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ABSTRACT proposed in the literature, to name a few [3, 4, 5]. The ma-

jority of these methods propose different models that are as

Generalised, coupled tensor factor_isation is a recer_1tly Pr%yumed to capture the underlying process of how the audio sig-
posed algorithmic framework for simultaneously estimgtin ;¢ 5re generated. Impressive results have been reported i
tensor factorisation models where several observed t8NSOf,ace studies however. these methods have at least ore of th
can share a set of latent factors. This paper proposes@q major problems: The first one is that, it is not straightfo
model in this framework for coupled factorisation of piano,q tq introduce domain specific information to these meth-
spectrograms and piano roll representations to sc_)Ive andio ods, i.e. the methods that are proposed in [3, 4] both require
terpolation and restoration probler_n. The model incorpesrat heavy computational needs. Upgrading these methods would
temporal and harmonic qurmatlon _from an approximategq gown the estimation process while requiring more com-
musical score (not necessarily belonging to the playediec oy inference schemes. The second problem is, as the case

and spectral information from isolated pi.ano sounds. The, [5], some methods cannot restore the missing parts ifenti
performance of the proposed approach is evaluated on ”?F'ames of audio are missing.

restoration of classical music pieces where we get abdBt

, - In this paper, we present a model for piano spectrogram
SNR improvement wheb0% of data frames are missing.

restoration by using the Generalised Coupled Tensor Hactor
Index Terms— Audio Restoration, Coupled Tensor Fac- sation (GCTF) framework [6]. The main idea of our model
torisation is to incorporate different kinds of musical informationileh
estimating the missing parts of the audio: the reconstacti
will be aided by an approximate musical score, not necessar-
1. INTRODUCTION ily belonging to the played piece, and spectra of isolatadi

sounds. A similar model was presented in [6] in order to il-

Audio modelling based on factorisation has become populg[istrate the usage of the framework. In this study, we focus
along with the rapid development of computational power angy, this particular model in detail and investigate the célpab

statistical modelling techniques. This modelling paraulig jties and the limits of the model by simulating a challenging
has found place in various audio applications related taenus o 51-world application.

information retrieval and content analysis, such as tnémsc
tion or source separation.

Pioneering work on Nonnegative Matrix Factorisation
(NMF) for audio processing [1] has demonstrated that, this
modelling paradigm leads to practical and useful algorthm The Generalised Coupled Tensor Factorisation (GCTF) frame

For polyphqmc transcription aqd source separation, Wh'd\}vork [6] is a generalisation of the Probabilistic Latent 3en
are the main applications of this model, various extension

and improvements have been proposed [2]. Pactorisation (PLTF) framework [7] where the PLTF model

. i is given as a natural extension of the NMF model:
Apart from polyphonic transcription and source separa-

tion, audio restoration is another popular audio processin X (o) ~ X(vo) _ ZHZQ(“‘*)’ L
Vo «@

2. GENERALISED COUPLED TENSOR
FACTORISATION

application where the aim is to interpolate/restore thesmgs
parts in the audio. Many audio restoration methods have been

pr—  and techol |  cotaLrk wherea = 1, ...|a|. In this framework, the goal is computing
_Funded by the scientific and technological research cowrficliurkey ; faati ; ;
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ship from TUBITAK. are possibly fixed. Here, we defieas the set of all indices




in a model,V; as the set of visible indice$/, as the set of
indices inZ,,, andV,, = V —V,, as the set of all indices not in
Z,. We use small letters as, to refer to a particular setting
of indices inV,.

Since the producf], Z.(v.) is collapsed over a set of
indices, the factorisation is latent. The optimisationijeon
is the minimisation of/(X, X), whered is a divergence (a
guasi-squared-distance) typically taken as EuclidearQEgU
Kullback-Leibler (KL) or Itakura-Saito (IS). In order tduls-

trate the framework, we can define the NMF model of [8] in

the PLTF notation as follows:

X(f1) (2)

ZDﬁ

whereZ; = D, Z; = FE, and the index set® = {f,t,:},
Vo = {f,t}, Vi = {f,i}, andV, = {i,t}. A detailed study
on audio modelling via PLTF can be found in [9].

The Generalised Coupled Tensor Factorisation (GCT

model takes the PLTF model one step further where in thi

case we have multiple observed tens8sthat are supposed
to be factorised simultaneously:

Xo(vow) = Xo(vo) = D[] Zalwa)™™ (3
’U[),/ «
wherev = 1, ...|v| and R is acoupling matrixthat is defined
as follows:
v |1 X, andZ, connected
R { 0  otherwise )

Table 1. Update rules for different values
Cost Function Multiplicative Update Rule

p

. 2, R Aay(MyoXy)
0 Euclidean Lo Zyo S RV Aa., (MyoX,)
R"Aq (MyoX;?
Zu RU’QAQ,V(MV)

1 Kullback-Leibler Z, « Z,, o 2= oXv)

2.« 7, o Ty R Ao (Myo0X) oX)

2 Itakura-Saito R, (MoK )

2.1. Inference

The inference, i.e., estimation of the latent factgrscan be

achieved via iterative optimisation (see [6]). For nonateg

data and factors, one can obtain the following compact fixed
oint equation where eacHi,, is updated in an alternating
shion fixing the other factor8,, for o/ # «

S, RNy (M, 0 X;70X,)

Za — Za o 51—
>, RVeA (M, 0 X, P)

©)

whereo is the Hadamard product (element-wise product) and
M, is a0 — 1 mask array wheré/, (vo,,) = 1 (M, (vo,,) =

0) if X,(vo,,) is observed (missing). Herg determines
which cost function to be used, i.e. fpr= {0,1,2} cor-
respond to thes-divergence [10] that unifies Euclidean,
Kullback-Leibler, and Itakura-Saito cost functions, resp
tively. In this iteration, the key quantity is th&, , function
that is defined as follows:

Note that, as distinct from the PLTF model, there are mul-

tiple visible index setsl ) in the GCTF model. In order

to illustrate the GCTF framework, we can give the following

example:
(i,7.k ZA i,7)B(j,r)C(k,7) (5)
=ZBm 6)

T (")

Q) = ZB(JaT)E

where we employ the symbols : £ = Z,.5. Here, we have
three observed tensors, therefore three simultaneousrifact
sation problems. In this case, we have the followithmatrix
with |a| =5, [v] =3

11100 X, =Y A'B'C'D°E°
R=[10 10 1 0| with X,=> A°B'C°D'E° .
01 001 X3 =S A"B'C°DOE!

(8)

Note that, the factoB is shared by all models.

S Awon) 3 T Zerwa)™

V0,0 NV VoNVa ' #ax

Ay (A) =

(10)

For updatingZ,,, we need to compute this function twice for
argumentsd = M, o X;? o X, andA = M, o X177, As

an example, it is easy to verify that the update equations for
the KL-NMF problem (forp = 1) are obtained as a special
case of Equation 3. Further cases are summarised in Table 1.
A key observation is that th&, , function is computing a
product of tensors and collapses this product over indioés n
appearing irz,,, which is algebraically equivalent to comput-
ing a marginal sum.

3. SCORE GUIDED AUDIO RESTORATION

In this section, by using the GCTF framework, we will form

a model where we reconstruct missing parts of an audio spec-
trogram of a piano piec&;(f,t), that represents the short
time Fourier transform coefficient magnitude at frequerioy b

f and time frame. This is a difficult matrix completion prob-
lem since entire time frames (columnsXf) can be missing,
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Fig. 1. General sketch of the proposed approach. The idea is topacate information from the recordings of the instrument
and a score of the same genre. The blocks visualise the tetiwdrare defined in the model and the relation between them.
The lower-case letters and arrows near the blocks représeitdices of a particular tensor.

low rank reconstruction techniques are likely to be ineffec X3(f,p) = ZD(f, i) F(i,p)T(i,p) (13)
tive. Besides, this kind of missing data patterns arisendfte i

practice, e.g., when packets are dropped during digitatcCOMyhere X, is a score matrix, which can be possibly obtained
munication. _ from a MIDI file and X5 contains the isolated piano record-
It has been demonstrated that [1], when an audio spectr@ygs where it is constructed by concatenating isolatedrteco
gram of music is decomposed using NMF as in Equation 2ings corresponding to different notes. Here, we have intro-
the computed factor® and £ tend to be semantically mean- gyced new dummy indicesandm, and new (fixed) factors
ingful and correlate well with the intuitive notion of speadt Z(d,t,7) = 5(d—t+7) andY (m,n,7) = §(m —n—+7) o
templates (harmonic profiles of musical notes) and a musiéxpress this model in our framework. BesidBss a0—1 ma-
cal score (reminiscent of a piano roll representation ssch a iy whereT(i,p) = 1(0) if the notei is played (not played)
MIDI file). However, as time frames are modelled condition-during the time frame and I models the time varying am-
ally independently, it is impossible to reconstruct audithw ity des of the isolated notes. Figure 1 visualises the géne

this model when entire time frames are missing. _ structure of the model. The coupling matéfor this model
In order to restore the missing parts in the audio, Wg gefined as follows:

form a model that incorporates musical information of ctsord

structures and how they evolve in time. In order to achieve B (1) 1 (1) (1) (1) (1) 8 8 14
this, we hierarchically decompose the excitation makias R = 100000 1 1 (14)

a convolution of some basis matrices and their weights and
come up with a model foE which is similar to the model that
is proposed in [111:E(i,t) = 3,  B(i,7,k)C(k,t — 7). 4. RESULTS

Here the basis tensd® encapsulates both vertical and tem-
poral information of the notes that are likely to be used in!n order to evaluate our model, we have conducted several

a musical piece; the musical piece to be reconstructed wifXPeriments. We have used the MIDI Aligned Piano Sounds

shareB, possibly played at different times or tempi as mod-(MAPS) piano database [12]16 bit 44.1 kHz piano sam-

elled byG. After replacingE with the decomposed version, ples are down-sampled td.025 Hz and the test files are cor-
we get the following model (Equation 11): rupted by erasing big chunks of samples. In all our experi-
) ments the audio is subdivided into frame®8fmilliseconds.

A N In the experiments, we have used the fa@seconds 06
Xi(f,t) =Y D(f,i)B(i, 7, k)C(k,t - 7) different recordings o$ pieces from J. S. Bach. thof these
4,7,k 6 different recordings, the piano samples;) are available
Z D(f,i)B(i, 7, k)C(k,d)Z(d,t,7) (11) for each isolate note. The remainiAgecordings are from
different pianos. In order to obtain the restored version of

i,7,k,d
m the corrupted spectra we have simply combined the observed
- , ~— arts of X; and the estimated parts &f;: M; o X7 + (1 —
Xo(i,n) =S B, 1, k)G(k, 7 — P A1 _ P L MioAl .
2(i,m) Tzk: (&7, k)G (k. = 7) M) o X5, whereM; is the0 — 1 mask that is introduced in
’ . Equation 9.
= > B(i,7,k)G(k,m)Y (m,n,7) (12) In our first experiment, after synthetically corrupting the

T.k.m test files, we have restored them by using tlogintranscrip-
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Fig. 2. Results of the experiments. As side informatidf ],
we used a) own transcriptions of the test files,difjerent

transcriptions of other test files. Initial SNR is computed b

substituting 0 as missing values.

model is evaluated on a challenging audio application, eher
big chunks of audio frames are missing.

A possible improvement for the model can be using con-
volutive models that can capture the temporal evolutiohef t
spectral dictionary. This might come up with more realistic
outputs due to better modelling of the frequency structdire o
the instrument.

[1]

(2]

[3]

[4]

[5]

tions as the side information. In the second experiment, we

have used transcriptions different pieces. Figure 2 illus-

[6]

trates the performance the model for different missing data
percentages and different cost functions. For both cages th
Euclidean cost function seems to perform better than the oth [7]
ers. It can also be observed that, the results of both exper-

iments are similar. One interpretation of this observatton
that as long as the musical sco?&,| reflects the chord struc-
ture and its temporal evolution of corrupted the audio, #glo

not necessarily belong to the same piec&ds

(8]

In order to assess the quality of our reconstructions, we[g]
measure the SNR between the true and the reconstructed

spectrograms. In both cases, we get aliodB SNR im-

provement where&s0% of the data is missing; gracefully

degrading from10% to 80% missing data. We believe that [10]

the results are encouraging as quite long portions of audio a

missing.

5. CONCLUSION AND FUTURE WORK

(11]

In this study, a method for audio data restoration is present [12]
The restoration operation is aided by an approximate musica
score and spectra of isolated piano sounds. The GCTF frame-
work enables the model can be defined in a compact way and

once the model is defined in this framework, making infer-

ence on the model becomes straightforward. The proposed
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