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ABSTRACT

Polyphonic music transcription is a fundamental problem in
computer music and over the last decade many sophisticated
and application-specific methods have been proposed for its
solution. However, most techniques cannot make fully use
of all the available training data efficiently and do not scale
well beyond a certain size. In this study, we develop an ap-
proach based on matrix factorization that can easily handle
very large training corpora encountered in real applications.
We evaluate and compare four different techniques that are
based on randomized approaches to SVD and CUR decom-
positions. We demonstrate that by only retaining the relevant
parts of the training data via matrix skeletonization based on
CUR decomposition, we maintain comparable transcription
performance with only 2% of the training data. The method
seems to compete with the state-of-the-art techniques in the
literature. Furthermore, it is very efficient in terms of time
and space complexities, can work even in real time without
compromising the success rate.

Index Terms— Polyphonic music transcription, CUR
decomposition, singular value decomposition, matrix skele-
tonization, randomized matrix decompositions

1. INTRODUCTION

Automatic music transcription is one of the fundamental
problems studied in the field of audio processing. Given
polyphonic music, the aim is to recognize the notes and the
time interval in which they are active. The methods devel-
oped to solve this problem find place in various areas such
as phonetics, speech processing, and music information re-
trieval [1]. Transcription is closely related to pitch detection
and tracking, and considerable amount of research has been
devoted to this topic. The methods in the literature can be
roughly divided into two groups as algorithmic and model-
based approaches [1]. In the last few years, model-based
methods on matrix factorizations have become very popular
[1, 2, 3].
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It is still not very clear how humans recognize musical
notes in polyphonic textures. Experience suggests that human
listeners become more successful with training in recognizing
musical constructs. Inspired partially by this idea, Smaragdis
has demonstrated that it is possible to perform polyphonic
pitch tracking successfully via a linear model that tries to ap-
proximate the observed musical data as a superposition of pre-
viously recorded monophonic musical data [4]: X ≈ DW
where X is the observed spectrogram, D is the dictionary
matrix obtained from the training data, and W contains the
corresponding weights.

This approach is expensive since it makes use of a poten-
tially very large dictionary matrix D. One should express the
dictionary matrix using fewer dimensions in order to perform
a faster transcription with a smaller computation and memory
requirement.

The basic approach to reduce the dimensionality of D
relies on Singular Value Decomposition (SVD) where D =
AΣBᵀ [5]. A and B are the orthonormal matrices holding
the left and right singular vectors, respectively, and the diago-
nal matrix Σ includes the singular values in descending order.
The k-rank reduced SVD approximates D by using only the
first k singular vectors and singular values and it gives the
best low-rank approximation of the matrix in terms of Frobe-
nius (or l2) norm of the reconstruction error. Unfortunately,
SVD cannot be computed by conventional techniques when
the data matrix is very big. There are randomized techniques
to solve a reduced SVD that approximates the data matrix
well in practice within a tolerable error bound [6, 7].

SVD gives the best results when reconstruction error is
in question, but it is mostly criticized in terms of reification
issues where the singular vectors may not represent physical
reality [8]. Besides, the matrix which is reconstructed by us-
ing reduced SVD might contain negative values even though
the original matrix is non-negative as in the case of spectro-
gram data.

The dictionary matrix can also be expressed as a collec-
tion of its individual rows and columns, which already rep-
resent physical identities. This decomposition is known as
CUR decomposition in the literature. It attracted consider-
able attention in the last few years [6, 7, 9]. In this case,
D ≈ CUR where C and R represent columns and rows of
the matrix, respectively, and U is computed as a link matrix



between them. CUR decomposition can fully represent the
matrix by selecting columns/rows that span the whole col-
umn/row space of D as well as approximating it with fewer
dimensions. Halko et al. [6] and Mahoney [7] present an ex-
tensive summary of the current deterministic and randomized
CUR decomposition techniques with relative and additive er-
ror bound analysis for the reconstruction. When compared
to SVD, CUR leads to a more interpretable decomposition
since its basis vectors are individual rows and columns [7]
with physical correspondence. Furthermore, for the case of
sparse data as in a spectrogram of polyphonic music samples,
CUR maintains the sparsity whereas SVD may give a dense
decomposition.

In this study, we investigate fast and efficient methods for
polyphonic piano transcription based on linear decomposi-
tions of spectrogram data, notably [4]. We develop various
ways to handle big amount of data efficiently within the same
algorithmic framework. In particular, we employ randomized
approaches to SVD and CUR computations to significantly
reduce the size of the dictionary without compromising the
success rate of the full solution.

2. POLYPHONIC MUSIC TRANSCRIPTION

Before discussing the methods, let us start by clarifying the
problem definition where we will consider it as a machine
learning problem.

Let Di, with elements Di(f, τi), denote the magnitude
spectrogram of monophonic music recordings belonging to I
different notes. Here, i = 1, . . . , I is the note index, f =
1, . . . , F is the frequency index, and τi = 1, . . . , Ni is the
time index where F is the number of frequency bins andNi is
the number of columns in Di. Since we are interested only in
the pitch of the data, we remove the effect of sound intensity
by normalizing each vector such that its elements sum up to 1.
We also remove the samples below some loudness level. We
obtain the training data by concatenating all training vectors,
D = [ D1 D2 . . . DI ] where there are a total number of
N =

∑I
i=1Ni training samples. Test data are composed of

polyphonic recordings. We have considered piano samples in
this paper, but the method is also valid for the generic case
where multiple instruments are played together. Let X, with
values X(f, t), be the spectrogram of the test data where t =
1, . . . , T and T is the number of time frames.

2.1. Linear model approach

In this study, we use a basic linear model that describes the
relationship between the observed and the training data where
the observed spectrum is expressed as a superposition of the
training vectors:

X ≈ X̂ = DW (1)

The aim is to find the weight matrix W which minimizes
D [X‖DW] whereD[·‖·] is a properly selected cost function.
We choose KL divergence for as the cost function. Note that
the model is identical to the NMF model whose update rule
is well known [10, 2]. We start with random initialization of
W, and continue with the following step until convergence:

W←W �

(
Dᵀ X

(DW)

Dᵀ1

)
(2)

The � symbol stands for the Hadamard product imply-
ing element-wise multiplication and Dᵀ is the transpose of
D. The division operation is also done element-wise. 1 is a
matrix of all ones of the same size with X. Active notes are
observed to have significantly higher weights than the inac-
tive ones and they are selected by thresholding. In order to
obtain a single weight for a particular note, the corresponding
weights are summed up since there might be multiple weights
corresponding to the same note. Additionally, each weight
value is smoothed by applying a median filter to remove sharp
jumps.

The computational bottleneck of the algorithm is seen to
be in the matrix-matrix multiplications involving D and Dᵀ

in Eq. (2). The sizes of X, D, and W are F × T , F × N
and N × T , respectively. So, the running time is dominated
by the matrix multiplication operation which is in order of
O(FNT ). Space complexity is O(FN) since we store all
elements in D. Note that Eq. (2) can work in parallel on
the columns of W since each column of W can be computed
independently. So, the time complexity can be reduced to
O(FN).

2.2. Improving efficiency via SVD

The dictionary matrix may involve millions of columns and/or
rows. Besides, it may not fit in RAM in real applications.
Our aim is to make the method efficient in terms of both time
and space complexity. The key point is to decompose D and
use its decomposition instead of taking whole of it. A rank k
approximation of a matrix can be obtained best by the reduced
SVD [5]:

argmin
D̃, rank(D̃)≤k

‖D− D̃‖F = AkΣkBᵀ
k (3)

where k, Ak, Σk and Bk stand for the rank, the orthonor-
mal matrix involving the left singular vectors, the diagonal
matrix involving the k largest singular values in descending
order, and the orthonormal matrix involving the right singular
vectors, respectively.

For this problem, it is convenient to store ΣkBᵀ
k as B̃ᵀ

k

to avoid redundant computations. Using this decomposition,



Eq. (2) is reorganized as follows:

W←W �

B̃k

(
Aᵀ

k
X

(Ak(B̃
ᵀ
kW))

)
B̃k(A

ᵀ
k1)

 (4)

It is well-known that SVD itself is an expensive operation.
The full solution of SVD is of order O(min{FN2, F 2N})
[5]. The reduced solution is also expensive when conven-
tional techniques are used. To tackle this problem, we use
the randomized SVD technique of Halko et.al. [6] which
serves as a good example of randomized matrix factoriza-
tion algorithms [6, 7]. This method considers D as a trans-
formation matrix, generates random points and transforms
them by D, and it is based on the orthogonalization of the
range of D. Reduced SVD of a matrix of size F × N at
rank-k takes O ((F +N) k) time. Note that reduced SVD is
only done once at the training phase to obtain Ak and B̃k

and they are fixed at the test phase. The time complexity is
O ((F +N) kT ) when the operations are done as given in
Eq. (4). Space complexity is O ((F +N) k) which is the to-
tal number of elements in matrices Ak and B̃k. Note that a
similar approach is used in our recent work [11].

2.3. Improving efficiency via CUR

Another approach is to approximate the full matrix using its
own rows and columns. This decomposition is known as CUR
decomposition in the literature. We approximate the dictio-
nary matrix as D ≈ CUR where C, and R represent actual
columns and rows of the matrix, respectively, and U is a link-
ing matrix.

Let kcol and krow be the number of the selected columns
and rows, respectively. Then, the dimensions for C, U and R
will be F × kcol, kcol × krow and krow ×N , respectively.

We first compute the probability of selecting the ith row
as proposed in [8] as follows:

ρi =
1

k

k∑
j=1

a2ij , i = 1, . . . , F (5)

where aij is the (i, j)th entry of Ak, the matrix containing the
left singular vectors. Similarly, the probability of selecting
the jth column is computed as follows:

πj =
1

k

k∑
i=1

b2ji , j = 1, . . . , N (6)

where bji is the (j, i)th entry of Bk, the matrix containing the
right singular vectors.

Afterwards, kcol columns and krow rows are randomly se-
lected using a multinomial distribution with the computed
probabilities. The relative error is ensured to be very small

with a high probability as proved in [8] when sufficient num-
ber of dimensions are selected. Since krow is relatively small
compared to kcol in our case, let us define C̃ = CU and reor-
ganize the update rule in Eq. (2) as follows:

W←W �

Rᵀ

(
C̃ᵀ X

(C̃(R̃W))

)
Rᵀ(C̃ᵀ1)

 (7)

The time complexity of the algorithm will be of order
O((F + N)min{krow, kcol}T ). The minimum implies that
one can merge U and R if krow is larger than kcol. The mem-
ory requirement will be of order O((F +N)min{krow, kcol})
since we store both matrices.

2.4. Improving efficiency via selection of important data

The dictionary matrix might be a huge matrix possibly involv-
ing many redundant information in its columns and rows. So,
instead of using low rank approximations of the full matrix,
we extract only the important information. Firstly, we use
only the selected columns of the spectrogram, that is, we only
use C:

W←W �

(
Cᵀ X

(CW)

Cᵀ1

)
(8)

Let us mention that Lee and Choi follow a similar ap-
proach to improve NMF in [9]. We go further and observe
that there is no necessity to hold all of the rows which corre-
spond to the frequency bands since the notes can be detected
without hearing the higher harmonics. With this information,
we skeletonize the dictionary matrix and keep only the points
at the intersection of the selected rows and columns. Let Ď
be the skeleton of D, and let X̌ involve the selected rows of
the observed data. Then, the formula becomes:

W←W �

Ďᵀ X̌
(ĎW)

Ďᵀ1

 (9)

where the sizes of W and 1 are selected appropriately.
The time complexities will be of order O(FkcolT ) and

O(kcolkrowT ) for C-based and skeleton approaches, respec-
tively. Since we discard most of the data and keep only the
important part, the computational gain is very high in prac-
tice. The number of rows and columns that represent the va-
riety in the data well enough may be hundreds of times less
than the original dimensions of the full data. For a realis-
tic case, if we have F = 1025, N ≈ 105, and we choose
krow = 400 and kcol = 4000, the algorithm becomes nearly
75 times faster and we use only less than 2% of the data. This
method can work in real time and handle big amount of data
which can not be handled by conventional methods. Time and
space complexities for the discussed methods are summarized
in Table 1.



Table 1. Time and space complexities in Big-O notation
Time Space

Full linear model F N T F N
SVD-based (F +N) k T (F +N) k
CUR-based (F +N)min{krow, kcol}T (F +N)min{krow, kcol}
C-based F kcol T F kcol
Skeleton krow kcol T krow kcol

3. EXPERIMENTS AND RESULTS

In order to evaluate our methods, we have conducted several
experiments. In our experiments, we have used the MAPS
(MIDI Aligned Piano Sounds) data set [12]. The training set
is obtained using 440 monophonic piano sounds of 44.1 kHz
sampling rate where we represent the audio by its magnitude
spectrogram which is computed via DFT. The spectrogram
is formed using overlapping Hanning windows of dimension
2048 with a window shift 512. While constructing Di(f, τi),
we simply concatenated the spectra corresponding to the ith

note where i = 1, . . . , 88. About one third of the training
data is removed due to low loudness and the obtained final
dictionary matrix is 1025× 115600 and is around 860 MB.

A test set is formed by choosing random sections from five
different polyphonic pieces. The histogram of the polyphony
orders (the number of notes playing simultaneously at a time
instance) in the test data are given in Fig. 1 where it can be
observed that the test data are predominantly polyphonic.
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Fig. 1. Histogram of polyphony order: The polyphony in the
test data is expressed mainly by the first 6 orders.

In order to evaluate the performance of the methods we
used precision (fraction of retrieved instances that are rele-
vant), recall (fraction of relevant instances that are retrieved)
and f-measure = 2×precision×recall

precision+recall metrics.
We start with the full solution given in Eq. (2) and obtain

an f-measure of 78.07%. This performance competes with
the leading results obtained on MAPS (81% [12], 77% [1]).
It should be noted that the method is a basic machine learning
method and does not employ any advanced field-related signal
processing techniques.

As all our methods are based on SVD, as the next step,
we decompose D via randomized SVD. We observe that 98%
of the total variance can be covered by using only the first 51
singular vectors. That is, there seems to be a high correlation
in the data and thus, SVD is suitable for the problem.

As the first factorized method, the SVD-based approach
given in Eq. (4) is applied with k = 50, 100, and 200 to see
the effect of the used dimensions on the result. It is shown in
Fig. 2 that we get better results with more dimensions. We get
an f-measure value of 78.14% when we have 200 dimensions
where the complexities are nearly 5 times better than the full
solution.

Next, we compute the CUR decomposition of the dictio-
nary. k = 51 dimensions are used in the computations of
row selection probabilities ρi and column selection probabil-
ities πj . In this way, we aim to avoid selecting columns and
rows leading to residual noise. We select 400 rows (frequency
bands) and 4000 columns (samples), and we apply the CUR-
based approach given in Eq. (7). As shown in Fig. 2, the
results seem to be similar to the SVD-based approach.

Finally, we select only the important parts of D with the
computed indices of the CUR decomposition above. The re-
sults for the C-based and skeleton-based approaches are also
given in Fig. 2. We only use less than 2% of the data after
skeletonization, the speed is nearly 75 times faster, and we
get an f-measure of 77.17% which is very close to the result
of the full solution.
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Fig. 2. Results obtained on the test set per approach: It is seen
that the result is better preserved by using more dimensions in
SVD-based approach where using 200 dimensions is enough
to get the original results. CUR seems to be an alternative
to SVD. C-based approach and skeletonizing the matrix give
promising results.

In addition to the overall results, we give the results for
each polyphony order in Fig. 3 for the skeleton-based ap-
proach. We got similar results for the other approaches, so
we do not provide separate plots for each. As can be seen,
recall rate is perfect in the monophonic case but the precision
is low. Using a higher threshold on the weights may lead to
selection of fewer notes as active and this can improve pre-
cision with a trade-off in recall rate if one is more interested
in precision. The values used here are obtained by optimiz-
ing the threshold on a verification set which excludes the test
data.

As post-processing, we apply a median filter on each
row of W before thresholding. Filtering leads to an increase
around 3-6% in f-measure for all approaches.

We also analyze the effect of the selected number of
columns and rows on the results and give it in Fig. 4 for
CUR-based and skeleton-based approaches. As it is seen,
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Fig. 3. Precision, recall and f-measures for each polyphony
order: The figure shows the results for the skeleton approach.
F-measure seems to be more than 65% for each polyphony
order.

f-measure becomes stabler after a few hundreds of rows and
a few thousands of columns. So, there is no need to keep
all of the data since it holds lots of repetitive information.
Note that the results are obtained on a separate validation test
excluding the test samples. The fluctuations in the plots stem
from randomization which is used for selection.
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Fig. 4. f-measures versus the number of columns (samples)
and rows (frequency bins) in CUR-based approach (left) and
skeleton approach (right): It is seen that only a few hundred
frequency bins and a few thousand samples are necessary to
keep success ratio of the algorithm.

4. CONCLUSIONS

We have addressed the problem of polyphonic music tran-
scription and discussed that the conventional methods are
inefficient to handle big data. We show that even a standard
matrix factorization model is prohibitive in real applications
where a huge amount of training data is used. The update
rules are made efficient by the use of randomized matrix
decompositions. Without compromising the success rate,
time and space complexities are improved such that the pro-
posed method can work in real time. A high f-measure value
(∼78%) is obtained on polyphonic recordings by using only
a few hundred frequency bins and sample columns out of
a huge dictionary matrix. We get at least 65% f-measure
on each polyphony order which shows that the proposed
method is stable and consistent. The reported results show
that the method can compete with the leading methods in
the literature. With abundance of data in different applica-

tions, randomized matrix decompositions are likely to get
more attention in the future and we have illustrated a relevant
application of this in the context of music transcription.
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