
Probabilistic Latent Tensor Factorization for 3-way
Microarray Data Analysis with Missing Values
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Abstract

The recent advances in microarray technology enabled the measurement of gene
expression levels of samples over a series of time points. Unlike the traditional
2D microarray data, such experiments generate 3D (gene-sample-time) microar-
ray data, which require specialized methods for analysis. In this study, we propose
a novel tensor factorization model for modeling 3D microarray data. The model
assumes the existence of certain temporal patterns that are repeated over time.
One main advantage of the model is that it handles the missing data implicitly,
so that the estimation process is not effected by the existence of missing values,
which commonly occur in microarray data. We evaluate our model on classifica-
tion of the good or bad responders to Interferon beta (INFβ) treatments by using
a real gene-sample-time microarray data set and achieve a promising prediction
performance.

1 Introduction

With the recent advances in microarray technologies, thousands of genes can be monitored by mea-
suring their relative transcription levels. When combined with the state-of-the-art statistical meth-
ods, a lot of useful information such as functions of genes [1] or diagnosis of tumor [2] can be
inferred from these data.

Traditionally, there are two types of microarray data: gene-sample and gene-time. In gene-sample
data the expression levels of a set of genes are measured over a set of samples, whereas they are
measured with respect to a series of time points in gene-time data. Both types of data can be repre-
sented with two dimensional matrices, where the set of genes correspond to the first dimension and
the set of samples or time points correspond to the second dimension. Matrix and tensor factoriza-
tion methods have become useful for analyzing two dimensional microarray data. As a pioneering
study, Brunet et al. [3] presented a clustering algorithm based on Non-negative Matrix Factorization
(NMF). Schachtner et al. [4] compared the performances of Independent Component Analysis and
sparse-NMF on the classification of three gene expression data sets. In [2], the authors presented
similar methods for combining NMF with Support Vector Machines (SVM) for tumor and disease
classification.

The recent advances in microarray technology made it possible to simultaneously measure the ex-
pression levels of different genes over a set of samples and a set of time points, yielding a three
dimensional gene-sample-time (GST) data set. Matrix and tensor factorization methods for analyz-
ing GST data have not been explored much in the literature yet. Recently, Li and Ngom presented a
method for GST microarray data processing that is based on higher-order NMF and reported com-
petitive results to previous works [5]. The authors conducted their experiments on the data set that
was presented in [6]. One limitation of this work is that it cannot handle missing data, therefore the
authors discarded the genes that contain missing expression measurements and the corresponding
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Figure 1: Illustration of the model. The blocks visualize the tensors, ‘∗’ denotes the convolution
operator, and the lower-case letters and arrows represent the indices of a particular tensor.

samples from the data set. Microarray data often contain missing values due to several reasons such
as low resolution and incomplete experiments. However, most microarray data analysis methods
cannot handle missing values. Therefore, data with missing values are preprocessed by either dis-
carding the instances that contain missing values or estimating the missing values using imputation
methods. Several missing value imputation methods have been proposed for 2D microarray data [7].
Imputation methods for 3D microarray data have only recently been proposed in [8]. Nevertheless,
many studies prefer to discard the data instances with missing values for simplicity, which results in
loss of information.

In this study, we propose a novel tensor factorization model for modeling of clinical GST microarray
data. Apart from the previous works, the novel model incorporates temporal information into the
factorization process and is able to handle the missing data. We evaluate our model on classifica-
tion of the good or bad responders to Interferon beta (INFβ) treatments by using a real GST data
set, where we form a classification method by combining the novel model with a Support Vector
Machine (SVM) classifier.

2 The Model

Factorization based microarray data modeling has become popular in the recent years. In this study,
we propose a novel non-negative tensor factorization model for GST microarray data. Let us define
the tensor X(g, s, t) as the observed GST data where the indices g, s, and t correspond to genes,
samples, and time points, respectively. With an assumption that there are certain temporal patterns
that are repeated over time, we define the following novel tensor factorization model as follows:

X(g, s, t) ≈
∑
m,τ

D(g,m, τ)E(m, s, t− τ) (1)

where, D is a tensor which contains the so called metagenes that encapsulate the temporal and
structural information in the microarray data andE is another tensor which determines the metagene
expression pattern of the corresponding sample. The index m indicates the metagene index and the
index τ indicates the temporal index of a particular metagene. The overall process is explained as
the convolution of the metagenes (D) and the excitations (E), where the convolution process ensures
the assumption that there are repeated temporal patterns. Figure 1 illustrates this model.

Given observed GST data X , the aim is to estimate the tensors D and E. The estimated tensors can
be used for various applications including clustering, classification, and missing value imputation.
In the next section, we describe how the estimation process is carried out.

2.1 Probabilistic Latent Tensor Factorization

Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed algorithmic framework for
modeling multiway data, where any arbitrary tensor factorization model can be realized by this
framework [9]. This framework makes use of the practical aspects of graphical modeling of machine
learning and combines them with tensor factorization models. Once a factorization model is defined
in the PLTF framework notation, the estimation algorithm is immediately available. The PLTF
framework is defined as

X(v0) ≈ X̂(v0) =
∑
v̄0

∏
α

Zα(vα), (2)
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where X is the observed tensor and Zα are the individual factors. In this framework, each tensor is
represented by an index set: we define V as the set of all indices in a model, V0 as the set of observed
indices, Vα as the set of indices in Zα, and V̄α = V − Vα as the set of all indices not in Zα. We use
small letters as vα to refer to a particular setting of indices in Vα.

PLTF framework aims to find the optimal factors Z1:N such that Z1:N = arg minZ1:N
d(X, X̂)

where we select d(·) as the β-divergence that generalizes Euclidean, Kullback-Leibler, and Itakura-
Saito divergences and enables a unified treatment. It is shown that the estimation of the latent factors
Zα can be achieved via iterative optimization [9]. One can obtain the following compact fixed point
equation where each Zα is updated in an alternating fashion fixing the other factors Zα′ for α′ 6= α:

Zα ← Zα ◦ ∆α(M◦X◦X̂β−2)

∆α(M◦X̂β−1)
∆α(A)(vα) ≡∑v̄α

(
A(v0)

∏
α′ 6=α Zα′(vα′)

)
, (3)

where ◦ is the element-wise product and β determines the cost function to be used: β = {0, 1, 2}
correspond to Itakura-Saito, Kullback-Leibler, and Euclidean divergences, respectively. Besides, M
is a tensor of size X where M(v0) = 1 (0) if X(v0) is observed (missing). By adjusting the tensor
M , missing values in a data set can easily be handled. In this iterative method, the key quantity is
the ∆α(·) function and we need to compute this function twice for arguments A = M ◦X ◦ X̂β−2

and A = M ◦ X̂β−1 while updating Zα.

In order to take benefit from the PLTF framework, we should define our model in the framework.
However, due to the convolution operator, the tensor E has the index (t − τ ), which violates the
PLTF notation. Therefore we define a dummy index and update the model as follows:

X̂(g, s, t) =
∑
m,τ,d

D(g,m, τ)E(s,m,

t−τ︷︸︸︷
d )

δ(d−t+τ)︷ ︸︸ ︷
Z(d, t, τ) (4)

where δ(·) is the dirac-delta function where δ(x) equals to 1 (0) if x equals to 0 (otherwise). The
ultimate model can now be expressed in the PLTF notation. After defining the index sets for each
tensor, we can obtain the following update equations:

D ← D ◦ ∆D(M◦X◦X̂β−2)

∆D(M◦X̂β−1)
∆D(A)(g,m, τ) ≡∑s,tA(g, s, t)E(s,m, t− τ)

E ← E ◦ ∆E(M◦X◦X̂β−2)

∆E(M◦X̂β−1)
∆E(A)(s,m, d) ≡∑g,tA(g, s, t)D(g,m, t− d)

(5)

By iteratively applying these equations, the factors D and E can be estimated.

3 Experimental Results

In order to evaluate the performance of our model, we have conducted several experiments. We
combine our method with an SVM classifier and apply the resulting method to the prediction of
the responder types to Interferon beta (INFβ) treatments. We use the data set of [6] that consists
of the GST microarray data of the patients afflicted with multiple-sclerosis (MS). The patients are
classified into two groups: the ones that respond to treatments good and the ones that respond bad.
There are 53 patients in the data set (33 of them respond good and 20 of them respond bad) and 76
genes that are sampled at 7 different time points. Therefore, we have the observed tensor X of size
76× 53× 7, where some of the genes and time points are missing for some patients.

The experiments are held on a 5-fold cross validation basis. During training, we estimate the tensors
Dtrn and Etrn and save Dtrn for further use. We train the SVM by using the excitation tensor
Etrn as features. For the test case, we use the previously learned tensor Dtrn, and estimate the
excitation tensor for the test sample Eval. Finally, we use Eval as the feature set of the test sample
and estimate the sample’s label by feeding it to the SVM. Besides, we use an RBF kernel in the
SVM and investigate different parameter settings.

In our second experiment, we use the same settings as in the first experiment, except in this experi-
ment, we impute the missing parts in the gene-sample-time data by using the imputation method of
[8]. For the imputation method, we use the parameter setting that is reported as the best in the related
study. Table 1 shows the average results for Accuracy, Sensitivity, Specificity, and F-Measure values
that are obtained through the experiments.
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Table 1: Average results that are obtained through the experiments. Here K is the number of meta-
genes (indexed with m) and T is the number of time slices (indexed with τ ).

Exp. K T β SVM params Accuracy Sensitivity Specificity F-Measure

1 16 4 2 C = 100, γ = 10−5 0.87 0.75 0.88 0.81
2 17 3 1 C = 100, γ = 10−5 0.93 0.95 0.92 0.91

By using the raw GST data with missing values, we obtain promising results (81% F-measure and
87% accuracy). After imputing the missing parts in the data set, the performance is further increased,
where all the metrics are over 90%. Li and Ngom used the same data set in their recent study and
reported 82% accuracy [5]. However, as discussed in the Introduction section, the instances with
missing values were discarded in their experiments due to the limitations of the proposed higher-
order NMF method.

4 Conclusion

In this study, we presented a novel method for modeling 3D microarray data where the main as-
sumption in the model is the existence of certain temporal patterns that are repeated over time. In
order to make inference on the model, we made use of the Probabilistic Latent Tensor Factorization
framework, which helped us to obtain the update equations for the optimization algorithm and to
handle the missing data.

In order to evaluate the performance of our model, we combined it with a classifier and evaluated the
resulting method on classification of the good or bad responders to Interferon beta treatments by us-
ing a real GST data set. We achieved promising results by using the raw data set containing missing
values. We showed that the performance of the method can be further improved by incorporating a
missing value imputation approach.

Acknowledgement: The authors would like to thank Yifeng Li for providing the software for miss-
ing data imputation.
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