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ABSTRACT

Incorporating domain-specific side information via coupled
factorization models is useful in source separation applica-
tions. Coupled models can easily incorporate information
from source modalities with different statistical properties by
estimating shared factors via divergence minimization. Here,
it is useful to use mixed divergences, a specific divergence for
each modality. However, this extra freedom requires choos-
ing the correct divergence as well as an optimal weighting
mechanism to select the relative ‘importance’. In this paper,
we present an approach for determining the relative weights,
framed as dispersion parameter estimation, based on an infer-
ence framework introduced previously as Generalized Cou-
pled Tensor Factorization (GCTF). The dispersion parameters
play a key role on inference as they form a balance between
the information obtained from multimodal observations. We
tackle the problem of optimal weighting by maximum like-
lihood exploiting the relation between β-divergences and the
family of Tweedie distributions. We demonstrate the useful-
ness of our approach on a drum source separation application.

Index Terms— Informed source separation, Coupled
Matrix/Tensor Factorization, Tweedie models, β-divergence

1. INTRODUCTION

Blind source separation methods are popular tools and have
been shown to be useful in many domains [1]. However, when
it comes to separating complex acoustic signals using only
a single channel of observations, these methods fall short as
they don’t exploit the highly structured patterns in such sig-
nals. Recent studies show that providing domain-specific in-
formation to source separation methods increases the separa-
tion performance [2, 3, 4].

One way to incorporate domain-specific knowledge is to
jointly analyze side information with the observed audio mix-
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tures using coupled factorization models. For instance, Kim
et al. present a coupled matrix factorization model for drum
source separation in polyphonic music signals by incorpo-
rating side information obtained from a collection of drum
recordings [5]. Similarly, coupled factorizations are used for
audio source separation in [3], where the audio mixture is
coupled with isolated sounds and symbolic music data.

Coupled factorization models jointly factorize data from
multiple information sources by extracting common factors.
We first consider the following simple coupled matrix factor-
ization model and, in the next section, we construct a drum
separation model based on a more complicated coupled fac-
torization problem. We define the toy coupled model as fol-
lows:

X1(f, t) ≈ X̂1(f, t) =
∑
i

Z1(f, i)Z2(i, t)

X2(f, n) ≈ X̂2(f, n) =
∑
i

Z1(f, i)Z3(i, n)

where X1 and X2 are two observed matrices decomposed
by a Nonnegative Matrix Factorization (NMF) model. In an
audio processing application, X1 and X2 may denote audio
spectra (where f denotes frequency and t and n denote time
frames), Z1 may correspond to a spectral dictionary while
Z2 and Z3 may denote the corresponding excitations. Here,
the factor Z1 exists in both models, which makes these mod-
els coupled. If X1 consists of a mixture of sound sources
to be separated, we can incorporate further information to
the source separation model using such coupled factorization
models.

Given the observed matrices X1 and X2, the coupled
factorization problem estimates the factors, i.e., Z1:3 ≡
{Z1, Z2, Z3}; in other words, solves the following opti-
mization problem:

(Z1:3)∗ = arg min
Z1:3

1

φ1
d1(X1||X̂1) +

1

φ2
d2(X2||X̂2) (1)

where d1(·) and d2(·) are (possibly different) divergences,
usually chosen as the Euclidean, Kullback-Leibler (KL) or the
Itakura-Saito (IS) divergences. In our context, the (inverse)



weights φ1 and φ2 will be called dispersion parameters and
balance the information obtained from different modalities.
We have previously illustrated the effect of correctly choos-
ing a divergence on coupled models [6]. Similarly, dispersion
parameters are also expected to play a significant role on the
performance of coupled models.

While coupled factorization models have been widely
studied in many fields [6, 7, 8], determining the right weight-
ing scheme remains to be a major challenge in data fusion
studies [9]. Wilderjans et al. [10] proposed a maximum like-
lihood approach for estimating the weights under Gaussian
observation models. In this study, we tackle this problem
by using a probabilistic approach, which makes use of the
relation between the β-divergence and the family of Tweedie
distributions and enables us to learn the dispersion parameters
by maximizing the likelihood. We demonstrate that estimat-
ing the dispersion is both straightforward and useful in audio
source separation.

2. DRUM SEPARATION MODEL

In this section, we present a coupled matrix factorization
model for drum separation for professionally recorded audio.
This model combines the information that is gathered from
the audio mixture, isolated drum sounds and an approximate
transcription of drum track of the audio mixture.

Suppose we observe the magnitude spectrum of an audio
mixture X1(f, t), where f and t denote the frequency and
time frame indices, respectively. Here, we assume that matrix
X1 is decomposed by using an NMF model:

X1(f, t) ≈ X̂1(f, t) =
∑
i

D(f, i)G(i, t) (2)

where D is the spectral dictionary and G is the corresponding
excitation matrix. Since the aim of this model is drum track
separation, we will assume that some of the spectral tem-
plates, say the first Ib columns of D, denoted as D(:, 1 : Ib)
model the background sources and the remaining model the
drum track. Suppose we observe another magnitude spectrum
X2(f, n), which is obtained from a database of drum sounds.
Here f is again the frequency index and n is the time frame
index. We can also decompose this matrix using a similar
approach:

X2(f, n) ≈ X̂2(f, n) =
∑
i

D(f, i)T1(f, i)E(i, n) (3)

where D is the same spectral dictionary in Equation 2 and E
is the excitation matrix for the example drum sounds. Here,
T1 is a pre-determined binary matrix that makes sure that the
drum sounds use only the related spectral templates: T1 takes
values of 0 for the background part of the dictionary and 1
otherwise: T1(:, 1 : Ib) = 0 and T1(:, Ib + 1 : I) = 1,
where I is the number of spectral templates. So far, we have

the coupled factorization model of [5], which incorporates the
spectral information that is obtained from the drum sounds to
the drum separation model.

As we are modeling musical signals, we may also assume
the excitation matrix G is composed of the superposition of
some certain patterns that repeat over time. With this assump-
tion, we can also factorize the matrix G using another NMF
model as follows: G(i, t) =

∑
k B(i, k)F (k, t), where B is

the dictionary for the excitations and F denotes the excita-
tions that correspond to this dictionary. By making use of the
relation between an excitation matrix and a musical score, we
can also couple the matrices B and F with an approximate
transcription of the drum track as follows:

X3(i, t) ≈ X̂3(i, t) =
∑
k

B(i, k)T2(i, k)F (k, t). (4)

Here, X3(i, t) takes a constant value if a drum event i
(e.g. snare hit, hi-hat hit, etc.) is present at time frame t,
and becomes 0 otherwise. Furthermore, T2 is another pre-
determined binary matrix similar to T1, where T2(1 : Ib, :) =
0 and T2(Ib + 1 : I, :) = 1. Note that, decomposition of the
excitation matrix by this approach is shown to be useful in
musical source separation [3].

Finally, we can define the combined model as follows:

X̂1(f, t) =
∑
i,k

D(f, i)B(i, k)F (k, t) Mixture (5)

X̂2(f, n) =
∑
i

D(f, i)T1(f, i)E(i, n) Drum (6)

X̂3(i, t) =
∑
k

B(i, k)T2(i, k)F (k, t) MIDI (7)

Figure 1 illustrates this model. The goal is to estimate the
latent factors D, B, F , and E as the sources can be separated
by Wiener filtering after the factorsD,B, and F are obtained.
This problem can be formulated as an optimization problem
with the following objective function with mixed divergence:

d(X1:3||X̂1:3) =

3∑
ν=1

1

φν
dν(Xν ||X̂ν), (8)

where dν(·) are divergence functions and φν are dispersion
parameters as defined in Section 1. Since we are dealing with
audio signals, selecting d1(·) and d2(·) as Itakura-Saito diver-
gence would be appropriate as suggested in [11]. Besides, we
may want to select d3(·) as the KL divergence. However, we
may wish to give different weights to each observed matrix.
In particular, we know that the transcription matrix X3 is not
very accurate, we don’t need to fit this matrix precisely. The
dispersion parameters play a key role here, as they determine
the noise variance of each observed matrix. For this particular
example, selecting a large φ3 seems to be an accurate model-
ing strategy.
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Fig. 1: Illustration of the drum separation model. The blocks visualize the matrices and the relation between them. The
lower-case letters and arrows near the blocks represent the indices of a particular matrix.

The estimation of factor matrices under mixed diver-
gences can be achieved using the Generalized Coupled Tensor
Factorization framework, which we will explain in the next
section. In this study, we propose a method for automatically
determining the dispersion parameters φν under mixed cost
functions.

3. GENERALIZED COUPLED TENSOR
FACTORIZATION

The Generalized Coupled Tensor Factorization (GCTF)
framework [12] is a generalization of matrix and tensor fac-
torization models to jointly factorize more than one multiway
array (tensor or matrix). The formal definition of the GCTF
framework is as follows:

Xν(uν) ≈ X̂ν(uν) =
∑
ūν

∏
α

Zα(vα)R
ν,α

(9)

where ν = 1, ...|ν| is the observed tensor index and α =
1, ...|α| is the factor index. In this framework, the goal is com-
puting an approximate factorization of given observed tensors
Xν in terms of a product of individual factors Zα, some of
which are possibly shared. Here, we define V as the set of
all indices in a model, Uν as the set of visible indices of the
tensor Xν , Vα as the set of indices in Zα, and Ūν = V − Uν
as the set of invisible indices that is not present inXν . We use
small letters as vα to refer to a particular setting of indices in
Vα. Furthermore, R is a coupling matrix that is defined as
follows: Rν,α = 1 (0) if Xν and Zα connected (otherwise).
In other words, the coupling matrix Rν,α specifies the factors
Zα that effect the observed tensor Xν .

As the product
∏
α Zα(vα) is collapsed over a set of in-

dices, the factorization is latent. The optimization problem
is to minimize the total discrepancy between the observations
Xν and the model output X̂ν , as given by a divergence func-
tion dν(Xν ||X̂ν). This divergence is a quasi-squared distance
typically taken as Euclidean, KL or IS. The objective function
to be minimized has a similar form as in Equation 8:

Z?1:|α| = arg max
Z1:|α|

∑
ν

1

φν
dν(Xν ||X̂ν). (10)

In order to illustrate our notation, we define the drum sep-
aration model in the GCTF notation as follows. We can de-
fine Z1:6 ≡ {D,B,F, T1, E, T2}, the observed index sets:
U1 = {f, t}, U2 = {f, n}, and U3 = {i, t}, the index
sets of the factors: V1 = {f, i}, V2 = {i, k}, V3 = {k, t},
V4 = {f, i}, V5 = {i, n}, and V6 = {i, k}.

3.1. Estimation

Estimation of the latent factors Zα can be achieved via iter-
ative methods, by fixing all factors Zα′ for α′ 6= α but one
Zα and updating in an alternating fashion(see [12]). For non-
negative data and factors, the update has a simple form:

Zα ← Zα ◦
∑
ν R

ν,αφ−1
ν ∆α,ν(X̂−pνν ◦Xν)∑

ν R
ν,αφ−1

ν ∆α,ν(X̂1−pν
ν )

, (11)

where ◦ is the element-wise product (Hadamard product) and
the parameter pν determines the cost function to be used for
Xν : for pν = {0, 1, 2} correspond to the β-divergence [13]
that unifies Euclidean, KL, and IS cost functions, respectively.
The key quantity in the above update equation is the ∆α,ν

function that is defined as follows:

∆α,ν(A) =

 ∑
v0,ν∩v̄α

A(v0,ν)
∑
v̄0∩v̄α

∏
α′ 6=α

Zα′(vα′)
Rν,α

′


(12)

For updating Zα, we need to compute this function twice for
arguments A = X̂−pνν ◦Xν and A = X̂1−pν

ν .

4. LEARNING THE DISPERSION PARAMETERS

Exponential dispersion models (EDM’s) are a well-studied
family of distributions and have found place in various fields.
The Tweedie distribution is a special case of the EDM [14], it-
self a generalization of the more familiar natural exponential
family. There is a close connection between β-divergences
and the family of Tweedie distributions where the relation
was stated by Cichocki et al. [13] and elaborated in [15]. A



Table 1: Tweedie distributions with corresponding normalizing constants, divergence forms and maximum a-posteriori estima-
tion of the dispersion parameters. Here Nν denotes the number of elements in Xν .

p Divergence Distribution Normalizing Constant Divergence Form φ?ν (MAP)

2 − β β-divergence Tweedie zpν (Xν , φν) dpν (Xν , X̂ν) –

0 EUC Gaussian (2πφν)−1/2
1

2

∑
uν

(Xν − X̂ν)2 d0(Xν , X̂ν) + βν

Nν/2 + αν + 1

1 KL Poisson
(Xν/φν)Xν/φν

eXν/φνΓ(Xν/φν + 1)

∑
uν

Xν log
(Xν
X̂ν

)
−Xν + X̂ν d1(Xν , X̂ν) + βν

3Nν/2 + αν + 1

2 IS Gamma
(
Γ(1/φν)(eφν)1/φνXν

)−1
∑
uν

Xν

X̂ν
− log

(Xν
X̂ν

)
− 1 d2(Xν , X̂ν) + βν

Nν/2 + αν + 1

3 – Inverse Gaussian (2πX3
νφν)−1/2

1

2

∑
uν

(Xν − X̂ν)2

XνX̂2
ν

d3(Xν , X̂ν) + βν

Nν/2 + αν + 1

Tweedie distribution is specified by a simple power relation
between its mean and variance as: V ar{x} = φx̂p, where x̂
is the mean (also called expectation parameter), p = 2 − β
is the index parameter of the β-divergence and φ is the dis-
persion parameter. They also fully characterize the dispersion
model and can be written in the following moment form

P(x; x̂, φ, p) = zp(x, φ) exp
(
− 1

φ
dp(x; x̂)

)
(13)

where zp(·) is a suitable normalization constant that depends
on the index parameter p. Since zp does not depend on x̂,
for fixed p and φ, solving a maximum likelihood problem for
x̂ is indeed equivalent to minimization of the β-divergence.
However, for fixed x̂, solving a maximum likelihood problem
for φ depends on zp(·) that has a closed form characteristic
function:

φ? = arg max
φ

log zp(x, φ)− 1

φ
dp(x; x̂). (14)

In this study, we focus on learning the dispersion parame-
ters φν for integer values of pν = {0, 1, 2, 3}. Other values of
pν are possible but technically more difficult as the normaliz-
ing constants zp are given as power series without an explicit
analytical form [16]. From the probabilistic interpretation,
maximization of likelihood with respect to the dispersion pa-
rameters φν when the other parameters are given of a Tweedie
model, provides a data driven formulation for choosing rela-
tive weights. In addition, it is easy to verify that when mean
is fixed, the conjugate prior of the dispersion parameter is the
inverse Gamma distribution. Hence, we assume an inverse
Gamma prior on φν : φν ∼ IG(φν ;αν , βν). Surprisingly,
none of the references we are aware of used this conjugate
prior for the dispersion parameter.

Tweedie distribution generalizes the well-known distribu-
tions where the choices of pν = {0, 1, 2, 3} correspond to
the Gaussian, Poisson, Gamma, and inverse Gaussian dis-
tributions, respectively. We estimate the optimal dispersion

for these distributions by setting the derivative of the log-
likelihood to zero and then solving it for φν . Note that, since
the normalizing constants of the Poisson and the Gamma dis-
tributions are problematic (see Table 1), we replace the terms
involving log Γ(·) functions with the so called Stirling’s ap-
proximation: log Γ(n) ≈ − 1

2 log n + n log n − n. Finally,
we obtain the optimal dispersion parameters in closed form
as presented in Table 1.

As a summary, at each iteration of the estimation algo-
rithm, we first update all factors Zα via Equation 11 and
compute the mean parameters X̂ν via Equation 9. Then, for
each observed tensor we compute the maximum a-posteriori
(MAP) estimation of the dispersion parameters φ?ν as in Ta-
ble 1. This coordinate ascent procedure is iterated until con-
vergence.

Note that, the Poisson distribution in its well-known form,
is an exponential dispersion model with φν = 1. When we
introduce a dispersion parameter, we re-define domain of the
probability distribution on integer multiples of φν : on a grid
{0, φν , 2φν , 3φν , ...}. Therefore, for the observations with
pν = 1, we should set Xν ← Xorg

ν /φν at the beginning of
each iteration, where Xorg

ν denotes the original observation.

5. EXPERIMENTS AND CONCLUSION

In this section, we illustrate our method on the drum source
separation model defined in Section 2. Here, we conduct
our experiments on a famous pop song ‘Chasing Pavements’
by Adele. Firstly, we estimate the factors without using the
dispersion parameters (i.e. setting φ1:3 = φ) and then we
also estimate the dispersion parameters by using the proposed
method while making inference.

We compute the magnitude spectrum of a 20 second ex-
cerpt of the piece and obtain X1. For X2, we compute the
spectra of the drum sounds that are obtained from the RWC
Musical Instrument Sound Database. Finally, we computeX3
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Fig. 2: Example results of the experiment. The fig-
ures illustrate the reconstructed audio spectra of the drum
track Xd, computed via Wiener filtering: Xd = X1 ◦
D(:,Ib+1:I)B(Ib+1:I,:)F

X̂1
. In (a) the dispersion parameters are

set to the same value; they do not contribute to the estimation
process. In (b) the dispersion parameters are also estimated
by the proposed approach.

by using an approximate transcription of the drum track of the
piece, which can be obtained from online MIDI databases. In
our experiments we used |i| = 813 (the number of spectral
templates): 13 templates for the drum part and 800 templates
for the harmonic part, |k| = 100, and we set the divergence
parameters as p1 = 2, p2 = 2, and p3 = 1. The hyper-
parameters are selected as α1:3 = 100, β1 = 9, β2 = β3 =
9900. The sources are separated via Wiener filtering.

Figure 2 visualizes the drum source separation results for
the particular experiment. It can be visually observed that es-
timating the dispersion parameters while estimating the other
factors yields better results. We can see that, the high fre-
quency components of the drum sounds cannot be recovered
if the dispersion parameters are fixed to the same number.
The resulting audio files and further experimental results on a
tensor completion problem can be found in http://www.
cmpe.boun.edu.tr/˜umut/eusipco2013.

Conclusion: The dispersion parameters play a significant
role on the performance of coupled matrix/tensor factoriza-
tion models. In this study, we presented a method for es-
timating the dispersion parameters in coupled models. Our
method follows a systematic approach, where we formulated
this problem as a maximum likelihood estimation by making
use of the relation between the β-divergence and the family
of Tweedie distributions.

We applied our method on a coupled drum source sepa-
ration model. We observed a certain improvement on results
when the dispersion parameters are estimated while making
inference on the coupled factorization model.
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