& Longo, 2007]).
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changes in proteome and membranes are recorded and may be assimilated to aging,
see [Lindner et al., 2008, Nyström, 2007]. In a metazoan, however, the entropy pro-
duced, under all of its forms, is also and inevitably transferred to the environing
cells, to the tissue, to the organism, [Bailly & Longo, 2009]. Thus, besides the inter-
nal forms of entropy (or disorder) production, a cell in a tissue, the structure of the
tissue itself . . . the organism, is affected by this dispersal of energy, as increasing
disorder, received from the (other) cells composing the tissue , thus the organism.
Aging, then, is also (or mostly) a tissular and organismic process: in an organism, it
is the network of interactions that is affected by entropy growth, while, conversely,
this may have a fall-out also in the intra-cellular activities (such as metabolism,
oxidative effects . . . , see below).

Moreover, the effect of the accumulation of entropy during life contributes, math-
ematically, to its exponential increase over time. Thus, with aging, this increase of
entropy exceeds the reconstructive activities, which oppose global entropy growth in
earlier stages of life (this theory, articulated in four major life periods, is proposed
in [Bailly & Longo, 2009]). Now, we insist, entropy production, in all its forms,
implies increasing disorganization of cells, tissues, and the organism. This, in turn,
may be physically and biologically implemented by increasing metabolic instability,
oxidative stress, affecting cells’ activities as well as the structure and coherence of
tissues (matrix, collagen’s links, tensegrity . . . ) and many more forms of progres-
sive disorganization, see [Demetrius, 2004, d’Alessio, 2004, Sohal & Weindruch,
1996, Olshansky & Rattan, 2005]. Of course, there may be other causes of aging,
but the entropic component should not be disregarded and may also help in propos-
ing a unified understanding of different processes that may contribute to aging.

Thus, our second observation is that entropy production is due to all irre-
versible processes, both the thermodynamic ones and the permanent, irreversible,
(re-)construction of the organism itself. This generating and re-generating activity,
from embryogenesis to repair and turnover, is typically biological and it has been
mathematically defined as “anti-entropy” (see [Bailly & Longo, 2009] and below3).
In other words, irreversibility in biology is not only due to thermodynamic effects,
related to the use and transformation of energy, typically, but also to all processes
that establish and maintain biological organization — that is, it is concomitantly
due to entropy production and its biological opposite, anti-entropy production: em-
bryogenesis, for example, is an organizing and highly irreversible process “per se”.
And it produces entropy not only by the thermodynamic effects due to energy dis-

3 The word anti-entropy has already been used, apparently only once and in physics, as the math-
ematical dual of entropy: its minimum coincides with the entropy maximum at the equilibrium, in
mixture of gases at constant temperature and volume [Duffin & Zener, 1969]. This is a specific and
a very different context from ours. Our anti-entropy is a new concept and observable with respect
to both negentropy and this mathematical dual of entropy: typically, it does not add to an equal
quantity of entropy to give 0 (as negentropy), nor satisfies minimax equations, but it refers to the
quantitative approach to “biological complexity” (see below), as opposing entropy by the various
forms of biological morphogenesis, replacement and repair.
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persion, but also, in our view, by the very biological constructive activities, that is
while the organism increases or reconstructs its complex organization. Let’s see this
more closely.

Cell mitosis is never an identical “reproduction”, including the non-identity
of proteomes and membranes. Thus, it induces an unequal diffusion of energy by
largely random effects: typically, the never identical bipartition of the proteome,
organelles, . . . . That is, biological reproduction, as morphogenesis, is intrinsically
associated to variability and, thus, it produces entropy also by lack of (perfect) sym-
metries. By this, it induces its proper irreversibility, beyond (and in addition to)
thermodynamic irreversibility.

As a comparison, consider an industrial construction of computers. The aim is to
produce, in the same production chain, identical computers. Any time a computer is
duplicated, an identical one is produced (identical up to observable use of the ma-
chine). Organization then (locally) grows, at the expenses of energy (a computer is
an highly complex and structured machine, made out of less complex components).
Entropy is then produced, in principle, only by the required use and inevitable dis-
persal of energy, while the construction per se just increases organization, along the
production chain. Moreover, if, in the construction chain of computers, one destroys
the second computer, you are back with one computer and you can iterate identically
the production of the second. The process is both reversible (destroy one computer)
and iterable (produce again an identical machine), by importing a suitable amount of
energy, of course. Imperfection must be (and, for 99% or so of the machines, they
are) below observability and functionality: they are negligible errors and “noise”.
Moreover, in general, in computers’ and software’s increasing complexity, progress
or change are not due to errors or noise in construction and design . . . .

As we said, it is instead a fundamental feature of life that a cell is never identical
to the “mother” cell. This is at the core of biological variability, thus of diversity,
along evolution as well as in embryogenesis (and ontogenesis, as permanent adap-
tive renewal of the organism, never identically). In no epistemic nor objective way
this may be considered a result of errors nor noise: variability and diversity are one
of the main “invariants” in biology, jointly to structural stability, which is never
identity, and, all together, they make life possible.

Thus, while producing new order (anti-entropy), life, as iteration of a never iden-
tical and an always slightly disordered morphogenetic process, generates also en-
tropy (disorder), by the (somewhat disordered) reproductive process itself. In a
metazoan, we insist, each mitosis is a critical transition (see chapter 7) and pro-
duces two slightly different cells, both different also from the “mother” cell: the
asymmetry is a form of disorder and, thus, of entropy growth, within the locally
increasing order. And this, of course, in addition to the entropy due to free energy
consumption. It is this variability that gives this further, and even more radical, form
of irreversibility to all biological dynamics (in evolution and ontogenesis). There is
no way to neither revert nor iterate identically an evolutionary or embryogenetic
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process: if you kill a cell after mitosis, you are not back to the same original cell and
this cell will not iterate its reproduction identically4.

It should be clear that this theoretical frame concerning the overall increase of
entropy in biology says nothing about how this disorganization takes place in the
various processes, nor anything about its “timetable”. The analyses of the detailed
phenomena that implement it in ontogenesis are ongoing research projects. So far,
we could apply these principles to an analysis of growing complexity in evolution,
as summarized next. In the last part of this chapter, we also propose a preliminary
analysis of organizational regeneration and its relation to symmetry changes.

9.3 Randomness and Complexification in Evolution.

Available energy transformation is the unavoidable physical process underlying re-
production and variability. At the origin of life, bacterial reproduction was (rela-
tively) free, as other forms of life did not constraint it. Diversity, even in bacteria, by
random differentiation, produced competition and a slow down of the exponential
growth (see diagram 9.3). Simultaneously, though, this started the early variety of
live, a process never to stop.

S.J. Gould, in several papers and in two books [Gould, 1989, Gould, 1997], uses
this idea of random diversification in order to understand a blatant but too often
denied fact: the increasing “complexification of life. The increasing complexity of
biological structures has been often denied in order to oppose finalistic and anthro-
pocentric perspectives, which viewed life as aiming at Homo sapiens as the “high-
est” result of the (possibly intelligently designed) evolutionary path.

Yet, it is a fact that, under many reasonable measures, an eukaryotic cell is more
“complex” than a bacterium; a metazoan, with its differentiated tissues and its or-
gans, is more “complex” than a cell . . . and that, by counting also neurons and
connections, cell networks in mammals are more complex that in early triploblast
(which have three tissues layers) and these have more complex networks of all sorts
than diplobasts (like jellyfish, a very ancient animal). This global, on average, non-
linear increase can be quantified by counting tissue differentiations, networks and
more, as hinted by Gould and more precisely proposed in [Bailly & Longo, 2009],

4 The incompetent computationalist (incompetent in Theory of Computation), who would say that
also computers are not identical, misses the point: the theory of programming is based on identical
iteration of software processes on reliable hardware, i.e. functionally equivalent hardware (and it
works, even in computer networks, see the analysis of primitive recursion and portability of soft-
ware in [Longo, 2009]). Any biological theory, instead, must deal with variability, by principle.
As recalled above, variability as never identical iteration, in biology, is not an error: it is an essen-
tial component of biological dynamics, diversity and, thus, structural stability, in ontogenesis and
phylogenesis.
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a text that we will extensively summarize and develop, next. The point is: how to
understand this increasing complexity without invoking global aims?

Gould provides a remarkable answer based on the analysis of the asymmetric
random diffusion of life. Asymmetric because, by principle, life cannot be less com-
plex than bacterial life5. So, reproduction by variability, along evolutionary time and
space, randomly produces, just as possible paths, also more complex individuals.
Some happen to be compatible with the environment, resist and proliferate (a few
even very successfully) and keep reproducing with further modifications. Also more
complex individuals, since the random exploration of possibilities may, of course,
decrease the complexity, no matter how this is measured. Yet, by principle,
any asymmetric random diffusion propagates, by local interactions, the original
symmetry breaking along the diffusion.

Thus there is no need for a global design or aim: the random paths that compose
any diffusion, also in this case help to understand a random growth of complexity, on
average. On average, since, as we said, there may be local inversion in complexity;
yet, the original asymmetry, from the early bacteria also to more complex individu-
als (life cannot be simpler than those early organisms), randomly forces a drift to the
“right” of our figure. This is nicely made visible by figure 9.1, after [Gould, 1989],
p. 205. The image explains the difference between a random, but oriented develop-
ment (on the right, 9.1b), and the non-biased, purely random diffusive bouncing of
life expansion on the left wall, on the left 9.1a.

Of course, time runs on the vertical axis, but . . . what is in the horizontal one?
Anywhere the random diffusion takes place or the intended phenomenon “diffuses
in”. In particular, the horizontal axis may quantify “biological complexity” whatever
this may mean. The point Gould wants to clarify is in the difference between a fully
random vs. a random and biased evolution. The biased right image does not apply to
evolution: bacteria are still on Earth and very successfully. Any finalistic or selective
bias would instead separate the average random complexification from the lower
wall (no more bacteria).

We insist that complexity may locally decrease and sometimes it may yield com-
patible organisms, possibly for a new niche: tetrapods may go back to the sea and
lose their podia (the number of folding decreases, the overall body structure sim-
plifies). Some cavern fishes may loose their eyes, in their new dark habitat; others,
may lose their red blood cells [Ruud, 1954].

Thus, we can understand the increase of global complexity on the basis of the
purely random effect of variability on one side, and of a minimum for the com-
plexity, on the other. In fully general terms, an unbiased diffusion, starting for a
pointwise (Dirac) distribution explains more and more explorations of higher (but
also lower) complexity: this comes from the increase of variance over time asso-

5 Some may prefer to consider viruses as the least form of life. The issue is controversial, but it
would not change at all Gould’s and our perspective: we only need a minimum which differs from
inert matter.
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t

(a) Passive trend, there are more tra-
jectories near 0.

t

(b) Driven trend, the trajectories have a drift
towards an increased mean.

Fig. 9.1: Passive and driven trends. In one case the boundary condition, materialized by a left wall
(0 or least complexity) is the only reason why the mean increase over time (boundary condition),
and this increase is slow. In the case of a driven trend, or biased evolution, the rule of the random
walk leads to an increase of the mean over time (it shows an intrinsic trend in evolution). Notice that
from the neo-Darwinian point of view, a driven trend typically correspond to a selective pressure,
here for increased complexity; whilst the passive trend correspond to a neutral theory [Hubbell,
2001], with a domain incompatible with life (the left wall of least complexity). Gould’s and our
approach are based on passive, random trends, which means that we do not need any intrinsic bias
for increasing complexity in the process of evolution. Random changes may include some major
critical phase transitions; for example, the formation of eukaryotes or of multicellular organisms,
see [Maynard-Smith & Szathmary, 1997].

ciated to random walks. The left Wall provides a boundary for the exploration of
lower complexities, which leads to an overall increase of complexity. This increase
is then due to boundary conditions and not to the local dynamic of evolution per se.

However, beyond the unbiased, linear diffusion, some “local” interactions can be
involved: on average, variation by simplification leads towards a biological niche
that has more chances to be already occupied, while a more complex organism may
have more chances to use or construct a new niche. In mathematical terms, local
selective effects can be modeled by a term in −m(t,K)2, which would accelerate
the increase of the average complexity. Here also, there is no aim towards greater
complexity: just the greater chances, for a “simpler” organism, to bump against
an already occupied niche and for a more complex one to construct a new way of
living. Thus, more complex variants have just slightly more probabilities to survive
and reproduce, as they may fit into and/or create new niches.
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From another point of view, the biological meaning of an increase of biological
complexity involves different forms of organization, including but not exclusively,
different ways to inhabit the world. Therefore the exploration of higher levels of
complexity implies the exploration and construction of new niches.

Of course, in biology, variability and, thus, diversity are grounded on random-
ness. No need for finalism nor a priori “global aim” nor “design” at all, just a con-
sequence of an original symmetry breaking in a random diffusion on a very peculiar
phase space: biomass times complexity times time (see figure 9.3 for a complete
diagram).

Similarly as for embryogenesis, the complexification is a form of local reversal
of entropy. The global entropy of the Universe increases (or does not decrease), but
locally, by using energy of course, life inverses the entropic trend and creates organ-
isms of increasing complexity. Of course, embryogenesis is a more canalized pro-
cess, while evolution seems to explore all “possible” paths, within the ecosystem-to-
be. In evolution, most paths turn out to be incompatible with the environment, thus
they are eliminated by selection, while enablement is at the core of the ever chang-
ing dynamics of evolution, see chapter 8. In embryogenesis, increasing complexity
seems to follow an expected path and it is partly so: the constraints imposed, at least,
by the inherited DNA and zygote, limit the random exploration due to cell mitosis.
But only in part, as failures, in mammals say, seem to concern almost 50% of fe-
cundations. Yet, their variability, joint to the many (variable) constraints added to
development (first, a major one, a fundamental chemical trace of an history: DNA),
is an essential component of cell differentiation. Tissue differentiation involve, for
this point of view, a form of (strongly) regulated/canalized variability along cell
proliferation.

Thus, by different but correlated effects, biological complexity increases, on
average through evolution, and reverts, locally, entropy. We called anti-entropy,
[Bailly & Longo, 2009], this observable opposing entropy, both in evolution and
embryogenesis; its peculiar nature is based on reproduction with random variation,
submitted to constraints. As observed in the footnote above, anti-entropy differs
from negentropy, which is just entropy with a negative sign, also because, when
added to entropy, anti-entropy does not give 0. In our perspective, entropy and anti-
entropy, as defined, coexist in a very different singularity (different from 0, the sum
of entropy and equal negentropy): they yield a non null interval of extended critical-
ity. In the next section, we will use this notion to provide a mathematical frame for
a further insight by Gould.
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9.4 (Anti-)Entropy in Evolution.

9.4.1 The diffusion of Bio-mass over Complexity.

In yet another apparently naive drawing, Gould proposes a further visualization of
the increasing complexity of organisms along evolution. It is just a qualitative image
that the paleontologist draws on the grounds of his experience. It contains though
a further remarkable idea: it suggests the “phase space” (the space of observables
and parameters) where one can analyze complexification. It is bio-mass density that
diffuses over complexity, that is, figure 9.2 qualitatively describes the diffusion of
the frequency of occurrences of individual organisms per unity of complexity.

Fig. 9.2: Evolution of complexity as understood by Gould. This illustration is borrowed from
[Gould, 1997], p.171. This representation is designed on the basis of paleontological observa-
tions. The core idea is to explain the biological mean increase of complexity from the left wall of
minimal complexity.

This is just a mathematically naive, global drawing of the paleontologist on the
basis of his experience. Yet, it poses major theoretical challenges. The diffusion,
here, is not along a spatial dimension. Physical observables usually diffuse over
space in time; or, within other physical matter, which also amounts to diffusing in
space. Here, diffusion takes place over an abstract dimension, “complexity”. But
what does biological complexity mean, exactly? Hints are given in [Gould, 1997]:
the addition of a cellular nucleus (from bacteria to eukaryotes), the formation of
metazoa, the increase in body size, the formation of fractal structures (usually —
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new — organs) and a few more. . . . In a sense, complexity is increased by any vari-
ation or added novelty provided by the random “bricolage” of evolution. This is
often due to “exaptation” (adaptation ex-post of old features to new functions, a key
notion by Gould), which happens to be, at least for some time, compatible with the
environment. Only a few organisms generate more complex ones over time, but,
by the original symmetry breaking mentioned above, this is enough to increase the
global complexity.

Of course, the figure above is highly unsatisfactory. It gives two slices over time
where the second one is somewhat inconsistent: where are dinosaurs at present time?
It is just a sketch, but an audacious one, as we said, if analyzed closely. Mathematics
though, may help us to consistently add a more general understanding and the third
missing dimension, time.

A simple form of diffusion equation of a quantity q in time t over space x, goes
like:

∂q
∂ t

= D
∂ 2q
∂x2 +Q(t,x) (9.1)

where Q(t,x) is a source term describing growth in mass. The equation gives the
variation of q in time (∂q/∂ t) as a function of the variation (∂ . . ./∂x) of the space
gradient (∂q/∂x).

Yet, in our case, the diffusion of this strange quantity, m, a bio-mass density, takes
place over an even more unusual “space”, biological complexity, whatever the latter
may mean. In [Bailly & Longo, 2009], we dared to further specify Gould’s hints
for biological complexity, as a quantity K = αKc + βKm + γK f where α , β , and
γ are the respective “weights” of the different types of complexity within the total
complexity (we take α +β + γ = 1). We do not get into the details given in that pa-
per and just summarize the basic ideas. The challenge is to quantify a well-defined
observable, measuring the complexity of an organism. The measure summarized
below is based on rather arbitrary but reasonable choices. The idea is to take an in-
stantaneous picture of an organism or to consider just an “anatomical” evaluation
of complexity. First, the components of the list below are far from complete: they
form a backbone of a possible measure of phenotypic complexity. Second, they are
a priori non-positively correlated with “biological organization”, which should in-
clude functions, interactions, contexts . . . . That is, we care to distinguish between
complexity (an anatomic, static picture) and organization (based on the dynamic
functionality of a living organism). Clearly, organization requires complexity, but
the anatomic description of a dead organism does not require functions. This dis-
tinction between complexity and organization is just our instrumental proposal for
a qualitative analysis of complexity growth. Yet, as a side effect, it produced some
insight into developmental dynamics as hinted below, see 9.5.1.

In short, phenotypic complexity K is composed by three elements:
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1. Kc (“combinatorial” complexity) corresponds to the possible cellular combina-
toric (which includes cellular differentiation);

2. Km (“morphological” complexity) is associated to the topological forms and
structures which arise (connexity and fractal structures);

3. K f (“functional” complexity) is associated to the relational structures support-
ing, but not identified with, biological functions (cellular and neuronal networks,
other interaction networks).

K = αKc +βKm + γK f will be more closely defined in section 9.66.
K will be used below as a tentative quantification of complexity as anti-entropy,

in particular in biological evolution: the increase of each of its components (more
cellular differentiation, more or higher dimensional fractal structures, richer net-
works . . . yield a more “complex” individual). As we already hinted and will further
explain below, we called it anti-entropy as it opposes entropy (as biological disor-
der). Anti-entropy has the same mathematical dimension as entropy and negentropy
— that is, they can face each other in an equation, a fundamental technical property
for our mathematical developments.

Of course, many more observables and parameters may be taken into account in
order to evaluate the complexity of an organism: [Bailly & Longo, 2009] provides
just a mathematical basis and a biological core for a preliminary analysis (an ap-
plication to ontogenesis as an analysis of C. Elegans development is also presented
there). They suffice though for a qualitative (geometric) reconstruction of Gould’s
curve, with a sound extension to the time dimension.

As mentioned above, anti-entropy opposes, locally, to entropy: it has the same di-
mension, yet it differs from negentropy, since it does not sum up to 0, in presence of
an equal quantity of entropy. It differs also from information theoretic frames, where
negentropy has been largely used, as a measure of information. Information, as an
observable on discrete data types and discrete codings, is independent from coding
and Cartesian dimensions. That is, as we know since Turing (and Shannon), dis-
crete data bases and their informational elaboration (or transmission, Shannon) do
not depend on the Cartesian dimension of the space for elaboration or transmission.
This is crucial for Shannon-Brillouin as well as for Turing-Kolmogorov-Chaitin
information theories, see [Longo et al., 2012a]. Anti-entropy, instead, as defined
above, depends on foldings, singularities, fractality . . . . Thus, it is a geometric and
dimensional notion, and, therefore, by definition, it is sensitive to codings (and to
dimension), in contrast to information theoretical notions and their correlate, negen-

6 As for now, just notice that, say, humans have some 600 muscles, while a cow or a horse, some
400 — these are connected components of an organs’ system; neural networks are far richer in
humans than in all other animals — elephant and dolphins have about the same number of neurons
as humans, but far less synaptic connections. In no way by this we happen to be “better” than the
other animals: bacteria, say, have been the most successful organisms in evolution, as they still
compose about half of the biomass. And they will surely overcome the ongoing destruction of our
ecosystem, largely caused by our too big, too stupid, randomly produced brains.
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tropy. Of course, we consider that geometric structuring and physico-mathematical
dimensions are crucial for life and its analysis.

The first step now is to adapt equation 9.1 to this new phase space, given by
Gould’s observables and parameters: the biomass m diffusing over the complexity
K. Then write:

∂m
∂ t

= D
∂ 2m
∂K2 +Q(t,K) (9.2)

But what is here Q(t,K), the source term? In order to instantiate Q by a specific
function, but also in order to see the biological system from a different perspective
(and get to the equation also by a different procedure, an “operatorial approach”),
we now give a central role, as an observable, to the “global entropy production”.

Now, in physics, energy, E, is the “main” observable, since Galileo inertia, a prin-
ciple of energy/momentum conservation, to Noether’s theorems and Schrödinger’s
equation. Equilibria, geodetic principles etc. directly or indirectly refer to energy
and are understood in terms of symmetry principles, as we extensively stressed
in this book. Moreover, at least since Schrödinger and his equation in (quantum)
physics, one may view energy as an operator and time as a parameter7.

As stressed above, in biology, also constitutive processes, such as anti-entropy
growth (the construction and reconstruction of phenotypic complexity), produce en-
tropy, since they also produce some (new) disorder (recall: at least the proteome,
after a mitosis, is non-uniformly and partly randomly distributed in the new cells).
In these far form equilibrium, dissipative processes – possibly even non-stationary,
as the energy flow may be non constant – such as evolution and ontogenesis, energy
turns out to be just one (very important) parameter. One eats (and this is essen-
tial) and gets fatter: production and maintenance of complexity and organization
requires energy. Typically, in allometric equations, so relevant in biology (see sec-
tion 2.2), energy or mass appear as a parameter. Biology needs at least one different
observable, in a different dimension, tentatively defined by K above, as phenotypic
complexity – besides the correlated organization. Thus, in our approach, the key
observable is complexity that is formed or renewed, as anti-entropy production. We
can also see it as an operator, to be associated with time (the time for setting up
complexity), as we shall argue, while we consider energy a parameter.

As explained at the beginning of this chapter, entropy is associated to all time
irreversible processes, from energy flows to anti-entropy production. We call σ this
key observable, global entropy production, which summarizes all time-irreversible
phenomena. By its irreversibility, it is strongly linked to time — one can measure
time by the formation of complexity, both in embryogenesis and evolution, which

7 In [Bailly & Longo, 2009] a brief introduction to Schrödinger’s approach is given. In short,
Schrödinger transforms an equation with the structure E = p2

2m +V (x), where V (x) is a potential,
by associating E and p to the differential operators ∂/∂ t and ∂/∂x, respectively.
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produces entropy, per se, as we said, and by all irreversible processes, that is by σ .
In this, partly formal sense, (anti-)entropy production may be positively correlated
to time and both may be seen as the “constitutive operators” of biological phenom-
ena. We try by this, in a partly mathematized way, to stress that time has a different
role on biology vs. physics: first, by its intrinsic non reversibility (in many phys-
ical theories time is reversible); second, it is the operator that constructs life. The
equations somewhat justify this perspective.

In summary, we proposed to change the conceptual frame and the conceptual
priorities with respect to physics: we associated the global entropy production σ

to the differential operator given by time, ∂/∂ t (Schrödinger does this for energy,
which is conjugated to time, in quantum physics). Thus, our approach allowed to
consider biological time as an “operator”, both in this technical sense and in the
global perspective of attributing to time a key constitutive role in evolution and in
ontogenesis. But how to express this global observable?

9.4.1.1 A Balance Equation.

In a footnote to [Schrödinger, 1944], Schrödinger proposes to analyze his notion of
negative entropy as a form of Gibbs free energy G. We apply now this idea to proper
anti-entropy S− = −kK, where k is a positive dimensional constant and K is the
phenotypic complexity above, which we also referred to as anti-entropy, by a small
abuse of language, as they may be identified up to a constant.

Now, G = H−T S is the system’s enthalpy, where T is temperature, S is entropy
and H =U +PV (where U is the internal energy, P and V are pressure and volume).

By definition, metabolism R has the physical dimension of a power and corre-
sponds to the difference between the fluxes of generalized free energy G, entering
and exiting through the surface Σ :

R = ∑[JG(x)− JG(x+dx)] =−∑dx(DivJG) (9.3)

Take the volume ∑dx = 1, then the conservation (or balance) equation is ex-
pressed in the general form:

R =−DivJG =
dG
dt

+T σ (9.4)

where σ represents the global production of entropy, that is σ is the entropy pro-
duced by all irreversible processes, including the production of biological complex-
ity or anti-entropy. Thus, the global balance of metabolism for the “system of life”
(the evolving biosphere) has the following form, where S− and S+ are anti-entropy
and entropy, respectively:
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R =
dH
dt
−T

(
dS−

dt
+

dS+

dt

)
+T σ (9.5)

That is,

R = a
dM
dt
−T

(
dS−

dt
+

dS+

dt

)
+T σ (9.6)

where H ' aM, for a mass M and a coefficient a, which has the magnitude of a
speed squared — we relate energy and mass by dimensionality, as usual in physics.

T σ is a crucial quantity: it contains our σ , modulo the temperature T , since R is
a power. In the abstract, but effective, style of theoretical physics, we proceed by a “
dimensional analysis”. T σ corresponds to the product of forces by fluxes (of matter,
of energy — chemical energy, for instance — etc.). Now, a flux is proportional to a
force, thus to a mass, and hence T σ is proportional to a mass squared. It can then
be written, up to a coefficient ζb and a constant term T σ0 as:

T σ ≈ ζbM2 +T σ0 (9.7)

ζb is a constant that depends only on the global nature of the biological system
under study and it is 0 in absence of biological entities, as M is the bio-mass.

We may now use as “state function” for our analysis of bio-mass diffusion over
time t and complexity K, a bio-mass density function m(t,K), and use the operato-
rial approach relatively to equation 9.7. The full details of this approach are given
in [Bailly & Longo, 2009]. In short, similarly to the construction of Schrödinger’s
diffusion equation from the equation E = p2

2m +V (x) in the footnote above (we as-
sociated E and p to the differential operators ∂/∂ t and ∂/∂x, respectively), we may
transform equation 9.7 into a diffusion equation by associating T σ and M to the
differential operators ∂/∂ t and ∂/∂K, respectively. This further justifies 9.2 as de-
rived now from T σ , which results form a global balance equation, and provides the
source function Q(t,K), under the form of a linear map αbm, due to the constant
term T σ0:

∂m
∂ t

= Db
∂ 2m
∂K2 +αbm (9.8)

where Db is a diffusion coefficient. Its solution
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m(t,K) =
A√

t
exp(at)exp(−K2/4Dt) (9.9)

yields the diagram in figure 9.3.

Fig. 9.3: Time evolution of mass distribution over anti-entropy. The initial condition is a finite mass
at almost 0 anti-entropy, thus having the shape of a pulse. The biomass is latter driven by diffusion.
The asymmetry of the distribution is given only by the propagation of the effects of the wall of
minimum complexity.

In summary, while skipping all the technical details in [Bailly & Longo, 2009],
we could derive, by mathematics and starting from Gould’s informal hints, a general
understanding as well as the behavior of the “evolution of complexity function” w.
r. to time. And this fits data: at the beginning the linear source term gives an expo-
nential growth of free bacteria. Then, they complexify and compete, up to reaching
the biological phenotype with lots of components.

• Remark. By our approach, we may provide a theoretical/mathematical justifica-
tion of the ZFEL principle in [McShea & Brandon, 2010]:
“ZFEL (Zero Force Evolutionary Law, general formulation): In any evolutionary
system in which there is variation and heredity, there is a tendency for diversity
and complexity to increase, one that is always present but may be opposed or
augmented by natural selection, other forces, or constraints acting on diversity or
complexity.”
In other words, ZFEL may be derived from our “asymmetric random diffusion
principle”, in a Darwinian context. That is, it follows from considering Darwin’s
two fundamental principles, reproduction with modification and selection , in
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presence of an asymmetric random diffusion. This, of course, further justifies
ZFEL, yet not as a principle, but as a derived property of evolutionary systems.

Note that our three dimensional diagram 9.3, similarly to Gould’s, is a global
one: it only gives a qualitative, geometric, understanding of the process. It is like
looking at life on Earth form Sirius and summarizing 4 billions years in 6 cen-
timeters. Analogously to Gould’s diagram, the “punctuated equilibria”, say, and the
major transitions and extinctions are not visible: the insight is from too far and
too synthetic to appreciate them. It only theoretically justifies Gould’s proposal and
soundly extends it to time dependence, by mathematically deriving it from general
principles: the dynamics of a diffusion by random paths, with an asymmetric origin.
Its source is given by a “doubling” at each step (the reproduction of free bacte-
ria), thus beginning by an exponential growth (due to the linear source function,
in the differential equation). Life expansion is then bounded, canalized, selected in
the interaction with the ever changing, co-constituted ecosystem. The core random
complexification persists, while its “tail” exponentially decreases, see equation 9.9
and figure 9.3. In that tail, some neotenic big primates, with a huge neural network,
turn out to be the random complexification of bacteria, a result of variability and
of the immense massacres imposed by selection (it is generally believed that about
99% of the species that appeared on Earth are extinct). As we said, the major crit-
ical phase transitions are fully compatible with our qualitative diagram, similarly
as Gould’s diagram is compatible with the burst of diversity he claims in evolution
(punctuated equilibria). We mentioned the formation of eukaryotes or of multicellu-
lar organisms, for example: they are critical changes along increasing evolutionary
complexity.

Another important analogy can be made with Schrödinger’s approach — his fa-
mous equation, not his book on life; this further justifies the reference to it for the
analysis of this (rather ordinary) diffusion equation. Schrödinger dared to describe
the deterministic evolution of the state function in Quantum Mechanics as the dy-
namics of a law of probability, or of a probability density or amplitude. This gives
the intrinsic indetermination of the quantum system. We synthetically represented
biological evolution as the dynamics of a potential of variability, the biomass den-
sity, under the left wall constraint. Again, this idea is essentially Gould’s idea in his
1997 book: he sees evolution just as an asymmetric diffusion of random variabil-
ity. We just made this point explicit and developed some computations as a con-
sequences of the analogy with the equational determination in quantum mechanics
and the operatorial approach used by Schrödinger. In particular, and in order to sum-
marize:

• we looked at bio-mass abstractly, as a potential of variability, whose random dif-
fusion over complexity leads to increasing complexity by propagating an original
asymmetry,

• we proposed to see time as a fundamental biological operator and set the prelim-
inary basis for defining a proper biological observable, phenotypic complexity.
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• Gould’s understanding of evolution stresses Darwin’s two key principles, also
at the core of our approach: descent with modification and selection. Moreover,
some major critical transitions and punctuated “bursts” of change dramatically
accelerate the global evolutionary modifications, while “exaptation” and related
phenomena provide a further path towards modifications, see [Gould & Vrba,
1982]. All these principles rely on contingent, thus random, dynamics, without
excluding, of course, the structural stability of organisms, species, ecosystem,
which is also essential to life. It is stability via change and diversity, though,
or, more exactly: randomness produces variability, which yields diversity and
adaptivity (in individual, populations, species, ecosystems) which are essential
components of biological stability.

• Along this line of thinking, evolutionary trajectories are based on a “non-
conservation principle” for phenotypes: Darwin’s descent with modification (to
which selection applies), as a largely contingent result of biological activity and
interactions (organism/ecosystem).

As for the last point above, the principle mentioned may seem in strong contrast
with the main physical theories, which are largely based on conservation principles
(energy and momentum conservation, typically), and the related theorems on sym-
metries in the equations, since Noether’s, see chapter 5. Even far from equilibrium
systems are based, as for most mathematical analysis, on flow or balance equations,
which in fine refer to conservation (of energy or matter). Yet, these principles apply
to new or proper biological observables, thus they are, a priori, compatible with and
extend the underlying physical theories.

As a side remark, just note that Darwin dared to propose his “non-conservation
principle” for phenotypes (descent with modification), about at a time where physics
was proposing beautiful theories centered on conservation of energy (thermodynam-
ics) and on the geodetic principles (Hamilton), which was also understood, later, in
terms of symmetries and conservation. Of course, there doesn’t need to be any the-
oretical incompatibility here, just different pertinent observables and parameters as
well as distances from equilibrium. Yet, an autonomous biological thinking, such as
Darwin’s, is required before going towards a welcome unification of theories. And
physics itself, by its method and ideas, may help to propose it, not only directly but
also by its methods coupled to conceptual dualities and theoretical oppositions, as
we are trying here.

9.5 Regeneration of anti-entropy

Let us first recall why the biological notion of anti-entropy differs from other ap-
proaches, and in particular of the notion of negentropy. As we said above, negen-
tropy simply opposes entropy and it is sometimes used to understand biological
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organization as a situation where, in spite of the presence of many energy produc-
tion/consumption processes, an unusually low entropy (high organization) is main-
tained and made possible by the openness of the system. Note though that negative
entropy, as entropy with a negative sign, has no physical meaning per se — as a
physical observable. As a matter of fact, the third principle of thermodynamic states
that the minimum entropy is zero, in the case of pure crystalline states at 0 ◦K. From
a statistical point of view, the number of microscopic configuration corresponding
to a macrostate cannot be smaller than 1, so entropy cannot be negative. However,
negative contributions in the expression of entropy can be found and interpreted,
both in physics and biology — see next.

Our theoretical proposal leading to the term of anti-entropy is inspired by a con-
ceptual symmetry between the relationships of matter and antimatter, on one side,
and of physical entropy and “amount of biological complexity”, on the other. We
already recalled some basic properties this assumption leads to, and we will now
present further considerations along this line. Notice first that the metabolic equa-
tion 9.6, by its formulation, can take into account the overall growth of anti-entropy
occurring in development, but does not describe, even not in abstracto, how biolog-
ical organization is sustained and more precisely regenerated. We will use our ap-
proach now for a closer analysis of the local interactions of entropy vs anti-entropy
production, in comparison with existing theories and data.

In particle physics (relativistic quantum mechanics and quantum field theories),
the collision of a particle and the corresponding antiparticle leads to the annihilation
of both particles and the emission of photons, which are a radiative form of energy
(corresponding in particular to momentum conservation). Reciprocally, energy leads
to the spontaneous production of particle/anti-particle pairs (following the symme-
tries of the theory). This phenomenon spontaneously occurs in the vacuum because
the latter is a state with no “real particles”, but where energy is, nevertheless, not 0
— this can be viewed also through the time/energy uncertainty: their product never
goes below Planck’s h. More precisely, in quantum fields theories, the vacuum is
generally understood as a extremely complex situation, described by virtual pairs of
particles and antiparticles, which spontaneously appear and disappear on short time
lengths8. Now, can these complex theoretical structures help us in order to obtain a
better understanding of biological phenomena?

In the comparison between the physical and the biological concepts we are deal-
ing with, we can highlight some common points and, also, some crucial differences.

8 Notice that this situation usually leads to divergences in physical quantities, especially because
the higher the level of energy of an experiment is, the larger the parts of this complex structure
become physically relevant. However, finite differences between the coupling constants allow to
understand the situation by the renormalization methods (the actual origin of these methods dis-
cussed in chapter 6). It is also interesting to note that this highly complex situation is due to the
quantification of fields (called second quantification), which breaks the classical symmetries at
quantum scales. Reciprocally, the classical fields are understood as the result of an infinite number
of such interactions, by the renormalization of a linear combination of the possible interactions.
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First, anti-entropy coexists with entropy over an extended period of time — the life
of an organism, typically — while particles and anti-particles interact in a (point-
wise) space-time singularity. This point is an aspect of our understanding of the
extended “physical singularity” of life phenomena, that we treated in terms of ex-
tended criticality, see chapter 7. Moreover, particle/anti-particle pair can sponta-
neously be produced, whereas anti-entropy necessitates, for its growth, a preceding
anti-entropy (“life from life”)9. Observe now that, if anti-entropy is unlikely to re-
appear spontaneously, then some space-time extension of the coexistence of entropy
and anti-entropy is needed in order to observe anti-entropy: an extended singularity
— that is, our extended criticality, possibly, as implemented in organisms, continu-
ally producing it along phylogenesis.

Last but not least, the key observables for particles and antiparticles are energy,
momentum, charge, . . . , the most crucial one being energy, generally parametrized
over time, space . . . . As we often recalled, they all correspond to conserved quan-
tities, whereas, in the context of entropy and anti-entropy, we are considering typ-
ically non conservative quantities. The lack of conservation is indeed expressed by
the entropy production term σ , which is non-zero when irreversible processes oc-
cur in the system. Recall that σ is a fundamental quantity for us exactly because it
is associated to all irreversible processes. Moreover, anti-entropy is not 0 — life is
possible — only if it is permanently reconstructed, thus only if σ is not 0.

9.5.1 A tentative analysis of the biological dynamics of entropy and
anti-entropy

We consider now a possible biological analog of the matter/anti-matter collisions,
viewed in terms of the interplay entropy/anti-entropy. The basic idea is to further
describe the coexistence of entropy and anti-entropy. This coexistence is not a static
one, as it involves almost continual destruction and regeneration of anti-entropy. We
propose to approach this in the formal terms of “collisions” between anti-entropy
and entropy. This will allow us to relate anti-entropy to the metabolism required to
sustain it.

In order to better understand the situation, we will first explain what may happen
in the simplified situation, not sustainable for long times (biologically “instanta-
neous”), where the fluxes are null. In this case, equation 9.6 reads:

0 =−dS−

dt
− dS+

dt
+σ (9.10)

9 There is at least one exception to the latter statement: the origin of life, a singularity we do
not deal with, here. Even if we think that simple (proto-)organisms may appear spontaneously
today, biologically ex nihilo, they should usually disappear very quickly, by getting consumed by
phylogenetically older, more complex and organized organisms.
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Since σ > 0, the following may happen in an organism, at least in principle:

1. It can sustain its organization ( dS−
dt = 0) or even increase it (− dS−

dt > 0) if the
system can accommodate an accumulation of entropy ( dS+

dt =− dS−
dt +σ ). In or-

der to do so, a reservoir of highly entropic matter is usually involved, which
prevents this high entropic matter to interfere too much with biological organi-
zation (and affect or “disorganize” it). A typical example is the structure of the
egg: whilst allantois collects high entropic liquids, the yolk sac contains low en-
tropic reserves. Of course, in this case, isolation is not complete because of the
gaseous exchanges, but we can nevertheless see such an organizational tendency,
with both high − dS−

dt > 0 and dS+
dt > 0 (and − dS−

dt much higher than dS+
dt , as

organization quickly increases).
2. If the organism does not have the possibility to produce entropy and simultane-

ously maintain its organization, then it can use a part of its anti-entropy to reduce
entropy. That is, it can “absorb” its own entropy production and then sustain
it. It is crucial that this process implies a supplementary production of entropy
associated with the transition from anti-entropy to negentropy, as lowering of en-
tropy, since this transition is irreversible. Notice that such phenomenon occurs
in relatively common situations such as autophagy [Rabinowitz & White, 2010].
Besides the cases of starvation, it is thus a normal part in the process of organi-
zational renewal. These processes may also contribute to (or be observed in) an
actual decrease of organization (i.e. of anti-entropy), for example in degenerative
diseases, [Pezard et al., 1998], or aging processes, as part, in our views, of the
widely acknowledged entropic component of this latter fact of life, see above as
well as [Aoki, 1994, Hayflick, 2007, Marineo & Marotta, 2005].

In order to better understand the opposing activities in the process above, we
develop an analogy with colliding particles and anti-particles in physics. A “colli-
sion” may be described between a part of the anti-entropy δS− and a part of the
entropy δS+. Consider a “biologically instantaneous” situation, that is a sufficiently
short time so that we can disregard fluxes. Then one has δS+ =−δS−+σ . This as-
sumption will allow us to propose a preliminary, simplified analysis. Further work
is needed in order to have a more stable understanding of the situation.

As a consequence of the assumption on the very short biological time, the colli-
sion between entropy and anti-entropy can lead to both cases discussed above, pro-
vided that the existence of the biological time arrow is equivalent to σ > 010. Case
1 is similar to the production of particle/anti-particle pairs, leading to an increase (in

10 We stress once more that, since σ is associated to all irreversible processes, including the set-
ting up and the maintenance of complexity and organization. Mathematically, σ > 0 represents our
fundamental way to understand the strong irreversibility of biological time, which includes ther-
modynamical irreversibility, of course, but it also includes the properly biological formation and
renewal of anti-entropy — in evolution, embryogenesis and ontogenesis. These are totally, deeply
irreversible processes, for their proper phenomenology as “life organization constructors”, well be-
yond thermodynamical irreversibility. As recalled above, in some cases, by using energy, one may
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absolute value) of both entropy and anti-entropy. Case 2 is similar to the annihila-
tion of a particle/antiparticle pair and it is a form of transformation of anti-entropy
into negentropy, as a negative quantity of entropy, corresponding to a reduction of
entropy. In both cases, the collisions involve a production of entropy along time,
τσ > 0 (where the time interval τ is extremely small, or even a Dirac function).

The production of entropy limits the number of such collisions that can occur
simultaneously, since we have to assume that the sum of all entropy produced at
the same time are finite. As a result, since entropy production has a positive sign,
only a finite number of collisions of the same nature (producing similar quantities
of entropy) can occur in a finite amount of time. This situation is different from
quantum field theory, where an infinite number of such collisions can occur and the
resulting sum can remain finite, since the relevant quantities do not all have the same
sign. Of course, this argument does not prevent the possibility of an infinite number
of collisions in a finite duration, but the entropy production contributions has to be
summable, which leads to a quantitative hierarchy of vanishing contributions — an
infinite case that may thus make mathematical sense in physics, but not necessarily
in biology.

The paradigmatic and simplest situation following this pattern of entropy/anti-
entropy “collision” is the death of a cell in an organism. In this case, most of the ne-
gentropy obtained11 is not stable as such, which means that the entropy will rapidly
increase, or, in other words, that this negentropy will rapidly vanish. Moreover, this
temporary decrease of entropy will in general lead, after some time, to a greater en-
tropy than the initial entropy. Typically, the function of macrophages is to increase
irreversibly the entropy of the remains of dead cells (or other objects), in a spatially
constrained domain (namely in vacuoles) and to prevent by this further disorganiza-
tion (loss of anti-entropy). After the collision (or sometimes before this event), the
corresponding cell is replaced, which leads to a growth of anti-entropy (in absolute
value) that compensate the loss of anti-entropy associated to the cell death. As we
often stressed, this growth leads also to a certain amount of entropy production, by
the slightly disordered nature of anti-entropy production. Notice, however, that this
process is not necessarily as stationary as one might think. For example, significant
scale free fluctuations in the cell numbers have been observed for blood cells of dif-
ferent categories, for time-scales of 1 to 200 days, see section 2.4 or [Perazzo et al.,
2000]. Somewhat reciprocally, as we suggested, the replacing cell can be produced
before the death of the old one, sometimes even leading to the lysis or the release of
the preceding cell.

In order to analyze further the possible situations, we will now propose a graphi-
cal representation of the interactions between entropy and anti-entropy, very loosely

reverse physical entropy (separate, say, mixed gases): no way to revert evolution, embryogenesis
or ontogenesis.
11 This negentropy corresponds to the low entropic inert matter, remaining as a trace of the former
biological organization before the cell death.
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inspired by Feynman’s diagrams. This representation will allow us to schematize
some singular events associated to the entropy/anti-entropy relations. We will split
the representation space in two parts, one for entropy (top) and one for anti-entropy
(down). The solid lines will represent the currently non-interacting quantities. Their
distance to the central dotted axis corresponds to the corresponding values of these
variables, whilst the winding curves will correspond to entropy production and the
zigzags correspond to quantities involved in an interaction. The color corresponds
to the sign of the involved quantities: positive is red and negative is blue. Figure 9.4
provides an elementary description of what happens in the case of an elementary
disorganization.

t

Entropy

Anti-Entropy

Fig. 9.4: Diagram of an elementary loss of anti-entropy. A small amount of anti-entropy−δS− < 0
“collides” with a corresponding entropy−δS+ > 0 and is transformed in an amount of entropy pro-
duced −δS−−δS++

∫
σ > 0 (the red, spring-like, winding-up curve), which adds to the entropy

of the system (the climbing zigzag line that adds to entropy). Since this leads to an unstable and
irreversible result (and since it is purely entropic), there is a subsequent entropy production (the
second red winding-up curve; the time shift is meant to represent the fact that the collision lowers
the entropy at first (the first descending step on the left), but usually leads to a higher entropy latter
on).

When summing over diagrams of this kind, we find that the contribution of or-
ganizational renewal is in fine found in the entropy production, at the core of our
mathematical analysis of Gould’s diagram. More precisely, there are two typical
contributions to entropy production: the entropy following from the destruction, per
se, of a biological component and the entropy produced in its reconstruction, as men-
tioned above. Their close analysis is surely very complex and in particular needs to
be extended over a substantial period of time. However, a crude macroscopic ap-
proximation of the situation can be of the form: σ ' −aS−/τr, where 0 < a < 1
is the proportion of anti-entropy that is renewed. The introduction of a seems nec-
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t t

Fig. 9.5: Other schema of entropy/anti-entropy interactions. LEFT: the diagram represents, in tem-
poral order, the lysis of a cell, the subsequent phagocytosis by a macrophage (involving a small
increase of the anti-entropy of the macrophage, at least morphological), then the low entropic con-
tent interact with the anti-entropy of the macrophage. RIGHT: a cell is destroyed, but in this case
we take into account its functional contribution. This is showed by the emission in the collision
of a negative quantity of anti-entropy, which is then transformed into a quantity of anti-entropy in
jeopardy. However, here a cell also divide (second collision) leading to a release of two cells (and
an important amount of entropy). One of this cells replaces the destroyed cell and reestablishes
the functional anti-entropy (third collision), however this process is also irreversible, leading to
some reorganization and thus produces entropy. In this case the initial and final anti-entropy are
the same.

essary. For example, even though there is a turnover for all cells in the lung of
mammals, there is no destruction/reconstruction of whole lungs for adults. See also
the right diagram in 9.5 for a more subtle example. For adults at rest, we expect then
that R' T σ '−aT S−/τr

12. Notice than a more subtle approximation would be to
assign specific renewal times to the different components of anti-entropy, some of
them being infinite (which correspond to no renewal).

Interestingly, [McCarthy & Enquist, 2005] have roughly found the empirical re-
lation R = R0n0.58M3/4 among different taxa, where n is the number of cell types.
Assuming that τr ∝ M1/4 (see [Lindstedt & Calder III, 1981, Savage et al., 2004])
and N ∝ M (which holds for part of the cell types, see [Savage et al., 2007]) we get:

R'−aT
S−

τr
∝−N

S−

NM1/4 (9.11)

∝−M3/4 S−

N
(9.12)

The experimental results then leads to:

12 The metabolism of adults, normally, is not used to produce new organization. In equation (6)
then, at constant mass M and with anti-entropy production (reconstruction) just enough to com-
pensate entropy production, one is left with only R ' T σ , use then σ ' −aS−/τr (see in [Bailly
& Longo, 2009] for a closer analysis of the relative weight of the production of S− and S+ along
individual life time).
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R ∝ M3/4n0.58 (9.13)

thus (9.14)

−S−

N
∝ n0.58 (9.15)

The latter equation differs strongly from the form of the combinatorial com-
plexity we discussed, but this difference does not come as a surprise. Indeed, the
latter result involves all anti-entropy renewal processes, and not only the renewal
of the combinatorial component of anti-entropy. This empirical result then shows
that anti-entropy and the number of cell types are correlated to a certain degree (be-
yond the combinatorial part). This results also corroborates our general approach to
anti-entropy, which relates organizational complexity to metabolism.

Note that the general line of reasoning presented here should be further mathe-
matically developed in the terms of a time operator formalism. As a matter of fact,
our observables, anti-entropy, entropy and entropy production are difficult to evalu-
ate directly in experiments, as their theoretical determination does not seem classi-
cal. On the contrary, their temporal structure is observable (at least in part), and it
may be more easily associated to regularities, by loosing the physical specificity of
trajectories that are parameterized over time.

9.6 Interpretation of anti-entropy as a measure of symmetry
changes

In chapter 7, we proposed to understand biological phenomena, in comparison and
contrast with physical theories, as a situation where the theoretical symmetries are
“continually” changed: within structural stability and interval of viability, phylo-
genetic and ontogenetic trajectories are cascades of symmetry breaking and recon-
struction. We will now show that such considerations allow to interpret anti-entropy
in analogy to Boltzmann’s approach of physical entropy. In section 9.4, following
[Bailly & Longo, 2009], premises of these aspects are considered from a strictly
combinatorial point of view, leading to a “constructive” definition of the three com-
ponents of anti-entropy, K = αKc +βKm + γK f .

The simplest way to understand how symmetries come into play is to look at
these components of anti-entropy and exhibit the underlying symmetries that allow
these definitions.

COMBINATORIAL COMPLEXITY, Kc: For a total number of cells N and for a
number n j of cells of cell type j, the combinatorial complexity is defined as:

Kc = log
(

N!
∏ j n j!

)
(9.16)
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A classical combinatorial point of view consists in saying that this is the number
of ways to classify N cells in j categories each of sizes n j. More precisely, we
recognize, inside the logarithm, the cardinal, N!, of the symmetry group SN . This
group is the group of transformations, called permutations, that exchange the
labels of N elements. Similarly, n j! is the number of permutations among n j

units and has the biological meaning of permutations of cells within a cell type. In
other words, permuting cells within the same cell type is a combinatorial invariant
of the complexity of an organism. Thus, the group of permutations leaving the
cell types invariants is the group Gtype = ∏Sn j , that is the group obtained as a
direct product of the symmetries corresponding to permutations within each cell
type. Formally, this group corresponds to the change of labels in each cell type,
which can all be performed independently and conserve the classification by cell
types. The cardinal of this group is ∏ j n j!.
Then, the number of cell type configurations is the number of orbits generated by
the right action of Gtype on SN . In other words, a cell type configuration is first
given by a permutation of J1,NK, which gives the random determination for N
cells. Moreover, these transformations must be computed modulo any transfor-
mation of Gtype that gives the same configuration (as we said, cells within each
cell type are combinatorially equivalent — we will discuss this hypothesis below,
in more biological terms). Lagrange theorem then gives the number of remaining
transformations N!

∏ j n j!
, which is the number of possible configurations. Clearly,

if there is only one cell type, Kc = log N!
N! = 0, thus an organism with just one cell

type (typically, a unicellular being) has combinatorial complexity 0.
As a result, this measure of combinatorial complexity depends on the total num-
ber N of cells, but is actually a measure of the symmetry breaking induced by the
differentiation in cell types.
Let’s compare the situation with Boltzmann approach to entropy13. If one has a
number of microscopic phase space states Ω having the same energy, the cor-
responding entropy is defined as S = kb log(Ω). In the case of gases, one con-
siders that the particles are indiscernible (besides their positions in phase space,
which are already taken into account). This means that one does not count twice
situations which differ only by permuting particles. In other words, in thermody-
namics, one formally understands the situation by saying that labels attached to
particles are arbitrary. As a matter of fact, if Ω0 were instead defined by fixing
labels, one would have more states than needed. Thus, S is soundly defined by
S = kb log(Ω0/N!) = kb log(Ω)− kb log(N!)> 0. By considering this symmetry
by permutation, one reduces the size of the microscopic possibility space, and, as
a result, one obtains a value of entropy which is lower than the value computed
without these symmetry considerations.

13 This account is based on “microcanonic ensembles”, that is on the hypothesis of a symmetry for
the probability distribution in the (microscopic) phase space: the states of equal energy have equal
probabilities.
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In our approach, we have Kc = ∑i log(N!)− log(ni!) which is greater than 0, as
soon as there is more than one cell type. The contribution to anti-entropy is given
by S−c = −kKc. Thus, the increase of the possibility space (the diversity or the
differentiations) increases complexity (increases anti-entropy). More precisely,
complexity, as absolute value of anti-entropy, is increased by the added symme-
tries, quantified by the term ∑i log(ni!). We understand then that anti-entropy can
be analyzed, at least in this case, as an account of how many biological symme-
tries are broken by the cascade of differentiations. Formally, we can sum up the
situation by saying that combinatorial complexity and its contribution to anti-
entropy are based on a group of transformations, SN , and a subgroup, Gtype. The
biologically relevant quantity is then the ratio of sizes of the groups SN and Gtype.
This can be equivalently seen as the number of orbits of SN under the right action
of Gtype.

MORPHOLOGICAL COMPLEXITY, Km: This complexity is associated to the geo-
metrical description of biologically relevant shapes. It is computed in particular
by counting the number of connex areas. Note that this number corresponds to
space symmetry breakings for motions covering this space — or ergodic mo-
tions. Then, one has to consider the number of shape singularities, in the math-
ematical sense, where singularities are invariants by action of diffeomorphisms.
The fractal-like structures are particularly relevant since they correspond to an
exponential increase of the number of geometrical singularities with the range
of scales involved. Thus, fractal-like structures lead to a linear growth of anti-
entropy with the order of magnitudes where fractality is observed (but also the
variability in fractal shape should be involved, as scale symmetry changes).

FUNCTIONAL COMPLEXITY, K f : This quantity is given by the number of pos-
sible graphs of interaction. As a result, the corresponding component of anti-
entropy is given by the choice of one graph structure (with distinguished nodes)
among the possible graphs. This involves the selection of the structure of possible
graphs and, correspondingly, which resulting graphs are considered equivalent.
In terms of symmetries, we first have a symmetry among the possible graphs
which is reduced to a smaller symmetry, by the equivalence relation. For exam-
ple, in [Bailly & Longo, 2009], the case is considered where the number of edges
is fixed, so the considered symmetry group is engendered by the transformations
which combine the deletion of an edge and the creation of another one. The or-
bits preserve the total number of edges, so that the orbit of a graph with 〈k〉N
edges are the graphs with this number of edges. The remaining symmetry was
considered to be the identity.

We understand then that anti-entropy, or at least the decomposition we proposed
here, is strictly correlated to the amount of symmetry changes. We will now look
more closely at the case of combinatorial complexity since it involves only the
groups of permutations and their subgroups, but at the same time will also allow
us to express a crucial conceptual and mathematical point.
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We indeed encounter a paradox in the case of combinatorial complexity. On one
side, we have an assumption that cells of the same cell type are symmetric (inter-
changeable). On the other side, in section 9.2, we stressed that each cell division
consists in a symmetry change. This apparent paradox depends on the scale we use
to analyze the problem, as well as on the “plasticity” of the cells in a tissue or organ,
as the possibility to be interchanged and/or to modify their individual organization.
Typically, some cells, like probably liver cells function statistically (what matters
is their average contribution to the function of the organ), while neurons may have
strong specific activities, yet they may also deeply modify their structure (change
number, forms and functionality of synaptic connections, for example). Thus, in
the first case, type invariance or symmetry applies, while it does not apply in the
second. We next consider the individual contribution of cells to the combinatorial
complexity of an organism at different levels.

An organism with a large number of cells, N, with a proportion q j of cells of cell
type j (assuming also that there is a relatively large number of cells for each cell
type), has two different quantities which yield the combinatorial complexities per
cell, Kc1 and Kc2 (which are computed along the columns):

Kc1 =
log(N!)

N
Kc2 =

log
(

N!
∏ j(q jN)!

)

N
(9.17)

' log
(
(N/e)N

)

N
'

log
(

(N/e)N

∏ j(q jN/e)q jN

)

N
(9.18)

' log(N)−1 ' log(N)−1−∑
j

q j (log(q j)−1+ log(N)) (9.19)

'∑
j

q j log(1/q j) (9.20)

Now, both levels of cellular individuation are valid; but they have to be arranged
in the right order. Cellular differentiation is the first and main aspect of the ability
of cells to individuate in a metazoan, so we can assume that the main determinant
of combinatorial complexity is Kc2. It is only after this contribution that the further
process of cellular individuation occurs. The latter leads to a mean contribution to
the complexity of the organism which is of ∑ j a j (q j log(q jN)−1) per cell, where
a j quantifies the ability of each cell type to change their organization and the rele-
vance of this change. It seems reasonable to expect that the a j are high in the cases,
for example, of neurons or of cells of the immune system. On the contrary, the a j

should be especially low for red blood cells. The reason for this is not only their lack
of DNA, but also because of their relatively simple and homogeneous cytoplasmic
organization. Similarly, liver cells may have statistically irrelevant changes in their
individual structure.



9.6 Interpretation of anti-entropy as a measure of symmetry changes 257

Thus, the contribution of cell types to anti-entropy derives first from the forma-
tion of new cell types, while the ability of cells to reproduce, with modification,
within a cell type is a further important (numerically dominant) aspect of their indi-
viduation process. Note that this analysis does not suppose that a cell type for a cell
is irreversibly determined, but it means that the contribution of cell type changes to
anti-entropy are understood as changes of Kc2.

We can then provide a refined version of S−c , where act is the “weight” accorded
to the formation of different cell types:

S−c
−Nkb

= act ∑
j

q j log(1/q j)+∑
j

a j (q j log(q jN)−1) (9.21)

= ∑
j
[q j(act −a j) log(1/q j)+a jq j(log(N)−1)] (9.22)

= (act −〈a j〉)
〈
log(1/q j)

〉
+
〈
(〈a j〉−a j) log(1/q j)

〉
+ 〈a j〉(log(N)−1)

(9.23)

where 〈x〉 is the mean of x among all cells (so that the contribution of each cell
type is proportional to its proportion in the organism). Both equations 9.21 and
9.23 are biologically meaningful. The terms in equation 9.21 correspond, by order
of appearance, to the contribution of the categorization by cell types and to the
contribution of individuation inside a cell type. In equation 9.23, we have obtained
terms that can be assimilated to Kc1 (last term) and to Kc2 (first term), the latter being
positive only if act −〈a j〉 > 0, meaning that the contribution associated to cell types
is positive only if it is greater than the mean cellular individuation. This is logical
since cell types make a positive contribution to the complexity only if the amount
of cellular diversity they introduce is greater than the one that cellular individuation
alone would introduce.

Last but not least, the second term has the sign of an anti-correlation between
a j and log(1/q j), meaning that this term is positive when there are many low com-
plexity cell types (given that this leads also to fewer cells per low complexity cell
type or cell types with a very low complexity) and few high complexity cell types
(with more cells or with a very high complexity). More precisely, using the Cauchy-
Schwartz equality case, we get that maximizing (and minimizing) this term (every-
thing else being kept constant), leads to 〈a j〉−a j ∝ log(1/q j)−〈log(1/q j)〉. Then
this optimization a priori leads to maximizing the second moment of information
(in informational terms), at constant entropy (first moment), or in other terms, max-
imizing its variance. The situation gets quite complicated to solve analytically, but
this point may be conceptually interesting14.

14 Note that this situation is not very different from the statistical mechanics of hard spheres freeze
by a correlation entropy term that is in competition with the configuration entropy term, which
intuitively corresponds to disorder), see [Baus, 1987].
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In the above situation, the paradox resulted from looking with an increasing finer
resolution at the individuation potential. However, the reciprocal situation can also
occur. Let’s consider the functional complexity, understood as the possibility of in-
teractions between cells (here, the paradigmatic example will be neurons). Then, by
assuming that there are N neurons with 〈k〉 average number of synapses for each
neuron (where 〈k〉 is between 103 and 104 for humans), as presented in [Bailly &
Longo, 2009], we get:

NG =

( (N
2

)

〈k〉N

)
(9.24)

K f 1

N
' 〈k〉 log(N) (9.25)

However, if we postulate that any graph of interaction is possible, then we get a
total number of possible interactions which corresponds to a choice between inter-
action or no interaction for each entry of the interaction matrix (N2 cells). However,
the latter is symmetric; and we do not count the self-interactions (because they cor-
respond to the complexity of the cell), so we obtain N(N−1)/2 binary choices, and
then 2n(n−1)/2 possibilities:

K f 2

N
' N

2
(9.26)

There are two main lines of reasoning we can follow to understand this simple
combinatorial result. The first is to look at the time structure of symmetry changes,
since the symmetry changes occur as a temporal cascade. As a result, the temporal
hierarchy of individuation is crucial. Here, we can refer to some phenomena con-
cerning the graph of interaction of neurons. A crude description of the formation of
neural networks is the following. First, a large number of “disordered” connections
take place. Only after, the functional organization really increases by the decay of
unused synapses (see for example [Luo & O’Leary, 2005]). Then, the “bigger” sym-
metry group involved in the description is of the form K f 1, with 〈k〉mean number of
connections; but then this symmetry group is reduced to obtain a smaller symmetry
group with 〈l〉mean number of connections. This operation can be seen as a change
of symmetry group, from the transformations preserving the number of connections
with 〈k〉N connections to those preserving 〈l〉N connections.

Of course there are many other possible components for a measure of biological
complexity. This proposal, defined as anti-entropy, provides just a tentative back-
bone for transforming the informal notion of “biological organizational complexity”
into a mathematical observable, that is into a real valued function defined over an
organism. It should be clear that, once enriched well beyond this schematic defini-
tion and the further details given in [Bailly & Longo, 2009], phenotypic complexity
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is a proper (and fundamental) biological observable. It radically differs from the
rarely quantified, largely informal, always discrete notion of “information” (infor-
mally understood as a map from topologically trivial structures to integer numbers),
still dominating in particular in molecular biology, see [Longo et al., 2012a] for a
critique of this latter notion. In [Longo et al., 2012c], we focus on the notion of
levels of organization, also to be related to anti-entropy.

9.7 Theoretical consequences of this interpretation

In the section above, we proposed some technical consequences of the “micro-
scopic” definition of anti-entropy. Using this method, we have seen that anti-entropy
can mainly be understood in terms of symmetry changes. We will now consider the
theoretical meaning of this situation in a more general way. As we exposed in chap-
ter 7, we propose to understand biological systems as characterized by a cascade
of symmetry changes. Note that by this we do not deny central role of inheritance
and “structural stability” in the analysis of organisms, that is the “preservation” of
forms and functions, along ontogenesis, reproduction and evolution. This peculiar
form of stability, proper to biology, though, is very different from the mathematical
stability understood in terms of invariants, thus symmetries, in physics. Note that
also far from equilibrium systems are basically stable, either stationary (constant
flow of energy and/or matter) or not. Since they are an organization of flows, each
line, surface, structure etc. in them organizes flows as geodetics or alike. Moreover,
flames, Bénard cells, micelles etc. are structurally identical, since the origin of Earth
or more, they never changed.

Life structural stability, instead, is also and crucially based on changes: reproduc-
tion is always with variation, evolution is always based on phylogenetic modifica-
tion, speciation and alike. No evolution, actually no life without changes. Moreover,
diversity, a consequence of variability, thus of changes, is an essential component
of structural stability, of an ecosystem, of a species, of a population, even of an in-
dividual (the diversity of cells, of organs and tissues — e.g. the internal variability
of lungs, contribute to the adaptivity of an organism, thus to its structural stability
in an ecosystem).

In our approach, we understood these changes as symmetry breakings and, by
this, we could give a major role to symmetries along this book: there is no sym-
metry breaking, thus changes, without symmetries. Biological structural stability is
not physico-mathematical invariance, but a complex blend of symmetries and their
breakings/changes.

Now, our understanding of a “biological trajectory”, a phylogenetic and ontoge-
netic path, as a cascade of symmetry changes yields a proper form of randomness to
be associated to the construction and maintenance of biological organization. This
perspective is particularly relevant for us, since it links the two main theoretical ap-



260 9 Biological order as a consequence of randomness: Anti-entropy and symmetry changes

proaches to the living state of matter that we introduced here: extended criticality
and anti-entropy.

More precisely, in phylogenesis, randomness is associated to the “choice” of dif-
ferent organizational forms, which occurs even when the biological objects are con-
fronted with remarkably similar physical environment and physiological constraints.
In classical non-linear dynamics, the symmetry breakings associated to bifurcations
in trajectories is the geometric representation/counterpart of a random event: a mi-
nor fluctuation may lead to very different paths. In biology, the lungs of birds and
mammals for example, have the same function in somewhat similar environments;
they also are effectively compatible with a wide common range of body sizes, but
they have phylogenetic histories which bifurcated long ago and, thus, extremely
different architectures [Kay, 1998].

This example is particularly prone to lead to approximate common symmetries,
since it relates to a vital function (respiration and therefore gas exchanges with the
environment) shared by a wide class of organisms. It is noteworthy that numerous
theoretical studies have analyzed lungs by optimality criteria [Horsfield, 1977, West
et al., 1997, West et al., 1999, Gheorghiu et al., 2005]. However, the criteria for
optimality are not the same among all these studies (minimum entropy production,
maximum energetic efficiency, maximum surface/volume ratio, . . . ). Accordingly,
even among mammals, structural variability remains high. For example, [Nelson
et al., 1990] describes the differences in the geometrical scaling properties of human
lungs on one side, and of rats, dogs and hamsters lungs on the other side. Moreover,
[Mauroy et al., 2004] show that the criteria of energetic optimality and of robustness
for the gas exchanges, with respect to geometric variations, are incompatible. More
generally, optimization criteria are not particularly stable. In particular, robustness
is essential but is nevertheless a relative notion: it depends on the property that we
consider as robust as well as on the transformations with respect to which we expect
the object of study to be robust [Lesne, 2008].

Similarly, the theoretical symmetries constituted in ontogenesis are the result of
the interactions with the environment, on one side, and of the developmental tra-
jectory already followed at a given time, on the other. In our perspective, this tra-
jectory must then be understood as a history of symmetry changes. And, of course,
the situation at a given moment does not “determine” the symmetry changes that
the object will undergo. Biological systems are not “state determined systems” as
their dynamics also depend on an history. The relative stability imposed by histori-
cal constraints is a crucial component of the peculiar randomness of the biological
dynamics, as we consider that random events are associated to symmetry changes
in a highly constraining historical context. These events are given by the interplay
of the organism with its own physiology (and internal milieu) and with its environ-
ment, the latter being partially co-constituted by the theoretical symmetries of the
organism, since many aspects of the environment depend also on the organism and
its history.
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In other terms, the conservation, in biology, is not entirely associated to the bi-
ological proper observables, the phenotype, and the same (physical) interface (e.g.
energy exchange) with the environment may yield very different phenotypes; thus,
there is no need to preserve a specific phenotype.

In short, the symmetry changes occurring in an organism can only be analyzed
in terms of the previous theoretical symmetries (biology is, first, an historical sci-
ence) and the differences in possible changes can be associated to different forms of
randomness, in terms of symmetry breakings/changes:

• In the case of symmetry breakings, the symmetry change corresponds to the pas-
sage to a subgroup of the original symmetry group. As a result, the theoretical
possibilities are predefinable (as the set of subgroups of the original group). This
typically occurs in the case of physical phase transitions, and the result is then
a macroscopic random event associated to the choice of how the symmetry gets
broken, which is usually described by the direction of the order parameter (for
example the sign or the direction of a global magnetization, which breaks the
symmetry of a Hamiltonian). Typically, if an organism has an approximate rota-
tional symmetry, we can say that this symmetry can be broken in a subgroup of
this symmetry group, for example by providing a particular oriented direction.
We then have a rotational symmetry along an axis, such as the origin of a po-
larity in embryogenesis. This can again be broken, for example into a discrete
subgroup of order 5 (starfish). Another example is the breaking of metabolic al-
lometry, corresponding to physiological changes in ontogeny [Glazier, 2005].

• Another form of symmetry change corresponds to the case where the symmetry
changes are constituted on the basis of already determined theoretical symmetries
(which can be altered in the process). This can be analyzed as the formation of
additional observables (phenotypes) which are related to or the result of already
existing ones. Then these symmetry changes are associated with already deter-
mined properties, but their specific form is nevertheless not predetermined. A
typical example of this theoretical situation is the case of physically non-generic
behaviors that can be found in the theoretical analysis of some biological models.
In [Lesne & Victor, 2006], this kind of situation is argued to be widespread in bio-
physics and several examples are provided. From the point of view of the theoret-
ical determination, this is a situation where there are predetermined possibilities
of the phase space, not actually accessed yet (because of their non-genericity),
prone to lead the biological system to develop its further organization on them,
by a stabilization typically. The form of the biological response to these orga-
nizational opportunities of complexification is not, however, predetermined and
then generates an original form of randomness. This theoretical account is close
to the notion of “next adjacent niche”, proposed in [Kauffman, 2002]; however,
we emphasize here that the theoretical determination of these next organizational
possibilities is only partially determined. For example imagine that a biological
dynamic has approximately certain symmetries, which leads to a non-generic
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singular point, then it is possible (and maybe probable) that this point will be
stabilized in evolution, in an unknown way. Another example is the apparition
of a new possible niche, but which we can identify as such. Example, are the
apparition of swim bladder in some species of fish, following [Kauffman, 2002],
see also section8.6, or the apparition of guts, but also external geological factors.
In these cases, we know that the new potential niche may be colonized (a bac-
terium, says Kauffman, living only in the newly formed swim bladder), but we
do not know the resulting organizational form of its inhabitants. Thus, the his-
tory as symmetry changes of the fish and of some bacteria superpose in an highly
unpredictable way.
In such cases, the constitution of symmetry changes should be understood as
having a peculiar random status, and there is no associated predictability. Gould’s
most quoted example of “exaptation”, the formation of the bones of the internal
hear from the double jaw of some tetrapods, some two hundred million years
ago, is another example of this highly unpredictable evolutionary dynamics. Even
more radically, the so-called Darwin’s finches in the Galapagos Islands may be
recalled, where hybridization lead to abrupt and unpredictable changes in beak
shape, [Grant & Grant, 2002].

We have seen that the symmetry changes are related to randomness. Randomness,
as symmetry changes, and its iterative accumulation are, however, the very fabric of
biological organization. Therefore, we have a theoretical situation where order (bi-
ological organization) is a direct consequence of inheritance, structural stability and
randomness, where randomness happens also to be a component of structural stabil-
ity — by the stabilizing role of diversity, as we said. Its global analysis allowed us
to give mathematical sense to Gould’s evolutionary complexification along evolu-
tion, as a consequence of the random paths of an asymmetric diffusion (sections 9.3
and 9.4). A finer (or local) analysis suggested a way to understand also ontogenetic
changes in these terms, that is as a random dynamics of symmetry changes.

This situation should be not confused with the cases of order by fluctuations or
statistical stabilization — for example, by the central limit theorem. In our case, in-
deed, order is not the result of a statistical regularization of random dynamics into
a stable form, which would transform them into a (mostly) deterministic frame. On
the contrary, the random path of a cascade of symmetry changes yields the theoret-
ical symmetries of the object (its specific phenotypes), which also contributes to its
behavior. Moreover, while physical stability by statistical variability, e.g. the stabil-
ity of an inert macroscopic object made out of quanta, is due to very large numbers
of elementary components, the diversity contributing to the structural stability of
a niche, a population, even an organ in an individual, is based on low numbers of
individuals or cells.

In this context, the irreversibility of random components of the processes is taken
into account by entropy production. The latter, or more precisely a part of the lat-
ter, is then associated to the ability of biological objects to generate variability, thus
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adaptability. In ontogenesis, this point confirms our analysis of the contribution of
anti-entropy regeneration to entropy production, in association with variability, in-
cluding cellular differentiation. This situation is also consistent with our analysis of
anti-entropy as a measure of symmetry changes. Note that the symmetry changes,
considered as relevant with respect to anti-entropy, may be taken into account, for
example, in the coefficients corresponding to the individuation capacity of different
cell types in our discussion above (see section 9.6).

In section 9.6, we used the notion of extended criticality and the associated cas-
cades of symmetry changes in order to stress further the peculiar status of random-
ness in biology. Recall that, in all the main physical theories, random events take
place in pregiven spaces of possibilities. One has only six possibilities for the re-
sult of dice tossing, two for coin flipping . . . . More generally, both in classical
and quantum frames, the mathematical definition of a phase space (the space of
observables and parameters) is the core theoretical step that precedes any form of
knowledge construction. This space may be infinite or have increasing dimensions
or infinite dimensions, like Hilbert or Fock spaces in some quantum analyses (e.g.
to accommodate the creation of new particles), yet it is mathematically pregiven.
These formal definitions are possible, by the invariant properties that character-
ize these spaces (mathematics is a science of invariants and invariant preserving
transformations, thus of symmetries). All classical or quantum events, also highly
unpredictable ones, thus random, take place in these predefined space of possible
observable and parameters, would they be infinite (and of infinite dimensions) as
we discussed in chapter 8.

In our understand, all through this book, in biology, the very space of observ-
ables phenotypes, that is the appropriate phase space for evolution (and ontogene-
sis) is highly unpredictable. The formation of new niches, Gould’s exaptation and
more, as recalled above, yield unpredictable phenotypes. “Hopeful Monsters” in
ontogenesis provide the basis for phylogenetic variation — even though the onto-
genetic constraints are immensely stronger. There is no way to predefine the space
of future possibilities for life, as this is co-constituted by its own interactive dy-
namics, between the internal, organismal changing coherence and the ecosystem,
which also changes. Cascades of symmetry breakings, in our approach in terms of
extended criticality, continually change the “invariants”, which are just biologically
structurally stable, i.e. they include variability, adaptability and diversity as com-
ponents. Thus, biological randomness adds on top of the many forms of physical
randomness (classical and quantum randomness, of course also present in biology)
and leads to the unpredictability of the very phase space. Mathematically, this is a
form of “second order” randomness, yet to be analyzed — a tentative guideline for
this is presented in [Buiatti & Longo, 2013].

Let’s conclude this chapter by mentioning another theoretical, hopefully prac-
tical consequence of our approach. In the early paper on anti-entropy, [Bailly &
Longo, 2009], there is no distinction between biological complexity and biological
organization. Here, we more consistently used anti-entropy as a measure of “static”
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complexity (a sort of “anatomy” of a dead organism) and distinguished it from orga-
nization, as associated also to living functionalities, including autopoiesis. In section
9.6 we dared again to confuse them, as for the purposes of that section, we could
use their covariance in the normal cases. That is, we assume that (increasing) orga-
nization requires (increasing) complexity and, reciprocally, that the latter yields an
increase of organization, in general and normal cases. However, in discussions with
Carlos Sonnenschein and Ana Soto, well-known biologists of cancer, see [Sonnen-
schein & Soto, 1999, Soto & Sonnenschein, 2011, Baker, 2012], we came to notice
that pathologies, cancer in particular, may lead to a decoupling of these two no-
tions. That is, cancer may lead (or always leads?) to a greater complexity and a
lower organization. Typically, mammary glands cancers increase the complexity of
mammary ducts (the lumen is split in several parts, thus the topological complex-
ity, our Km increases), while organization, which includes functionality, decreases.
Similarly the proliferation of villi, in intestinal cancer, increases the fractal dimen-
sion, again a component of our Km, while functionality decreases. If this analysis is
fully general, we could provide, also by a refinement of our K by more components,
and a further insight into organization, a concrete measure in order to discriminate
the pathological from the normal, at least in the case of cancer and related diseases.
Of course, “normal” and “pathological” are notions that make no sense in physics.
Yet, observe that we derived our analyses from a scientific methodology of which
physical theorizing has been, historically, the major promoter, and even used some
specific ideas from (quantum) physics.



Chapter 10
A philosophical survey on how we moved from
Physics to Biology

Abstract:

In this book, the physical singularity of life phenomena has been analyzed by means
of a permanent “constructive tension” with respect to the driving concepts and theo-
ries of the inert. In this chapter, we explicitly outline some key conceptual analogies,
transferals of methodologies and of theoretical instruments between physics and bi-
ology, which have been at the core of our approach. By this, we stress significant
differences and sometimes logical dualities used or to be further used to make bi-
ological phenomenalities intelligible. Our purpose in this chapter is to clarify how
we applied, or at least how we tried to apply, a scientific method which has been at
the core of the history of physics: the constructive objectivization of phenomena.

10.1 Introduction

Various physical theories (classical, relativistic, quantum, thermodynamic) make the
inert intelligible in a remarkable way. Significant incompatibilities exist (the rela-
tivistic and quantum fields are not unified; they are in fact incompatible). However,
some major principles of conceptual construction (see also [Bailly & Longo, 2011])
confer a great unity to contemporary theoretical physics. The geodesic principle and
its accompaniment by “symmetries”, see chapter 5 and [Weyl, 1983, Van Fraassen,
1989, Bailly & Longo, 2011], enable to grasp, under a conceptually unitary per-
spective, a wide area of knowledge regarding the inert. Biology, having to date been
less “theorized” and mathematized, can also progress in the construction of its theo-
retical frameworks by means of analogies, extensions and differentiations regarding
physical theories, even by means of conceptual dualities. Regarding dualities, we
recall here one that is, we believe, fundamental and that has been extensively ad-
dressed in this book and in other writings, [Bailly & Longo, 2011, Frezza & Longo,
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2010, Longo & Montévil, 2011a]): the genericity of physical objects (that is, their
theoretical and experimental invariance) and the specificity of their trajectories (ba-
sically, their reconstruction by means of the geodesic principle or identification by
mathematical techniques, by symmetries typically). In our perspective, this is in-
verted in biology, as it is transformed into the specificity (individuation and history)
of the living object and the genericity of trajectories (evolutionary, ontogenetic: they
are just “possibilities” within spaces — ecosystems — in co-constitution).

Let us now review the key concepts that we consider as relevant for the study of
biological phenomena.

10.2 Physical Aspects.

10.2.1 The Exclusively Physical.

We exclude from our analyses those properties which come from physics (where
they are often essential), but of which the transferal to biology is, from our point of
view, misleading:

1. The GENERICITY of objects (the theoretical and experimental invariance of phys-
ical objects — or symmetry by replacement) does not apply to biology: the liv-
ing object is historical and individuated; it is not “interchangeable”, in general or
with the generality of physics, not theoretically nor empirically.

2. The SPECIFICITY of trajectories (geodesics, in physics), because we exclude the
prevalence of the geodesic principle (there is no “optimality”) for ontogenetic and
evolutive dynamics of “biological individualities” — cells, organisms, species
(which we call, synthetically, “biolons”); in short, embryogenesis, development
and evolution are not optimal trajectories, but possible ones, see chapter 7.

3. The STABILITY of the reference system as such. Besides classical physics, also
in general relativity and in the energy/geometry relationships in space-time, the
dimensions are set and do not vary during the phenomenal analysis. Instead, the
space of observables in biology, of phenotypes for example, which can also be
described by new “dimensions”, is, itself, dynamically changing in an ecosystem.
Using an informal analogy, we could say that the “phase space” (and the space
of possibilities) of life phenomena is dynamically (co-)constituted, see chapter
8. As a matter of fact, in relativity theory, space-time is (co-)constituted by the
energy/matter distribution, yet in stable dimensions and phase space — while in
chapter 8 we claim that phase spaces change along biological processes, evolu-
tion in particular.

As discussed in chapter 5 and [Longo & Montévil, 2011a], the genericity of physical
objects and the specificity of their trajectories depend on the theoretical symmetries
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which allows to constitute them. In biology, our hypothesis is that the properly bio-
logical theoretical symmetries are unstable. This leads to a change of the theoretical
status of biological objects with respect to physical situations. We will come back
to this point further below.

10.2.2 Physical Properties of the “Transition” Towards the Living
State of Matter

In the literature, we often find remarkable works concerning certain physical prop-
erties, sometimes transferred to the analyses of life phenomena, but which we will
later consider in their exclusively biological form (i.e., that we only find in the liv-
ing state; for example, critical transitions, which are pointwise in physics, are “ex-
tended” in our approach). In biology, we therefore do not consider them “as such”,
as they present themselves as components of the analysis of the inert, where they
nevertheless provide a good starting point for reflections regarding life phenomena.
For the moment, let’s evoke them from a physical perspective (“as such”) and stress
that they partly pertain the biological theoretical vocabulary, but do not properly
belong to it, in our view:

1. CRITICALITY as such (in physics, present in phase transitions, as a mathematical
point with respect to the control parameter);

2. ORGANIZATIONAL CLOSURE as such (present in physical chemistry: micelles,
vesicles — whose structure is entirely organized along geodetic principles, in
contrast to living organisms);

3. PASSIVE PLASTICITY as such (present in changes of physical form or in phe-
nomena of action/reaction/propagation in the manner of Turing, for example);

4. SCALING PROPERTIES as such (present in numerous physical phenomena and
namely in critical transitions, anomalous diffusion, etc.);

5. GROWTH phenomena as such (present in the growth of crystals, for example);
6. CHIRALITY as such (present in the physics of particles or chemistry, for exam-

ple);
7. Possibly negative variations of ENTROPY (present in the passing from disorder

to order, in critical transition for example),
8. The DIMENSIONALITY of physical quantities (almost always present – in con-

trast, for example, to the pure numbers of biological rhythms, see section 2.2.3
and chapter 3);

9. The MEASUREMENT which is always understood as approximated, in classical
frames;

10. The FRACTALITY as such of certain objects and dynamics (present in a number
of physical phenomena, but also in organs of plants and animals as forced by
their role in the exchange of energy and matter);
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11. The chemistry of MACROMOLECULES and of in vitro physical chemistry.

10.3 Biological Aspects

The contingent materiality of life phenomena includes, typically, the physical chem-
istry specific to biology, our first group of properties:

10.3.0.1 A Few “Physical” Properties of Life Phenomena:

1. The biological role of the CHIRALITY of molecules (amino acids, sugars) in the
metabolism;

2. Various other physical INVARIANCES according to the level of organization (the
chemical bases and geometric structure of DNA, relatively common to all living
objects; the metabolic invariants, including the metabolism/mass/duration rela-
tionship).

In addition to the above physical properties, which specifically (and only) manifest
themselves in life phenomena, the following are certainly part of biological theo-
rization:

1. Analysis in terms of PHYSICO-CHEMICAL SUBSTRATES such as molecular cas-
cades that may be found only in cells;

2. The MATHEMATICAL EXTENSION of certain physical laws including quantities
that do not appear as such or in an operative way in physics (for example, our
notion of anti-entropy in metabolic balances, recalled below, which extends well-
known balance equations in thermodynamics by a new observable).

10.3.1 The Maintenance of Biological Organization.

The setting of physiological activities (the functions of “orgons” — organelles, or-
gans, populations, see [Bailly et al., 1993, Bailly & Longo, 2011]), is often accom-
panied by organizational closure which is accomplished by means of:

1. The METABOLISM and PHYSIOLOGICAL ACTIVITIES (essential to integration
and to regulation) which interact and, in fact, superimpose one another;

2. The coupling between VARIOUS LEVELS OF ORGANIZATION, correlated in a
causal manner, both “upwards” and “downwards”, particularly by integration and
regulation,



10.3 Biological Aspects 269

3. The FRACTALITY of orgons in their physiological functions (lung, vascular sys-
tem, nervous system. . . intracellular structures);

4. The SCALING LAWS (allometry describes temporality and metabolism in func-
tion of the adult biological mass);

5. The importance of PURE NUMBERS (without physical dimensions) and of their
RELATIVE INVARIANCE (total number of heartbeats, respirations. . . which are on
average constant for mammals, and even among important groups of less studied
species as for internal rhythms, see section 2.2.3).

We tried to conceptually frame these properties of the living state of matter by means
of relatively new concepts, including that of extended critical transition in 1.4.2, as
locus and framework for the phenomena, which we summarized above.

10.3.2 The relationship to the environment

To these functions, we must add the relationship to the environment that is not only
dynamic, but adaptive and (or because) cognitive (as are protentional activities).
Moreover, biological dynamic is also located at the level of the reference space
(relevant parameters and observables), as, among other, an organism co-modifies its
own environment:

1. ADAPTIVE PLASTICITY at all levels of organization, in the interaction with an
environment;

2. The cognitive, present as soon as there is life, resides, in particular, in the CAPAC-
ITY TO DISCRIMINATE (the countable density of critical points within the zone of
extended criticality mentioned below can represent this discriminatory capacity,
by discontinuous passages (but without gaps) from one point to another);

3. The principle of COMPATIBILITY (tendency to achieve all possibilities compat-
ible with the given constraints), which justifies the genericity of evolutive and
ontogenetic trajectories;

4. The SPECIFICITY of the object and, as we were saying in section 10.2.1, the
GENERICITY of trajectories (in opposition to physics);

5. The CHANGES IN REFERENCE SPACES, which induces and enables biological
behavior, including in the number of relevant description dimensions (the “phase
space” itself — relevant parameters and observables — changes over the course
of the dynamics of life phenomena, as opposed to the physical frameworks, even
quantum ones).

Again, most of these aspects are related to an instability of biological theoreti-
cal symmetries, associated here to the constitution by the biological object of the
theoretically relevant environment.
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10.3.3 Passage to Analyses of the Organism

CRITICAL TRANSITIONS are extensively discussed in the analysis of the passage,
in particular, from the inert to the living, [Kauffman, 1993]. As such, they very well
describe states of the inert that are interesting also for biology see [Binney et al.,
1992, Mora & Bialek, 2011]. In physics, though, “coherent structures” appear over
pointwise transitions, and normally in a reversible way. We are, however, facing a
living state of matter when criticality is irreversible and lasts (till death). We deal
with these issues by considering an organism as staying in a “continual” (ongoing)
irreversible transition. Each mitosis, in a multicellular organism, yields an asymmet-
ric bifurcation and the formation of a new coherence structure — new tissular matrix
. . . , as components of a critical transition. In our approach, the interval of criticality
is therefore extended in time and in all relevant control parameters (temperature,
pressure. . . ), see section 1.4.2. The key idea is that all the usual properties of criti-
cal phase transitions are preserved (the formation of coherence structures, diverging
correlation lengths, symmetry changes . . . ). Yet, while, in physics, those only ap-
ply in a transition point (at least this is the mathematical representation, where the
renormalization methods apply, see section 1.4.2), we consider the “transition” to be
defined on a non-trivial interval. This occurs when rhythms (point 1 below and sec-
tion 1.4.1), protentional activity (point 2 and 1.4.1) and organization, as anti-entropy
(point 3 and 4, see also 1.4.4) jointly appear.

We may then conceive (but this discussion is not our aim, here) that, at the origin
of the extended criticality of life, there may have been particular critical transitions
of the inert matter, a global transition suddenly superposing all the ones we are
dealing with. These may all be described as conceptual and material “bifurcations”,
with their organizational correlates: extension of criticality to an interval, by the
formation of stabilizing membranes and of different levels of organization (as anti-
entropy), bifurcation of the time dimension (autonomous rhythms). Yet, extended
criticality is an ongoing phenomena for life, well beyond its origin. The five points
below may be considered at the core of the synthesis in this book. We briefly propose
to organize these “bifurcations”, which mark the (conceptual) passage from a state
of the inert to the living state, as a constitution of :

1. The second temporal dimension, the COMPACTIFIED time of biological rhythms;

2. The PROTENTION, as a “proactive gesture” in the interaction with the ecosystem,
present even unicellular life;

3. ANTI-ENTROPY, as the establishment and maintenance of organization (which
is opposed to disorganization — in particular to the entropy produced by all
irreversible processes);

4. The distinction in SEVERAL LEVELS OF ORGANIZATION, at the core of the in-
tegration and regulation activity of any living unit (which may be conceptually
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unified as orgons — organelles, organs, populations — and biolons — cells, or-
ganisms, species).

5. An INSTABILITY OF THE THEORETICAL SYMMETRIES of the objects, which
can be seen as a cascade of symmetry changes, over time, and leads to variability
in the strong sense of changing theoretical symmetries.

In short, the intelligibility of life phenomena that we propose presupposes the ex-
istence (“somewhere”, “at the origin of life”) of correlated bifurcations whose un-
derstanding requires the addition of the new theoretical entities above. These are
perfectly compatible with physical theorization, but they are not specific to it. In
this sense, it is a matter of proposing compatible, but “strict” theoretical extensions
of theories of the inert. Reduction may be a further step for the interested reduc-
tionist, who should prove that these theories are, first, conservative (in the sense of
Logic), then only apparently “strict”.

10.4 A Definition of Life?

Throughout the very old “physicalism / vitalism” debate, it has often been question
of defining what is life. A small but remarkable book by Schrödinger [Schrödinger,
1944] contributed to reviving the debate in a way we find to be relevant, at least in
its second part, and to which we refer in section 9. Did we provide, by this book,
a “definition of life”? Did we, at least, work towards such a definition? Let’s better
specify how we see this question:

PRIMO An “ideal” definition of life phenomena seems out of the question: there
is no Platonic idea of life to be grasped in a definite manner or with the maximal
conceptual stability and invariance specific to mathematical notions (as there is
with the definition or idea of the triangle. . . ). It is rather a question of defining
a few operational notions enabling to draw out concepts with which to work
for a systemic approach in biology. Moreover, physics does not define “matter”
otherwise than by means of an operative duality or contraposition (with respect
to the concept of energy or to that of vacuum or of anti-matter, for example).
Yet another, very rigorous, “provable impossibility to define the object of study”
is presented in the next section. Note that Darwin’s approach to evolution does
neither use nor need a definition of life, but needs to refer to organisms.

SEGUNDO Any operational attempt, in our opinion, must be made with respect to
the specific phenomenality of life phenomena: for example, it is possible that
for any chosen finite list of “defining” properties of life, there would exist a
sufficiently talented computer scientist able to create its virtual image to be ren-
dered on a computer screen (it is quite simple to program an “autopoietic” system
[Varela et al., 1974, Varela, 1989] or a formalized metabolic cycle in the manner
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of Rosen [Rosen, 1991] — see [Mossio et al., 2009], for example). However, not
only any human being, but also the most simple-minded of animals would recog-
nize it as a series of non-living “virtual images” (which are typically detectable
through identical iteration, as indirectly suggested by Turing’s imitation game,
see [Longo, 2008]).

It is rather a question, thus, of proposing a possibly robust intelligibility of a
phenomenality in its constitutive history, while keeping in mind the fact that any
constitution is contingent — both the constitution (evolution) of life and of our
historical understanding of it. That is, we stress the contingency of life and of our
modest attempts to grasp its unfolding over a material evolution — better still: over
one of the possible evolutions, taking place on this Earth, in these ecosystems and
with this physical matter and history. Our point of view includes what biologists
often express when they say that nothing can be understood in biology otherwise
than in the light of evolution (Darwinian and in this world) and what historian claim
to be the concrete historicity of science, as a non-arbitrary, but historical tool for
constructing objectivity and objects of knowledge.

It should be clear that we do not discuss here how “life may have emerged from
the inert”, but rather we explore how to go from the current theories of inert to a
sufficiently robust theory of the living. In particular, we hinted here to an analysis
of the physical singularity and of the specificity of the living object, by looking first
at the properties we would want to have (or not) in any theory of the “living state
of matter”. It is indeed an incomplete (see next) attempt at providing a conceptual
framework guiding more specific analyses.

In the next methodological reflection, we will borrow from Mathematical Logic
an understanding of the role of incompleteness in “our theoretical endeavors towards
knowledge” (to put it in H. Weyl’s words) and of its relation to conceptual or formal
“definitions”, of life in particular.

10.4.1 Interfaces of Incompleteness.

Do we need to have a definition of life, in order to construct robust theories of the
living state of matter?

Let’s now answer to this question by an analogy with a frame where it may be
dealt with the highest rigor: Mathematical Logic.

Is the concept of integer (thus “standard” or finite) number captured (defined,
characterized) by the (formal) theory of numbers? Frege (1984) believed so, as the
absolute concept of number was, in his view, fully characterized by Peano-Dedekind
theory. In modern logical terms, we can say that, for Frege, Peano Arithmetic (PA)
was “categorical”. That is, PA was believed to have just one model, up to isomor-
phisms: the standard model of integers (the one which the reader learned about in
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elementary school, with 0, though, and formal induction). Thus, the theory was also
meant to uniquely define “what a number is”.

This turned out to be blatantly wrong. Löwenheim and Skolem (1915-20) proved
that PA has infinitely many non-isomorphic models and, thus, that it is not categor-
ical. Moreover, a simple theorem (“compactness”) showed that no predicate, defin-
able in PA, may isolate (define) all and exactly all the standard integers (see [Marker,
2002]). In short, any predicate valid on infinitely many standard integers, must hold
also for (infinitely many) non-standard integers (which cannot be considered prop-
erly “finite”) — this is known as the “overspill lemma”. Gödel’s incompleteness
theorem reinforced these negative properties: PA is incomplete or, equivalently, it
has lots of logically non-equivalent models, a much stronger property than non-
categoricity.

A fortiori, there is no hope to characterize in a finitistic way the concept of stan-
dard integer number. One has to add an axiom of infinity (Set Theory) or proper
second order quantification in order to do so, PA2, and these are infinitary or im-
predicative formal frames (see [Longo, 1989]). Or, also, Set Theory with an axiom
of infinity and PA2 are not only strict extension, but they are non-conservative ex-
tension of PA: they prove propositions of PA, which are unprovable in PA1.

In conclusion, in spite of its incompleteness, everybody soundly considers PA
as the “natural” theory of numbers: it elegantly singles out the main relevant, and
very robust, properties of numbers (0, successor, induction), even though it cannot
define what a number is. In analogy to the impossibility of physics to define its own
object of study, physical matter, as we mentioned at the beginning, we have here
another example of sound theoretical frame, which cannot define, within itself, its
own object of study, the natural number object. And we do not see a way to get out
from the language of physics or of biology as Mathematical Logic can do, by using
infinities: what would ever correspond to an axiom of infinity or to higher order
quantification? Perhaps: . . . “take the point of view (and the language) of God”?

We encourage thus the reader to pursue his/her theoretical work in biology with-
out the anguishing search for a definition of life. And with the clear perspective of
the intrinsic incompleteness of all our theoretical endeavors, [Longo, 2011a]: we
can just hope to explicitly grasp and organize by theories some fragments of reality,
whatever this word may mean. Let’s try to do it towards the best of our knowledge,
in a sufficiently broad and robust way, and in full theoretical and empirical freedom,
without necessarily feeling stuck either to existing theories nor always searching for

1 Whether the biological observables we focused on and their theories are strict extensions or not
of the related physical theories is surely an interesting question. However, it would be much more
interesting if one of our theories or their conjunction were shown to be non-conservative with
respect to a (pertinent) theory of the inert. For example, Pasteur’s famous example of statistically
non-balanced chirality of some macromolecules is a property that can be stated in the language
of physics, yet, as far as we know, it has not been derived from any physical theory. It would be
fantastic if it could be justified within one of our frames, e.g. from a property of the phenotype at
the cellular level . . . extended criticality, say . . . .
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the “Ultimate (complete?) Theory” nor the “ultimate reduction”. Molecular analy-
ses are not useless, of course, nor wrong, a priori, they are just incomplete, in our
opinion, as for describing phenotypes and their evolutionary or ontogenetic dynam-
ics.

Similarly, the issue of the emergence of life from molecules is a very relevant
one, but as long as we do not have a sufficiently robust, yet incomplete, theory
of organisms, which “objects”, with which properties, should ever been shown to
emerge from inert matter?

10.5 Conclusion.

Broadly speaking, and including the considerations in terms of extended critical-
ity and symmetry changes, the principles that we propose, while addressing these
particular observables and quantities, specific to life phenomena, constitute an ex-
tension of existing physical theories: they preserve the same formal mathematical
structure and, if we set the value of the considered observables or parameters to 0,
they lead us back to the case of the inert. That is, if there is no protention, no second
temporal dimension, no extension of criticality, no value of anti-entropy, one re-
turns to physical frames. Our theoretical propositions are thus compatible, although
they may be irreducible as such, to “existing physical theories”. That is, they are
reducible to physics as soon as they are presented outside of the extended critical
zone having its own temporality and its anti-entropy, or as soon as these specific
quantities go to 0.

In short, the peculiar phenomenality of life deserves some new concepts and ob-
servables: we tried to propose such observables by the notions of extended critical
transition, biological complexity and organization, proper time, . . . . The point is
the pertinence, if any, of these treatments, “per se”. Those who claim that all these
concepts should be reduced to physical (existing?) theories are welcome to try: we
would be very pleased and proud if the competent reductionists were able to rewrite
them fully and faithfully (derive or embed them) in (existing) physical frames. But
they should first look at the history of Physics itself, where novel theoretical frames
are marked by the invention of new perspectives, new concepts as well as new ir-
reducible observables. Their pertinence had to be judged “as such”, within their
domain of meaning, not on the grounds of their reducibility to existing, thus “safe”,
explanatory grounds. In any cases, should reduction or unification be performed, the
first question is: which theory does one want to reduce to which theory? Reduction,
as we learn from physics and logic, is a intertheoretical issue.

Note that, among our proposals, the concept of extended critical transition, in
association with ubiquitous symmetry changes, leads to radical methodological
changes, as associated to the specificity of objects and genericity of trajectories. It is
probably the most radical change of perspective we propose. This proposal indeed
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alters, with respect to physics, the very theoretical nature of the scientific object, as
for proper biological objects: organisms and phenotypes. As a result, physical no-
tions like the space of theoretical determination (phase space) cannot have the same
meaning and use. One of the main and maybe the main notion at the core of these
changes is historicity. In evolution and in development, biological objects organize
themselves and they do so in a never identical manner, as long as their organization
allow them to survive. We want to emphasize again that the specificity of biological
objects, associated to this historical determination and the unstable mathematical
symmetries, calls for a change of perspective, with respect to physics, in the under-
standing of biological phenomena. Physical objects, even the most complex ones,
are understood by their regularities (invariants and associated symmetries), while
one of the most stable feature of biological objects is their variability, which engen-
ders diversity and contributes by this to biological structural stability, at all levels
of organization. It is the reason why we put variability, understood as symmetry
changes, at the core of our approach to biological phenomena.





Appendix A
Mathematical appendix

In this appendix, we provide some mathematical background on results discussed in
this book. More precisely, we go back to scale symmetries, as discussed in chapter 2
and provide a proof of Noether’s Theorem in addition to the presentation in chapter
5.

A.1 Scale symmetries

Let us resume the discussion of section 2.1.1. We will consider the mathematical
situation with more generality than in chapter 2, by recalling that symmetries cor-
respond to the algebraic notion of group. We want to find the functions which have
a scale symmetry. A strict scale symmetry is defined by the fact that to a dilatation
of the parameter(s) corresponds a dilatation of the observed quantity. Then, we have
the following result:

Theorem A.1 (Scaling). Let us consider a function f : A→ R and a group G =

{Dλ |λ ∈ S} acting on A, where S is a subgroup of (R∗+,×) and λ → Dλ . We
suppose that λ → f ◦Dλ is continuous1 and that there exist g such that ∀λ ∈ S, f ◦
Dλ = g(λ ) f .
Then, there exists α such that ∀λ , g(λ ) = λ α .

Proof. If f = 0, then any α fulfill the conditions of the theorem. Let us consider
now f 6= 0 and G according to the hypothesis of the theorem. We will proceed by
considering sets of increasing size.

[1] f ◦D1 = g(1) f and f ◦D1 = f so g(1) = 1.
[N] Let us consider a∈ S, a 6= 1 and n∈N∗. We have f (Dan(x)) = g(an) f (x) and

f (Dan(x)) = f (Da ◦Dan−1(x)) = g(a) f (Dan−1(x)) = g(a)g(an−1) f (x) and then,
g(an) = g(a)g(an−1). Finally, we obtain by recurrence ∀n ∈ N, g(an) = g(a)n.

1 This condition is always met if ln(S) is proportional to Z.
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[Z] Let us take n∈N. We have g(ana−n) = g(1) = 1 and f (Dana−n(x)) = f (Dan ◦
Da−n(x)) = g(an) f (Da−n(x)) = g(an)g(a−n) f (x), as a result g(a−n) = g(a)−n.
We have shown that, ∀n ∈ Z, g(an) = g(a)n.
If ln(S) is proportional to Z, there exists a such that S = {an |n ∈ Z}. As a
result for all λ ∈ S, we have ln(λ )/ ln(a) ∈ Z. Thus g(λ ) = g(a)ln(λ )/ ln(a) =

λ ln(g(a))/ ln(a), so α = ln(g(a))/ ln(a) answers the question. In the following step,
we will on the contrary assume that S is dense2 in R.

[S] We will show that α = ln(g(a))/ ln(a) fits the expected conditions.
Let us consider λ ∈ S and pk = λ nk a−mk where ∀k, (nk,mk)∈N∗2 and (pk) tends
to 1. This last condition means that (mk/nk) tends to ln(λ )/ ln(a).
We have f (Dpk(x)) = g(pk) f (x) which tends to f (x) since s→ f ◦Ds is continu-
ous and (pk) tends to 1, so (g(pk)) tends to 1. Now, g(pk) =

g(λ )nk

g(a)mk so g(pk)
1/nk =

g(λ )
g(a)mk/nk

tends to g(λ )
g(a)ln(λ )/ ln(a) and to 1. As a result g(λ ) = g(a)ln(λ )/ ln(a) = λ α .

In all cases, we thus have found α such that g(λ ) = λ α .

Remark A.1. If ln(S) is proportional to Q, we do not need the continuity hypoth-
esis. Indeed, consider p ∈ N and q ∈ N∗. We have g(ap) = g(a)p and g(ap) =

g((ap/q)q) = g((ap/q))q. As a result g(ap/q) = g(a)p/q.

Remark A.2. The continuity hypothesis is crucial in general. Let us for example
decompose R, as a Q-vector space, as a linear sum of two non-trivial subspaces:
R = A⊕B.We can then define f : R+→ R+, so that for x = exp(a+ b) ∈ R, with
a∈A and b∈B we get f (x) = exp(2a+3b). f is well defined because the decompo-
sition is unique. For λ = exp(a2 +b2), we have f (λx) = f (exp(a2 +b2 +a+b)) =
exp(2a+2a2 +3b+3b2) = f (s) f (x). Thus the condition of scale symmetry is met,
but not the continuity and neither is the existence of an α valid for all transforma-
tions.

Corollary A.1. A function f (x1, . . . ,xn) : R∗n+ which meet the criteria of theorem
A.1 for the n groups, copies of (R∗+,×) acting respectively on each xi by the usual
multiplication can be written as:

f (x1, . . . ,xn) = f (1, . . . ,1)∏xαi
i (A.1)

A.2 Noether’s theorem

We will first formulate and prove Noether’s theorem in the framework of classical
Lagrangian mechanics. Then we provide this result in the (Lagrangian) field theo-
retic settings.

2 We recall that the subgroups of (R,+) are either proportional to Z or dense, which leads to the
subgroups of (R∗+,×) either having a logarithm proportional to Z or being dense.
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A.2.1 Classical mechanics version (Lagrangian)

In order to start from first principles, within Lagrangian mechanics, we will first
derive the equations of motions from the variational principle, since these equations
are used in the proof. The derivation of the equations exemplifies our discussion of
the specificity of physical trajectories above and in chapter 7.

A.2.1.1 Variational principle

Let us consider a classical system, governed by its Lagrangian L (t,q1, q̇1, . . . ,qn, q̇n),
where q̇i =

dqi
dt . The state is then described as a 2n dimensional vector, we will write

such a state as q̄(t). In order to simplify the notations, we will write in the following:

L (t,q1, q̇1, . . . ,qn, q̇n) = L (t,qi, q̇i)

The variational principle, also called Hamilton’s principle, states that the trajec-
tory between two points in phase space is stationary with respect to the action:

S =
∫ t2

t1
L (t,qi(t), q̇i(t))dt (A.2)

We can then derive the Euler-Lagrange equations, which are the equations of mo-
tion in a Lagrangian point of view. Let us consider a stationary trajectory in phase
space q̄(t) and a small perturbation ε̄(t), with ε̄(t1) = ε̄(t2) = 0. We then have a
corresponding change of the action:

δS =
∫ t2

t1
L (t,qi(t)+ εi(t), q̇i(t)+ ε̇i(t))−L (t,qi(t), q̇i(t)) dt (A.3)

We will use from here on the Einstein summation convention, meaning that silent
indexes that appear twice, one in an up position and one in a down position implies
a summation over all possible values. Here, the concerned index is α which is thus
associated to an implicit sum. The above gives at the first order:

'
∫ t2

t1
εα(t)

∂L (t,qi, q̇i)

∂qα

(t)+ ε̇α(t)
∂L (t,qi, q̇i)

∂ q̇α

(t) dt (A.4)

With a partial integration, we obtain:

=

[
εα(t)

∂L (t,qi, q̇i)

∂ q̇α

(t)
]t2

t1

+
∫ t2

t1
εα(t)

∂L (t,qi, q̇i)

∂qα

(t) −εα(t)
d
dt

∂L (t,qi, q̇i)

∂ q̇α

(t) dt

(A.5)
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On one side, the first term is null because ε̄(t1) = ε̄(t2) = 0, by definition. On the
other side, δS = 0 at the first order because q̄(t) is a stationary point of the La-
grangian. As a result, we obtain for every ε̄(t)

0 =
∫ t2

t1
εα(t)

∂L (qi, q̇i)

∂qα

(t)− εα(t)
d
dt

∂L (qi, q̇i)

∂ q̇α

(t) dt (A.6)

And the latter proves the Euler-Lagrange equations:

0 =
∂L (t,qi, q̇i)

∂qα

− d
dt

∂L (t,qi, q̇i)

∂ q̇α

(A.7)

This equations corresponds to the fundamental principle of dynamics with the mo-
menta pα = ∂L (t,qi,q̇i)

∂ q̇α
(t) and the forces Fα = ∂L (t,qi,q̇i)

∂qα
(t).

This short derivation shows that the Lagrangian formalism is equivalent to the
Newtonian point of view. Another classical and powerful point of view is Hamilto-
nian mechanics. These different formalisms have different efficiency, depending on
the problem considered.

A.2.1.2 Noether’s theorem

We will formulate Noether’s theorem in this context and prove it.

Theorem A.2 (Noether, classical Lagrangian mechanics). For the above Lagrangian,
let us suppose that S is preserved under the action of a one parameter continuous
group G with infinitesimal generator3 v = τ

∂

∂ t +φα
∂

∂qα
+ψα

∂

∂ q̇α
. Then, the quan-

tity:

C = τ L +
∂L

∂ q̇α

(φα − q̇α τ) (A.8)

is an invariant of the dynamic (meaning a quantity with a null derivative with respect
to time).

Proof. In order to show that this quantity is conserved, we will consider its time
derivative which we will prove to be 0.

EFFECT OF THE TRANSFORMATION Let us consider g ∈G, we will note for ev-
ery variable g.x = x̃.

S̃ =
∫ t̃2

t̃1
L (t̃, q̃i, ˙̃qi)dt̃ =

∫ t2

t1
L (t̃, q̃i, ˙̃qi)

dt̃
dt

dt (A.9)

3 We cannot choose freely all the parameters of the generator, more precisely we will show in the
proof that the ψ parameters is determined by the others (for example).
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Since, by hypothesis, the action is conserved, we have:

S̃ = S (A.10)
∫ t2

t1
L (t̃, q̃i, ˙̃qi)

dt̃
dt

dt =
∫ t2

t1
L (t,qi(t), q̇i(t))dt (A.11)

This equation is true for all t1 and t2 so:

L (t̃, q̃i, ˙̃qi)
dt̃
dt

= L (t,qi(t), q̇i(t)) (A.12)

Thus, at first order:

0 = τ
∂L

∂ t
+φα

∂L

∂qα

+ψα

∂L

∂ q̇α

+L
dτ

dt
(A.13)

Notice that the last term is due to the changed scope of integration, the other terms
come from the variation of the Lagrangian generated by the transformation.

RELATION BETWEEN THE PARAMETERS OF THE GROUP. At first order in ε , the
following relation holds:

˙̃qα(t̃)− q̇α(t) = ψα ε (A.14)

=
d
dt̃

(qα(t̃− ετ)+ εφα)−
d
dt

qα(t) (A.15)

= ε

(
dφα

dt
− dτ

dt
˙qα(t)
)

(A.16)

This leads to:

ψα =
dφα

dt
− dτ

dt
q̇α(t) (A.17)

REMAINING OF THE PROOF Let us start from equation A.13

0 = τ
∂L

∂ t
+φα

∂L

∂qα

+ψα

∂L

∂ q̇α

+L
dτ

dt
(A.18)

=
d
dt
(τL )− τ q̇α

∂L

∂qα

− τ q̈α

∂L

∂ q̇α

+φα

∂L

∂qα

+ψα

∂L

∂ q̇α

(A.19)

We use equation A.17

=
d
dt

(τL )− τ q̇α

∂L

∂qα

− τ q̈α

∂L

∂ q̇α

+φα

∂L

∂qα

+

(
dφα

dt
− dτ

dt
q̇α(t)

)
∂L

∂ q̇α

(A.20)

=
d
dt

(τL )+
∂L

∂qα

(φα − τ q̇α)+
∂L

∂ q̇α

d
dt

(φα − τ q̇α) (A.21)
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We remark that:

d
dt

(
∂L

∂ q̇α

(φα − τ q̇α)

)
=

∂L

∂ q̇α

d
dt

(φα − τ q̇α)+
d
dt

(
∂L

∂ q̇α

)
(φα − τ q̇α)

(A.22)

∂L

∂ q̇α

d
dt

(φα − τ q̇α) =
d
dt

(
∂L

∂ q̇α

(φα − τ q̇α)

)
− d

dt

(
∂L

∂ q̇α

)
(φα − τ q̇α)

(A.23)

We thus obtain, combining equations A.21 and A.23:

0 =
d
dt

(τL )+
∂L

∂qα

(φα − τ q̇α)+
d
dt

∂L

∂ q̇α

(φα − τ q̇α)−
d
dt

∂L

∂ q̇α

(φα − τ q̇α)

(A.24)

=

(
∂L

∂qα

− d
dt

∂L

∂ q̇α

)
(φα − τ q̇α)+

d
dt

(τL )+
d
dt

(
∂L

∂ q̇α

(φα − τ q̇α)

)

(A.25)

We recognize the Euler-Lagrange equations (A.7) in the first term, which is thus
null, so

0 =
d
dt

(τL )+
d
dt

(
∂L

∂ q̇α

(φα − τ q̇α)

)
=

dC
dt

(A.26)

Thus C is an invariant of the dynamic.

We provide examples of the application of this theorem and more qualitative
discussion in setion 5.3 that this mathematical appendix aims to complete.

A.2.2 Field theoretic point of view

We will consider now a relativistic field theoretic version. The interesting aspects
involved is the notion of current that the theorem allows to define and the shift to a
space-time point of view instead of the specific role played by time in the classical
point of view. See for example for a general introduction to field theories [Altland
& Simons, 2006].

Theorem A.3 (Noether, Field theory). For continuous and differentiable fields Φi

on space-time (whose coordinates are noted X µ , µ = 0, . . . ,3) consider the action:

S =
∫

Ω

L

(
Φi,

∂Φi

∂Xµ

,X µ

)
d4X (A.27)
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Let us suppose that S is preserved under the action of a continuous group G

with a finite number of parameters (index by r). Let us note its infinitesimal gen-
erators4 as v = xµ,r

∂

∂Xµ
+ φα,r

∂

∂Φα
+ψα,µ,r

∂

∂

(
∂Φα
∂Xµ

) . Then, we define the Noether

current densities:

jµ,r =−
∂L

∂

(
∂Φβ

∂Xµ

)φα,r +


 ∂L

∂

(
∂Φα

∂Xµ

) ∂Φα

∂Xν

−L δµ,ν


xν ,r (A.28)

(where δµ,ν is the Kronecker symbol: 1 iff its parameter are equal, else 0). These
currents verify:

Div jr =
∂ jµ,r

∂Xµ

= 0 (A.29)

This equality means, through the Gauss–Ostrogradsky theorem5, that the quantity
associated to jr (its integral over a space-time volume Ω ) equals its flow through
the boundaries of Ω . As a result, the currents can be seen as currents of quantities,
called charge, which are conserved6.

Remark A.3. Here we have considered a 4-dimensional space-time, but this choice
is mathematically arbitrary and only motivated by the usual physical applications.

Remark A.4. Noether’s theorem, in its classical mechanics version, is a special case
of this field version. Indeed, if we consider spacial coordinates as a 3-dimensional
field over a 1-dimensional space-time (only a time dimension), then we fall back to
the version provided by Lagrangian mechanics.

4 As in the classical case, the ψ parameters are defined by the other parameters.
5 This theorem, also known as divergence theorem, states that for a sufficiently regular volume and
field the integral of the field on the volume is equal to its fluxes across the boundaries. Intuitively:

Sources − Sink = fluxes in − fluxes out
As a result, a null divergence leads to: fluxes in = fluxes out.

6 Note that the definition of Noether’s current is up to a solenoidal vector field (aka, a field with
null divergence).
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Berry & Chaté, 2011. Berry, H. & Chaté, H. (2011). Anomalous subdiffusion due to obstacles :

A critical survey. arXiv:1103.2206v1, (pp. 1–33).
Berthoz, 2002. Berthoz, A. (2002). The Brain’s Sense of Movement. Harvard U.P.
Binney et al., 1992. Binney, J., Dowrick, N., Fisher, A., & Newman, M. (1992). The Theory of

Critical Phenomena: An Introduction to the Renormalization Group. Oxford U. P.
Bishop, 1999. Bishop, C. (1999). The maximum oxygen consumption and aerobic scope of birds

and mammals: Getting to the heart of the matter. Proceedings of the Royal Society - Biological
Sciences, 266(1435), 2275–2281.

Bokma, 2004. Bokma, F. (2004). Evidence against universal metabolic allometry. Functional
Ecology, 18(2), 184–187.



References 287

Boser et al., 2005. Boser, S., Park, H., Perry, S., Menache, M., & Green, F. (2005). Fractal geom-
etry of airway remodeling in human asthma. Am. J. Respir. Crit. Care Med., 172(7), 817–823.

Botzung et al., 2008. Botzung, A., Denkova, E., & Manning, L. (2008). Experiencing past and
future personal events: Functional neuroimaging evidence on the neural bases of mental time
travel. Brain and Cognition, 66(2), 202–212.

Bourgine & Stewart, 2004. Bourgine, P. & Stewart, J. (2004). Autopoiesis and cognition. Artifi-
cial Life, 10, 327.

Boxenbaum & DiLea, 1995. Boxenbaum, H. & DiLea, C. (1995). First-time-in-human dose se-
lection: allometric thoughts and perspectives. The Journal of Clinical Pharmacology, 35(10),
957–966.

Brillouin, 1956. Brillouin, L. (1956). Science and Information Theory. New York: Academic
Press.

Bros & Iagolnitzer, 1973. Bros, J. & Iagolnitzer, D. (1973). Causality and local mathematical
analyticity : study. Ann. Inst. Henri Poincaré., 18(2).
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