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Abstract : From the physico-mathematical view point, the imitation game between man and 
machine, proposed by Turing in his 1950 paper for the journal “Mind”, is a game between a 
discrete and a continuous system. Turing stresses several times the laplacian nature of his 
discrete-state machine, yet he tries to show the undetectability of a functional imitation, by his 
machine, of a system (the brain) that, in his words, is not a discrete-state machine, as it is 
sensitive to limit conditions. We shortly compare this tentative imitation with Turing’s 
mathematical modelling of morphogenesis (his 1952 paper, focusing on continuous systems, as 
he calls non-linear dynamics, which are sensitive to initial conditions). On the grounds of recent 
knowledge about dynamical systems, we show the detectability of a Turing Machine from many 
dynamical processes. Turing’s hinted distinction between imitation and modelling is developed, 
jointly to a discussion on the repeatability of computational processes in relation to physical 
systems. The main references are of a physico-mathematical nature, but the analysis is purely 
conceptual. 
 
Keywords: Turing Machine, classical determinism, dynamical systems, computational and 
dynamical hypotheses, functional analyses of cognition, iteration, Laplace. 
 
 
Introduction 
In a famous 1950 article, Alan Turing, the founding father of Theory of Computation, proposes a 
game he calls "imitation game". This is done in order to operate a functional comparison 
between machine and brain. This text is, in many respects, as fundamental as his other writings, 
but in a completely different field since this time it consists of an article in philosophy and 
human cognition. These philosophical musings divide Turing's intellectual trajectory into two 
parts: the first moment of it being devoted to the simulation of the action executed by calculating 
thought, the "Human Computer" by means of the machine that tradition has endowed with 
Turing's own name2; the second moment is devoted to the analysis, from 1950 on, of the 
morphogenetical potentialities of phenomena of chemical diffusion [Turing, 1952]. From as 
early as his first article of 1936, Turing had thus described his computing/deducting machine, a 
discrete-state machine, as he himself rightfully reminds: a record/playback head moves right or 
left, writes 1 or 0 on the tape, erases them. The fundamental idea: the machine consists of a 
software (the instructions) and a hardware (the material: the read/write head and the tape). This 
                                                
1 In Epstein, R., Roberts, G., & Beber, G.  (Eds.)  Parsing the Turing Test, pp. 377-413, Springer, 2008.  
2 The term "Turing machine" is traceable to A. Church, review of [Turing, 1936] in Journal of Symbolic Logic, 2, 
42-43, 1937. The expression employed by Turing to designate his machine is "logical computing machine" (LCM). 
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distinction, purely conceptual at the time, is the true beginning of modern Computer Science. 
This abstract machine can compute anything, there lies the extraordinary result of the years '36-
37. 

In fact, Turing himself, Kleene, and a few other pioneers demonstrate that all formalisms for 
computability, since the works of Herbrand and Gödel ('30-'31), are equivalent to Turing's 
machine: using lambda-calculus (Church '32; another fundamental formalism for computability, 
see [Barendregt, 1984] and §.3 below), they translate the various processes of arithmetic calculus 
the ones into the others.  Consequently, all systems calculate the same class of functions on 
integers. That "we have an absolute" was clamored at the time (see the comment Gödel makes in 
1963 on the re-edition of his 1931 article, reappearing in [Gödel & al., 1989]): this absolute is the 
class of calculable (partial) functions, of integers into integers, as locus of all which is effective, 
calculable, in fact thinkable ("... the laws of arithmetic govern all which is enumerable. This one 
is the vastest of all disciplines, since it contains not only the actual and the intuitive, but all 
which is thinkable." [Frege, 1884]). The lambda-calculus, its types, their semantic categories are 
extremely rich syntactical and mathematical structures (see [Hindley, Seldin, 1986], [Girard & 
al., 1990], [Krivine, 1990], [Asperti, Longo, 1991], [Amadio, Curien, 1998]): they are still at the 
heart of contemporary logic and theoretical Computer Science, although there are other problems 
today, in Concurrency, in particular. These formalisms have indeed been the result of a 
remarkable conceptual and mathematical journey, the notion of logico-formal system and 
language, a pillar of the mathematics of the XXth century. In fact, a project of foundations of 
mathematics and of human knowledge. 

Among the pioneers of this "formalist-linguistic turn" one must include the mathematicians 
Peano and Padoa: for them, mathematical certainty, in fact the certainty of thought and therefore 
thought itself, would situate itself among the "potentially mechanisable". So the first thing 
needing to be done was to reduce mathematics to a formal calculus, a numerical calculus that a 
machine should be capable of completely reproducing (hence the preliminary step: to encode 
mathematics in Peano's arithmetics). But which is this machine? One may also find a first 
intuition of it with Hilbert: he refers to "finite sequences of signs, constructed according to a 
finite number of rules", or to "laws of formal deduction" also written under the form of finite 
series of signs and, therefore, under the form of integers (and Hilbert knows what he's talking 
about, since he encodes, in his 1899 book, all the geometries, Euclidean and non-Euclidean, 
within Arithmetic by analytic means). Between 1930-1936, at last the intuition of these great 
pioneers will be formalized and, modulo a remarkable idea, gödelization3, extended to an 
arithmetical encoding of all which is finite, Turing's machine replaces Vaucanson's and Diderot's 
automatons: potentially, it is able to simulate any human function, thought in particular (or 
primarily), [Gandy, 1988]. 

 
 

1. The game, the machine and the continuum 
In 1950, Turing had the courage to submit Peano and Padoa's program to a sort of scientific-
mental experiment: to demonstrate that a discrete-state machine, a DSM (his universal machine), 
is undistinguishable from a human brain, or, at least, that it is able to play and win what he calls 
the "imitation game", by playing against a man (or, rather, a woman?). In this text, we shall not 
discuss the specific question raised by this game between a man, a woman and a machine, but its 
                                                
3 Crucial technical aspect of Gödel's proof, 1931: it allows the encoding of the formal-deductive metatheory of 
Arithmetic in Arithmetic itself (see [Gödel et al., 1989]). 
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general and dominant interpretation: as alleged proof of a "functional equivalence" between 
digital machine and human brain. And we shall address the issue within a purely physico-
mathematical conceptual framework, as it will be explained. 

Turing's proof is cautious: it is based on mathematical hypotheses carefully made explicit. 
Also to be noted is a capital difference from the modern claimants of "all is program", this "all" 
being replaced depending of the author by evolution, the genome, the brain, etc. (in fact, in this 
slogan, no hypothesis is formulated, its consists solely of a description of "reality", of the 
Universe, itself identified to a Discrete-State Machine). Turing is to the contrary aware of the 
strong hypotheses that are necessary to his reasoning. The conclusion, the success of the machine 
in the imitation game, is also very cautious. However, the central hypothesis as well as the 
conclusion is not corroborated. And, today, it can be proved for this great mathematician had 
well exhibited hypotheses and conclusions. There lies the interest of the article: explicit premises 
and rich arguments. We shall therefore play Turing's game from a mathematical viewpoint, with 
his hypotheses, without engaging into any discussion in Philosophy of Mind: it is not necessary 
in order to be certain of winning against any DSM. 

 
In a DSM, Turing observes, "... it is always possible to predict all future states". And he 
continues : "This is reminiscent of Laplace's view ...  The prediction which we are considering is, 
however, rather nearer to practicability than that considered by Laplace" [Turing,1950; p. 47]. In 
fact, he explains, the Universe and its processes are "sensitive to initial conditions", should we 
say in modern terminology (Turing uses the following example: "The displacement of a single 
electron by a billionth of a centimeter at one moment might make the difference between a man 
being killed by an avalanche a year later, or escaping."). To the contrary, and there lies the 
greatest effectiveness of his approach, "It is an essential property of ...[DSMs] that this 
phenomenon does not occur. Even when we consider the actual physical machines instead of the 
idealized machines,...", prediction is possible, [Turing,1950; p. 47]. Thus Turing has no doubt: 
his machine is an ideal machine, indeed a logical one, as he called it, with a laplacian behaviour. 
And he is absolutely right: the notion of program and the mathematical structure of its 
implementation are deterministic in Laplace's sense, that is, the determination, by a finite number 
of rules (or equations, for laplacian mechanics), implies predictability. Of course, there may be 
some endowed indeterminacy (the machine can make steps which lead to an arbitrary element of 
a finite set of possible discrete states, instead of leading to a single one - we are then dealing with 
an non-deterministic DSM), but it consists of probabilistic type of abstract indeterminacy, 
already well studied by Laplace, and which is not the same mathematical concept as the 
unpredictability of deterministic dynamical systems, in the modern sense which we shall discuss 
in length4. 

Though, as Turing understands well, "the nervous system is surely not a DSM" (ah, if only 
everyone would at least agree with that!). And he specifies: "a small error in the information 
about the size of the nervous impulse..." (p. 57). Once again, and in modern terminology, the 
brain rather is a dynamical system that is sensitive to initial or limit conditions. Turing calls these 
systems "continuous" both in his 1950 paper and in his 1952 paper on morphogenesis. In the 
latter paper, his stresses that the key property of the set of non-linear equations he proposes as a 
mathematical model of a chemical diffusion by action-reaction, is the “exponential drift” (a very 
pertinent name for what we call, since the ‘70s, sensitivity to initial or border conditions : a 
                                                
4 And this will be a further link to the themes of this special issue, as deterministic unpredictability – chaos in 
modern terms – originated with Poincaré’s work on the Three Body Problem. 
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minor change – possibly below observability -, may cause a major consequence – exponentially). 
Then how to compare a DSM with the brain? The comparison is functional and relative to the 

only possible access to the machine, during the imitation game: the finite sequences of a 
teleprinter's signs (your keyboard in front of your screen today, or mouse clicks, which start off a 
small program, a finite sequence of signs). Under these conditions, according to Turing, we 
would be unable to distinguish a continuous system, as the brain, or "… a more simple one, a 
differential analyzer...", from a DSM; if the continuous machine makes its response though a 
printer, it will be undistinguishable from a DSM's response, even if obtained by different means 
(continuous variations instead of discrete steps). So there is Turing's central hypothesis: if the 
interface with the dynamical system is given by a "discrete access grid", then it will be 
undistinguishable from a DSM. 

In fact, today's physical DSM, our computers, simulate dynamical systems in a more than 
remarkable way! They develop finite approximations of the equations which model them with 
great efficiency: nowhere may we better see the "form" of an attractor than on the screen of a 
powerful enough machine. Their applications to aerodynamics (simulation of turbulence), for 
example, has considerably lowered the price of airplanes (almost no more need for wind 
tunnels). But... what are the conceptual, mathematical, physical differences? 

 
Let’s first evacuate any confusion between mathematical modelling and imitation, in Turing's 
sense. In short, a model, in the physico-mathematical sense used by Turing, is the (right or 
wrong) mathematical proposal of a “causal structure” (a “determination” given by a set of 
equations, possibly) of a given phenomenon. An imitation is the “simulation” of a process or 
phenomenon, without any commitment to an intended causal structure : cheating the observer 
may be sufficient. Typically, a random sequence generated in a DSM by a one line program 
(fully determistic in the lapalcian sense) is an excellent imitation (undistinguishable) from the 0 
and 1 of a spin-up, spin-down of an electron, but in no way it is committed to the structure of (in-
)determination of the quantum phenomenon. This distinction is a major heritage, yet implicit, of 
the interplay of the two papers by Turing, 1950 and 1952. 

Let’s consider now a very simple example, the discrete logistic equation  xn+1 = k xn (1 – x n),  
where 2 ≤ k ≤ 4. Many physical systems (and even biological ones) are very well modelled by 
this function: typically in presence of an antagonist coupling, such as an xn action coupled to a 
symmetric reaction  (1 – x n). It models them in the sense that the equation describes causal 
interaction. 

For some values of  k, this obviously deterministic transformation from  [0,1]  to  [0,1],  has a 
chaotic behavior (see [Devaney, 1989]). A slightest variation of  x0,  and the evolution will 
radically differ ; moreover, except for a countable subset of initial points  x0  (or a subset of 
“measure 0”),  when  k = 4  and  n  goes to infinity, the sequence   {xn}  is dense in [0,1] : its 
behavior is thus said to be ergodic (or quasi ergodic, to be precise, as it is so w.r.to a non-
standard measure – not w.r.to Lebegues-measure). However, if you start your machine a second 
time on the same numerical value for  x0,  you will obtain the same sequence, that is what a DSM 
is : the discrete data base is exact and the round-off may iterated identically. Conversely, in a 
physical (classical) system, to "start with the same initial situation", necessarely refers to 
physical measurement which is always an interval. Or, more precisely, to "start with the same 
initial situation" cannot be “exact” and it is meant “up to the intended measure interval”. And the 
dynamic may be such that, as it happens, a perturbation beneath the possible measure, that is, 
within the interval, can shift the system towards very different evolutions. 
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In short, the trajectories, the portrait of the attractors (their geometrical structures), caused by 
variations beneath the finite grid measurement, can be very different. Now that is an important 
component of what is meant to be complexity, from the Santa Fe' Institute to the CenECC of the 
ENS : it is in the possible bifurcations, in the richness of the attractors' geometrical structures, in 
their various forms of structural stability, up to the synchronization phenomena (in an epileptic's 
brain, for example) of which they might be the origin. The stakes are of geometrical nature. 

So here we are with a first approximation of the winning strategy, if we endow "imitation", 
the word used by Turing, with a strong meaning, usually restricted to the notion of computational 
model or, more precisely, of computational realization of the physico-mathematical modelling. 
In this case, a true physical dynamical system always wins the imitation game against a DSM, 
because it needs only to say: 

 
"let’s start over with the same initial conditions and then let’s 

compare the evolution of our phase portraits". 
 

Measurement by interval and sensitivity to the initial conditions will mark the difference 
between the DSM and the physical system. If the system is a turbulent river, for example, it will 
win at its first turn and in few instants. A forced or double pendulum needs only a little more 
time. Start off, for example, your physical double pendulum5 and the computer simulation 
(imitation, as we shall argue) on, say, the values 3 and 7, twice in a row: the latter will use these 
exact values for the numerical simulation, each time. It will then obtain the same rounded values 
and, except in quite exceptional cases that shall be discussed, it will describe the same trajectory. 
However, there is no way of starting off the physical pendulum on 3 and 7, exactly: it can only 
be launched upon an interval, however small it may be, around those values. After a sufficiently 
long moment, the physical system shall follow a second different trajectory, very different 
indeed, from the first with regards to its phase space (the structure engendered by all the 
positions and speeds compatible with the system's data).  Thus "more geometrico", a continuous 
system shows the unpredictability of its evolution in comparison to a DSM, even for an observer 
of the "linguistic turn", who swears but by a teleprinter, because no discrete reading grid, 
however fine it may be, allows to stabilize a system with an unstable dynamic. 

For now, we have only applied Turing's statement concerning the sensitivity of dynamical 
systems to initial conditions, which is at the origin of the unpredictability, and his observation 
that "one of the essential properties of the ... DSM is that this phenomenon does not occur". 
Obviously, this game strategy is only a first mathematical response to what has been called, quite 
beyond Turing's thinking, "Turing's test", and to the myth of the machine as brain's model; it 
consists of a response within the framework Turing's mathematical hypotheses, which defines in 
several instances the brain as being "a continuous system" and his DSM, a discrete state 
machine, as a "laplacian machine". 

Before refining the game strategy and thoroughly discussing functional imitation, let’s briefly 
sum up the terms of this first confrontation between the machine and a physical system. We have 
thus supposed, as first approximation, that the machine attempts to simulate at best a dynamical 
system, by using a mathematical model designed on the basis of its deterministic nature (thus 
described by a finite number of equations, or formal rules of deduction for a logicist who wants 

                                                
5 A mathematical description of a forced pendulum can be found in [Lighthill, 1986]. 
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to model thought6).  At the first turn, it may be impossible to distinguish between the evolution 
of the DSM and that of the physical system, of which a teleprinter or a screen's pixels inform us 
of the numerical measurements: of course, the two evolutions are in general different, but neither 
is more realistic than the other (in physics, at least). However, the iteration of the simulation-
modelling from the same initial conditions reveals the machine: if a DSM restarts upon the same 
numerical values, necessarily discrete, it will describe the exact same evolution in the phase 
space; however, the dynamical instability of a physical system, necessarely restarted within an 
approximating interval, will cause the second trajectory to differ from the first, after a 
sufficiently long time, and, moreover (see §.2 for more details), even the discrete reading of the 
physical measurements will display this difference. To conclude, we have set the base to develop 
Turing’s argument that a DSM is not a model of the brain, at least if we consider the latter, with 
Turing, a continuous system, as opposed to what is pleaded in the field of classical Artificial 
Intelligence and by many modern cognitivists. But can a DSM imitate the brain? And what does 
this word mean, exactly, when referring to modelling? Turing's game allows to clarify these 
important concepts. 

So let’s continue with our game. In order to thwart this first sketch of the iteration strategy 
that has just been proposed, the machine (the programmer) could in fact use the trick suggested 
by a comment by Turing on p. 58; he proposes to trick a continuous system's and a DSM's 
observer-comparator by having the latter produce a series of random numbers. This idea is at the 
center of a difference that demonstrates the mathematical depth of Turing’s insight  into the 
imitation game. In the concerned comment, Turing displays this radical difference which is of 
interest to us, and of which he is aware (see also §.3), between his "imitation game" and the 
mathematical modelling of physical phenomena. Of course, by applying our strategy of iteration 
(start over again both the physical system and the computer, but now change random the input of 
the latter), we would find ourselves with 4 trajectories all differing from one another and, in 
some cases, being all as realistic as one another (see the next section for details). But we had to 
renounce proper modelling of the deterministic system (a double pendulum, say) by a system of 
equations, as the physical double pendulum doesn’t causally change the trajectory because 
someone is feeding it by random numbers at re-start: its high sensitivity yield the change and the 
non-linear equations display this component of its causal structure. That is, they show (by the so-
called Lyapounov exponents) that a perturbation, below the inavoidable physical measure by an 
interval (an unobservable cause), will causally generate different trajectories: thus, the continous 
models proposes a causal structure which fits evidence. This is lost in the digital simulation, or as 
soon the continuous equations are implemented, as a perturbation below the intended 
discretization doesn’t apply (or it applies very rlrely, see later). 

Thus we have gone towards a weaker notion, that of equivalence as indistinguishably modulo 
a finite interface, without engaging ourselves upon the identity of the laws of behavior (in an 
imitation, the machine's program is not supposed to implement the same laws which "determine" 
the physical system). In fact, that is what the imitation game is and in Turing’s game paper, there 
is no attempt to model a woman, but just to imitate her. And it brings us directly to the high 

                                                
6 A system is deterministic, if we know to (or think we can) write a finite number of equations or rules of inference 
that will determine its evolution. In classical physics, determinism is inherent to the construction of scientific 
objectivity: the possibility to "determine" a system by a finite number of equations or of rules is intrinsic to its 
theoretical approach. Within this classical framework, Poincaré, against Laplace’s conjecture, has first demonstrated 
that equational determinism does not imply the predictability of the physical system (Poincaré’s famous analysis of 
the “Three body problem”). But we will come back to this, during an intermission. 
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stakes of the "simulation" of a deterministic system by ergodic methods: a simulation which is in 
fact an imitation, to put it - like Turing - in a quite appropriate but uncommon manner. In short, 
is the observer cheated by the use of random generators, imitating sensitivity in a dynamical 
system ? 

The precisions we shall add in the next section require somewhat more competence or 
mathematical attention: the reader who has grasped (and is satisfied of) this first difference 
between a DSM and a dynamical system may directly jump to §.37. 

 
 

2. Between randomness and deterministic chaos 
Two questions are raised at this point. The first is quite general: from a computational viewpoint, 
may randomness be distinguished, in practice, from chaotic determinism? And if, during our 
game, in order to trick the observer of the strategy of iteration, we first accepted to simulate the 
dynamical system (to develop the computation of an equational model), but, at the second turn, 
as we hinted, the computer added small random perturbations to the initial data or to each step of 
the discrete evolution, as hinted above? 

So we have two phases. During the first (single-turn game), we observe a physical system, of 
which we know the discrete measurements via a teleprinter (or by screen pixels), and a computer 
which generates a random trajectory. Now, there exists deterministic systems, maximally 
unstable, such that no known method allows us to distinguish between their evolutions, 
reproduced upon a screen, and the generation of a random sequence: these are the "Bernoulli 
systems"8. For these systems, knowledge of the past does not allow to determine the future 
evolution; we then say that the flow is random. Draws at lottery or dice are typical examples of 
this: these systems are deterministic, yet perfectly chaotic. In the two cases, the number of 
parameters and of equations may be quite great, yet finite, and sensitivity to the initial conditions 
is such that it is absolutely not worth it to attempt to write these equations:  it is preferable to 
analyze the phenomenon in terms of laws of probability ("limit laws", for "large numbers").  On 
the other hand, there exists very simple Bernoulli systems, described by one or two equations. It 
is thanks to these systems that we program a computer to generate random series: techniques 
based upon simple trigonometric properties and the multiplication of angles around 0, for 
example, will produce random series of + and - signs. Also the logistic equation of §.1, for k = 4, 
generates, and in a quite economic and deterministic fashion, series of which the "global 
geometry" is (pseudo-)random9. 
                                                
7 This reader, while the others read the §.2, could consult Chenciner’s web page page for many extraordinary 
examples of mechanical iteration of perfectly regular orbits, for 3, 6, ... 19, 99 bodies (crossed 8s, fantastical flowers 
... absolutely no chaos). Once found, the exact initial conditions that generate these periodical orbits, thanks to very 
difficult mathematics, the machine, at each click of the observer, starts over with the exact same trajectories, as 
perfect as unreal. Unreal, because these orbits are critical and unstable: the gravitational field of a small comet at 10 
billion kilometers would topple these "planets" far away from their periodical trajectories. Some of these images 
give rise to laughter (and the admiration for the mathematicians who worked on them), so much are they physically 
absurd, while computationnaly perfect: even in physics, some sense of humor can help us distinguish between real 
world and virtual reality (computer imitation).  
 
8 For an introduction to the determinism of chaotic systems, see [Dahan et al., 1992]. For an increasing technicity, 
see [Alligood K. et al., 2000], [Lighthill, 1986], [Devaney, 1989]. 
9 In these two last cases of programmable ergodicity, it is the global knowledge of the past which says nothing about 
the future (the series have the appearance of globally random sequences - they can concentrate for a long time near 
certain values, change suddenly of attraction zone, topple a group of values very far, with no apparent regularities), 
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INTERMEZZO 1 (determinism and knowledge) 
The question to which Turing brings us becomes in fact quite delicate and interesting: we do not 
know of "proper random" systems, in classical physics. More precisely, in the discrete realm, we 
have an excellent concept, or even a mathematical definition, of random sequence (Kolmogorov, 
Matin-Löf, Chaitin: "the shortest program that generates it is the sequence itself" or ... "wait and 
see"), but all examples of natural or artificial sequences, that we know of, come from a physical 
deterministic system (chaotic) or from a deterministic computer program, in fact, laplacian.  
These programs, written in two lines, produce long "random" series: as generated by a DSM, 
Turing would soundly consider those sequences as being predictable (as a matter of fact, these 
sequences, called pseudo-random, are even periodic, since they are generated by functions  f  as  
xn+1 = f(xn):  on a concrete DSM, the finite decimal representation on a finite data base forces 
them to go back, soon or late, to the same number value, thus to the same sub-sequence.  And, 
periodicity is the opposite of randomness, yet … the period may be very long).  

In a note, we have already observed that determinism is essential to the construction of 
scientific objectivity in classical physics (it is "objective"); we can now add that the classical 
randomness is epistemic (it is a matter of "perspective" and of knowledge, it is not inherent to 
theoretical construction; even a gas obeys deterministic laws of local interaction between 
particles). Shortly, the classical randomness which we know, is nothing but highly unstable 
determinism or of unstable appearance (the computer which calculates the logistic ergodic 
sequence, for a fixed  x0,  remains, simply and permanently, upon a trajectory which is critical, 
but dense in the phase space - there is the purely epistemic chaos) or with a very great yet finite 
number of parameters (dice, a gas), these "or" not being exclusive. Once again, the sequences 
generated by the logistic function or by a game of dice, Bernoulli’s fluxes, are deterministic and 
ergodic. However, there is a great difference between the number of laws and of degree of 
freedom which will determine them and, moreover, in the logistic equation, once  xn determined, 
we can compute and determine xn+1, as opposed to dice where a draw in no manner determines 
the next (see preceding note). In this sense, their common ergocity is epistemic, for, on one hand, 
the observer writes the equations (the logistic equation) or knows the pertinent laws of evolution 
(dice) and, on the other hand, he observes a total lack of regularity in the two evolutions. It is the 
visible total irregularity, the geometry of the attractors if they exist, which is similar: the logistic 
series, just like the series of draws at dice, jumps from one end to the other of possible values, 
with no visible pattern. Through differing modalities, the objective determinism (or in principle) 
generates epistemic chaos and the phenomenal unpredictability associated to it. 

But God, the perfect and infinite being who masters all laws of the Universe and who 
measures exactly, without approximation, without intervals, knows perfectly well the evolution 
of dice games and of the lottery - and of the Universe, as rightfully stated by Laplace, in a very 
famous and often misinterpreted page. By those words, Laplace merely lays the right absolute 
definition of deterministic system, based upon strong and well-explicated hypotheses on the 
infinity and continua in Mathematics and perfection of God, and he is right. In classical physics, 
                                                                                                                                                       
but, locally, we perfectly know the next step - we have explicitly described (programmed) the laws of determination, 
conversely to dice and Lottery. It is the similar geometry of trajectories that allow to call ergodic all these series, 
physical or programmable : they show no visible regularities. Yet, they are prefectly predictible and iteration shows 
it : restart your preferred pseudo-random generator on the same initial data (which is always theoretically possible), 
then it will generate exactly the same sequence (see the Intermezzo below). Of course, this also applies to the 
relevant Theory of (Un-)compressibility, which considers random a sequence that coincides with its shortest 
generating program. As long as it is a program, it iterates. 



 9 

we write the same equations as God, as soon as we are capable of it, so had Gallileo already 
claimed. But we, men (and women), we have a few problems concerning physical measurement 
and a different on-look than His regarding the geometry of trajectories determined by these 
equations: and all this becomes very important for dynamical systems, as Poincaré proved, 
because they may be sensitive to initial (contour) conditions and, thus, to perturbations/ 
fluctuations below the possible measure interval, in a continuum. Laplace's erroneous conjecture 
lies elsewhere and consists within the central hypothesis at the origin of the "calculus of 
perturbations" to which it has greatly contributed: from small perturbations will follow small 
consequences, in the relevant situations or at least for the Planetary evolution (Laplace is aware 
the minor “nuances” may cause major changes, in isolated critical points, but he hopes that this 
doesn’t happen for the system of Planets). The determinism would therefore imply the 
predictability, modulo the inevitable approximation of the physical measurement, of which he is 
well aware. The invalidation of Laplace’s conjecture by Poincaré will then make us understand 
classical randomness as particular case of deterministic chaos. And all this is very important to 
grasp Turing's attempt to imitate, and not to model, a continuous system by a laplacian DSM, 
and his reference to the use of a random generator (his remark at p. 58, see above). 

Now, if we want non-deterministic randomness, we can but recourse to quantum physics, 
thus beyond of Turing’s rather classical game: the indeterminism then, at least for the 
Heisenberg-type interpretation, is not epistemic, but becomes "inherent" to the construction of 
scientific objectivity: the probabilities are "intrinsic" to the theory and... a needle, positioned with 
care upon its tip, falls, classically, upon a value or another of the green mat upon which it was, 
after an inherently random quantum fluctuation. God, himself, plays intrinsically random dice, 
but only beneath Plank's h. Or, for the classical (and relativistic, of course) theories, a perfect and 
infinite intelligence, as says Laplace, who knows the Universe by points, in Cantor’s sense, can 
predict the future ; for quantum theories, there is no underlying perfect continua, where that 
insightful intelligence would read the measure of the next state. 

So there are the stakes which are the object of such debate: classical determinism does not 
know, in fact, proper randomness, but only the more or less chaotic, thus impredictable, 
evolutions, according to various modes of determination. This is extraneous to DSMs, as Turing 
says, becaus of the discrete date base and processes : the causal structure is laplacian 
(determination implies predictibility, at least in theory, see below). On the other hand, for an 
important trend in physical thought, quantum indeterminism is inherent to the theory.  
Sometimes, the latter manifests itself to our classical observation, on the tip of a needle. 

 
Let’s go back to the first phase of our game (single turn game): without God's help, we would be 
unable to distinguish a Bernoulli physical system from an ergodic imitation by the machine. 
However, there exists a continuum of classical dynamical systems which range from stable 
systems to Bernoulli’s fluxes: in intermediary situations, the future may be predicted for the 
more or less long term and, particularly, the past has a greater or lesser global influence upon 
future trajectories. Now there are measurements, of which some are based upon the notion of 
entropy (topological, see [Adler, 1979]), which allow to decide a deterministic system's degree 
of instability: on one hand, systems with nil entropy are predictable: on the other, in very high 
entropy systems, no observables are predictable. Between the two, numerous physical systems 
may be finely analyzed and, in certain cases, but there exists no general method, a partition of 
phase space (a topological covering by small cells), allows to conjecture the dynamic. That is, 
the experimental observation of a discrete trajectory allows the proposition of a deterministic law 
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for the evolution; in these cases, different trajectories allow to guess different dynamics (in 
technical terms, the partitions have "generating series"). It therefore suffices to propose one of 
these moderately unstable systems for a good mathematician observer to be able to recognize the 
random imitation made by the computer. We shall further discuss this, below, to make sure that, 
in this case, the strategy is in fact a winning one. 

Second phase, with more details. In order to thwart this latest strategy as well as that of 
iteration (the two-turn game of §.1) the computer implements an equational model of the 
physical system. However, at the second turn, in order to not fall into the trap of the genesis of an 
evolution identical to the first, it randomly introduces small perturbations, which may have huge 
consequences, of course. This second turn thus bases itself on the computation of a new 
deterministic system, that which adds the first to a random sequence's mechanical generator. The 
situation becomes delicate. If the system would admit generating series and if we were to fall 
upon, at the second turn, on two series which allow to guess out two differing dynamics, the 
distinction between the dynamical system and the DSM would be made: the series engendered 
by the computer would no longer be derived from the equations that modelled the physical 
system, but a variant due to the addition of a random perturbation generator (still an equation or a 
program). And the mathematician who knows how to reconstruct equations from generating 
series, once again recognizes the formal machine. But, however ... even if we were to choose a 
system with the right level of entropy to play this game, it is not certain that we would fall upon 
generating series nor that we could use the rare applicable techniques to reconstruct the dynamics 
from these series: the machine, then, by this astute mix of modelling and ergodic imitation, 
would risk winning. We would then need to play the tougher game of turbulence. 

 
As of 1941, Kolmogorov and his school in fact proposed a stochastic approach to turbulence 
(see, with regards to this and more on turbulence, M. Farge's article in [Daham and al., 1992]). 
Kolmogorov's idea was that certain random systems could adequately model turbulent 
phenomena. This approach, still greatly studied today, bases itself upon a quite strong 
hypothesis, the ergodic hypothesis. It supposes, among others, the homogeneity, the isotropy and 
the self-similarity of the system's evolution. Lacking of something better, the ergodic methods 
represent an important tool for the analysis, but it is increasingly obvious that, in certain cases, 
the hypotheses upon which they base themselves are not corroborated and that, to the contrary, 
what is important, with turbulence, is exactly the complex mixture between relatively stable 
structures and strong instabilities (non homogeneity, non isotropy...). Generally speaking, one 
does not propose meteorological previsions using ergodic methods; likewise, these methods are 
strongly unrecommended for the modelling of turbulence generated by a plane's wing; it would 
be like to trust the lottery as for the conception and the security of flight structures. In 
mathematical physics and in Computer Science, normally and as early as possible, one would 
model, meaning that one would propose and program deterministic laws which reproduce at best 
the natural phenomenon in question. The turingian distinction between imitation and modelling 
then becomes crucial: stochastic imitation à la Kolmogorv vs. modelling, for example by the 
Navier-Stokes equations, in our case (see [Cannone, 2003] for these classical equations, today). 

Now the ergodic hypothesis is invalidated by the presence of movement invariants, a sort of 
coherent structure, whirlpools for example, where rotation wins over deformation and who 
remain stable quite beyond what any statistical theory could predict. R. Thom in his work often 
considers these structures where, despite a highly unstable dynamic, there is a certain bearing of 
geometrical forms (structural stability); but that does not prevent - as Prigogine would state it - 
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this interplay between locally stable structures and global system, of which the equations 
determine the range of possible regimes, from being based upon small fluctuations which, 
amplified, induce the choice of one of these regimes10. 

So, on one hand, thanks to the very specific geometry of the zones of stability and of 
fluctuations, we know today that pure ergodicity cannot trick the expert observer (according to 
M.Farge, Kolmogorov had understood already in 1949 the theoretical shortcomings of the 
ergodic hypothesis). On the other hand, we already observed that computer simulation is 
defeated, in the imitation game between a machine and a physical dynamical system (including a 
turbulent one), by iteration (§.1). Finally, if the programmer mixes both strategies (modelling + 
ergodicity) in order to play a second turn against a well-chosen turbulent system, the coherent 
structures, the movement invariants, can be broken in an unnatural way and allow to distinguish 
the machine: there lies our thesis, based upon an anterior experience of digital techniques, by 
finite elements methods, for the solution of differential equations (for a recent surveys, see 
[Berselli et al., 2005 ; Cannone, 2003]). In fact, if we fix equations for turbulence (Navier-
Stokes, typically, but others are beginning to be proposed) and we implement them in a machine, 
the addition of random perturbations during the computation will not allow to choose a priori (to 
program) the consequences of the perturbation. Meaning that the perturbation of a step of the 
digital computation might, in certain instants, not limit itself to the modification of incoherent 
residual flows (vorticity filaments, for example), nor to redirect the regime towards other 
possible ones, but may break structures which have all the macroscopic characteristics of 
coherence and of a long stability. In short, a pebble that is thrown in a whirlpool is visible, as 
foreign to the turbulence: it breaks it beyond what would be, from an internal view point, the 
physically (geometrically) plausible. And the physical world wins again against virtual reality. 

By this, we hope to have answered, also by knowledge only in part available in the ‘50s, to 
Turing's remark which proposes to imitate a continuous system, by a random system. In fact, we 
have taken it in a strong sense, of which he does not talk of explicitly: the possibility of a mix of 
strategies, modelling and ergodic imitation. Of course, we only discussed the physico-
mathematical question (but Turing is an mathematician) and we have not responded to the other 
great question that bothers Turing : which is the difference between a man and a woman? How to 
distinguish them if the man tries to imitate the woman? And if we replaced the man by a 
computer? Can we grasp the difference by the intermediary of a teleprinter, without seeing, 
without touching? (What a limitation of our material, visual and caressing humanity ! but that's 
what the linguistic turn is11.) 
                                                
10 Thom's and Prigogine's points of view have enormously enriched our knowledge and, despite important 
differences, they are mathematically and physically compatible: the analysis in [Petitot, 1990] shows it quite well. In 
the quarrel about determinism (see [Amsterdamski, 1990]), the debate unfortunately arrived to a dualistic separation 
that gives a different ontological status to fluctuation, a material cause, than to the global mathematical structure 
(the equations of a dynamic), an efficient or formal cause, in the aristotelian terminology so dear to Thom. This 
latter would be the “in-itself” or the platonic idea and would precede the phenomenal appearance [Petitot, 1990]. 
The revitalization of Aristotle's fine causal analysis is very interesting (but one must not forget the ‘final cause’, see 
[Stewart, 2002]); there is, however, no need of an ontological (platonician) distinction among these four different 
causes. To the contrary, their unity and temporal and conceptual simultaneity, within physical and biological 
phenomena, with their ‘teleonomy’, is the scientific challenge of today, see [Bailly, Longo, 2006]. 
 
11 « [The game] is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either 
sex. The interrogator stays in a room apart from the other two. The object of the game for the interrogator is to 
determine which of the other two is the man and which is the woman. [...] We now ask the question, 'What will 
happen when a machine takes the part of A in this game?' Will the interrogator decide wrongly as often when the 
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3. Logical, physical and biological machines 
As we already said, Turing is perfectly aware of the difference between imitation and 
mathematical modelling for a quite simple reason: in 1950, he is already working upon the 
remarkable mathematical model of morphogenesis in a field of chemical diffusion (the 
fundamental 1952 article, one of the departing points, with the work of D'Arcy Thompson, of the 
modern analyses of morphogenesis). That is, as already hinted, he proposes a system of (non-
linear) differential equations that is meant to capture the causal interactions (action-reaction-
diffusion), which originate the genesis of forms in some bio-chemical contexts. We recall that 
the most interesting property the equations to be found in [Turing, 1952], is that a very small 
variation of the boundary conditions, obviously in a continuous system, that is below any 
possible level of observability (and thus discretization), can radically change the evolution of the 
model. And this property is not the laplacian nondeterminism or randomness, but the sensitivity 
to the contour conditions and situates itself at the heart of the deterministic model of 
morphogenesis à la Turing.  One thing is thus the "imitation game", another the mathematical 
modelling of physical and physico-chemical or biological phenomena: the turingian DSM does 
not claim to model the brain, in the physico-mathematical sense - the latter is a continuous 
system for Turing -, it can only attempt to trick an observer (for this reason, maybe and quite 
rightly so, some mark the beginning of classical Artificial Intelligence with this article by 
Turing). In the §.2 we have seen that even the imitation can be revealed: in general, imitation of 
a dynamical system cannot be accomplished in an indistinguishable, read satisfactory manner by 
ergodic means, in particular if it is somewhat turbulent, but not too much.  

Second important precision to analyze in Turing's hypotheses. At page 47, he continues: 
"Even when we consider the actual physical machines instead of the idealized machines… " they 
are laplacian machines, as any DSM. True and false: true, the real (sequential) computer, as a 
DSM's realization, is by principle condemned to always make the same computation, from the 
same pool of discrete data and of programs, that is its logico-formal architecture (its logical gates 
and its programs, as formal languages). False, because it is also a physical machine, subject to 
variations below of its digital approximations, due to the possible small defects of its electronic 
circuits, to the cosmic rays that would befall upon it... It’s extremely rare, but it happens. 
Evidently, these are sensitivities to limit conditions which have nothing to do with those, 
intrinsic, of continuous systems which happen to be simulated (and enormously more rare, 
therefore easy to detect by statistic means, by iterating the process a few times). 

As a matter of fact, an abstract, mathematical DSM, such as Turing's machine, is not 
conceived as a physical machine, but as a logical machine, a human in "the minimal act of 
thought" - of formal thought12. Consequently, its expressivity is mechanical yet purely logico-

                                                                                                                                                       
game is played like this as he does when the game is played between a man and a woman? These questions replace 
our original, 'Can machines think?' » [Turing, 1950]. 
12 « A man provided with paper, pencil, and rubber, and subject to a strict discipline, is in effect a universal machine! 
...  LCMs (logical computing machines, see note 2) can do anything that could be described as "rule of thumb" or 
"purely mechanical" » [Turing, 1948]. And Wittgenstein continues: « Turing's ‘Machines’. These machines are 
humans who calculate. » [Wittgenstein, 1980; 1096]. "No insight or ingenuity on the part of the human being 
carrying out the computation": the LCM is the breaking down of formal thought into the simplest mechanical 
gesture, but as a human abstraction, upon a finite sequence of meaningless signs, outside of the world, independently 
of the physical hardware. 
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formal: typically, its expressive power is independent of spatial dimensions - of the tape, of the 
read/write head -, a property absolutely foreign to the physical processes, which all depend and 
strongly upon the dimensions of space.  However, when we physically bring a DSM into being, 
it poses new physical problems - from cosmic radiation to the synchronicity, sometimes even 
relativistic, of modern concurrent systems, distributed in space. Let’s forget the comparison 
between formal DSMs and living machines, which are physical, obviously, but are moreover 
subject to phenomena of integration-regulation within a self-organization which keep them in an 
"extended critical situation13"; this state is unknown by the theories of physcal matter and its 
mathematics; mathematics which must therefore be extended and adapted to the new job 
(dynamical systems, perhaps, are "only" a good approximations we have, for the moment). It is 
exactly this integration of the brain within a body, their reciprocal regulation and by such a rich 
environment that confers it a quite peculiar structural and functional stability ; and when these 
regulative/integrative linkages by/of/in a body are weakened - in the course of a dream for 
example - the brain appears to be rather unstable (likewise in case of serious deprivation - 
artificial, for example - from sensation). A stability in the change (homeorhesis), anchored upon 
self-organization and being a feature of the living which appears extraordinarily apt to constitute 
invariants, from the invariants and stabilities of action to the cognitive, indeed conceptual 
invariants (at the heart of thought). In short, despite that we too never repeat the "same thing", in 
the sense of a DSM, we stabilize instabilities and critical states in a way still very ill understood, 
from the mathematical viewpoint. Some will then exchange the brain for a DSM: to the contrary, 
it is a dynamical system enormously more complex than any n-body physical system or turbulent 
stream (... think that the banks "regulate" a stream and, there the Navier-Stokes equations tell us 
very little of the turbulence close to the edges; and this is nothing compared to the complexity of 
a brain's friction with its environment, by way of its interactions with the different levels of 
organization of the body to which it belongs)14. 

 

                                                
13 Note that we are not claiming here that the brain is a dynamical system: also Turing refers to the brain as, at least, 
a dynamical, highly sensitve, system (p. 57). To stay within his image, take a turbulent system that is at the same 
time very stable and very unstable, very ordinate and very inordinate; insert it sandwich-style between different 
levels of organization that regulate it and that it integrates. You will then have a very pale physical image of a 
biological entity. Among these entities, quite material, soulless and without software distinct from the hardware (the 
modern dualism of the cognitivism of the formal rule and of the program), you will also find bodies with nervous 
systems that integrate and regulate them (as networks of exchange and communication), within which they integrate 
themselves (as organs) and by which they are regulated (by hormonal cascades. for example). These systems 
organize the action of the body by keeping it in a state that is physically critical, yet extended, a concept that does 
not belong to crrent physical theories (in spite of its criticality, it subsists in time and following relatively spaced out 
rails); within the limits of this state, we can find both stability and instability, variance and invariance, integration 
and differentiation, see [Bailly, Longo, 2003b-2006]. And all this in a dynamic ecosystem and in the changing 
history of a community of bodies-brains that interact by gestures and language (ulterior levels of organization, 
external to, but generated by the biological objects, this time).  
 
14 May it be said between us that the winning strategy proposed above for a dynamical system also applies to a man 
(or a woman): ask a thousand questions that require a few lines of answers each, to the human and to the machine, 
via a teleprinter as Turing would want. Ask the same questions the next day: you will not obtain the same responses 
from the human, only a continuity of meaning. In this case, the random mechanical genesis of variants is more of an 
attempt to trick than a mathematical counter-strategy, like those of which we speak above, because there is the 
vexed question of meaning as well as the dynamic stability of the biological object's identity, which would show the 
difference. But both this note and the previous one go beyond the modest ambitions of this article: here we are only 
talking about digital machines and current Physics. 



 14 

INTERMEZZO II (machines and deductions) 
Inter II.1 : The equivalence theorems of Turing-Kleene & al. of '36-37 (see introduction) should 
be considered as the second great negative result for logical formalisms, after Gödel's 
incompleteness theorem, 1931. That any formal deductive system, endowed with a notion of 
decidable proof (so any hilbertian system), can be completely simulated by a machine that goes 
"right, left, write/erase 0, 1", is a true catastrophy: what a conceptual misery these systems! (The 
difficulty is concealed within the monstrosity of the encoding). This philosophical shortcoming 
was already clear to Poincaré: "MM.Hilbert and Peano think that mathematics is like Chicago's 
sausage machine: porcs and axioms go in, theorems and sausages come out" (and there comes 
mathematics reduced to the "manipulations of concrete signs" of which some philosophers still 
talk today, logic conceived as "purely formal" and mathematics – an enormous logico-analytical 
tautology - ready to be entirely computer generated). In fact, DSMs are generalized sausage 
machines (and are absolutely tremendous, for their specific uses - but sausage machines too are 
quite useful!). Let’s not forget, however, to appreciate the full half of the glass: what an idea that 
of Turing who, by inventing the notion of programmable machine, manages to compute all the 
partial recursive functions (an enormous class of functions on {0, 1}*, the integers) by a 
man/machine which goes "right, left, write/erase 0, 1". Quite obviously, this idea, with its notion 
of program, is the true beginning of Computer Science, a fantastic discipline which is changing 
the world. 

Inter II.2 : The typed lambda-calculus (Church '40) is the only system which allows to see 
with equilibrium the half-full glass: the formal deductions, with all their limits and their 
expressivity, directly become computations, without coding (this property is called "Curry-
Howard isomorphism", see [Howard, 1980]). The "human computer" of Peano, Hilbert and 
Turing, this alienation of human rationality in a laplacian mechanism, instead of going "left, 
right, 0, 1", applies a little bit more complex basic formal rules - "implication-introduction", 
"implication-elimination" and a few others, by replacement of a sequence of signs by another and 
by sequence-matching (identification by mechanical superposition of signs without meaning). 
With recursion, the system is also a good (or paradigmatic functional) programming language. 
No miracle, only a very elegant constructive representation of formal proofs as programs, which 
placed this system at the center of the mathematics - Logic and Category Theory – for sequential 
calculi and languages (see [Girard & al., 1990], [Asperti, Longo, 1991] and many others). Quite 
recently, it has been proposed to cognitivists to stop searching, in the brain, for a Turing 
Machine, but for a typed Lambda-machine (at last!): this DSM, at least, applies sequence-
matching and sequence-replacement directly to rules for deduction. The lambda-calculus, "at 
last", because if, quite beyond of the Turing imitation game's objectives, one would obstinate 
oneself to seek the implementation of universal-formal rules of thought (the Laws of Thought) in 
the brain, one must know at least that the encoding of these laws is very important, just as under 
Unix or Mac-OS. In fact, the choice of the programming style (functional, logical, imperative, 
object oriented ..., for example) and the conception of a language with its own method for its 
specific coding-representation of the world and its actual expressivity, are at the heart of 
Computer Science, as a science, quite difficult and important, of DSMs. The computational 
equivalence proclaimed by the "Church thesis", is of no interest for Computer Science, since 
long (see the introduction at [Aceto & al., 2003]): a good share of the work happens to consist of 
the explicitation and use of the expressiveness of the language proposed or analyzed. Now, the 
terms-programs of the lambda-calculus, contrarily to the Turing Machines and to the other 
formalisms, encode a great part of "the architecture" of deduction in formal systems: and, in 
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general, "a proof has an architecture", Poincaré had already exclaimed against Hilbert and his 
rather flat arithmetic encodings. 

It should be clear, that the limits of lambda-calculus are those of any computational 
formalism: it proceeds by mechanical replacement of meaningless sequences of signs. To the 
contrary, we, when saying "if ... then ... else...", are not performing sequence-matching or 
replacement: we are displacing mountains of significations. That is the mathematical 
incompleteness of formalisms and the great, monist, cognitive stake for knowledge, well beyond 
the software/hardware/meaning distinction, quite convenient for machines and post-turigian 
functionalistic models of the mind, outside of this world15. 

 
Let’s return a last time to our game, in order to reflect. How is it possible that a great 
mathematician such as Turing would believe that a discrete access grid, fixed once and for all 
(the letters of a teleprinter, the pixels of a screen), could conceal the geometrical difference 
between the dynamics of a system (very complex, the brain) and a laplacian mechanical 
machine? In fact, until the results by Kolmogorov-Arnold-Moser and Ruelle in the late '50s - 
'70s, the geometrical complexity of continuous systems was not entirely clear, particularly the 
idea that the "critical" points can be dense. But the possible philosophy existed. Let’s explain 
ourselves. 

Laplace already knew well that there are critical points: the summit of a mountain of 
potential, for example. It is Poincaré who, thanks to his work in celestial mechanics, will 
understand that the problem is "global", that it is proper to non-linear systems and to their 
geometry and not to a few isolated points. There is the meaning of his famous remark on 
sensitivity to the initial conditions: these critical points are "a bit everywhere", even though he 
did not exactly have the theorem which demonstrates it (the KAM theorem and its dual). It is 
also this attention to the physico-mathematical complexity that makes him also... conjecture the 
incompleteness of formal set theory, pretended universal sausage machine for mathematics 
(independence of the Continuum  Hypothesis, in a letter to Zermelo: the theorems will come 34 
and 60 years later). Just as Weyl conjectures the incompleteness of arithmetic in 1918, [Weyl, 
1918]. Despite logicism, the philosophy of physics and that of mathematics must be profoundly 
linked, in order to better understand at least, as demonstrated by Poincaré and Weyl (see [Bailly, 
Longo, 2006]). In short, there are those who grasp the "secret darkness of milk" and its 
importance to knowledge and science and those who see the world through a laplacian DSM. 
Since 1950, Turing belongs to the first group, except that he pushes as far as possible, within the 
limits of the mathematical knowledge of his times and as imitation, his genius idea, the modern 
DSM and its notion of program, last great invention of logico-formal mechanics.  Others to the 
contrary will follow, claiming that a DSM is a model of the brain, or even that the brain is a 
DSM itself (even stronger). Their motivations are often based upon this article by Turing or upon 
the formal Set Theory and/or Type Theory: the first is an insufficient reading, in particular not 
coupled with the almost contemporary paper of 1952, and the second is a mathematical error 
(that follows from the mathematical, concrete, incompleteness of formalisms, see, for example, 
[Longo, 2002]). 
 

 
4. Predictability and decidability 
                                                
15 The mathematical incompleteness of formalisms is a theme strongly related to what we discuss here, see [Longo, 
1999 and 2002; Bailly, Longo, 2003a, 2006] for analyses based upon recent concrete incompleteness results. 
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In a very brief text ("Laplace", downloadable, author's web) we argue the conceptual equivalence 
of Laplace's key hypothesis for the anlysis of perturbations (the predictability of deterministic 
systems – as decidablity of the evolution) and of the hypothesis of completeness (decidability of 
deducibility) of hilbertian systems, an analogy also hinted by Girard in his introduction to 
Turing's article. But with "Laplace" we also observed that the deterministic unpredictability à la 
Poincaré (the three bodies theorem, 1891) is the analog and the precursor of gödelian 
imcompleteness (undecidability) for any Hilbert-like formalism.  One must however add a 
nuance to this analogy between the two great respective limitative results: unpredictability à la 
Poincaré and Gödel-like incompleteness (which corresponds to the undecidability of the halting 
problem, demonstrated by Turing in '36 for his logical machine). The first appears "at a finite 
level", and very early (cf. the growth of Liapounov's coefficients in the Lindstedt-Fourier series), 
the latter is a problem "at infinity" (the halting problem or the non-termination of computations 
... forever). For example, it cannot be decided where a double pendulum will be, after 10 
oscillations, nor the evolution of the solar system beyond 1 milion years [Laskar, 1990], a short 
astronomical time. So unpredictability is a "stronger" result, within the framework of an essential 
philosophical equivalence of the two approaches to knowledge (Laplacian in physics and 
formalist in logic) and of their limitative results (Poincaré and Gödel). The unpredictability of a 
physical dynamical system is related, in particular, to the impossibility in principle to travel the 
same path in the phase space, from the same initial conditions (measured by interval), whereas a 
DSM obstinates itself to do so. It must be observed that also Turing speaks of the 
unpredictability of a DSM with a large memory and very long programs (p. 59), a daily 
experience for any computer scientist, but he is clear in these regards: we are dealing with a 
practical unpredictability and not one of principle, mathematical (see [Turing, 1950; p. 47], 
already quoted above). We should call this unpredictability “by incompetence”, like the 
“unpredictability” of pseudo-random mechanical generators : it has little to do with the epistemic 
unpredictability of the dice or of the solar system in 100 bilion years. By iteration, as for pseudo-
random generators, one gets the same evolution or sequence – just iterate, then you may predict. 
This doesn’t work with dice, nor any sufficiently unstable physical systems : indeed, a good 
definition of classically random process is “if iterated under the same conditions, it does not 
follow the same path”. This is why uncompressible, but iteratable, computational sequences 
conceptually differ from physically random processes. 

The analysis we are sketching here differs from many writings, in Theory of Mind and 
Artificial Intelligence, regarding the "Turing test"16. In fact, our comparison develops itself 
between predictability and decidability and it is philosophical, in the sense of the theory of 
knowledge, but it must be reconstructed from mathematics. By this, we could understand why 
"imitation", such as defined by Turing, is detectable. Its mathematical (geometrical) limit finds 
itself exactly in the difference between the unpredictability/undecidability results. DSMs have 
properties of undecidability at infinity, but are predictable in the finite realm: by looking at the 
                                                
16 But why change the name given by Turing to the imitation game between a machine and a man/woman, to test? 
The slip of scientific vision, implicit in this change of name, is very well underlined by [Lassègue, 1998]. But would 
have these authors failed to grasp the profound and dramatic irony of this improbable game in which to make a 
computer participate: to play the difference between man and woman? Would have they ignored the evolution and 
the mathematical stakes of Turing's scientific project, his novel interest in “continuously changing hardware 
(morphogenesis), in 1950-52, at the same time as the tragedy of the "game" lived by this man of genius who first 
projected himself into a machine (human computer), then condemned for his homosexuality and soon to commit 
suicide; would they have so much ignored his mathematics as much as his suffering between being and imitation: 
man/woman/machine? 
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program and the discrete databases one can perfectly predict the next computation step and, 
above all, they are predictable with regards to the iteration of the process, as described in §.1. In 
a turingian DSM, all the laws of evolution/behavior of its own universe are explicitly and fully 
given (programmed) and measurement, as access to a digital database, is perfect; exactly as for 
God, who perfectly knows the laws and the exact measures in his universe, ours (first 
Intermezzo). The myth of formal machine and of absolute divinity meet and, both, their ways, 
detach the analysis of knowledge from its constitutive interface, between us and reality. Their 
counterparts in the foundations of mathematics have quartered the century between mechanistic 
formalism and ontologizing platonism.   

Note that Turing is so firmly convinced that his DSM is laplacian that he makes a mistake: he 
explicitly claims that sensitivity to initial conditions does not apply to DSMs (he stresses 
“discrete-state machines”, p. 47), even in the sense that  « reasonably accurate knowledge of the 
state [of the machine] at one moment yields reasonably accurate knowledge any number of steps 
later » (p. 47). That is, DSMs would satisfy also Laplace’s erroneous conjecture concerning 
approximations.  Now, this happens to be false, since if the machine starts on very close but 
different values (reasonably accurate - but not exact - knowledge of the discrete state of the 
machine) for, say, the input  x0  in the computation of the logistic sequence, this leads, on a set of 
measure 1, to very different evolutions (a change of 10-15 in the value of  x0  leads to values 
distant 1 after less than 50 iteration). But digital data bases are exact and the machine is 
laplacian, since, as for Laplace’s God, the access to and use of data base, which are discrete and 
definite, is meant to be exact: the machine computes over a precise  x0,   

and not over an inevitably inexact physical measure.  Morevover, the laws, organised as 
programs, are all given.  This minor mistake by Turing is understandable, as there was little 
computational experience at the time on discrete sequences engendered by non-linear equations 
(a rare exception is [von Neumann, Ulam, 1947]; the topic came to the limelight only during the 
‘70s).  However, this is the same mistake that lays at the hearth of his attempted undetectable 
imitation: the idea that a discrete grid of access, would allow to control/predict also an unstable 
evolution. No, control and prediction, such as made explicit by perfect iteration, are due to the 
exact nature of digital data bases and of formally programmed dynamics, within a DSM. 

It is modern mathematics then that makes us understand the extent to which logico-
computational philosophy in cognition and foundations of mathematics stems from this 
newtonian-laplacian culture which has endured for too long in science, to the point of even 
inhibiting physico-mathematical work (and of stimulating the platonic response in philosophy of 
mathematics). In classical mechanics, after Poincaré (1890), and with the exception of Hadamard 
and of one or two great russian mathematicians, we needed to wait for the 1950s or even '70s for 
his philosophies and his mathematics to be taken up. In philosophy, classical cognitivism, stuck 
in the "linguistic turn", suffered the consequences of it, since it has lost first of all, in the Boole 
and Frege mouvance and against the philosophy of Riemann and Poincaré, the "sense of space" 
and of geometrical complexity. Turing, in 1950, situates himself between the two cultures, as his 
article in philosophy proves, jointly to his subsequent paper on morphogenesis: one must grasp 
the mathematical subtleties of his imitation game vs. his modelling work in order to appreciate it 
and to not proclaim, against Turing, that the brain is – or can be modelled by - a Turing machine, 
meaning a "programmable laplacian machine", all while adding ... "in the end", the fateful 
sentence of all simplistic reductions ever promised and never accomplished. 

In fact, in cognition (but also in classical Artificial Intelligence and in - formalist - 
philosophy of mathematics, the loci of the discrete-arithmetic modelling of the world and of 
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thought, along the lines of Hilbert’s laplacian conjectures), we still await for a conscious 
reflection on paradigms comparable to the one explicitely made by Sir James Lighthill, during 
his chairman period at the International Association for Mechanics : « Here I have to pause and 
speak once again on the behalf of the broad global fraternity of practitioners of mechanics. We 
are deeply conscious today that the enthusiasm of the forebears for the marvelous achievements 
of Newtonian mechanics led them to make generalizations in this area of predictability which, 
indeed, we may have generally tended to believe before 1960, but which we now recognize to be 
false. We collectively whish to apologize for having mislead the general educated public by 
spreading ideas about the determinism of systems satisfying Newton's laws of motion that, after 
1960, were to be proved incorrect » [Lightill, 1986]. 

In short, in Physics, Laplacian philosophy has played its part about two centuries ago; in 
logic, almost a century later, it suggested an elegant formalism which engendered the Computer 
Science of sequentiality and its beautiful mathematics (but also a philosophy of knowledge 
anchored upon the physics of the XIXth century) ; yet, all this is over, even in Computer Science. 
Quite obviously, some of its great concepts remain pillars of the modern analyses of computer 
programming - the structures of types, polymorphism, for example - just as the notions of 
hamiltonian and of lagrangian in classical mechanics have diffused into the different branches of 
the physics of the XXth century, but the conceptual framework and its philosophy are radically 
changing. In fact, in Computer Science, the time has come for the computability of "data flows", 
of synchrony and of concurrency in (spatially) distributed systems, as opposed to that of "input-
output" calculations, outside of the world - because beyond space and physical time (their time is 
secreted by the clock, see [Bailly, Longo, 2003]) - typical of Laplace-Turing sequential 
machines. These concurrent machines remain DSMs, so they are quite different from any 
dynamical system (continuous, said Turing), but they pose physical problems, as any real 
system, so also of spatio-temporal nature (synchronization, connectivity - as homotopy, for 
example, [Goubault, 2000] ; in short, the acces to distributed digital data is still exact, but not 
necessarely absolute). Their mathematics are in the process of realization and are about to give 
us a novel theory of discrete computations which greatly enriches that of Turing, Church, and of 
the other greats of the '30s, because it responds to other questions than those of computability à 
la Turing (see [Aceto & al., 2003]). 

 
 

Conclusion: irreversible vs. unrepeatable 
We have briefly mentioned the essential, constitutive, role of determinism in the classical 
physical theories: a role confirmed by the great turning point of Poincaré, who has distinguished, 
mathematically, determinism from predictability.  By this way, he has led us to understand 
randomness as epistemic, within the framework of deterministic theories (later, we even 
managed to say that a programmed sequence is random, if we do not know the laplacian program 
which generates it and if it has a behavior, a geometry, that is ergodic). On the other hand, an 
important trend in modern physics considers indeterminism as inherent to quantum theories and 
probabilities as intrinsic to this approach to microphysics. 

Dynamical systems (thermodynamical and of critical type) have introduced, in modern 
fashion, "the arrow of time", following the essential irreversibility of their processes. But there is 
another concept which Computer Science places at the center of its own scientific construction: 
that of the repeatability of the process. In fact, it is inherent to the notion of program, the 
possibility of repeating the unfolding of the computation in time. That is, to start over from the 
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same initial conditions and to follow the exact same evolution : the discrete nature of the system 
allows to avoid the consequences of a possibile sensitivity to initial conditions, even when they 
are implicit in the equations implemented. There lies an essential, constitutive component of the 
laplacian nature of DSMs, to which Turing so clearly refers in 1950, in connection to what he 
will call in 1952 the exponential drift : “It is an essential property of ...[DSMs] that this 
phenomenon does not occur” (quoted above). In summary, if a system is stable or if it is a DSM 
(discrete state machine!), its trajectories are repeatable, because it is not sensitive to the initial 
conditions or the eventual sensitivity does not manage to deploy its "destabilizing" effects, for 
re-initialization is perfect, and the unpredictability is "pushed to infinity" (the undecidability of 
the halting problem, Turing-style, see the beginning of §.4). As does a simple pendulum, as does 
a clock, the computer iterates without difficulty: in fact, iteration is their job. And iteration, in 
Computability Theory, begins by primitive recursion, which is iteration plus the updating of a 
register and is characteristic of the functions of Herbrand and Gödel Arithmetic; it goes through 
general recursion of this same formal system and of lambda-calculus, and arrives to a very 
important global property of programs: the portability of software (would you buy a piece of 
software if it was not transferable onto any compatible machine and iterateble at will?). In short, 
the repeatability, along the discrete processes, is inherent to the Theory of Computability and to 
its remarkable practical development, Computer Science. Specifically, it tells us that one thing is 
the physico-mathematical modelling, by equations with their solutions, continuous or analytical 
for example and if possible; and another, an ulterior step, is the implementation of these on a 
DSM: the latter will give us an absolutely remarkable imitation (though detectable), which is 
indispensable to modern science, but essentially different from (our understanding of) the 
physical process, for it is a discrete realization of the continuous mathematical modelling.  It is 
necessary to grasp this point in order to develop and apply at best this talent for imitation and 
iteration characteristic of DSMs. Galileo would have enormously envied our possibility to iterate 
without limit virtual physical experiences: he had to make do with throwing and throwing again 
his simple pendulum and its weight, in order to propose to us the first great laws of classical 
physics. 

On the other hand, the dynamical processes, just slightly more complex – which interest us 
today, are not repeatable: a double pendulum or a turbulent river do not manage to follow again 
and exactly the same evolution.  Moreover, for some dynamical systems, recurrence theorems 
confirm the difference: while a continuous system only goes very close to a previously explored 
state, its discrete implementation eventually forces identical iterations, when the recurrence 
interval is below the intended decimal approximation. Thus, sequences which are recurrent or 
ergodic, thus dense in the phase space, become ... periodic and start repeating themselves over 
and over again, in a DSM.  More generally, any sequence generated by an iterated function 
system ( xn+1 = f(xn) )  is periodic on a concrete DSM, as much as any pseudo-random generator, 
since they can take only a finite number of values.  And, as already observed, periodicity is the 
opposite of density and ergodicity (but the period may be very long). 

Unrepeatability is a concept to add to irreversibly: it does not coincide with the latter, 
because one can iterate the irreversible evolution of a gas, for example, as a global, statistic, 
evolution of the system. It is the local behaviour of a particle or the series of couplings 
(fluctuation, bifurcation) which are unrepeatable. Similarly, it is easy to describe a reversible 
process, which is unrepeatable. Conjointly with determination, the (fluctuation, bifurcation) 
couple is constitutive of classical dynamics and even more of biological processes: with 
structural stability, it participates in morphogenesis à la Turing and in the variability which is at 
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the heart of evolution, phylogenetic and ontogenetic; it contributes to the dynamics of cognitive 
phenomena. 

There are the stakes proposed by our response to Turing, based upon the irrepeatability of 
certain "continuous" processes, within the physical framework that he suggests himself for his 
game. A framework which constitutes a displacement of scientific attention from his behalf: his 
first works and his formal machine are part of the great ideas in Logic and in the foundations of 
the mathematics of the '30s; his reflections, in the 1950 article, enrich themselves with an on-
look upon contemporary mathematical physics, jointly to his 1952 paper. He thus goes beyond 
the limits of laplacian philosophy that had characterized the first years of work in Logic. But 
how is it possible that a whole branch of scientific reflection, so important technically, 
Mathematical Logic, could have taken such a backlog, in philosophy of nature and of 
knowledge, in comparison with other disciplines, Physics particularly? 

The weighty, historical, responsibility of the philosophies attached to logicism and to 
formalism was first to isolate the problem of the mathematical foundations of our relationship to 
phenomenal space (we discuss this in [Longo, 2003 and 2003a]). This choice originally had good 
motivations, very well explicated by the two great founders, who were soundly worried for the 
upheaval of non-Euclidean geometries: it was urgent to abandon any reference to physical space 
and to base the foundational analysis upon pure logic and/or formal coherence ([Frege, 1884] 
and [Hilbert, 1899])17. This theoretical breakage gave us remarkable logico-formal machine, as 
perfect as out of this world (at least, until the arrival of todays networks and of concurrency). 
But, at the same time, it separated the analysis of the foundations of mathematics and, worse, of 
cognition, from that of Physics, because exactly at that time, between the XIXth and XXth 
centuries, new theories emerged strictly related to the problem of the mathematical intelligibility 
of space and time (geometry of dynamical systems and of relativistic spaces). Consequently, it 
separated them from our efforts in the construction of modern scientific knowledge, so strongly 
correlated to the constitution of mathematical concepts and structures, as well as from the major 
change in the philosophy of Nature proposed by the new physical theories. For example, 
symmetries and symmetry-breaking, at the heart of modern Physics, appear only in [Weyl, 1952] 
as a component of the foundation (as genesis) of mathematical structures, and, more recently, in 
Proof Theory, by the work of Girard. 

By consequence, the platonism/formalism scholastic dominant in the philosophy of 
mathematics (do triangles and real numbers really exist ? … « the Scylla of ontologism, … the 
Charybdi of nominalism … from both sides I see the emergence of the ghost of a new 
scholastic » [Enriques, 1935]) missed out on the great foundational debates in Physics, about the 
structure of space, about determism, "non-locality" etc. (relativistic, dynamic, quantum systems), 

                                                
17 This issue of well explicating the hypotheses must be a feature of the Greats (Laplace, Frege, Hilbert, Turing ...): 
probably because they understand the novelty of the original conceptual framework they are proposing. If not, one 
may find, even quite recently, people who say they have "demonstrated" Church Thesis; small implicit hypothesis: 
the Universe, with all of its sub-systems, is an enormous laplacian machine. But, Church Thesis is an implication, 
which goes from an informal definition, that of potentially mechanizable deductive calculus à la Hilbert, to specific 
formal systems (Church, Turing ...). As an implication, today one could say that it is certainly within the limits of 
truth, in Thom's sense: « the limit of the true is not the false, but the insignificant » (see for a modern appreciation 
[Aceto et al., 2003]). Quite obviously the ultimate goal of these "proofs" is to talk of the brain, finite sub-systems of 
the Universe as much as finite bunches of quantum particles (for a brief history of Church's Thesis -Church-Turing's, 
more specifically - and of its physical and cognitive caricatures, see [Copeland, 2002], in 
http://plato.stanford.edu/entries/church-turing/#Bloopers ). 
 



 21 

which marked the century. And it left us with formalisms, technically marvelous to invent and 
work on DSMs, but laplacian in their conception of the world - or in the organization of their 
own universe; a universe subdivided into small discrete boxes, well localized and stable, such as 
the bits of computer’s memory. Turing was in the process of grasping this point, as pointed out 
by his imitation game between deterministic systems with differing spatio-temporal evolutions 
("morphogeneses"), a game between the discrete and the continuum; but he died, at age 42. 

Let’s try to not reach the same stalemate with Biology, of which cognitive sciences cannot do 
without, because the living makes even less sense without its space, its action within an 
ecosystem, its dynamic of forms. A dialogue with these rapidly growing sciences, within which 
mathematics cannot pretend to any hegemony, nor to ontological priority, and which would be at 
the same time technical and foundational, is essential to mathematics and to their foundation, 
because there cannot be a philosophy of mathematics without a philosophy of nature. There lies 
one of the great teachings of these two articles by Turing, and, long before, also of Poincaré and 
of H.Weyl, [Weyl, 1918 and 1927]; another "lone wolf" - according to his own definition – 
conjecturing incompleteness, in 1918, at a time when it was still being tried to demonstrate the 
laplacian decidability of logico-formal potentially mechanizable systems. Deductive systems of 
which some seek, even today, the implementation in the brain and, sometimes, claiming to speak 
in Turing's name; and they go from imitation to model, up to the discreet seduction of the 
metaphor18. 

The distinction hinted by Turing, and at the hart of our analysis, betwen modeling (as 
mathematical proposal of constituive principles for a physical process) and imitation (functional 
imitation, with no commitment on the causla structure of phenomena) is a fundamental idea.  It 
should be taken up today, both from a foundational and practical view point, as discrete-state 
machines are essential to modern science by their extraodinary modeling/imitation abilities. 

A recent project, see the team "Morphological Complexity and Information"19, attempts to 
propose a foundational dialogue with the natural sciences (see [Longo, 2003], [Bailly, Longo, 
2003], [Bailly, Longo, 2003a, 2006]) as well as a few alternatives, modest and specific, to the 
stalemate of the arithmetic encoding of the world  - a coding which is changing this very world 
by the descendants of Turing's DSM and their extraordinary networks, but which, transformed 
into a philosophy of knowledge, may prevent us of grasping its complexity and... to start 
thinking to the next machine. 
 
 
 

                                                
18 « The model simplifies, the metaphor complicates » [Nouvel, 2002]; it adds information, it refers to a (another) 
impregnating conceptual framework, a universe of methods and of knowledge that we transfer onto the first one. 
« When a model functions as metaphor, the model becomes an object of seduction for thought. If we then use it as a 
suggestion for the solution of a philosophical question, we will manage, abetted by this confusion, to make this 
metaphor appear as a ‘philosophical consequence’ » of mathematical modelling [Nouvel, 2002]. 
19 Web page: http://www.di.ens.fr/users/longo/CIM/projet.html . 
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Premiss 
Causal relations are structures of intelligibility: they participate to the human organization of 
natural phenomena, including Cognition, and make them intelligible. We establish these relations 
after some friction with certain regularities of reality (those which we "see"), which in turn 
canalize our cognitive action. Mathematics are at the heart of this construction of knowledge and, 
particularly, the choice of continuous or discrete mathematics has marked in a constitutive 
manner the history of our relationship to the world, including modern modelling of Mind. Before 
discussing the highly relevant commentaries on my article (see the french version for that second 
part), I shall attempt to explore, as framework to the questioning laid, in which sense this choice 
proposes different regimes of causality20. 
 
 
Concerning regimes of physical causality 
Since Galileo, Leibniz and Newton, we have given ourselves mathematical tools for physical 
thought; these tools are at the heart of the construction of scientific objectivity. In fact, on one 
hand, they have been crafted by their relationship to the studied phenomena ; on the other, the 
rigorous physical concepts of force, velocity and acceleration... with their causal relationships, 
are given (constituted) by equations, mathematical operations of limits and infinitesimal notions, 
at the origin of differential calculus. 

In this construction, Newton and Leibniz draft out theories of the continuum; Cantor and 
Weierstrass provide them with foundations, very particular ones, but solid, via arithmetical 
approximation of limits. This continuum is thus a limit, approximable in Cantor-Weierstrass 
style; its continuous transformations (differentiable) are also approximable, using Fourier series 
for example. Indeed, according to Laplace and except some “critical cases” he was aware of, a 
good approximation of the initial conditions of a physical system should have determined, in 
general, a good approximation of the evolution of the system (of its transformations). Even if we 
could not have "seen" and proposed these new operations of limits and these infinitesimal 
variations without mathematics of the continuum, the arithmetical discretization within a 
newtonian-laplacian framework suffices to describe them, by successive approximations. 
Arithmetics thus allow, on one hand, to escape the foundational stalemate of new geometries 
                                                
* This is the first, introductory, part of an answer to the peers’ commentaries to the french version of this paper. Both 
the orginal target paper and the answer appeared in Intellectica, 2002/2, 35. 
20 The Physics of the 20th century has transformed (has understood) "causal laws" in terms of "structural 
relationships", of symmetries and breakings of symmetries in particular, [Weyl, 1927 and 1952], [vanFrassen, 1994] 
(see [Bailly, Longo, 2003 and 2004b]). The passage from the ones to the others, always very informative, is 
sometimes difficult: we prefer to retain for the moment here the traditional terminology of "causal structure or 
regime", easier to grasp and still widely used in physics as well as in the cognitive sciences (see [van Gelder, 1998] 
and the debate concerning the "dynamical hypothesis" in the same issue of the magazine). Further work relating and 
expanding this approach towards “symmetries” may be found in [Bailly, Longo, 2004b], in particular. 
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(through Frege-Peano-Hilbert styled logico-formal systems and their arithmetical coding), and, at 
the same time, to found, a posteriori, these operations of limits, as mysterious as intrinsic to the 
infinitesimal calculus of Newton and Leibniz, by the most important mathematical theories of the 
continuum, those of Cantor and Dedekind. The approximation from exact measurements, such as 
integers, and absolute ("arithmetical magnitude is an absolute", writes Frege), founds all which is 
intelligible in time and space, in fact, "all which is thinkable" [Frege, 1884). And in the physics 
of systems which are Laplacian or sufficiently stable, the approximated solutions (in fact, digital 
or arithmetic), faithfully follow continuous trajectories. 

Riemann and Poincaré propose two conceptual turning points, as radical as they differ: their 
works are at the origin of the geometricalization of physics but also possess a foundational 
perspective. For the first, the curvature of ether, a perfectly elastic continuum, can account for 
these mysterious forces acting at distance and work to unify them. The second shows the 
difference between the (low) equational complexity of the movements of celestial bodies and the 
(high) geometrical complexity of their evolutions, of their dynamics. The approximation specific 
to physical measurement plays a central role in his approach and disrupts the laplacian 
framework, as we shall see. The two theories base themselves upon the analysis of hypotheses 
made about physical space, of the "access" (to time and space), of measurement (see [Longo, 
2003]). 

Let’s first reflect about the geometry of the dynamic systems of Poincaré (1880-90). Poincaré 
does not open the way to "chaotic indetermination" as some would make us believe. To the 
contrary, and as we have already observed, Poincaré is profoundly anchored to a classical 
conception of physics and by his works, he even brings  classical randomness under the "control" 
of determination. In fact, the modern dynamical systems broaden the concept of determination, 
by including within the latter, fluctuation and perturbation, even variation below the threshold of 
possible measurement. In short, their mathematics make evident the way by which the evolution 
of a system may also depend upon these elements which were considered as minor accidents of 
the physico-mathematical analysis; in other words, the causal regime, as framework determining 
the evolution of a system, comes to include variation, perturbation or fluctuation, even when 
these are below physical measurement. Or elsewise that a specific trajectory is determined by 
equations, if possible, as well as by variations/perturbations/fluctuations of its point of origin or 
of its boundary conditions (in modern terminology - early 1970’s: sensitivity to initial and/or 
border conditions; Turing’s exponential drift – 1952!). However, this broadened (and weakened) 
concept of determination no longer implies laplacian predictability; here is the turning point 
which provoked such noise, quite righteously, but a noise which has sometimes failed to 
adequately grasp this broadening of the role of classical determination (since, lottery, dice 
casting, etc, are considered as deterministic systems, contrarily to the purely probabilistic 
analysis produced by laplacian physics). But then, the approximation, specific to physical 
measurement, acquires a crucial role: it participates to the construction of scientific objectivity in 
an essential way, by the fact of not being exact. 

As for Riemann, the breakage is now relative to the Newtonian time-space absolute: one may 
no longer choose a system of cartesian coordinates at will, anywhere in time and space, nor any 
sort of measurement, all while considering space, time, and measurement as absolutes (for 
Riemann, metric structure is correlated to the spatial curvature). Einstein will center his scientific 
construction upon the role of reference systems and of associated measurement: Weyl will 
explain it by means of a mathematical theory of gauge changes which allows for the 
understanding of the passage of Newton to Einstein as the passage from absolute subjective to 
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relativizing objective, in physics (see [Bailly, Longo, 2006)). The relativistic determination then 
includes, in a way essential to the theory, the relativity of spatio-temporal measurements and 
frame of references; consequently, in Minkowski's relativistic spaces, for example, the causal 
correlations differ from those of newtonian space. And this path, whihc goes from Laplace to the 
modern geometriwation of physics, may be rediscovered within the discrete vs. continuum game. 

 
Let’s summarize our thesis: a structuration of reality by a geometry of continuity or by an 
arithmetic discretization induces different scientific understanding of phenomena, in relation to 
causality, and this extends to models of Cognition and Mind. This is why the reflections on the 
continuum found in Leibniz, Goethe, Peirce and the Wittgenstein of the 30s propose a very 
specific philosophy of knowledge, as opposed to the logico-arithmetic approaches (see 
[Fabbrichesi, Leoni, 2005]). So there is the bifurcation which occurred in history : on one hand, 
the highly justified requirement to "found" mathematics upon arithmetic exactitude and 
absolutes, following the crisis of the relationship to physical space; this having been caused, as a 
matter of fact, by the invention of riemanian varieties, deprived of sensitive intuition. On the 
other, the geometrization of physics, centered upon the role of approximation (of measurement, 
in the geometry of dynamical systems) and relativization (of the reference frame and of the 
curvature of space, in riemannian and relativistic approaches).  

Now, the first branch of this bifurcation produced, among other things, formidable 
arithmetical machines; the second of two great theories of modern physics. In short, the first 
followed the following conceptual pathway : "there exists absolute laws of thought, independent 
of man and of any material implementation" (Boole, Frege), "arithmetic induction is one of the 
pillars" (Frege), "we transcribe these laws into finite sequences of signs without signification, 
manageable in a potentially mechanizable way; within this framework, the notion of proof is 
decidable, indeed the theorems are decidable, by machine" (Hilbert), "a logico-arithmetic 
machine which separates software from material and goes "left, right, 0,1", can 
calculate/demonstrate anything" (Turing); "all the logico-formal systems for deduction/calculus 
are equivalent : we thus have an absolute, Church-Turing styled calculability" (Gödel, Kleene, 
Church, Turing). So there we have the onset of logico-arithmetic machines, the most 
extraordinary tool man has created for himself and which is transforming the world. 

These machines are specifically arithmetic in the sense that the "measurement", as access to 
the data base used by the calculations (which constitutes the evolution of the system), is exact 
and absolute : all the theory of computability, of coding, of databases presupposes that the latter 
be accessible in an exact and absolute manner (a bit will be 0 or 1, and one or the other, exactly; 
moreover, its value is not relative to the measurement or the access protocol).  Of course, one 
may complexify things ad hoc and for good reasons, and there exists interesting cases where 
these two aspects are put into question, and we shall come back to this in the responses to the 
commentaries, but here we shall talk about what is intrinsic to the theory. And that is also at the 
heart of applications : when you download a web page from Australia, you want the access to the 
distant data base to be exact, not a comma should be lacking ; if the accents are poorly 
reproduced, you become furious ; moreover, the access must be absolute, meaning that it must 
not depend upon the transfer protocol used (http, ftp...), nor upon the path (passing through nodes 
in Japan or in Iceland? we don't even care to know), and repeatable at will, identically, just like 
the software which you buy. Finally, any software must be independent of the material 
implementation; there is Frege's dream finally made true ("Pytagoras' theorem does not depend 
upon the phosphorus in the brain", his famous remark). However, networks and distributed 
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systems (in time and space) surely pose problems, as for the absolute access to shared memories 
and the iteration of processes. In theories of concurrent and distributed systems, people struggle 
in order to obtain exactness/absoluteness/iterability. The existing problems are logical (the 
complexity of the network), but they mainly derive from the "friction" between (the network of) 
discrete state machines’ internal causal regime and an environment which we more easily grasp 
by continuous spacio-temporal dynamics. As a matter of fact, with distributed systems, physical 
space and time stepped in computations. 

For the moment, let’s put aside the computational hypothesis which would give these 
arithmetic machines a role of modelization, even maybe descriptive of the essence, of many 
natural phenomena, including cognitive ones. And let’s only consider their computational talents. 
Then, the algorithms and the framework of arithmetic certitude may very well account, at least 
indirectly and approximately, of any physical dynamic, even biological (or cognitive, even 
within the cognitive dynamic hypothesis): they would constitute digital models, thus 
approximated, of any modelization by mathematics of the continuum. In fact, even the tenants of 
the dynamic hypothesis in Cognitive Sciences believe so (see [van Gelder, 1998] and his 
commentators). As it happens, a first glance upon numerical methods normally leads to think 
that, given a dynamic system, any continuous trajectory (evolution) can be approximated by a 
trajectory (evolution) generated by a DSM. For example, a sequence generated by the logistic 
function (see the article), in the continuous realm, would always be approximated by its digital 
variant (with its round-offs, at each step). However, in general, it is none of that: the round-offs, 
inevitable to the arithmetic machine, have the same effect as "small perturbations" and, because 
of the instability of the system, they suffice to generate enormous changes of trajectory, in time. 
Theorems of "stability" or "shadowing lemmas" guarantee, for a few sufficiently regular 
dynamical systems, that the simulation be "globally good": the shadowing lemmas, for example, 
ensure at most that the digital approximations be approached by continuous evolutions, but ... the 
opposite is not necessarily true (in short, for the logistic sequence, it is not true that for each 
continuous sequence we may associate a digital approximation which "shadows" it closely, but, 
conversely, it is the digital sequences which can be approached, shadowed, by continuous 
sequences: this reversal of logical quantifiers is, quite obviously, very important and motivates 
the fine analysis of these results (see [Pilyugin 1999]). For some systems, even the weak 
guarantee of global approximation, given by the shadowing lemma, doesn’t work [Sauer, 2003].  
Computational imitation, by adding perturbations due to the arithmetic round-off (a fact intrinsic 
to the digitalization process), modifies the causal organisation (and thus the trajectories), such as 
it is proposed by the equations of a dynamic, because the round-offs, a local perturbation, can 
cause an important change in trajectory, thus the global structure of the dynamics21. And that 
goes along with the two other components of structural change, with regards to modern 
mathematical physics, relative to measurement: in its own universe, the machine has an exact 
and absolute access to the data. 

In conclusion, for these three different aspects, the machine in general does not produce a 
model, nor even the digital approximation of a physico-mathematical model (as an attempt to 
                                                
21 Normally, in order to apply the theorems of stability or "shadowing lemmas" to the round-off, we consider the 
latter as a perturbation. While reading this page, Thierry Paul (quantum physics mathematician) observed that the 
round-off seems rather to play a role comparable to quantum measurement. We would not today analyze the latter in 
terms of perturbations, but rather as an interaction of differing phenomenal levels, a sort of subject/object 
entanglement, which changes the phenomena on two levels. This reading of the round-off reinforces the idea it 
contributes to the change of causal organization, in the course of a process: by destroying information, it participates 
to the determination of the evolution of the coupled system (computer, mathematical dynamics). 
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grasp some constitutive-causal principles of a phenomenon), but an imitation, with its own 
causal regime. And when we see this modern marvel which is the construction of an attractor on 
a computer screen, we must know (that which some specialists know quite well), that there lies 
there but an image only qualitatively similar (if the Shadowing Lemma holds!) to continuous 
dynamics which we claim to approximate; that, thanks to an extraordinary quantitative effort, we 
have but a qualitative imitation of a phenomenon (a marvelous imitation, but distinguishable : 
press "restart"...). Modern science is in the process of shaping itself, and quite rightly so, around 
these tools for thought ; it is thus necessary to intently reflect, also in theory of computation, 
upon the internal structure of these images which these imitations give us of the world.         

 
Epistemological consequences 
When new paradigms for the foundation and the application of mathematics are proposed, such 
as with, on one hand, Frege's deep conceptual analysis and the logical quantification structure 
which he develops, up to Hilbert's program, or, on the other hand, the geometrical methods for 
physics, a sometimes implicit philosophy of nature accompanies them. It is thus not illegitimate 
to project upon the machine properties which made reference to thought, because this projection 
has been made, at the moment the machine is conceived as a machine for thought, even as model 
(essence?) of cognition, of the living, of the world: this passage only made explicit an implicit 
philosophy of nature, which follows the arithmetic paradigm for the foundations of mathematics. 
So there we have that the search for foundational certainties in the exact and absolute access to 
integers, without the fogginess of the continuum, of the curvature of space, of Poincaré’s 
unpredictability, becomes a philosophy of knowledge; and Hilbert's "non ignorabimus" ("any 
mathematical statement is decidable"), originally a program internal to mathematics ("all is 
reductible to - encodable within - arithmetics" and ... "formal arithmetics is complete" or every 
arithmetic assertion can be decided), becomes a general scientific program which ... leaves us 
highly perplexed, 20 or 30 years after Poincaré's results on the unpredictability-undecidability 
inherent to deterministic systems (formally described by a finite set of equations). Yet, ultimate 
consequences of the philosophy of nature specific to the formalist approach, concerning 
arithmetical machines which are the product of the strong and important program, many shall 
speak of a faithful or complete image, a model of the world. Besides, mathematics, including 
arithmetic, are within the world, because we lay them within the world, because they structure it. 
Particularly, when we project upon the world this exact and absolute reading grid, of which 
Hilbert's "non ignorabimus" is the epistemological consequence, we propose another regime of 
causality, even another structure of intelligibility, in comparison to those of the mathematical 
physics of time-space continua. As a matter of fact, the approximation, which implies 
impredictability, and the relativization, which prevents the absolute, participate of physical 
determination and they are excluded from the conceptual framework of absolute arithmetic 
certitudes.  

One must not however forget that arithmetic machines are today essential to science. In fact, 
computers are at the heart of any scientific construction, they are even involved in any physical 
measurement; they abet mathematical proof, by developing calculations and formal deductions 
which were previously impossible (the theorem of four colors gave the machine huge calculatory 
tasks; they replace us in the formal fragments of proof; even Lorenz's attractor is the product of a 
machine, an extraordinary image - a qualitative imitation of a dynamic process). Now that these 
machines are indispensable, to the point that they are becoming constitutive (and I use this strong 
word) to the construction of scientific knowledge, that they give wings to thought, by their 
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immense and exact data bases, by rapidity, reliability, and perfect iteration, it is necessary to 
escape the myths of a philosophy of nature (implicit and) erroneous even 100 years ago. Moreso 
that this is necessary, because our tools for action upon the world are at the center of our 
humanity. This latter begins with the first stone tool. It continues by the construction of, what 
would I know, the wheel, clocks ... of the vapor engine. Surely the first man who constructed the 
wheel said, in all his creative enthusiasm : "my movement, indeed movement is there : the wheel 
is complete, it can take us anywhere". But not so, the moment a big rock appears on the road it 
ceases to function... That does not mean the wheel is not an extraordinary invention. Such as will 
say, with Vaucanson, the 18th century inventors of marvellous gear systems: and here we are, 
they are a complete model of man, in fact they are the essence itself of our biological being, an 
automated statue. But the real application appear when we cease to build mechanical ducks and 
dancers (too bad, because they are so pretty), we no longer speak of the modelization/essence of 
the living and we build the machines of the great modern industry, with these same gearings, 
powered by vapor. 
 
Synthesis and conclusion 
To summarize: the discrete structures (or of discretization) specific to Arithmetics proposes an 
access grid to phenomena where we lose the meaning of continuous approximation, of 
fluctuation, of contiguity (Aristotle had already observed that Euclid's continuity served to 
describe contiguity), of correlation (discrete topology does not allow to describe the physical 
correlation as neighbourhood-causal proximity), of the dependency of the reference system. In 
fact, they base themselves upon measurement as exact and absolute, thanks to round-offs, sorts 
of perturbations which participate to the causal regime, but which have nothing to do, a priori, 
with those which we grasp in the world of the physical or the living. Nevertheless, in what 
concerns exactitude and absoluteness: 

• in physics of dynamical systems, the fact that the measurement is not exact is at the heart 
of the theory, 

• in relativistic physics, the measurement is not absolute (and this is also inherent to the 
theory); 

when these aspects of measurement intervene in discrete simulation/modelization, the loss of 
structure becomes crucial, because it modifies the causal regime: the latter no longer integrates 
the variation below measurement nor relativization. The stakes are enormous, because outside of 
linear or sufficiently stable systems, the approximation and the choice of the reference system do 
not need to be invariants of the process (up to gauge transformations, in what concerns the 
reference systems). And the passage from mathematics of the continuum to that of the discrete, 
particularly when they are implemented in a computer, then impose a different causal 
organization. 

We have left aside Quantum Physics. In this case, measurement is neither exact nor 
absolute, but for completely different reasons, as inexactness is due to the intrinsic role of 
probabilities in measurement (there is a set of exact possibilities as for the next state of affairs). 
Moreover, the measurements depend on the instrument itself and upon the order by which they 
are taken. But the analysis does not make itself under the classical or relativistic terms used 
above: the discrete and the continuum superpose themselves, just as the photon does when 
presenting itself as continuous wave or particle, according to the measuring instrument 
employed. And this discrete is not local, it is non-seperable: it has nothing to do with the discrete 
topology of arithmetized structures, the well separated and localized boxes of digital data. For 
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this reason, in quantum physics one strongly feels the need for a new theory of the continuum of 
which the construction is not necessarily grounded on points (coverings of the torus, strings, 
fractals of scale theories... based on Synthetic Infinitesimal Analysis?). And the debate takes on a 
different bearing.  
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