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ABSTRACT

Generalised coupled tensor factorisation is a recently pro-
posed algorithmic framework for simultaneously estimating
tensor factorisation models where several observed tensors
can share a set of latent factors. This paper proposes a
model in this framework for coupled factorisation of piano
spectrograms and piano roll representations to solve audioin-
terpolation and restoration problem. The model incorporates
temporal and harmonic information from an approximate
musical score (not necessarily belonging to the played piece),
and spectral information from isolated piano sounds. The
performance of the proposed approach is evaluated on the
restoration of classical music pieces where we get about5dB
SNR improvement when50% of data frames are missing.

Index Terms— Audio Restoration, Coupled Tensor Fac-
torisation

1. INTRODUCTION

Audio modelling based on factorisation has become popular
along with the rapid development of computational power and
statistical modelling techniques. This modelling paradigm
has found place in various audio applications related to music
information retrieval and content analysis, such as transcrip-
tion or source separation.

Pioneering work on Nonnegative Matrix Factorisation
(NMF) for audio processing [1] has demonstrated that, this
modelling paradigm leads to practical and useful algorithms.
For polyphonic transcription and source separation, which
are the main applications of this model, various extensions
and improvements have been proposed [2].

Apart from polyphonic transcription and source separa-
tion, audio restoration is another popular audio processing
application where the aim is to interpolate/restore the missing
parts in the audio. Many audio restoration methods have been
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proposed in the literature, to name a few [3, 4, 5]. The ma-
jority of these methods propose different models that are as-
sumed to capture the underlying process of how the audio sig-
nals are generated. Impressive results have been reported in
these studies, however, these methods have at least one of the
two major problems: The first one is that, it is not straightfor-
ward to introduce domain specific information to these meth-
ods, i.e. the methods that are proposed in [3, 4] both require
heavy computational needs. Upgrading these methods would
slow down the estimation process while requiring more com-
plex inference schemes. The second problem is, as the case
in [5], some methods cannot restore the missing parts if entire
frames of audio are missing.

In this paper, we present a model for piano spectrogram
restoration by using the Generalised Coupled Tensor Factori-
sation (GCTF) framework [6]. The main idea of our model
is to incorporate different kinds of musical information while
estimating the missing parts of the audio: the reconstruction
will be aided by an approximate musical score, not necessar-
ily belonging to the played piece, and spectra of isolated piano
sounds. A similar model was presented in [6] in order to il-
lustrate the usage of the framework. In this study, we focus
on this particular model in detail and investigate the capabil-
ities and the limits of the model by simulating a challenging
real-world application.

2. GENERALISED COUPLED TENSOR
FACTORISATION

The Generalised Coupled Tensor Factorisation (GCTF) frame-
work [6] is a generalisation of the Probabilistic Latent Tensor
Factorisation (PLTF) framework [7] where the PLTF model
is given as a natural extension of the NMF model:

X(v0) ≈ X̂(v0) =
∑

v̄0

∏

α

Zα(vα), (1)

whereα = 1, ...|α|. In this framework, the goal is computing
an approximate factorisation of a given a multiway arrayX

in terms of a product of individual factorsZα, some of which
are possibly fixed. Here, we defineV as the set of all indices



in a model,V0 as the set of visible indices,Vα as the set of
indices inZα, andV̄α = V −Vα as the set of all indices not in
Zα. We use small letters asvα to refer to a particular setting
of indices inVα.

Since the product
∏

α Zα(vα) is collapsed over a set of
indices, the factorisation is latent. The optimisation problem
is the minimisation ofd(X, X̂), whered is a divergence (a
quasi-squared-distance) typically taken as Euclidean (EUC),
Kullback-Leibler (KL) or Itakura-Saito (IS). In order to illus-
trate the framework, we can define the NMF model of [8] in
the PLTF notation as follows:

X(f, t) ≈ X̂(f, t) =
∑

i

D(f, i)E(i, t) (2)

whereZ1 ≡ D, Z2 ≡ E, and the index setsV = {f, t, i},
V0 = {f, t}, V1 = {f, i}, andV2 = {i, t}. A detailed study
on audio modelling via PLTF can be found in [9].

The Generalised Coupled Tensor Factorisation (GCTF)
model takes the PLTF model one step further where in this
case we have multiple observed tensorsXν that are supposed
to be factorised simultaneously:

Xν(v0,ν) ≈ X̂ν(v0,ν) =
∑

v̄0,ν

∏

α

Zα(vα)
Rν,α

(3)

whereν = 1, ...|ν| andR is acoupling matrixthat is defined
as follows:

Rν,α =

{
1 Xν andZα connected
0 otherwise

. (4)

Note that, as distinct from the PLTF model, there are mul-
tiple visible index sets (V0,ν) in the GCTF model. In order
to illustrate the GCTF framework, we can give the following
example:

X̂1(i, j, k) =
∑

r

A(i, r)B(j, r)C(k, r) (5)

X̂2(j, p) =
∑

r

B(j, r)D(p, r) (6)

X̂3(j, q) =
∑

r

B(j, r)E(q, r) (7)

where we employ the symbolsA : E ≡ Z1:5. Here, we have
three observed tensors, therefore three simultaneous factori-
sation problems. In this case, we have the followingR matrix
with |α| = 5, |ν| = 3

R =





1 1 1 0 0
0 1 0 1 0
0 1 0 0 1



 with
X̂1 =

∑
A1B1C1D0E0

X̂2 =
∑

A0B1C0D1E0

X̂3 =
∑

A0B1C0D0E1

.

(8)

Note that, the factorB is shared by all models.

Table 1. Update rules for differentp values

p Cost Function Multiplicative Update Rule

0 Euclidean Zα ← Zα ◦
∑

ν
Rν,α∆α,ν(Mν◦Xν)

∑
ν
Rν,α∆α,ν(Mν◦X̂ν)

1 Kullback-Leibler Zα ← Zα ◦
∑

ν
Rν,α∆α,ν(Mν◦X̂

−1

ν
◦Xν)∑

ν
Rν,α∆α,ν(Mν)

2 Itakura-Saito Zα ← Zα ◦
∑

ν
Rν,α∆α,ν(Mν◦X̂

−2

ν
◦Xν)

∑
ν
Rν,α∆α,ν(Mν◦X̂

−1

ν )

2.1. Inference

The inference, i.e., estimation of the latent factorsZα can be
achieved via iterative optimisation (see [6]). For non-negative
data and factors, one can obtain the following compact fixed
point equation where eachZα is updated in an alternating
fashion fixing the other factorsZα′ for α′ 6= α

Zα ← Zα ◦

∑

ν R
ν,α∆α,ν(Mν ◦ X̂

−p
ν ◦Xν)

∑

ν R
ν,α∆α,ν(Mν ◦ X̂

1−p
ν )

. (9)

where◦ is the Hadamard product (element-wise product) and
Mν is a0− 1 mask array whereMν(v0,ν) = 1 (Mν(v0,ν) =
0) if Xν(v0,ν) is observed (missing). Herep determines
which cost function to be used, i.e. forp = {0, 1, 2} cor-
respond to theβ-divergence [10] that unifies Euclidean,
Kullback-Leibler, and Itakura-Saito cost functions, respec-
tively. In this iteration, the key quantity is the∆α,ν function
that is defined as follows:

∆α,ν(A) =




∑

v0,ν∩v̄α

A(v0,ν)
∑

v̄0∩v̄α

∏

α′ 6=α

Zα′(vα′)R
ν,α

′





(10)

For updatingZα, we need to compute this function twice for
argumentsA = Mν ◦ X̂

−p
ν ◦ Xν andA = Mν ◦ X̂

1−p
ν . As

an example, it is easy to verify that the update equations for
the KL-NMF problem (forp = 1) are obtained as a special
case of Equation 3. Further cases are summarised in Table 1.
A key observation is that the∆α,ν function is computing a
product of tensors and collapses this product over indices not
appearing inZα, which is algebraically equivalent to comput-
ing a marginal sum.

3. SCORE GUIDED AUDIO RESTORATION

In this section, by using the GCTF framework, we will form
a model where we reconstruct missing parts of an audio spec-
trogram of a piano pieceX1(f, t), that represents the short
time Fourier transform coefficient magnitude at frequency bin
f and time framet. This is a difficult matrix completion prob-
lem since entire time frames (columns ofX1) can be missing,
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Fig. 1. General sketch of the proposed approach. The idea is to incorporate information from the recordings of the instrument
and a score of the same genre. The blocks visualise the tensors that are defined in the model and the relation between them.
The lower-case letters and arrows near the blocks representthe indices of a particular tensor.

low rank reconstruction techniques are likely to be ineffec-
tive. Besides, this kind of missing data patterns arise often in
practice, e.g., when packets are dropped during digital com-
munication.

It has been demonstrated that [1], when an audio spectro-
gram of music is decomposed using NMF as in Equation 2,
the computed factorsD andE tend to be semantically mean-
ingful and correlate well with the intuitive notion of spectral
templates (harmonic profiles of musical notes) and a musi-
cal score (reminiscent of a piano roll representation such as a
MIDI file). However, as time frames are modelled condition-
ally independently, it is impossible to reconstruct audio with
this model when entire time frames are missing.

In order to restore the missing parts in the audio, we
form a model that incorporates musical information of chords
structures and how they evolve in time. In order to achieve
this, we hierarchically decompose the excitation matrixE as
a convolution of some basis matrices and their weights and
come up with a model forE which is similar to the model that
is proposed in [11]:E(i, t) =

∑

k,τ B(i, τ, k)C(k, t − τ).
Here the basis tensorB encapsulates both vertical and tem-
poral information of the notes that are likely to be used in
a musical piece; the musical piece to be reconstructed will
shareB, possibly played at different times or tempi as mod-
elled byG. After replacingE with the decomposed version,
we get the following model (Equation 11):

X̂1(f, t) =
∑

i,τ,k

D(f, i)B(i, τ, k)C(k,

d
︷ ︸︸ ︷

t− τ )

=
∑

i,τ,k,d

D(f, i)B(i, τ, k)C(k, d)Z(d, t, τ) (11)

X̂2(i, n) =
∑

τ,k

B(i, τ, k)G(k,

m
︷ ︸︸ ︷

n− τ)

=
∑

τ,k,m

B(i, τ, k)G(k,m)Y (m,n, τ) (12)

X̂3(f, p) =
∑

i

D(f, i)F (i, p)T (i, p) (13)

whereX2 is a score matrix, which can be possibly obtained
from a MIDI file andX3 contains the isolated piano record-
ings where it is constructed by concatenating isolated record-
ings corresponding to different notes. Here, we have intro-
duced new dummy indicesd andm, and new (fixed) factors
Z(d, t, τ) = δ(d− t+ τ) andY (m,n, τ) = δ(m−n+ τ) to
express this model in our framework. Besides,T is a0−1ma-
trix, whereT (i, p) = 1(0) if the notei is played (not played)
during the time framep andF models the time varying am-
plitudes of the isolated notes. Figure 1 visualises the general
structure of the model. The coupling matrixR for this model
is defined as follows:

R =





1 1 1 1 0 0 0 0
0 1 0 0 1 1 0 0
1 0 0 0 0 0 1 1



 (14)

4. RESULTS

In order to evaluate our model, we have conducted several
experiments. We have used the MIDI Aligned Piano Sounds
(MAPS) piano database [12]:16 bit 44.1 kHz piano sam-
ples are down-sampled to11.025 Hz and the test files are cor-
rupted by erasing big chunks of samples. In all our experi-
ments the audio is subdivided into frames of93 milliseconds.

In the experiments, we have used the first20 seconds of6
different recordings of3 pieces from J. S. Bach. In2 of these
6 different recordings, the piano samples (X3) are available
for each isolate note. The remaining4 recordings are from
different pianos. In order to obtain the restored version of
the corrupted spectra we have simply combined the observed
parts ofX1 and the estimated parts of̂X1: M1 ◦X1 + (1 −
M1) ◦ X̂1, whereM1 is the0 − 1 mask that is introduced in
Equation 9.

In our first experiment, after synthetically corrupting the
test files, we have restored them by using theirowntranscrip-
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(a) First experiment
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(b) Second experiment

Fig. 2. Results of the experiments. As side information (X2),
we used a) own transcriptions of the test files, b)different
transcriptions of other test files. Initial SNR is computed by
substituting 0 as missing values.

tions as the side information. In the second experiment, we
have used transcriptions ofdifferent pieces. Figure 2 illus-
trates the performance the model for different missing data
percentages and different cost functions. For both cases the
Euclidean cost function seems to perform better than the oth-
ers. It can also be observed that, the results of both exper-
iments are similar. One interpretation of this observationis
that as long as the musical score (X2) reflects the chord struc-
ture and its temporal evolution of corrupted the audio, it does
not necessarily belong to the same piece asX1.

In order to assess the quality of our reconstructions, we
measure the SNR between the true and the reconstructed
spectrograms. In both cases, we get about5 dB SNR im-
provement where50% of the data is missing; gracefully
degrading from10% to 80% missing data. We believe that
the results are encouraging as quite long portions of audio are
missing.

5. CONCLUSION AND FUTURE WORK

In this study, a method for audio data restoration is presented.
The restoration operation is aided by an approximate musical
score and spectra of isolated piano sounds. The GCTF frame-
work enables the model can be defined in a compact way and
once the model is defined in this framework, making infer-
ence on the model becomes straightforward. The proposed

model is evaluated on a challenging audio application, where
big chunks of audio frames are missing.

A possible improvement for the model can be using con-
volutive models that can capture the temporal evolution of the
spectral dictionary. This might come up with more realistic
outputs due to better modelling of the frequency structure of
the instrument.
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