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ABSTRACT

In this study, we propose and compare two probabilistic
models for online pitch tracking: Hidden Markov Model
and Change Point Model. In our models each note has a
certain characteristic spectral shape which we call spec-
tral templates. Hence the system’s goal is to find the note
whose template is active given the audio data. The main
focus on this work is the trade off between latency and ac-
curacy of the pitch tracking system. We present the prob-
abilistic models and the inference schemes in detail. En-
couraging results are obtained from the experiments that
are done on low-pitched monophonic audio.

1. INTRODUCTION

Pitch tracking is one of the most studied topics in the com-
puter music field since it lies at the center of many ap-
plications. It is widely used in phonetics, speech coding,
music information retrieval, music transcription, and inter-
active musical performance systems. It is also used as a
pre-processing step in more comprehensive music analysis
applications such as chord recognition systems.

Many pitch tracking methods have been presented in
the literature. Klapuri proposed an algorithmic approach
for multipitch tracking in [1]. Kashino et al. presented ap-
plied graphical models for polyphonic pitch tracking [2].
Cemgil presented generative models for both monophonic
and polyphonic pitch tracking [3]. Orio et al. and Raphael
proposed Hidden Markov Model based pitch tracking meth-
ods in [4] and [5] respectively. On the other hand, using
nonnegative matrix factorization (NMF) methods become
popular at various audio processing applications. Different
types of NMF models were proposed and tested on poly-
phonic music analysis, [6], [7], [8].

In this study, we propose and compare two probabilistic
models for online pitch tracking. Our probabilistic models
are extensible to polyphonic pitch tracking by using facto-
rial models [9] but we mainly focus on monophonic pitch
tracking of low pitched instruments. The main concern of
the work is reducing the pitch detection latency without
compromising the detection quality. Here the term, latency
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is defined as the time difference between the true note on-
set and the time that the pitch tracker has computed its es-
timate. In our point of view, a pitch tracking method might
have latency due to two reasons. The first reason is that the
method cannot estimate the note accurately because it has
not accumulated enough data yet. The second reason is the
computational burden. With the increase of the computa-
tional power, the latter can be eliminated by using more
powerful computers. Hence, in our work we will focus on
decreasing the latency by increasing the accuracy at note
onsets rather than trying to reduce the computational com-
plexity. We will test our models on recordings of two low
pitched instruments: tuba and bass guitar. This would be
challenging since estimating low pitches in shortest time is
a difficult problem.

The rest of the paper is organized as follows: in Section
2 and 3 we describe our approach and probabilistic models
in detail. We describe our inference scheme in Section 4.
The template learning procedure is described in Section 5.
In section 6, we present our results on monophonic pitch
tracking. Finally Section 7 concludes this paper.

2. APPROACH

In this study, we would like to infer a predefined set of
pitch labels from streaming audio data. Our approach to
this problem is model based. We will construct two prob-
abilistic generative models that relate a latent event label
to the actual audio recording, in this case audio is rep-
resented by the magnitude spectrum. We definexν,τ as
the magnitude spectrum of the audio data with frequency
index ν and time indexτ , whereτ ∈ {1, 2, ..., T } and
ν ∈ {1, 2, ..., F}.

For each time frameτ , we define an indicator variable
rτ on a discrete state spaceDr, which determines the label
we are interested in. In our caseDr consists of note labels
such as{C4, C#4, D4, D#4, ..., C6}. The indicator vari-
ablesrτ are hidden since we do not observe them directly.
For online processing, we are interested in the computa-
tion of the following posterior quantity, also known as the
filtering density1 :

p(rτ |x1:F,1:τ ).

Similarly, we can also compute the most likely label tra-

1 Note that we use MATLAB’s colon operator syntax in which(1 : F )
is equivalent to[1, 2, 3, ..., F ].
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Figure 1. The block diagram of the probabilistic models.
The indicator variables,rτ choose which template to be
used. The chosen template is multiplied by the volume
parametervτ in order to obtain the magnitude spectrum,
xν,τ .

jectory given all the observations

r∗1:T = argmax
r1:T

p(r1:T |x1:F,1:T ).

This latter quantity requires that we accumulate all data
and process in a batch fashion. There are also other quan-
tities, called “fixed lag smoothers” that between those two
extremes. For example, at timeτ we can compute

p(rτ−L|x1:F,1:τ ),

whereL is a specified lag and it determines the trade off
between the accuracy and the latency. By accumulating a
few observations from the future, the detection at a specific
frame can be eventually improved by introducing a slight
latency. Hence we have to fine-tune this parameter in order
to have the optimum results.

3. MODELS

In our models, the main idea is that each event has a certain
characteristic spectral shape which is rendered by a spe-
cific volume. The spectral shapes that we denote asspec-
tral templatesare denoted bytν,i. Theν index is again the
frequency index and the indexi indicates the pitch labels.
Here,i takes values between 1 andI, whereI is the num-
ber of different spectral templates. The volume variables
vτ define the overall amplitude factor, by which the whole
template is multiplied. An overall sketch of the model is
given in Figure1.

3.1 The Hidden Markov Model

Hidden Markov Models have been widely studied in var-
ious types of applications such as audio processing, natu-
ral language processing, and bioinformatics. Like in many

note0 atk note1sus rel

Figure 2. The prior structure of the indicator variablerτ .
Hereatk, sus, andrel refers to the attack, sustain, and
release parts of a note respectively. The first black square
can be either the silence or a note release state. Similarly
the second black square can be either a silence or a note
attack state.

computer music applications, HMMs have also been used
in pitch tracking applications [4], [5].

We define the probabilistic model as follows:

r0 ∼ p(r0)

rτ |rτ−1 ∼ p(rτ |rτ−1)

vτ ∼ G(vτ ; av, bv)

xν,τ |vτ , rτ ∼

I
∏

i=1

PO(xν,τ ; tν,ivτ )
[rτ=i],

where the symbolsG andPO represent the Gamma and
the Poisson distributions respectively, where

G(v; a, b) = exp((a− 1) log v − bv − log Γ(a) + a log(b))

PO(x;λ) = exp(x log λ− λ− log Γ(x+ 1)).

Here we have Markovian prior on the indicator vari-
ables,rτ which meansrτ depends only onrτ−1. We use
three states to represent a note: one state for the attack part,
one for the sustain part, and one for the release part. We
also use a single state in order to represent silence. Figure2
shows the Markovian structure in more detail.

In some recent work on polyphonic pitch tracking, Pois-
son observation model was used in the Bayesian non-negative
matrix factorization models (NMF) [11]. Since our prob-
abilistic models are similar to NMF models, we choose
the Poisson distribution as the observation model. We also
choose Gamma prior onvτ to preserve conjugacy and make
use of the scaling property of Gamma distribution.

In this probabilistic model we can integrate out analyti-
cally the volume variables,vτ . It is easy to check that once
we do this, provided the templatestν,i are already known,
the model reduces to a standard Hidden Markov Model
(HMM) with a Compound Poisson observation model.

3.2 The Change Point Model

In addition to the HMM, in the change point model (CPM),
the volume parametervτ has a specific structure which de-
pends onvτ−1 (i.e. staying constant, monotonically in-
creasing or decreasing and etc.). But at certain unknown
times, it jumps to a new value independently fromvτ−1.
We call these times as“change points”and the occurrence
of a change point is determined by the relationship between
rτ andrτ−1. If rτ−1 jumps to a new value at timeτ , in
other words ifrτ is not equal torτ−1, then a change point
has occurred at timeτ .



The formal definition of the generative model is given
below:

v0 ∼ G(v0; a0, b0)

r0 ∼ p(r0)

rτ |rτ−1 ∼ p(rτ |rτ−1)

vτ |vτ−1, rτ , rτ−1 ∼

{

δ(vτ − θ(rτ )vτ−1), rτ = rτ−1

G(vτ ; av, bv), rτ 6= rτ−1

xν,τ |vτ , rτ ∼

I
∏

i=1

PO(xν,τ ; tν,ivτ )
[rτ=i].

Here, δ(x) is the Kronecker delta function which is de-
fined byδ(x) = 1 whenx = 0, andδ(x) = 0 elsewhere.
The θ(rτ ) parameter determines the specific structure of
the volume variables. Our selection ofθ(rτ ) is as follows:

θ(rτ ) =











θ1, if rτ is attack,

θ2, if rτ is sustain,

θ3, if rτ is release.

θ(rτ ) gives flexibility to the CPM since we can adjust
it with respect to the instrument whose sound would be
processed (i.e. we can selectθ(rτ ) = 1 for woodwind
instruments by assuming the volume of a single note would
stay approximately constant). Figure3 visualizes example
templates and synthetic data which are generated from the
CPM.

4. INFERENCE

4.1 Inference on the Hidden Markov Model

As we mentioned in Section 3.1, we can integrate out an-
alytically the volume variables,vτ . Hence, given that the
tν,i are already known, the model reduces to a standard
Hidden Markov Model (HMM) with a Compound Poisson
observation model as shown below:

p(x1:F,1:τ |rτ = i)

=

∫

dvτ exp(

F
∑

ν=1

logPO(xν,τ ; vτ tν,i)

+ logG(vτ ; av, bv))

=
Γ(Xτ + av)

Γ(av)
F
∏

ν=1
Γ(xν,τ + 1)

bv
av

F
∏

ν=1
t
xν,τ

ν,i

(Ti + bv)Xτ+av
.

Since we have standard HMM from now on, the infer-
ence algorithm can be made to run very fast without any
approximation. We can run the well-known forward al-
gorithm in order to compute the filtering density or fixed
lag versions with a few backward steps for real-time ap-
plications. Also we can estimate the most probable state
sequence by running the Viterbi algorithm.

4.2 Inference on the Change Point Model

While making inference on the CPM, our task is finding
the posterior probability of the indicator variables,rτ and
volume variablesvτ . If the state space ofvτ , Dv was dis-
crete, then the CPM would reduce to an ordinary HMM on
Dr ×Dv. However whenDv is continuous, which is our
case, an exact forward backward algorithm cannot be im-
plemented in general. This is due to the fact that the pre-
diction densityp(rτ , vτ |x1:F,τ ) needs to be computed by
integrating overvτ−1 and summing overrτ−1. The sum-
mation overrτ−1 renders the prediction density a mixture
model where the number of mixture component grow ex-
ponentially withτ . In this section we will describe the im-
plementation of exact forward backward algorithm for the
CPM and the pruning technique that we use for real-time
applications.

The forward backward algorithm is a well known algo-
rithm for computing the marginals of formp(rτ , vτ |x1:F,τ ).
We define the following forward messages:

α0|0(r0, v0) = p(r0, v0)

ατ |τ−1(rτ , vτ ) = p(rτ , vτ , x1:F,1:τ−1)

ατ |τ (rτ , vτ ) = p(rτ , vτ , x1:F,1:τ ),

whereτ ∈ {1, 2, ..., T }. These messages can be com-
puted by the following recursion:

ατ |τ−1(rτ , vτ ) =
∑

rτ−1

∫

dvτ−1 p(rτ , vτ |rτ−1, vτ−1)

ατ−1|τ−1(rτ−1, vτ−1)

ατ |τ(rτ , vτ ) = p(x1:F,τ |rτ , vτ )ατ |τ−1(rτ , vτ ).

We also define the backward messages and recursions
similarly:

βT |T (rT , vT ) = p(x1:F,T |rT , vT )

βτ |τ+1(rτ , vτ ) = p(x1:F,τ+1:T |rτ , vτ )

=
∑

rτ+1

∫

dvτ+1 p(rτ+1, vτ+1|rτ , vτ )

βτ+1|τ+1(rτ+1, vτ+1)

βτ |τ(rτ , vτ ) = p(x1:F,τ :T |rτ , vτ )

= p(x1:F,τ |rτ , vτ )βτ |τ+1(rτ , vτ ),

whereτ ∈ {1, 2, ..., T−1}. Moreover, the posterior marginals
can simply be obtained by multiplying the forward and
backward messages:

p(rτ , vτ |x1:F,1:T ) ∝ p(x1:F,1:T , rτ , vτ )

= p(x1:F,1:τ−1, rτ , vτ )

p(x1:F,τ :T |rτ , vτ ,
(
(
(
((x1:F,1:τ−1)

= ατ |τ−1(rτ , vτ )βτ |τ (rτ , vτ ).

Due to the fact thatr is discrete andv is continuous
random variables, in the CPM, we have to storeα andβ
messages as mixtures of Gamma distributions. In order
to achieve ease of implementation, we can represent the
Gamma mixture

p(vτ |rτ = i, .) =

M
∑

m=1

exp(wm)G(vτ ; am, bm),
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Figure 3. Spectral templates and synthetic data generated from the CPM. It can be observed that the templates implicitly
capture the harmonic structure of the signals. The topmost right figure shows a realization of the indicator variablesrτ and
the second topmost figure shows a realization of the volume variablesvτ . Here we setθ1:3 = {1.10, 0.99, 1.00}. With this
parametrization, we force the volume variables to increaseduring the attack parts, slowly damp at the sustain parts andstay
constant during the release parts of the notes. Theθ parameters should be determined by taking the audio structure into
account (i.e.θ(rτ ) should be different for higher sustained sounds, percussive sounds, woodwinds, etc.).

as{(a1, b1, w1, i), (a2, b2, w2, i), ..., (aM , bM , wM , i)}. This
will be simplyM × 4 array of parameters.

4.2.1 Forward Pass

To start the forward recursion, we define

α0|0(r0, v0) = p(r0, v0)

= p(r0)p(v0)

=

I
∑

i

exp(li)G(v0; a0, b0),

where,li = log p(r0 = i). As we mentioned earlier, we
represent this message with the array representation of the
Gamma mixtures:

(ak0|0, b
k
0|0, c

k
0|0, d

k
0|0) = (a0, b0, lk, k),

wherek = 1, 2, 3, ...,I denotes the index of the components
in the Gamma mixture.

In the forward procedure, we haveI Gamma potentials
at timeτ = 0. Since we are dealing with the CPM, at each
time frame, we would have two possibilities: there would
be a change point or not. Hence, atτ = 1, we would haveI
newly initialized Gamma potentials for the possibility of a
change point andI Gamma potentials which we copy from
the previous time frame,τ = 0, in order to handle the case
when a change point does not occur. Similarly, atτ = 2,
again we would haveI newly initialized Gamma potentials
to handle a change point and2I Gamma potentials which

we copy fromτ = 1. Note that we would have(τ + 1)I
Gamma potentials at time frameτ . Figure4 visualizes the
forward procedure.

Derivation of the prediction step at timeτ is as follows:

ατ |τ−1(vτ , rτ )

=
∑

rτ−1

∫

dvτ−1 p(vτ , rτ |vτ−1, rτ−1)

ατ−1|τ−1(vτ−1, rτ−1)

=
∑

rτ−1

∫

dvτ−1 p(vτ |rτ , vτ−1, rτ−1)p(rτ |rτ−1)

ατ−1|τ−1(vτ−1, rτ−1)

=
∑

rτ−1

∫

dvτ−1

(

[rτ 6= rτ−1]G(vτ ; av, bv)

+[rτ = rτ−1]δ(vτ − θ(rτ )vτ−1)
)

p(rτ |rτ−1)

ατ−1|τ−1(vτ−1, rτ−1).

The firstI potentials that handle the change point case
become

(akτ |τ−1, b
k
τ |τ−1, c

k
τ |τ−1, d

k
τ |τ−1) = (av, bv, c

′, k)

for k = 1, 2,...,I. Hereaij = p(rτ = i|rτ−1 = j) and

c′ = log









I
∑

j=1
j 6=k

aij

τI
∑

m=1

[dmτ−1|τ−1 = j] exp(cmτ−1|τ−1)









.
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Figure 4. The forward procedure for the CPM where the
number of templates,I is 3. The empty circles repre-
sent the Gamma potentials that handle the occurrence of a
change point and the filled ones handle the other case. The
inheritance structure between the time frames are shown
with arrows.

We also haveτI Gamma potentials which are inherited
from the time frameτ − 1:

(akτ |τ−1, b
k
τ |τ−1, c

k
τ |τ−1, d

k
τ |τ−1)

= (ak−I
τ−1|τ−1,

bk−I
τ−1|τ−1

θ(dk−I
τ−1|τ−1)

, c′, dk−I
τ−1|τ−1)

for k = I+1, I+2,...,(τ + 1)I, where

c′ =

(

I
∑

i=1

[dk−I
τ−1|τ−1 = i] log aii

)

+ ck−I
τ−1|τ−1

Once we compute the predictive distributions, we have
to update the Gamma potentials as we acquire the observa-
tions:

ατ |τ (vτ , rτ = i)

= p(x1:F,1:τ , vτ , rτ = i)

= ατ |τ−1(vτ , rτ = i)p(x1:F,τ |vτ , rτ = i)

=

(τ+1)I
∑

m=1

[dmτ |τ−1 = i]e(c
m
τ|τ−1)G(vτ ; a

m
τ |τ−1, b

m
τ |τ−1)

F
∏

ν=1

I
∏

j=1

PO(xν,τ ; tν,jvτ )
[rτ=i].

Hence the update equation requires multiplication of Gamma
and Poisson potentials. A nice property is that the product
is also a Gamma potential, as derived in the Appendix. The
updated Gamma potentials are as follows:

(akτ |τ , b
k
τ |τ , c

k
τ |τ , d

k
τ |τ ) = (a′, b′, c′, d′)

for k = 1, 2,...,(τ + 1)I. Here

a′ = akτ |τ−1 +
F
∑

ν=1

xν,τ

b′ = bkτ |τ−1 +

I
∑

i=1

[dkτ |τ−1 = i]

F
∑

ν=1

tν,i

c′ = ckτ |τ−1 +

I
∑

i=1

[dkτ |τ−1 = i]g(akτ |τ−1, b
k
τ |τ−1, x, t)

d′ = dkτ |τ−1.

4.2.2 Backward Pass

The backward pass is initialized as follows:

βT |T+1(vT , rT ) = 1

(âkT |T+1, b̂
k
T |T+1, ĉ

k
T |T+1, d̂

k
T |T+1) = (1, 0, 0, k),

for k = 1, 2,...,I. Here the Gamma potential,(1, 0, 0, k) is
the improper Gamma distribution where

(a, b, c, k)× (1, 0, 0, k) = (a, b, c, k),

for anya, b, andc.
Similar to the forward pass, we derive the backward re-

cursion as follows:

βτ |τ+1(vτ , rτ )

=
∑

rτ+1

∫

dvτ+1 p(vτ+1, rτ+1|vτ , rτ )

βτ+1|τ+1(vτ+1, rτ+1)

=
∑

rτ+1

∫

dvτ+1 p(vτ+1|rτ+1, vτ , rτ )p(rτ+1|rτ )

βτ+1|τ+1(vτ+1, rτ+1)

=
∑

rτ+1

∫

dvτ+1 ([rτ+1 6= rτ ]G(vτ+1; av, bv)

+[rτ+1 = rτ ]δ(vτ+1 − θ(rτ )vτ ))

p(rτ+1|rτ )βτ+1|τ+1(vτ+1, rτ+1).

The backward recursions works very similar to the forward
recursions, where we haveI potentials at timeT . At time
T − 1, we would have2I Gamma potentials where the
first I potentials handle the case of a change point and the
remaningI potentials handle the opposite case which is the
same case in the forward pass. Note that, in the backward
pass we would haveτI Gamma potentials at time(T − τ)
as opposed to the forward pass.

4.2.3 The Pruning Procedure

One disadvantage of this model is that the need for the
computational power increases asτ increases and exact in-
ference becomes impossible after a couple of steps. In or-
der to eliminate this problem we developed a pruning tech-
nique for the CPM as an approximate inference scheme. In
the standard pruning algorithms, at timeτ , we would sort
the Gamma potentials with respect to their mixture coef-
ficients ckτ |τ , keep theN best potentials, and discard the



rest of them. However, with this scheme, we may discard
the first, immature potentials in the mixture since they have
been recently inserted to the mixture.

In this study we propose a different pruning scheme for
the CPM. As opposed to the standard pruning methods,
we always keep the firstNkeep Gamma potentials with-
out taking into account their mixture coefficients, where
0 ≤ Nkeep << N . Then we apply the standard pruning
algorithm to the rest of the potentials, i.e. we select the
(N −Nkeep) best Gamma potentials.

5. TRAINING AND PARAMETER LEARNING

Since we have constructed our inference algorithms with
the assumption of the templatestν,i to be known, we have
to train the spectral templates at the beginning. In this
study we utilized the EM algorithm for this purpose. This
algorithm maximizes the log-likelihood iteratively as fol-
lows:

E-step:

q(v1:T , r1:T )
(n) = p(v1:T , r1:T |x1:F,1:T , t

(n−1)
1:F,1:I)

M-step:

t
(n)
1:F,1:I = argmax

t1:F,1:I

〈

B(n−1)
〉

q(v1:T ,r1:T )(n)

where

B(n) = p(v1:T , r1:T , x1:F,1:T |t
(n)
1:F,1:I).

The E-step can be computed via the methods which we
described in Section 3.1 and 3.2. The M-step for the mod-
els is computed as follows:

t
(n)
ν,i =

∑T

τ=1 〈[rτ = i]〉(n) xν,τ
∑T

τ=1 〈[rτ = i]vτ 〉
(n)

.

Intuitively, we can interpret this result as the weighted
average of the normalized audio spectra with respect tovτ .

6. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the probabilistic
models on pitch tracking, we have conducted several ex-
periments. As mentioned earlier, in this study we focus on
the monophonic pitch tracking of low-pitched instruments.

In our experiments we used the electric bass guitar and
tuba recordings of the RWC Musical Instrument Sound
Database. We first trained the templates offline, and then
we tested our models by utilizing the previously learned
templates. At the training step, we run the EM algorithm
for each note where we use short isolated recordings. On
the whole, we use 28 recordings for bass guitar (from E2
to G4) and 27 recordings for tuba (from F2 to G4). The
HMM’s training phase lasts approximately 30 seconds and
the CPM’s lasts approximately 2 minutes. At the testing
step, we rendered monophonic MIDI files to audio by us-
ing the RWC recordings. The total duration of the test files
are approximately 4 minutes. At the evaluation step, we

compared our estimates with the ground truth which is ob-
tained from the MIDI file. In both our models we used 46
ms. long frames at 44.1 kHz sampling rate.

In our point of view, the main trade-off of these pitch
tracking models is between the latency and the accuracy.
We can increase the accuracy by accumulating the data, in
other words increasing the latency. However after some
point the pitch tracking system would be useless due to the
high latency. Hence we tried to find the optimum latency
and accuracy by adjusting the “lag” parameter of the fixed-
lag viterbi path which is defined as:

r∗τ = argmax
rτ

p(r1:τ+L|x1:F,1:τ+L),

where L is the number of audio frames to be accumulated.
As evaluation metrics, we used the recall rate, the preci-

sion rate, the computational complexity and the note onset
latency. The recall rate, the precision rate and the compu-
tational complexity are defined as:

recall =
num. of correct notes

num. of true notes
,

precision =
num. of correct notes

num. of transcribed notes
,

complexity =
running time of the method

duration of the test file
,

and we define the note onset latency as the time difference
between the pitch tracker’s estimate and the ground truth,
without considering the label of the estimate. The evalua-
tion results are shown in Figure5.

We also compared the performance of our models with
the YIN algorithm [10]. We used theaubio implementa-
tion and tuned the onset threshold parameter. The results
are shown in Table1.

Rec. (%) Prec. (%) Lat (ms) Comp.

YIN 43.43 9.40 58.74 1.33
HMM 91.72 85.02 54.89 0.02
CPM 97.37 93.59 49.09 0.05

Table 1. The comparison of our models with the YIN algo-
rithm. Here,Rec, Prec, Lat andCompstand for the recall
rate, the precision rate, the latency and the computational
complexity respectively. The CPM performs better than
the others. Moreover, the HMM would also be advanta-
geous due to its cheaper computational needs.

7. DISCUSSIONS AND CONCLUSION

In this study we presented and compared two probabilistic
models for online pitch tracking. The main focus was on
the trade off between the latency and the accuracy of the
proposed pitch detection models.

Apart from the previous works that aimed to develop
instrument-independentpitch tracking systems, our approach
is based on modeling of a specific musical instrument’s
spectral structure. Our systems can be optimized for any
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Figure 5. The overall performance of the probabilistic
models on low-pitched audio. The dashed lines represent
the offline processing results. The total latency of the sys-
tem is the sum of the lag and the latency at the note onsets.

instrument with a quick training procedure. Besides, this
flexible template matching framework can also be used for
various types of applications such as acoustic event detec-
tion.

Despite testing our probabilistic models on monophonic
data, the models are extensible to more complicated sce-
narios such as polyphony. This kind of extensions require
more complex inference schemes, but fortunately there ex-
ists powerful state-of-the-art inference methods. More-
over, we can also combine the proposed models with dif-
ferent kinds of probabilistic models for deeper music anal-
ysis schemes like joint pitch-tempo tracking.

One limitation of the CPM is that it has the same damp-
ing coefficient (θ) for all frequency components in the spec-
trum. This assumption is limiting since each partial of a
note evolves differently over time. As a natural next step
of our work is to construct probabilistic models that have
frequency dependent damping coefficients.

8. APPENDIX

The update step of a single Gamma potential is derived as
follows:

log

(

exp(c)G(vτ ; a, b)

F
∏

ν=1

PO(xν,τ ; tν,ivτ )

)

= c+ log G(vτ ; a, b) +

F
∑

ν=1

logPO(xν,τ ; tν,ivτ )

= c+ (a− 1) log vτ − bvτ − log Γ(a) + a log(b)

+
F
∑

ν=1

(xν,τ log tν,ivτ − tν,ivτ − log Γ(xν,τ + 1))

= (a+Xτ − 1) log vτ − (b + Ti)vτ + c

− log Γ(a) + a log(b) +

F
∑

ν=1

xν,τ log tν,i

−

F
∑

ν=1

log Γ(xν,τ + 1)

= (a+Xτ − 1) log vτ − (b + Ti)vτ

− log Γ(a+Xτ ) + (a+Xτ ) log(b + Ti)

+c+ g(a, b, x, t)

= c′ + logG(vτ ; a
′, b′),

where

Xτ =

F
∑

ν=1

xν,τ

Ti =

F
∑

ν=1

tν,i

a′ = a+Xτ

b′ = b+ Ti

c′ = c+ g(a, b, x, t)

and

g(.) = log Γ(a+Xτ )− (a+Xτ ) log(b+ Ti)

− log Γ(a) + a log(b) +
F
∑

ν=1

xν,τ log tν,i

−

F
∑

ν=1

log Γ(xν,τ + 1)
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(TÜBİTAK).

10. REFERENCES

[1] A. Klapuri, “Multipitch analysis of polyphonic music
and speech signals using an auditory model,”IEEE



Transactions on Audio, Speech & Language Process-
ing, vol. 16, no. 2, pp. 255–266, 2008.

[2] K. Kashino, K. Nakadai, T. Kinoshita, and H. Tanaka,
“Application of bayesian probability network to music
scene analysis,” 1998.

[3] A. T. Cemgil,Bayesian Music Transcription. PhD the-
sis, Radboud University of Nijmegen, 2004.

[4] N. Orio and M. S. Sette, “An hmm-based pitch tracker
for audio queries,” inISMIR, 2003.

[5] C. Raphael, “Automatic transcription of piano music,”
in ISMIR, 2002.

[6] E. Vincent, N. Bertin, and R. Badeau, “Harmonic and
inharmonic nonnegative matrix factorization for poly-
phonic pitch transcription,” inICASSP, 2008.

[7] N. Bertin, C. Févotte, and R. Badeau, “A tempering
approach for itakura-saito non-negative matrix factor-
ization. with application to music transcription,” in
ICASSP’09, 2009.

[8] A. Cont, “Realtime multiple pitch observation using
sparse non-negative constraints,” inin International
Conference on Music Information Retrieval, 2006.

[9] A. T. Cemgil, “Sequential inference for Factorial
Changepoint Models,” inNonlinear Statistical Signal
Processing Workshop, (Cambridge, UK), IEEE, 2006.
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