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Boğaziçi University
Dept. of Computer Engineering
34342, Bebek, İstanbul, Turkey
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ABSTRACT

Both consumer market and manufacturing industry makes heavy use
of 1D (linear) barcodes. From helping the visually impaired to iden-
tifying the products to industrial automated industry management,
barcodes are the prevalent source of item tracing technology. Be-
cause of this ubiquitous use, in recent years, many algorithms have
been proposed targeting barcode decoding from high-accessibility
devices such as cameras. However, the current methods have at least
one of the two major problems: 1) they are sensitive to blur, perspec-
tive/lens distortions, and non-linear deformations, which often occur
in practice, 2) they are specifically designed for a specific barcode
symbology (such as UPC-A) and cannot be applied to other symbol-
ogies. In this paper, we aim to address these problems and present
a dynamic Bayesian network in order to robustly model all kinds of
linear progressive barcodes. We apply our method on various bar-
code datasets and compare the performance with the state-of-the-art.
Our experiments show that, as well as being applicable to all pro-
gressive barcode types, our method provides competitive results in
clean UPC-A datasets and outperforms the state-of-the-art in diffi-
cult scenarios.

Index Terms— barcode decoding, hidden Markov models

1. INTRODUCTION

One of the key technologies in closing the producer-consumer gap
is product identification and traceability, which is currently achieved
by the most prevalent technology: linear (1D) barcode scanning. The
mass manufacturing, as well as the consumer goods market, regard-
less of the sector rely on barcodes, especially linear codes.

In manufacturing systems, high accuracy and speed lead to high
throughput and more profit and thus they require robustness, dura-
bility, and noise tolerance in barcode scanning systems. At this point
conventional laser scanners loose their charm, as they mostly fail to
read multiple codes sequentially and necessitate customization of the
conveyor belts. Instead, machine vision solutions are desired, where
the cameras could capture multiple barcodes in arbitrary orientations
and decode them. However, the performance requirements of those
systems crave for a broad solution, which is able to decode various
types of barcodes in difficult scenes, located on different surfaces,
and posed under varying constraints.

From the consumers perspective, it is noticeable that in recent
years, there has been a huge attempt in empowering end-users with
cheap software tools to benefit from barcodes. A customer can now
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Fig. 1. Different types of challenging barcodes (UPC-A and
Code128) that are successfully decoded with our algorithm.

get more information about a product or can experience the entire
shopping process without the burden of a shopping cart. It is also
worth mentioning that as barcodes implicitly describe products, they
are an important source of information for visually impaired peo-
ple as well. Considering the uncontrolled setting of mobile barcode
decoding through low resolution and low SNR cameras, the perfor-
mances of available software are far from what is desired [1]. While
the demand and reliance on barcodes prevail if not increase, we have
noticed that there is no de facto standard for retrieving barcode in-
formation from cameras. This is due to the fact that a typical image
obtained from a CCD/CMOS sensor is subject to various degrada-
tions, such as camera noise, motion blur, perspective transform, and
lens distortion.

In this paper, we present a novel method for decoding barcode
scanlines robustly from challenging scenes. Our aim is to achieve
high accuracy, high speed, and generalizability by harnessing a hi-
erarchical hidden Markov model (H-HMM) to model the intrinsic
nature of the barcode signals, without any pre- or post-processing.
While reaching the state of the art in terms of accuracy, our method,
to the best of our knowledge, is the first to institute such an intuitive
and flexible probabilistic framework, which eases the implementa-
tion of new barcode types. Our main contributions can be summa-
rized as follows:
• We show how to model linear barcodes rigorously by using an H-

HMM and establish a single pass algorithm for barcode reading.
We cast the decoding problem to finding the optimal path in an
HMM and enjoy the efficiency of the Viterbi algorithm.

• Our model is flexible. We propose a common decoding method
for all types of progressive (i.e., non-interleaved) symbologies,
such as UPC-A, EAN-13, CODE-128, CODE-39, where the state
of the art is symbology-dependent.

• Our model is robust against blur, noise, non-linear deformations
and captures the intrinsic nature of the waveform, without making
use of inaccurate discretizations.

• We demonstrate that, with our method it is possible to customize
the computation time - accuracy trade-off by utilizing a pruning
strategy, leading to the state of the art accuracy in difficult scenar-



ios, and achieving real-time performance in typical settings.
Some challenging barcodes that are correctly decoded by our method
are shown in Figure 1.

2. RELATED WORK

At the development stage of barcode technology, information theo-
retic laser scanning [2, 3] was the only path. This perspective con-
tinued until today and cultivated the main developments in hardware
oriented barcode scanning [4]. Later on, with the advancements of
machine vision systems, many solutions are proposed to decode bar-
codes from images.

The first approaches suggested derivative analysis for peak
localization on the waveforms [5], which are known to be noise
sensitive. These techniques are further enhanced but despite the
workarounds, they are far from completing the picture [6, 7]. Later
on two step procedures (binarization then decoding) became the
standard. The problematic binarization stage was approached by
various methods utilizing edge operators, gradient information,
blind deconvolution [8, 9, 10].

In the recent years, probabilistic models for decoding barcodes
have become popular. Yet, these approaches did not go far from
the other methodologies as they were mostly based on conventional
binarization-decoding procedure. Kres̆ić-Jurić et. al. have used
HMMs to better detect the edges of barcodes [11], which again suf-
fered from the drawbacks of binary labeling. Tekin and Coughlan
proposed an elegant Bayesian framework to model the shape and ap-
pearance of the barcodes [12]. Their model is implicitly built upon
the derivatives and subject to similar noise-sensitivity as the peak
finding approaches.

Of all the approaches, the state of the art performance is suc-
cessfully achieved by Gallo and Manduchi [13, 14]. The authors use
deformable templates and perform maximum likelihood estimation
on code digits. While conceptually being similar to our work, this al-
gorithm coercively engineers the decoding process, requiring careful
implementation and parameter selection. Furthermore, the authors
target UPC-A (Universal Product Code A) codes explicitly making
their method symbology-dependent. To the best of our knowledge
there is no generic framework for decoding different barcode types.

3. PROBABILISTIC MODELING OF LINEAR BARCODES

In this section, we present a novel probabilistic model for modeling
linear barcodes. Our aim is to infer the subsequent symbols given a
barcode scanline that is obtained from a gray-scale image. This is
a challenging task since the observed scanline can be degraded due
to noise, blur, perspective/lens distortions, and non-linear deforma-
tions, which often occur in practice.

The main idea in our model is to incorporate the sequential
and hierarchical information of the barcodes into a single dynamic
Bayesian network. We explicitly model different layers of the hi-
erarchy by using an H-HMM. The proposed model is very flexible
and can be applied to a wide range of barcode symbologies.

We start by defining the observed scanline xn, n = 1, . . . , N ,
where n is the pixel index, xn ∈ [0, 255] is the pixel intensity,
and N is the length of the scanline. We assume that the scanline
consists of successive non-overlapping symbols that can be of vari-
able length, i.e., a symbol s will cover a subset of the pixels, say
xi:j ≡ {xi, . . . , xj}, and the collection of the symbols will cover
the entire scanline x1:N . Every pixel xn belongs to a part of a sym-
bol. An example UPC-A barcode, its corresponding scanline, and a
symbol in the scanline are illustrated in Fig 2.
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Fig. 2. A sample UPC-A barcode (top), its corresponding scanline
(bottom), and a symbol in the scanline (shaded).

Our aim is to find the most-likely sequence of the symbols that
are present in an observed scanline. In the sequel, we will precisely
model the sequential evolution and the hierarchical structure of the
symbols. Once this model is formed, the barcode string can be de-
coded by computing the most likely symbol sequence given the ob-
served scanline.

In order to increase clarity, we will illustrate our model on the
UPC-A1 symbology where we will denote the UPC-A equivalents of
the latent variables after defining them. Note that, our model is not
specifically designed for UPC-A and is able to handle various types
of symbologies.

3.1. Prior Model

We model each pixel xn in a scanline as a noisy observation whose
underlying probability distribution is governed by some latent vari-
ables. We will now proceed to the definition of these variables,
that are illustrated in Fig 3(a). We define the ‘symbol’ variable
sn ∈ Ds = {1, . . . , S}, which denotes the symbol that the pixel
xn belongs to. S represents the number of symbols. For UPC-A,
the set of the symbols is given as Ds = {1, . . . , S} ≡ {starting
quiet zone, ending quiet zone, start code, end code, middle code, left
digits (0, ..., 9), right digits (0, ..., 9)} and S = 25. In this notation,
sn = 4 is equivalent to sn = ‘end code’. Our ultimate aim is to find
the most likely sequence of these variables.

In some barcode symbologies, such as UPC-A or EAN-13, the
number of symbols that can be present in a single barcode is pre-
determined. For instance, in the UPC-A symbology, there must be
6 digits in between the start code and the middle code, and there
must be 6 other digits in between the middle code and the end code.
In order to be able to inform our model about the number of sym-
bols that can occur in a scanline, we define the ‘index’ variable
mn ∈ {1, . . . ,M} that denotes the index of the symbol sn. For
UPC-A, it is sufficient to set M = 6 since the left and right digits
are separated from each other by the middle code. For the variable-
length barcode symbologies where the number of symbols in a bar-
code can vary (such as Code 128), we do not have such information,
therefore we set M = 1.

The lengths of the symbols may differ in some symbologies.
For instance, in UPC-A, the length of the start code is three base-
widths (consists of three bars: black-white-black, each bar covering
one base-width) whereas the length of a digit symbol is seven base-
widths. On the other hand, due to warping and camera distortions,

1UPC-A is a pervasive progressive barcode symbology with 11 digits
(symbols), with an added 12th digit for check-sum. It consists of alternating
black-white stripe sequence with 4 possible bar widths. Each digit is encoded
by a unique combination of such bars. The scannable area begins with a spe-
cial start code and ends with the stop code. There are guard bars located in
the middle, which optically inverses the encoding scheme to the right of the
barcode. The overall length of UPC-A is 95 base widths, where a base width
is the width of the thinnest bar.
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Fig. 3. (a) The graphical representation of the proposed probabilistic
model. The nodes represent the random variables, the shaded nodes
represent the observed variables, and the arrows determine the con-
ditional independence structure. (b) A real barcode scanline that is
correctly decoded by our method. The barcode encodes the string
‘013562000043’. The bottommost plot depicts the observed scan-
line and the first four plots depict the estimated latent variables.

the pixel-wise lengths of two symbols may differ within the same
scanline even if they are supposed to have the same length. Here,
we introduce the mapping κ(sn, kn) that determines the length
of sn in pixels. Here, kn ∈ {1, . . . ,K} is the ‘warping’ vari-
able that enables the symbols sn to have different lengths within
a scanline. For instance, suppose that the estimated base-width
for a particular scanline is 5 pixels. Then, ideally, the start code
would cover 15 pixels. However, we may want to allow this length
to vary in the range {14, 15, 16} in order to provide robustness to
distortions. For this particular example, we need to set K = 3
and κ(sn = ‘start code’, kn = 1 : 3) ≡ {14 : 16}. We will
call the expected width of a symbol as lavg and define the pixel
tolerance davg . We allow the expected length lavg to vary in the set
{lavg − davg, . . . , lavg + davg}. In our experiments, we will set
K = 2davg + 1.

In order to determine which part of sn that xn belongs, we
define a ‘count down’ variable cn ∈ {1, . . . , κ(sn, kn)}, where
cn = κ(sn, kn) implies that the symbol sn starts at the pixel n
and cn = 1 implies that sn is ending at pixel xn; i.e., there will be a
new symbol starting at pixel n+ 1.

We assume that within the region of a symbol sn, the count
down variable cn starts from the length of the current symbol
κ(sn, kn) and decrements by one at each pixel until it hits one.
This deterministic evolution is incorporated in the model by placing
a degenerate prior distribution over the count down variables as
follows:

p(cn|sn, kn, cn−1) =

{
δ(cn − cn−1 + 1), cn−1 6= 1

δ(cn − κ(sn, kn)), cn−1 = 1
(1)

Here, δ(·) is the Kronecker-delta function where δ(s) = 1 if s = 0
and δ(s) = 0 otherwise.

Next, we assume the following prior distribution over the sym-
bol variables:

p(sn|sn−1,mn−1, cn−1) =

{
δ(sn − sn−1), cn−1 6= 1

τs(sn|sn−1,mn−1), cn−1 = 1

(2)

where τs(sn|·) is the transition distribution for the symbol variables
that incorporates the rules of a particular barcode symbology to the
model. The prior distributions p(cn|·) and p(sn|·) together ensure

that the symbol variable sn stays the same within the symbol’s re-
gion (i.e., for κ(sn, kn) pixels) since sn must be equal to sn−1 until
cn−1 becomes 1. In other words, during the presence of a particu-
lar symbol, the count down variable decreasingly counts down to 1.
When cn−1 = 1, the symbol will transition to another symbol where
this transition is governed by τs(sn|·). The transition distributions
τs(sn|·) for UPC-A and CODE-128 symbologies are described in
detail in the supplementary document [15].

We assume the following prior distribution on the warping vari-
ables kn:

p(kn|kn−1, cn−1) =

{
δ(kn − kn−1), cn−1 6= 1

U({1, . . . ,K}), cn−1 = 1
(3)

where U(Σ) denotes the discrete uniform distribution with support
Σ. This distribution suggests that the length of a symbol is deter-
mined when the symbol begins. The length stays the same within
that symbol.

We finally define the prior distribution of the index variablesmn

as follows:

p(mn|sn,mn−1, cn−1) =

{
δ(mn −mn−1), cn−1 6= 1

τm(mn|sn,mn−1), cn−1 = 1

(4)

where τm(mn|·) is the transition distribution for the index variables,
for UPC-A it encapsulates a straightforward collection of determin-
istic relations. Fig 3(b) illustrates the estimated latent variables from
a real barcode scanline.

3.2. Observation Model

After defining the latent variables and their relations by using the
prior distributions, we also need to relate them to the observed scan-
line xn through an observation model. We follow a similar approach
to [14] and define the following observation model:

p(xn|sn, kn, cn) =

1∏
i=0

FN (xn;µi, σ
2
i )[f(sn,kn,cn)=i] (5)

Here, FN (x;µ, σ2) denotes the folded normal distribution where
|x − µ| is normally distributed with mean 0 and variance σ2 and [·]
is the indicator function where [x] = 1 if x is true and [x] = 0 oth-
erwise. The mapping f(·) determines the color of the bar (black or
white) corresponding to a part of a symbol, where the part is deter-
mined by the symbol sn, the length of the symbol kn, and the pixel
index of that particular symbol cn. Here f(·) = 0 if the correspond-
ing bar is black and f(·) = 1 if the corresponding bar is white. For
instance, consider a UPC-A start code of 3 pixels long (i.e., sn = 3,
kn = 1, κ(sn, kn) = 3). The mapping for this symbol is defined as
follows: f(sn, kn, cn = 1 : 3) ≡ {0, 1, 0}, meaning that the first
and the last bars are black and the middle bar is white. The parame-
ters µi and σ2

i are the mean and the variance for different colors.

3.3. Inference

We are interested in the most likely state trajectory given all
the observations. For practical purposes, we define the variable
Ψn ≡ [sn,mn, kn, cn], which encapsulates the state of the model
at pixel n. The set of all possible states can be listed in a vector
Ω and the state of the system at the pixel n can be represented
as Ψn = Ω(j), where j ∈ {1, 2, . . . , (S × M × K × C)} and
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Fig. 4. Evaluation results. a) Performance comparison on different datasets. Effect of pruning on b) accuracy c) comp. time d) pixel tolerance.

C = maxs,k κ(s, k). The transition matrix of the HMM can be con-
structed by using Eqs 1-4. Since we reduce our model to a standard
HMM, we can make use of the Viterbi algorithm in order to find the
optimal state path.

For big values of S, M , K, and C the transition matrix be-
comes very large, but sufficiently sparse so that inference becomes
tractable. However, in order to achieve real-time performance, we
utilize an approximate inference schema where we keep the most
likely P states at each step n and prune the rest of the states. This
approach drastically reduces the computational complexity, enabling
the method to work in real-time without compromising the accuracy.

4. EXPERIMENTS

4.1. Quantitative Evaluation of Accuracy

We have evaluated our algorithm on two standard datasets, discussed
in [12, 14]. The widespread test bed for performance assessment
of decoding algorithms is made available by Tekin and Coughlan
at www.ski.org/Rehab/Coughlan_lab/Barcode. This
dataset is composed of ‘clean’ and ‘hard’ to read codes, where
each barcode is manually labeled. The second dataset was prepared
by Gallo and Manduchi and contains images obtained in different
settings: ‘regular’, ‘compressed’, and ‘no focus’.

We compare the performance of our method with Gallo and
Manduchi [14], Tekin and Coughlan [12], DataSymbol [16], DTK
[17]. For the outputs of these algorithms we will refer to [14, 12].

In our experiments, we first estimate the basewidth of a barcode
in pixels and then load the corresponding precomputed transition
matrix to the memory. In the next step, we estimate the parame-
ters of the observation model µ1:2 and σ2

1:2 by following a similar
strategy presented in [14]. We start by setting the pixel tolerance
davg to 1 in the beginning and increase it by 1 until the checksum of
the decoded string holds. We typically select the pruning parameter
P as a percentage of the number of states, where this percentage is
only around 1%, making P to be in range [300, 2000] in the sub-
ject datasets. This strategy is capable of shrinking down the search
space hundred folds, making pruning not just an optional nicety, but
a requirement in order to achieve practicality.

Fig 4(a) comparatively demonstrates the performance of our
method among the others. Note that the dataset developed in [14]
requires the barcode regions to be located prior to the decoding
stage. Even though we have also developed an industrial-strength
barcode localization algorithm, which is beyond the scope of this
study, in order to have a fair comparison, we use the same localiza-
tion algorithm as in [14], where the details are presented.

All of the algorithms perform similarly on the clean dataset. The
results show that Gallo and Manduchi achieve 97.72% accuracy on

the clean dataset, while our method achieves 93.18% with default
settings. On the other hand, in the hard dataset, we obtain 65.71%
accuracy, while [14] remains at 54.28%. This result demonstrates
the success of our algorithm in decoding the barcodes under chal-
lenging conditions. For a subjective evaluation, we invite the readers
to check the video samples available on our webpage [15].

Note that, in certain data samples, the Gaussian assumption re-
sults in a typical model mismatch situation where the model tends
to be too noise tolerant for the cases with little noise. In such cases,
tolerating more noise allows the algorithm to find a more likely path,
which may not exactly correspond to the correct readout. This is the
reason why we report fewer correct reads in clean cases, and more in
the hard. As a natural future direction, we will investigate different
observation models.

4.2. Computational Aspects

Our algorithm has two stages: 1) preparation of the transition ma-
trices and 2) the Viterbi decoding. The former is an offline stage,
where the transition matrices are generated and stored. The latter is
however, the main source of computational complexity, which can
further be tuned. To achieve a reasonable trade-off between speed
and accuracy, we resort to an approximate inference schema where
we apply a simple pruning strategy. It is possible to find a reasonable
trade-off as shown in Fig 4(b). In the default setting, our algorithm
runs in the range [60ms, 250ms], while pruning causes an exponen-
tial reduction in the computation time.

Figs 4(c) and 4(d) visualize the effects of pruning on computa-
tion time and average pixel tolerance (davg). Note that, decreasing
the amount of pruning (P ) increases davg , causing the algorithm to
search a larger margin, consequently increasing the computational
burden. For this reason, up to a certain threshold (4%), as P in-
creases the computation time decreases. Yet, after this point, the
opposite effect is observed. We refer to this noteworthy observation
as the critical valley and use it in our experiments. As a result, prun-
ing 4% of the entire state space still allows us to correctly decode
most of the barcodes efficiently.

5. CONCLUSION

We presented an efficient H-HMM framework for decoding progres-
sive barcode symbologies. Our accuracy was comparable to the state
of the art in UPC-A datasets, while our method encapsulates the de-
coding process of different symbologies into a single framework. We
have also shown how accuracy is traded off gracefully to gain speed
as the state space is pruned. In future work, we plan on dynamically
adjusting the prior parameters, exploit image gradient information
and extend our work in order to cover interleaved codes.
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