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ABSTRACT

Section linking is an important task that is closely related to
audio-to-score alignment, where the aim is to relate certain impor-
tant structural boundaries in a reference score of a piece to their oc-
currences in the recording of the piece. The problem becomes more
challenging when the performances differ substantially from the ref-
erence score due to interpretation and improvisation, which is very
common in non-western musics such as the Turkish makam music.
In this paper, we address the section linking task and present a score-
informed hierarchical Hidden Markov Model for modeling musical
audio signals from a coarser temporal level, where the main idea is
to explicitly model the long range and hierarchical structure of mu-
sic signals. In addition to having low computational complexity and
achieving a transparent and elegant model, the experimental results
show that our method outperforms the state-of-the-art on a Turkish
makam music corpus.

Index Terms— Audio-to-score alignment, Section linking, Hi-
erarchical hidden Markov models, Turkish makam music

1. INTRODUCTION

The problem of matching sections (section linking) to a symbolic
representation is closely related to a task commonly referred to as
audio-to-score alignment [1]. In audio-to-score alignment, the goal
is to align each time slice in a performance recording to a note posi-
tion in a symbolic musical notation of the performed piece. Instead
of such a detailed alignment at the note level, section linking at-
tempts to relate certain important structural boundaries in a reference
score of a piece to their occurrences in the recording of the piece [2].
The concentration on coarse section boundaries enables a compu-
tationally lighter approach, yet section linking is still a challenging
problem when the performances differ substantially from the refer-
ence score due to interpretation and improvisation, which is very
common in non-western musics such as the Turkish makam music.
Section linking is a key task in computational musicology, that can
be used to discover music recordings in semantically meaningful and
structured ways. It also renders a useful application for non-western
music education, where matching scores and performances is not
straightforward for the students due to the non-standard notation.
Furthermore, it can also be regarded as a preprocessing step for a
subsequent finer note-to-note alignment. This way exact alignment
can be computed only in sections where it is demanded by the user.

State-of-the-art approaches for audio-to-score alignment can be
roughly categorized into two classes. The first group approaches the
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problem by means of Dynamic Time Warping (DTW), which ap-
plies dynamic programming in order to minimize a matching func-
tion between a score and an audio representation. Recently, such
approaches were refined to cope with structural deviations from the
notation by the performer(s) [3]. The second group of approaches
tackle the problem using a probabilistic framework. In [4], a hid-
den Markov model (HMM) is proposed, where the tempo and score
position are represented as latent variables, and the inference of the
tempo-dependent score position is performed using Viterbi decod-
ing. In [5], timed events are modeled using a hierarchical hidden
Markov model (HHMM) with notes as states. The duration of timed
events interacts with the estimation of the tempo that is preformed
by an oscillator based model. Inference in this model is performed
using causal inference, since the goal is real-time score following in
live performances. A perspective on audio-to-score alignment us-
ing Conditional Random Fields is taken by the authors of [6]. They
propose models of various complexities, with the most performant
model resembling a HHMM with the duration of note events influ-
enced by an additional tempo variable. Similar to [5], note events
are modeled as states with related duration variables. They propose
a set of observations that influence the various hidden variables of
the model, and suggest pruning methods in order to be able to cope
with the exact inference in the models.

In this paper we present a score-informed hierarchical Hidden
Markov Model for modeling musical audio signals from a coarser
temporal level, where the main idea is to explicitly model the long
range and hierarchical structure of music signals. Since we aim to
link the scores and the performance in the section-level and not di-
rectly aim at a note-to-note alignment, we avoid modeling strategies
as presented in [5, 6] and come up with a computationally lighter but
precise model for section linking.

As for note-to-note alignment, section linking is applicable in
musical contexts that make use of notation. In the Music Informa-
tion Retrieval (MIR) literature, the context of alignment tasks has
predominantly been Eurogenetic classical and popular music. How-
ever, here, as in [2] we wish to focus on Turkish makam music. This
music, as we shall detail in the following section, deviates signifi-
cantly from the notation on the note level by introducing a manifold
of ornamentations. The large amount of ornamentations is likely to
cause problems for systems targeted at note-to-note alignment, since
they typically assume transitions from one note in the score to the
next, something that is frequently violated for Turkish makam music.
Hence, apart from reducing complexity and achieving a transparent
and elegant model, proposing a probabilistic approach for pursuing
alignment on a high level, section linking, is further motivated by the
musical properties of the repertoire.

The rest of the paper is structured as follows; Section 2 explains
the music collection used for evaluation and the applied preprocess-
ing steps. Thereafter, the model is introduced in Section 3, and the
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(a) The reference score with annotated sections.
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(b) Different performances of the same piece. The fundamental frequencies
are estimated by using [9].

Fig. 1: An example piece from the corpus: Uşşak Saz Semaisi by
Neyzen Aziz Dede. The dashed vertical lines represent the section
boundaries.

experimental results along with the applied evaluation methods are
explained in Section 4. Section 5 concludes the paper.

2. MUSIC CORPUS

We derive the evaluation data used in this paper from the dataset de-
scribed in [2]. The evaluation data consists of 166 complete perfor-
mances of instrumental pieces from the Turkish makam repertoire.
For each performance a machine-readable notation is available from
the collection presented in [7]. In each notation, the onsets of sec-
tions in the compositions are annotated. Typically, the compositions
consist of four non-repeating sections called hane, with a repeat-
ing section referred to as teslim in between them. The notations are
strictly monophonic, and describe the core melody of the piece. The
performances containing more than one instrument, however, cannot
be considered as strictly monophonic but represent a typical example
of heterophony; usually one instrument takes a higher degree of free-
dom to ornament the basic melody. In pieces with one instrument,
the basic (notated) melody is enriched by using additional notes, too.
For this reason, the number of played notes is usually significantly
higher than the number of notes found in a score. While notation
in Eurogenetic music divides an octave into 12 equal steps, Turkish
makam music commonly conceptualized with a division of the oc-
tave into 53 steps [8]. One of these steps is referred to as Holderian
comma (Hc), and the notation makes use of this resolution with the
tonic of the pieces notated as 0Hc.

As detailed in [8], a performance of a piece of Turkish makam
music makes use of one of 12 different transpositions, with the
choice of the transpositions depending on the preferences of the
musicians. For that reason the pitch of a note in the score is not
related to a unique frequency value in Hz. We apply a fundamental
frequency estimation to the recording [9] and convert the frequency
values in Hz to a Hc-scale, with the tonic frequency again taking
the value 0Hc. This way we eliminate the influence of transposi-

tions ensure comparability with the notation. In our paper, we use
manually annotated frequency values, but automatic approaches can
be applied as well as discussed by [10]. An example piece from
our corpus is shown in Figure 1. As the figure demonstrates, the
performances often differ significantly from the reference score and
from each other, making the linking problem challenging.

In the following sections, we will refer to the estimated fun-
damental frequencies in Hc as xn, with n being the index of the
analysis window of length 46.6ms, without overlaps between the
windows. The sequence of pitch values derived from the score is de-
rived at the same frame rate for compatibility. The annotations that
will be used for evaluation relate each section transition played in a
performance to a position in the score.

Typically a performance is not played at the tempo denoted in
the score. Therefore we apply a simple and accurate method to de-
rive an initial value for the factor to correct for the tempo deviation
between performance and notation. To this end, we follow [2] and
compute a point-wise distance matrix between the pitch values of
the initial 20% of the performance and the pitch values describing
the first section in the score. Since a performance usually starts with
the first section, this distance matrix will have some strong diagonal
line segments. These are then detected using a Hough transform, and
the angle of the longest continous line segment is determined. From
this angle we obtain a factor Fdur by which the durations in the score
are multiplied to arrive at an intial hypothesis of the durations of the
sections according to the performance tempo. This hypothesis serves
as a starting point for the model described in Section 3.

It is important to point out here that other signal representations
such as Pitch-Class-Profiles are considered to be a more robust signal
representation for alignment tasks than features based on fundamen-
tal frequency estimation. However, in [2] it was shown that in the
targeted repertoire this does not hold, and for that reason we choose
the fundamental frequencies as our signal representations.

3. THE MODEL

In this section, we present a novel probabilistic model for section-
level modeling of musical audio. Our aim is to infer the section
boundaries by making use of the score information. The main idea
in our model is to incorporate section-level sequential and hierarchi-
cal structure of music signals into a single dynamic Bayesian net-
work. We explicitly model different layers of the hierarchy by using
a HHMM. The proposed model is flexible and can be applied to a
wide range of musical genres.

We define the following discrete hidden variables:
• Section variable: sn ∈ Ds = {1, . . . , S}: represents all individ-

ual sections that are defined in the score, with S being the number
of sections in the score. In our corpus, the typical set of sections
is Ds ≡ {1.HANE, 2.HANE, 3.HANE, 4.HANE,TESLIM}. In
the performances, the order of these sections and the number of
times that they are played often vary. Our ultimate aim is to find
the most-likely sequence of sections that are present in a perfor-
mance.

• Duration variable: dn ∈ Dd = {1, . . . , D}: determines
the ‘ideal’ duration of a section in time frames. Due to tempo
changes, the duration of a section varies during the performance,
therefore we allow a section to have D different durations within
a piece.

• Counter variable: cn ∈ Dc = {1, . . . , C}: begins at value dn
at the beginning of a section and decrements until it hits 1 during
the presence of the section. It also roughly determines which note
of the given section is played at the time-frame n.
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Fig. 2: Dynamic Bayesian network; The gray nodes are observed,
the white nodes represent the hidden variables, and the arrows rep-
resent the conditional independence structure.

• Repetition variable: rn ∈ {1, . . . , R}: counts the number of
consequent repetitions of a section sn. When a section sn starts
at time n, rn is set to 1 and rn is incremented by 1 if the same
section is performed subsequently. In our corpus, each section is
allowed to repeat at most once, therefore we set R = 2.

The graphical model for the proposed model is given in Figure 2.

3.1. Transition Model

We start by defining the transition distribution for the counter vari-
able as follows:

p(cn|dn, cn−1) =


1, cn−1 = 1 and cn = dn
1, cn−1 = 2 and cn = 1
1− ωc, cn−1 > 2 and cn = cn−1 − 1
ωc, cn−1 > 2 and cn = cn−1 − 2
0, otherwise

This distribution chooses a step of size −1 with a probability of 1−
ωc, and a step of size−2 with a probability ωc as long as the counter
has not yet reached the value 1. When it hits 1, a section boundary
is reached and cn is set to dn, the current duration of the section sn.
This distribution enables the model to compensate for the coarse grid
of the duration variable dn, and helps to model intermediate tempo
values as well as tempo instabilities within a section.

Next, we assume the following transition distribution on the rep-
etition variables:

p(rn|·) =


1, cn−1 6= 1 and rn = rn−1

1, cn−1 = 1 and rn−1 = R and rn = 1
ωr, cn−1 = 1 and rn−1 < R and rn = rn−1 + 1
1− ωr, cn−1 = 1 and rn−1 < R and rn = 1
0, otherwise

This allows for a transition of the repetition counter only at the sec-
tion boundaries (cn−1 = 1). It limits the number of section repe-
titions to R − 1 (1 in our case), and allows for a repetition with a
probability of ωr .

The transition distribution of the duration variable is defined as
follows:

p(dn|sn, dn−1, cn−1) =

{
δ(dn − dn−1) , cn−1 6= 1
pd(dn|sn) , cn−1 = 1

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. Here the dura-
tion variable stays the same until cn hits 1 and transitions to another
‘duration’ depending on the current section sn. This transition is
governed by pd(dn|sn), that is a uniform distribution over the D
possible duration states.

Finally, we define the transition distribution of the section vari-
able as follows:

p(sn|sn−1, cn−1, rn−1) =

{
δ(sn − sn−1) , cn−1 6= 1
ps(sn|sn−1, rn−1) , cn−1 = 1

This distribution is similar to the one of the duration variable: the
section variable stays the same until cn hits 1 and transitions to an-
other section depending on the previous section sn−1 and the num-
ber of repetitions rn−1. These transitions are governed by the dis-
tribution ps(sn|sn−1, rn−1) that specifies the structural properties
of the musical idiom. In our case, we allow a self transition only if
rn−1 = 1. Otherwise, we force a transition to a different section
that is subsequent in the score. More sophisticated rules could be
introduced, but this was found not to significantly improve model
performance with the given data.

3.2. Observation Model

Given the current section sn, its duration dn, and the counter cn, we
have sufficient information to determine which note is supposed to
be played at time n. We define the mapping f(sn, dn, cn) in such a
way that it determines the true frequency of the note in the score (in
Hc) played at time n. We will briefly call this mapping as fn.

In order to compensate for octave errors that occur in the esti-
mation of the fundamental frequency from the recording, we assume
the following mixture of Gaussians as the observation model:

p(xn|sn, dn, cn) =
1

3

3∑
i=1

N (xn;µi, σ)

where N denotes the Gaussian distribution. Here µ1 = fn, µ2 =
fn−53, and µ3 = fn+53 (where 53Hc corresponds to one octave).

Note that, since all the hidden variables are discrete, we can re-
duce this model to an ordinary HMM and we can perform an exact
inference by using the Viterbi algorithm. The most-likely state se-
quence provides us with the information regarding the section link-
ing.

4. EXPERIMENTS

4.1. Methodology

We evaluate the proposed model on our annotated data corpus fol-
lowing evaluation procedures applied for note-to-note alignment [5],
and the evaluation as performed in [2]. The Precision Pr, RecallRc,
and F-measure F are defined as follows:

Pr =
NTP

NANN
, Rc =

NTP

NEST
, F =

2 ∗ Pr ∗Rc
Pr +Rc

whereNTP denotes the number of correctly detected section bound-
aries, and NANN and NEST denote the number of annotated and
estimated section boundaries, respectively. A section boundary de-
tection is counted as correct only when it predicts a transition to
the correct section label, and if it happens within a certain tolerance
window. The size of this window Ttol was set to ±3s in [2]. We
chose the same size in the default setting, but we will determine how
demanding higher accuracy affects system performance.
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Fig. 3: Illustration of the F-measure depending on the allowed tem-
poral tolerance.

In our experiments, the values of ωc and ωr were not found
critical, and we arbitrarily chose ωc = 0.1 and ωr = 0.5. The
value of σ was set to 0.5, which approximates a tolerance of ±1
Hc and represents a musically meaningful tolerance value [8]. For
our corpus, we allow dn to deviate in D = 5 discrete steps of
[−16%,−8%, 0%, 8%, 16%] from Fdur ∗ d(m), where d(m) de-
notes the length of the m-th section in the score (see Section 2 for
the duration correction factor Fdur).

We compare our model with the approach presented in [2]. This
approach applies the same input features, but proceeds with the
alignment in two steps that differ significantly from our approach.
In the first stage, they obtain a list of section candidates by applying
Hough transforms to similarity matrices derived from all notated
sections individually compared with the performance. In a second
stage, the approach proceeds with a heuristic procedure to choose
between these candidates in rule based manner. While this sys-
tem performed well on the Turkish makam repertoire [2] it is not
straightforward to adapt it to any other repertoire. We will refer to
the proposed system as HHMM and to the system presented in [2]
as HOUGH in the remainder of the text.

4.2. Results

In Table 1 the performance measures of the section linking of the
two compared methods are shown. With Ttol = 3s both systems
achieve performance values larger than 90%, with the differences
between the two systems being statistically not significant in a pair-
wise t-test at a 5% significance level. When demanding, however,
a higher accuracy in time, the performance of the HHMM suffer a
smaller decrease than the performance of the HOUGH method. The
performance at Ttol = 1s illustrate this behavior, with the perfor-
mance differences being statistically significant.

A more detailed illustration of the temporal accuracy of the two
methods can be obtained from Figure 3. Using the section boundary
detections from the experiments with Ttol = 3s we determine how
many of those detections would still be correct at a smaller tolerance
value. It can be seen from Figure 3 that when demanding a lower
tolerance, i.e. a decreasing misplacement between estimation and
true section onset, the HOUGH method (red dashed line) is outper-
formed by the HHMM method (black bold line). This difference is
most likely to be caused by the capability of the HHMM system to
adapt to local tempo changes, compared to the HOUGH method that
imposes a stable tempo throughout a section.

An apparent advantage of the HOUGH method is the faster exe-
cution time. In order to compare for this, the runtimes were recorded
and the real time factors as the quotient of the execution time and the
duration of the audio file were computed. The mean values of the in-
dividual real-time factors are listed in Table 2, where it is apparent

Table 1: Performance with Ttol = 3s and Ttol = 1s

Ttol Algorithm Precision Recall F-measure
3s HHMM 95.6 93.7 94.6
3s HOUGH 94.5 92.0 93.2
1s HHMM 85.2 84.1 84.6
1s HOUGH 80.7 78.6 79.7

Table 2: Real-time factors
Algorithm HHMM HOUGH HHMM (downs.)
Real-time factor 0.254 0.030 0.018

that the HHMM in its described parametrization is almost an order
slower then the HOUGH system. It should be pointed out , how-
ever, that we did not attempt any pruning steps as proposed by [6],
which would significantly speed up the inference. Instead, we ex-
perimented with a straight-forward way to reduce the size of our
state-space, which is by downsampling the input data. We increased
the sampling period of the data by factor 3 from 46.6ms to 139.8ms
by a simple median filtering followed by a selection of every third
data sample. This helps to reduce the size of the state-space since it
is determined for each piece by the product S ×R×D × C1. This
downsampling leads to a dramatic decrease of the real-time factor,
as shown in the fourth column of Table 2. As the dotted black line in
Figure 3 shows, this downsampling leads to a significant decrease of
performance only when a tolerance of less than 300ms is demanded.
Since the evaluation of note-to-note alignments is often performed
using values around 300ms it is apparent that such an accuracy is
sufficient for our task.

5. CONCLUSION

In this paper, we proposed a score-informed hierarchical Hidden
Markov Model for modeling musical audio signals from a coarser
temporal level, where the main idea is to explicitly model the
long range and hierarchical structure of music signals. We address
the section linking problem in Turkish makam music, which is a
challenging task due to the substantial differences between the per-
formances and the reference score. Our model enables for rapid
inference while maintaining the advantages of flexibility to tempo
changes and comprehensibility of the model structure. The compre-
hensibility of the model makes its adaptation to different repertoires
a straight-forward task. Furthermore, phrasing the problem in such
a probabilistic framework also enables for automatic adaptation of
model parameters to new datasets.

We compared the proposed model with a rule-based approach [2]
that was tailored in order to cope well with the idiosyncrasies of
Turkish makam music such as micro-tonality and heterophony. Our
experiments indicate that the HHMM provides a higher temporal
accuracy than the rule-based model, while the inference can be sped
up significantly by simple downsampling.

We plan to include further features into the proposed model,
such as the consideration of rhythmical properties of the piece. Fur-
thermore, the occurrence of improvised parts in a performance pose
a problem that the HHMM in its current structure cannot deal with.
Ways to cope with such conditions will be the next steps to improve
the performance of the model in a general context.

1For our dataset, the largest value of C decreases from 3975 to 1326. A
typical value for S is 8.
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