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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 49, Number 4, Dec. 1984 

THE HEREDITARY PARTIAL EFFECTIVE FUNCTIONALS 
AND RECURSION THEORY IN HIGHER TYPES' 

G. LONGO AND E. MOGGI 

Abstract. A type-structure of partial effective functionals over the natural numbers, based 
on a canonical enumeration of the partial recursive functions, is developed. These partial 
functional, defined by a direct elementary technique, turn out to be the computable elements 
of the hereditary continuous partial objects; moreover, there is a commutative system of 
enumerations of any given type by any type below (relative numberings). 

By this and by results in [1] and [2], the Kleene-Kreisel countable functionals and the 
hereditary effective operations (HEO) are easily characterized. 

?1. Hereditary partial effective functional. Let C be the set of the partial 
computable (recursive) functions. If one sets wo' = co u {I} and I represents 
undefined computations, the functions in C may be viewed as total maps from co to 
cOW. 

(Notation. For sets A, B, f: A -f B is a total map from A to B.) 
Let <, > be any effective coding of pairs in w. 
Set C(0? = -o and C(1) = C. We now define C(n), for all n > 1, as the set of 

hereditary partial effective functionals (HPEF) of integer type n, by induction on n, 
using a set C(n 5) of maps from C(n- 1) to C(n) (functions of "intermediate" type). The 
maps in C(n) go from C(n- 1) to C(n- '". The coding <, > is extended to higher types in 
one of the several possible ways (see 3.3). 

)xy g(x, y) is the map <x, y> -g(x, y). 
1.1. DEFINITION (HPEF). (i) Let :C(n 1) + (n). Then 

e C C 
(n. *b 5 )Xy 

. ? (X)( y) E C 
(n) 

(ii) Let T: C(n) C(n). Then 

T E C( 1) e:?) E C- To e r C C(n.5) 

In [6] the functions in C(n.5) were assumed to be partial. In view of Theorem 3.8 
below, this does not make much difference, for each C(n),n > 0, contains an 
undefined (least) element. 

Fix now a canonical (acceptable) Gddel-numbering 01: o0) - C. Let TC be the 
total computable functions. 
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1320 G. LONGO AND E. MOGGI 

1.2. LEMMA. Let a: wo -f C be an acceptable Godel-numbering. Then one has 
(i) Oka E C ); 

(ii) 0 E C(' 5)3f E TC = 'af; 
(iii) T e C(2) -to ? 0a E C(l5') 
PROOF. (i) By the iteration (s - m - n) theorem, for some ft E TC, Oa(n)(m) = 

+1((f, (n)) (m)). 
(ii) . Trivial. 

=-. By the s - m - n theorem for 4,a 
(iii) . By (i) and the definition. 

-. If 0 E C(1'5), then T o 0 = T o ka o f for some f e TC, by (ii). Clearly 
T?0Oaof Cf C5). 

Effective operations are defined in [7] (see also [4] and [5] at type 2). 
1.3. COROLLARY. T E C(2) T is an effective operation. 
PROOF. =-. 

T ?1(n)(m) = g(<n, m>) for some g E C, by 1.1, 

= 01(f(n))(m) for some f e TC, 
bythe s-m-ntheorem.ThusTo1 = 1?f 

=. Immediate. 
By the Myhill-Shepherdson theorem [7], Corollary 1.3 proves that C(2) is the set 

of computable and continuous operators (the recursive operators) from C to C, 
when C is given the Scott topology (see [9] and ?2 below). 

Thus, up to type two, everything is fine and easy. One gets exactly the classical 
recursive operators. 

As for the higher types, the key structural property of the HPEF is the following 
(see ?3 for a proof): 

(1) Vn > 0 3e, c C(n) Ve C(5f) 3en C(n) f = fOn ?fn 

Recall now that for all fn+ e C (nI 1), one has fn+ a On C C(n 5). Then, by (1), for some 

C n + 1 ? O?n = O?n ?ofn 
By this, HPEF may be visualized in the integer types by the following diagram 

(bottom-up): 

(2) f 

C C 
I f2 I 

COn-1) O c{n-1) 

fnn I 1 5 
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THE HEREDITARY PARTIAL EFFECTIVE FUNCTIONALS 1321 

The HPEF were first defined in [6], where (1) was conjectured. 
The proof of (1) will be given by proving first another strong property of the 

HPEF. Namely, for all n E co, the functions in C(n.5) and c(n) are "continuous", in the 
usual sense (see [2], [10] and ?3 below, where the proof is given). 

Moreover, by results in [1] and [2], modulo a simple equivalence relation (see ?4), 
the HPEF give the Kleene-Kreisel countable functionals and HEO. 

By this and by the notion of "relative (Gddel-)numbering", the lemmas in ?3 and 
the above diagram give some information also on classical recursion theoretic 
hierarchies. 

Aside from the comparison carried out in ?4, though, the HPEF approach seems 
of interest in itself (see, for example, the open problems listed at the end of the paper). 

?2. Preliminaries. Most of the notions in this section are borrowed from [1] and 
[2]. One could also use [10]: as a matter of fact early ideas of Scott inspired Ershov's 
work (see [1, p. 206]). We follow Ershov's notation in view of the results in [2] we 
need. The reader may refer to [2] and [3] for an overview and a comparison. We 
only recall a few definitions. 

Given a poset (X, <) and x, y E X we write xT y for 3z E Xx < z A y < z, i.e. x 
and y are compatible. HA is the least upper bound of A, if it exists. 

2.1. DEFINITION. Let (X, <) be a poset and X0 c X. Then (X, X0, <) is an f-space 
iff: 

(1) Vx X 3xo E X0x0 < x, 
(2) (X0, <) is a partial upper semilattice, i.e. 

Vxo, yo E Xo(xo T yo ] 3zo E Xz = Xo Li Yo = Li {xo, yo}), 

(3) Vx, ye X(x y=]x0 eXo0x0 < x A X0 4 Y). 
An f0-space is an f-space with a least element, I say; Scott's topology is given by 

the basis {x E X/xo < x} for x0 ranging in X0. Effective f-spaces, etc. are as in [1], 
[2] or [3]. In case of completeness they correspond to the effectively given domains 
in [10]. 

Let X = (X, X0, vo, < ) be an effective f-space, where vo: l -) X0 is a numbering of 
the base X0. Set X, = {x E X/{n/v0(n) < x} is r.e.} (X, is the set of computable 
elements in X). A c w is an ideal (with respect to X) if {vo(n)/n E A} is an ideal in X0 
(i.e. it is a directed set downward closed). X is complete over r.e. ideals (or effectively 
complete) if, for any r.e. ideal W c w, L {v0(n)/n E W} exists in X. 

(Notation. If there is no ambiguity, by X (effective) f(fo)-space etc. we mean 
X = (X, X0, (vo,) <), etc.) 

Let X, Y be f-spaces. Then Cont(X, Y) is the set of continuous functions from X to 
Y. 

The category of fo-spaces, with continuous functions as morphisms, is Cartesian 
closed. The same applies to the various subcategories mentioned above. Thus the 
notion of finite or computable element is naturally inherited at higher types. For 
example, f E Cont(X, Y)O iff f is the least upper bound of a finite set of compatible 
"step" functions (where step x0yo(z) = "if x0 < z then yo else I" for x0 e X0, 
Yo C Yo). 

Note that if X is an f-space and Y an fo-space, then Cont(X, Y) is an fo-space. 
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1322 G. LONGO AND E. MOGGI 

2.1. REMARK. Let X = (X, X0, vo, <) be an effectivef-space and Y = (Y, YO, y0, <) 
an effective fo-space. Then 

g E Cont(X, Y), iff g E Cont(X, Y) and {<n,m>/,o(n) < g(vO(n))} is r.e. 

A pair (D, e) is a numbered set if e: o -* D is surjective (onto). 
2.2. DEFINITION. Let e, e': o -* D be onto maps. Define 

(1) e <Tce' if 3h E TCe = e'o h, 

(2) e=Tc e if e <Tc e' and e' <Tc e. 

(Recall that TC c C is the set of total computable functions.) 
2.3. DEFINITION. Let (D, e) be a numbered set. Then e': o -* D is an (acceptable-) 

numbering of (D, e) if e' -TC e. (We just say "numbering", if there is no ambiguity.) 
Given numbered sets (D, e) and (D', e'), h: D -* D' is a morphism (of the numbered 

sets (D, e), (D', e')) if ]h' E TC h o e = e' o h' (notation: h E Mor(D, D')). 
Some f-spaces contain interesting numbered sets. 
2.4 Definition. Let X be an effectively complete fo-space. Then v: w -* X, is a 

principal Gidel-numbering of X, if there exists f E TC such that for all i E O one has: 
(1) Wf(i) is an ideal, 
(2) Wi is an ideal =W = Wf(i), and 
(3) v(i) = L {vo(n)/n E Wf(i)}. 
Given X as in 2.4, a principal Gddel-numbering of X, may be given by an easy 

recursion theoretic argument. Note that if v1, v2 are principal Gddel-numberings of 
Xc, then v1 -TC V2. The numberings of (Xc, v) are defined as in 2.3, taking v principal. 
(Notice that not every numbering needs to be principal.) Since X0 c Xc, Xc uniquely 
determines its completion over any ideal, X say. Of course X c X. Finally, define Xc 
- (Xc, v, X0, vO, ?) a constructive fo-space. That is, a constructive fo-space is the 
computable part of an effectively complete fo-space, with the principal Godel- 
numbering. Let Xc and Yc be constructive fo-spaces; then there is a natural 
isomorphism Cont(Xc, YC)c = Cont(X, Y)C. 

2.5. DEFINITION. Let X, Y be f-spaces. X may be naturally extended to an fo- 
space X' by adding a least element, if not already in (similarly for Y '). Moreover, 
any g: X -* Y may be extended to g: X' -* Y' by setting g'( I) = IY, and 
g'(x) = g(x) else. Otherwise 

EXAMPLE. cW = (O. w, id, =) gives w' = (l', w', id', <). 
A rather broad generalization of the Myhill-Shepherdson theorem (GMS) will 

be used in several places (see below or [2] for a statement; a proof may be found 
in [3]). 

2.6. THEOREM (GMS). Let X, Y be effective f-spaces such that X' and Y' are 
effectively complete. Let also v: o -* X' and ,u: w Y? be Godel-numberings of the 
constructive subspaces. Then 

g E Cont(X, Y )c if 3g' E TC g' o v = a o g' (i.e. g' E Mor(X?, Yc)). 

Of course, if X = Xi and Y= Y', 2.6 is exactly GMS as in [2] and [3]. In this case 
we will often identify Cont(X, Y)c and Mor(Xc, Yc). (Recall that in our notation a 
constructive fo-space is also effectively complete.) 
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THE HEREDITARY PARTIAL EFFECTIVE FUNCTIONALS 1323 

A few more notions are required. 
2.7. DEFINITION. Let X, Y be (effective) f-spaces. Then X0 can be (effectively) 

embedded into YO (notation: XO c+ YO (effectively)), if for some g: X0 -* Y0 one has: 
1. xo T yo iff g(xo) T g(go), 
2. g(xo L yo) = g(xo) L g(yo), 
(3. 3g' eTCgovo = goog'). 
Clearly g in 2.7 is continuous. 
2.8. LEMMA. Let X, Y be effectively complete fo-spaces. Assume that XO c+ YO 

effectively, via g. Then 

TO E Cont(X, Y), which is one-one and extends g, 

3!h E Cont(Y,X), such that h o - = id, and j o h < idy. 

PROOF. Set ?j(x) = L {go(xo)/xo E X0 and xo < x} and 

h(y) = L {xo E Xo/g(x) < y}. 

The rest is easy. U 
2.9. LEMMA. Let X, Y be (effective) f0-spaces. Assume that )' C4 YO (effectively). 

Then ca' c+ Cont(X, Y)0 (effectively). 
PROOF. Let emb: wo' c Y0 be the given embedding. Set then emb1(p)= 

step I (emb(p)), for p Ew a)' 
2.10. DEFINITION. Let Xbe an effective fo-space. Assume that wO cp X0 effectively, 

via emb say. Define then #: X -*o as the inverse map of emb given by Lemma 2.8. 
For the purposes of recursion theory in higher types, the f(fo)-spaces one deals 

with form the type structure of the continuous functions on the natural numbers, in 
any finite type. Set then 

E(-) = -) E(1) = Cont(wO, w0') and En 2) = Cont(E-(n +1) E(n + 1)) 

2.11. LEMMA. Vn ? 1 )' c+ E W effectively. 
PROOF. Clearly a)' cp ol. Then use 2.9 inductively. U 
Note that El') = C. By 1.3, E(2) = C(2). Theorem 3.8 below proves that, for all 

n E w, E - = Con) 
C 

?3. Relative numberings and continuity. 
3.1. DEFINITION. Let (D, e) and (D', e') be numbered sets. Then 0: D -* D' is a 

relative numbering (of (D', e') with respect to (D, e)) if o e is an (acceptable) 
numbering of (D', e'). 

Clearly, if 4: D -* D' is a relative numbering, then 0 E Mor(D, D'). 
3.2. REMARK. Let 4 be a relative numbering of (D', e') with respect to (D, e). Let 

0': D - D' be such that 

(0) 3fg e Mor(D,D) 4'=4of and4=4'og. 

Then A' also is a relative numbering (cf. 2.3). 
Note that the converse does not hold. Corollary 3.10 gives, for the HPEF, a set of 

relative numberings of C 1) with respect to C(n), which may be characterized as in 
(0) (see Remark 3.11). 

There is a minor (!) point in the definition of HPEF. Are they well defined? 
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1324 G. LONGO AND E. MOGGI 

To check this we only need to define, for all n ? 1, a one-one (onto) coding of 
pairs, which actually goes from C(n) x C(n) to c(n). For C x C, say, one cannot use 
<, > on o x w, for partial maps cause some problems. 

3.3 DEFINITION. Given f, g E C, define 

<f~g>(n) = ff(n/2) if n is even, 
- g((n-1)/2) else. 

For n > 1 and f, g E C(n) define <f, g>(x) = <f(x), g(x)>. 
By the following lemma and Theorem 3.8, these codings will do the job. 
As a matter of fact, the proof of Theorem 3.8 (Main Theorem) is by combined 

induction. To make it readable we distilled the inductive step in several lemmas. 
Here is the first. 

3.4. LEMMA. Let Xc be a constructive fo-space. Assume that X0 x X0 cp Xo 
effectively onto. Then 

Cont(X, X)O x Cont(X, X)O cp Cont(X, X)O effectively onto. 

PROOF. Let <K> be the given embedding. For F1 = LI1 step xiyi and Fj = 

LiJ step ujvj in Cont(X,X)0, define 

<FI, FJ> =(L step xi(< Ki, I >) H (Li step uj(<L, vj>)) 

(use 2.7). Then <FI,FJ> E Cont(X,X)o and 

<Fl, Fj>(z) = (L < y, i>) L (Li <1 vj>), where Iz = {Ji E IXi < zJ 

and Jz = {j E J/uj < z}, 

= <FI(z),Fj(z)>. 

Take now an arbitrary FH = UH step Zhth in C(X, X)O. Define F= LH step ZhSh, 

and G = LJH step Zhrh, where <Sh, rh > = th. Note that Sh and rh exist, for <K > is onto. 
Then FH = <F, G> and FH(x) = <F(x), G(x)>. <, > is clearly an effective embedding 
in the sense of 2.7. U 

Given <, > as in Lemma 3.4, by Lemma 2.8, <K > can be extended to a computable 
map, <K > say, defined on all X x X (or Cont(X, X) x Cont(X, X)). Moreover, this 
map is also one-one and onto. The projections Pt, P2 give the computable inverse 
(P1, P2) of <K >5 by 2.8 again. For any effective and bijective pairing <K> for X, 
Lemma 3.4 essentially gives some information on the higher type pairing 
<f g > = Ax <f(x), g(x) >, defined as in 3.3. 

3.5. LEMMA. Let n ? 1. Assume that for some constructive fo-space Xc one has: 

(1) C(n) = Xc and C(n +) = Cont(XX)c, 

(2) Xc x Xc c+ Xc effectively (via <K >). 

Then C(n 1.5) = Cont(C(n), C(n+ 1%). 
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THE HEREDITARY PARTIAL EFFECTIVE FUNCTIONALS 1325 

PROOF. By the artesian closure of the category we work with, 

Cont(X, X, Xj, -- CCont(X,, Cont(X,, Xc),),. 

Let 0 
C C(n1 .5 Define g(<x, y>) = O(x)(y). Then g e C(n+ ), by definition of 

C(n+1 5). Thus go K,> e Cont(Xc x X, Xjc and 

o = )x()y (x)(y)) = )xy g(<x, y>) e Cont(C(n), C 'n . 

Similarly for the converse, by using (Pl, P2). 

3.6. LEMMA. Let (Xc, v) and (Yc, y) be constructive fo-spaces. Assume that wo' c+ X0 
effectively (via emb). Then there exists a relative numbering / of (YI, /1) with respect to 
(Xc, v). 

PROOF. Let #: X -f o' be the inverse map of emb given in 2.10. Define 
I: 'W'I- Yc from u as in 2.5 and set = '#. 

We need to prove that 0 o v-TC 

iU < TC'? ? v. Let incl o >-+ o' be the inclusion. Clearly incl e Mor(w, W'). 
Then emb incl m e Mor(w, Xj), i.e. 

(A) ]h e CT emb o incl(o id) = vo h. 

Thus u = o ic = o o emb o incl = o emb incl = o V o h, by (A). 
o ? V < TC . Just note that 0 e Mor(Xc, Yc). 

3.7. LEMMA. Let n ? 1. Assume that there exist numbered sets (D, e), (D', e') such 
that: 

(1) C(n) = D and C(n+-) = D', 

(2) C(n+ = Mor(D, D'), 

(3) 3]0:D -> D' which is a relative numbering. 

Then one has 

C(n +2) = M or(C (n + 1), C(n + 0). 

PROOF. - follows by 1 and 2, in view of the following diagram: 

h f 

Conversely, letfe C(n+2). By definition, since C (n+ 1. 5), one has 

(B1) 3h e TC f o 0 o e = e' o h 

byf o ? C C(n+1 5) and 2. 
Moreover, 0 is a relative numbering of (D', e') with respect to (D, e). Thus 

(B2) 3h'eTCe' = oeoh'. 
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1326 G. LONGO AND E. MOGGI 

Compute now 

foe'=foooeoh', by(B2), 

=e' ohoh', by(B1). 

And we are done. U 
3.8. MAIN THEOREM. For all n ? 1 one has: 

()C(n) = E(n) (1) C 
(2) c(n) x cOn) C. C(n) effectively onto, 
(3) C(n+1 ,) = Cont(E(n)-E(n+1))- 
(4) 3 E c C+ 1. 5) relative numbering. 
PROOF. Note first that (1) holds for n = 1, 2, by 1.2 and 1.3; (2) holds for n = 1, by 

3.3; (3) holds for n = 1, by 3.5, by (1) for n = 1,2 and (2) for n = 1; and (4) holds for 
n= 1, by 3.6, by (1) for n= 1, 2 and 2.11. 

Let n > 1. Assume now that (2), (3), (4) hold for n and that (1) holds for n and n + 1. 
Then one has 

(1)' (C(n + 1) E(n + 1) and) C(n + 2) = E(n + 2) by 3.7 and the inductive hypothesis on 
(1), (3), (4), 

(2)' CO +1) x n+1) C. C(n + 1), by 3.4 and the inductive hypothesis on (1) and 
(2), 

(3)' C(n+2.5) = Cont(C(n+ 1), C(n +2), by 3.5, (1)' and (2)', and 
(4)' 3]0C C(ne 25) relative numbering, by 3.6, (1)' and 2.11. 
This concludes the proof. U 
For i > 0, let i +1 be a relative numbering of C('+') with respect to C'). Then 

Vn ? 1 On ? On-1 ? .. / 0 is an (acceptable) numbering of C(n, as it can be 
immediately checked. 

3.9. PROPOSITION. Let Xc, Yc be constructive fo-spaces. Assume that 
(1) (o' c+ X0 effectively (via emb), and 
(2) Xc x Xc cp Xc effectively (via <, >). 
Then 3] E Cont(Xc, YC)c 0 o Cont(Xc, Xc)c = Cont(Xc, Yc)c 
PROOF. Let v: o -f Cont(X, Y)c be a numbering. Define v' from v as in 2.5. Let 

eval: Cont(X, Y) x X -+ Y be defined by eval (f, x) = f(x); it is easy to show that 
eval is computable (see [10] or [3; 4.3]). Take finally the inverse maps # and (pa, P2) 
of emb and <, > respectively, on X (cf. 2.8-2.10). 

Define then 

0 = eval o (v', id) o (#,id) 0 (P1, P2) 

That is, b(x) = eval(v'( # (p1(x))), p2(x)). 
We now show that V/ E Cont(X, Y)c ]f e Cont(X, X)c f = a o f (the reverse 

inclusion is trivial). 
For all i E co, define fi(x) = <emb(i), x>. Let f = v(j). Then 

oafj(x) = 4(<emb(j),x>) = eval(v'(j),x) = v'(j)(x) = v(j)(x) = #f(x). 

3.10. COROLLARY.Vn > 1 3]On E- (n.5)Vt, E C(n.5)3f E C(n)ow = Ono f (see(1)in?1). 
3.11. REMARK. Given n ? 1, let On be as in 3.10. Clearly On is a relative numbering 

of C(n) with respect to C (n- 1). Not every relative numbering, though, has the strong 
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THE HEREDITARY PARTIAL EFFECTIVE FUNCTIONALS 1327 

property of i,. Call a principal relative numbering any tn/, C(` ) such that 
VO E C(5])3f E C (n)* = On of Then 4: C(n - 1) C(n) is a principal relative number- 
ing iff 3f, g E C(n) - =On ? f and On = a o g (cf. Remark 3.2). 

3.12. REMARK. The HPEF, as defined, are maps in the "integer" types, i.e. 
n + 1: n n. By the same technique as in Definition 1.1, it is easy to define 
functionals in the "pure" types, i.e. n + 1: n -+ 0. 

Set PC c , -C() C. Define then, for : PC(n- 1)_ PC(n), 

C p PC( 5).,: xy * 4 (X)(y) e pC(n) 

For T: PCn )w, 

T E PC('+V Ve C pC(n.5) T 0 a C pC(n) 

The corresponding version of Theorem 3.8 holds in the pure types, by the same 
argument. 

Intermezzo (following a discussion with Henk Barendregt). In the category of 
numbered sets with morphisms defined as in ?2 (see after 2.3), Ershov has given two 
notions, which yield on arbitrary numbered sets a generalized version of the 
recursion theorem (see [11]). Namely, (D, e) is pre-complete if 

(1) Vf e C 3f ' e TC Vn(f (n) I => e(f '(n)) = e(f(n))) 

(i.e. f' extends f over (D, e)). 
(D, e) is complete if (1) above holds and 

3a e D Vn(f(n){ = e(f'(n)) = a) 

(a is a special (bottom) element of D). 
PROPOSITION. Let 4: D -+D' be a relative numbering of (D', e') with respect to (D, e). 

Then, if (D, e) is (pre-)complete, so is (D', e'). 
PROOF. Let h,g e TC be such that 0 a e = e' a h and e' = o e o g. 
Given f e C, e' o f = a o e o g o f Since g o f e C, let h' e TC extend g o f over 

(D, e). Then f(n) I implies 

e' o f(n) = a o e o g o f(n) = a o e o h'(n) = e' o h o h'(n) 

and h o h' extends f over (D', e'). 
Let now a e D be a special element of D and consider +(a) e D'. If f(n)T, then 

g o f(n)t and e(h'(n)) = a. Thus e' o h o h'(n) = a o e o h'(n) = ?(a). X 

By this, the first recursion theorem is immediately inherited from C at higher 
types. 

?4. HPEF and the (total) continuous and computable functional. In the previous 
section we proved the continuity of the HPEF. Ershov (see [2]) related its 
continuous functionals to the Kleene-Kreisel countable functionals and the 
computable ones to the HEO. 

A key point to be taken into account in such a comparison is that both Ershov's 
CE( 1)'s (see below) and the C(n 1)'s are sets of "partial" functions, in the weak but 
satisfactory sense that each C(n), say, contains a least (undefined) element, for n > 0. 
The always divergent function 0 for C(1) = C, Ax 0 for C(2).... 
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1328 G. LONGO AND E. MOGGI 

On the other hand the countable functionals and the HEO, in any type, are total 
maps. 

Moreover CE = {CE(')/n E w} does not coincide with our E = {E(n)/n E w}. In 
this section we compare at once CE and the HPEF, by using the model E, as well as 
their subsets of total functionals. 

4.1. DEFINITION. CE(?) = wl. 
(i) CE (nI) = Cont(CE(n), CE W) 

(ii) E(1) = Cont(ow, wo'), E (n-I) Cont(E(n+1) E(n, + 1)). 

4.2. DEFINITION. - O _ co co= id(, (the identity on w). 
(i) G(n) = dom 

f f f f '-CE (n + 1) VX G(n) f(X) 'n PX)- 

(ii) M(n) = dom -n 

f -In f, >f fc E E(n +1) VX C M(n) f(X) 'n '(x). 

(iii) G n) = dom -c 

f ta f f, f c E (n + 1 ) 8x C M (n) f (x) 'n f '(x). 

(iv) Similarly for ) and - cn, using EC 
Each G(n +1) and M(n+ 1) is hereditarily a set of total maps on G(n) and M(n). The 

functionals in G n +1) and MO + 1) are computable and hereditarily total (on G n) and 
M(n) ) 

In the following statements the type index n is intended as universally quantified 
(over o or w\{O}, if needed). Each time G(n) and CE(n) (or M(n) and E(n)) appear one 
can consistently substitute G~n) and CEW (or M~n) and E~n) = C(n) respectively). 

4.3. LEMMA. (i) Vx E G(n) Vy E CE (x ? y Y x yn A) 
(ii) Vx, y c- G(n) (x - n y == x n~ y -n x). 
The same holds for M(n) (with respect to E(n) in (i)). 
PROOF. An easy induction. U 
4.4. LEMMA. Let g E G(n+ 1) (g E M(n+ 1)) Then 

x ~nY == g9W - n (Y)- 

Similarly for - n 
PROOF. By the monotonicity of g, g(x H y) < g(x) and g(x H y) < g(y). As a 

matter of fact g(x H y) e G(n) by 4.3(ii). Then, by 4.3(i), g(x) n g(x H y) A gn (Y) 
. 

Lemma 4.3 gives the "maximality" of the functionals in G(n) or M(n) (they are total 
functions). Lemma 4.4 says that they are "extensional" with respect to n or -n 

4.5. LEMMA. E (n) c+ CE (n) effectively. 
PROOF. Set IO = id,, and define I1: E") -* CE") by I(g) = g' (see 2.5). 
Assume now that, for n > 0, E (n) c CE (n) effectively, via In. Define 

+ Li step xjyj) = Li step In(xj)In(yj). 

It is then easy to check the requirements in Definition 2.7. U 
4.6. DEFINITION. Let ine Cont(E n),CE n))c (and pneCont(CE E, )c) be the 
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THE HEREDITARY PARTIAL EFFECTIVE FUNCTIONALS 1329 

computable extension of In (and its "inverse" map) as given by Lemma 2.8. Set also 
en = in ? Pn- 

Recall that Pn? in = idE(n) and en < idcE(-) 

4.7. LEMMA. For f, g, x and y in the due types, one has: 
(i) in + (f ) (in(X)) = in(f W), 

(ii) en+ 1 (g) (en(A)) = en(g(en(Y)))- 
PROOF. (i) in+1(f) = Li {step In(y)In(z)/y, z E (n) and step yz < f }. Then 

in+ (f)(LJ In(y)) = Li {n(z)/y < x and y, z E (0) and stepyz < f } 
y<x 

= in(f(x)) 

(ii) By definition, en(u) = Li {n(x)/In(x) < U}. An easy computation gives the 
result. U 

4.8. LEMMA. Vx E G(n) x "nen(X). 
PROOF. This is trivial for n = 1. 
Assume the result for n > 1 and let f e G(n + 1). Then, by induction and Lemma 4.4, 

Vdx - G (n) f (x) n f(en(x)) 

~nen(f(en(x))) by the inductive hypothesis 

=en+1(f )(en(x)) by 4.7(ii) 
< en+1(f)(x) for en(x) < x and en+1(f) is monotone. 

Then, by 4.3(i) and f(x) e G(n) f(x) nen + (f)(x); that is, f -n+l en+ (f). 

4.9. LEMMA. (i) x E M(n) # in(x) E G 
(ii) y c- G~n " M-ny) G M~n 
PROOF. The results are trivial for n = 1. We first prove the implication from left to 

right by combined induction. 
(i) - . Let f e M(n+ l) and y E G(n). We need to prove that in + 1(f)(y) E G(n). Note 

first that in(f (P(Y)) G(n), by the inductive hypothesis on (i) and (ii). Then 

in(f(Pn(Y))) = in+1(f)(en(y)) by 4.7(i) 
< in + 1 (f )(y) by monotonicity. 

By 4.3 (i), we are done. 
(ii) - . Let g C G(n+ 1) and x E M(n). Note now that 

Pn (en +() (in ()) = Pn(g(in(X))) E M(n) 

for en + 1(g) - n+ 1 g, by 4.8 and by the inductive hypothesis. Then 

Pn(en+ 1(g)(in(X))) = Pn ? in(pn+ 1 (g)(x)) by 4.7(i) 

=Pn + I (y)(x), 

and we are done. 
As for the reverse implications, one has 

in+ 1(f) G(n+1) =f = Pn+1(in+1(f)) MO(n+1) by (ii) 
and 

Pn+1(g) C MO +1) = g -n+le +1(g) (n+1) by 4.8 and (i) =. U 
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4. 10. LEMMA. (i) f -n f'4 in,(f ) -n in,(f 

(ii) g -nY gf-< Mg) -nn( MO 

PROOF. This is clearly true for n = 1. Then, as for (i)-, 

f n + 1 f= 5Vy E Gn, Af (Pn(Y)) - n f '(Pn(y)) by 4.9 (ii) 

f Vy e G~n, in(f(Pn(Y))) ,n in(f'(Pn(y))) by induction 

Vy Gen, 1(f)(en(Y)) n in+ 1(f')(en(y)) by 4.7(i) 

in+1(f) 1n+1 in+1(f') by 4.8. 

As for (ii) A=, 

g n+1 g' Vx e Mlnlg(in(x)) , n g'(in(x)) by 4.9(i) 
= Vx M(n) Pn(g(in(X))) - n Pn(g'(in(X))) by induction. 

An easy computation actually gives 

Pn(g(in(X))) = Pn+1(g)(x) and Pn(g'(in(X))) =Pn+1(g )(x) 

And we are done. 
The reverse implications easily follow: (i) from (ii), and (ii) from (i) and 4.8. U 
As pointed out after 4.2, G(n) and M(n) can be consistently substituted for G(n) and 

M(n) in the above statements, since computable functions take computable elements 
to computable elements (e.g. Vx E in(x) E CE(n)). 

Recall that a continuous projection of complete posets A and B (notation: A -< B) 
is a pair f e Cont(A, B) and g e Cont(B, A) such that g ? f = idA and f o g < idB (e.g. 
2.8, 4.6). Then the above lemmas give the following result. 

4.11. THEOREM. (i) E(n)_< CE(n) and E(n)_< CE(n), via in and Pn. 

(ii) M(n)< G(n) and MO)< <](n). ) , via in M(An) and Pn f G(n) 
(iii) M(n)l G (n)l and M (n)/_C G (n) C via the induced maps. 
4.12. CONCLUDING REMARKS. (i) G = {G(n)/ W /n E o} is exactly Ershov's model 

of Kleene-Kreisel countable functionals; 0 = {G(n)/ l-/n E w} is isomorphic to the 
HEO (see [2]). 

Note that one may be willing to deal directly with the pure types. In this case 
use Remark 3.12: the analogues of the results in this section hold by the same 
arguments. 

(ii Nte ha G~) (n) In an (n) cCEWn (M(n) cE(n) and M(n) cE(n) cE(n)), (ii) Note that G CE ) and ( c CE~ C ~ n C ~ 
but G(n) and G(n) (M(n) and M(n)) need not be related by "c ". Actually one even has 

that G(n) r CE(n) = G(n) holds only for n = 1, since G(2) r) CE(2) G(2) and at higher 

types.. . we are lost (similarly for M(n)). 

(iii) E(n) is just the completion by ideals of C(n), for E~n) = c(n). Thus (i) and 4.1 C(iii) 
fully relate the HPEF to the countable functionals and the HEO. 

Note that a recursively countable functional need not be computable as an 

element of the corresponding type in G, with the induced f-space structure. 

Consider for example F E Ct(2) (of pure type 2; see [8]), given by 

F(f) 1 if {f(0)}(f(1)) halts within f(2) + 1 steps, 

{0 otherwise. 
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THE HEREDITARY PARTIAL EFFECTIVE FUNCTIONALS 1331 

Then F has a recursive associate, but its neighbourhoods' filter in G' (0) does not 
have an r.e. presentation. 

However the equivalence class of F, defined similarly as in 4.2(i), contains a 
computable element. 

Open problems. Definition 1.1 (the HPEF) can be easily extended to other 
hierarchies just picking up a different base set C of partial functions, instead of the 
partial computable functions. Moggi has recently shown that if one takes C as 
the set of total computable functions, then C(2), given as in 1.1, coincides with the 
Banach-Mazur functionals. The higher types are probably unrelated to known 
hierarchies. 

More work can be done by taking C as the primitive recursive functions: it is clear, 
say, that T ? e E C(1'5) of 1.1(ii) is a strong condition on T (note that no 0 E C(I 5), in 
this case, may be onto). The C(')'s, then, may yield a natural (and easy to define) 
notion for "primitive" recursive functional. The relation to known type structures, 
if any, will surely be hard to work out. 

Similar questions may be raised by taking C as the set of polynomial computable 
functions, and so on. 

In all cases, Definition 1.1, essentially because of the generalization of the notion 
of relative (Gddel-)numbering it is based on (the intermediate types C(n.5)), seems a 
strong and natural way for inheriting at higher types properties of classes of number 
theoretic functions. 

The main fall-out the authors had, so far, from this approach to effective typed 
structures is the relation they bear to type-free models of computability. As a matter 
of fact, in Cartesian closed categories principal (relative) numberings (morphisms), 
plus two simple conditions, characterize models of combinatory logic. By this and 
by 3.10, Vn > 0 C(n) yields one such model [in preparation]. 

Acknowledgment. We are grateful to Henk Barendregt, Robin Gandy and Dag 
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