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ABSTRACT
In the recent years, there has been an increasing academic and
industrial interest for analyzing the electrical consumption of com-
mercial buildings. Whilst having similarities with the Non Intrusive
Load Monitoring (NILM) tasks for residential buildings, the nature
of the signals that are collected from large commercial buildings
introduces additional difficulties to the NILM research. One of the
main difficulties is that the amount of publicly available datasets
collected from commercial buildings is very limited, which makes
the NILM research even more challenging for this type of large
buildings. In order to circumvent the issues caused by the lack of
data available, we propose a model for generating realistic syn-
thetic current waveforms by making use of both publicly available
datasets and our private dataset that is collected from real commer-
cial buildings. Our primarily experiments show that the generated
data ressemble real datasets.
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1 INTRODUCTION
In the context of electrical load monitoring, non-intrusive load mon-
itoring (NILM) involves the installation of only one sensor at the
entrance of the electrical network and requires an accurate disaggre-
gation algorithm for estimating the consumption of each individual
device connected to the network. The majority of the current NILM
literature is dedicated to residential buildings for releasing datasets
and developping various disaggregation algorithms.

Recently, there have been increasing academic and industrial
interests in applying NILM to commercial buildings [1]. These build-
ings include large offices, warehouses, retails and shopping malls.
As pointed out in [1], they have fundamentally different character-
istics than those of residential buildings: (i) the number of devices is
much higher in commercial buildings, (ii) as opposed to residential
buildings, they often contain several ‘continuously varying’ devices
(e.g. air handling units, heating pumps, inverters) whose power
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consumption is hard to be monitored since their behavior can vary
along time, (iii) the multiplicity of devices belonging to the same
category in commercial buildings (such as computers, light bulbs)
can be much higher.

Due to these significant dissimilarities the hypotheses made by
existing NILM approaches, such as the "one-at-a-time" assump-
tion (at most one device changes of state at each instant) or the
"constant load" assumption (only devices of category "on/off" or
"multi-state"), do not hold in this context. As a result, residential
NILM algorithms often fail when applied to commercial buildings.
Therefore, accurate disaggregation algorithms that are tailored for
commercial buildings are yet to be developed.

Apart from those existing difficulties, another important limi-
tation for developing disaggregation algorithms for commercial
buildings is the lack of publicly available datasets that contain de-
tailed measurements of individual devices. Unfortunately, collecting
such data turns out to be a very challenging and expensive task
since it requires installing sensors on each device in a large building.
Also, the quality of these measurements is difficult to be maintained
during a long period. To the best of our knowledge, there is only
one public dataset that is collected from a commercial building,
namely the COMBED dataset [1]. This dataset contains the power
consumption measurements of two buildings and is sampled at
1/30 Hz. Even though it is a first step towards energy disaggre-
gation in commercial buildings, the dataset does not include high
frequency data (current or voltage at a sampling rate > 10 kHz)
and the equipments are not fully sub-metered.

In this study, we aim at circumventing the issues caused by the
lack of data available in commercial buildings. We first performed
statistical analysis on public residential datasets and compared
them to a private dataset that was collected from real commercial
buildings. Due to a lack of space, this analysis is not included in this
abstract. In the light of the analysis results obtained and by making
use of both publicly available datasets and our private dataset,
we develop a synthetic data generation algorithm that is able to
produce realistic current waveforms. Our primarily experiments
show that the data generated by our algorithm resemble the data
collected from commercial buildings in a statistical point of view.

2 A GENERATIVE MODEL FOR HIGH
FREQUENCY CURRENTWAVEFORMS

In this section, we develop a physically-inspired data model for
high frequency current and voltage that has three layers: building,
category and device. Let us first introduce some notations and recall
the relation between physical quantities. The digitalized voltage
and current waveforms are denoted as u (n, t ) and i (n, t ), where
t = 1, . . . ,T is the voltage period index,T denotes the total number
of voltage periods and n is the sampling index within a voltage
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period. The number of samples within a period of the voltage signal
is supposed to be constant and is denoted by N . The mean active
power (or mean power consumption or load curve) within a voltage
period is then given by: p(t ) = 1

N
∑N
n=1 u(n, t ) i(n, t ).

2.1 The building model
The model put forward in this section relies on several hypotheses.
First, all electrical devices are supposed to be plugged in paral-
lel on the network: the current waveforms observed on the root
node of the network are then the sum of the current waveforms of
each device. The electrical network is also supposed to be in ideal
conditions: wires have neither electrical resistivity nor inductance.
The voltage can thus be considered as identical on each node of
the network and independent from the current. Moreover, in the
following, all current signals of devices are supposed to be indepen-
dent. This assumption holds only if the voltage signal is stationary
since the current waveform depends on the voltage waveform for
most devices: ∀t , u (n, t ) = u0 (n). Finally, for the sake of simplic-
ity, only single-phase electrical networks are considered, whereas
three-phase networks can be simulated in a similar fashion.

It leads us to the following model for total current:

i (n, t ) =
∑
c ∈C

ic (n, t ) + ϵ (n, t ) (1)

where i is the current measured at the root node of the network, ic
is the current of a device category c , C is the ensemble of category
indices, and ϵ (n, t ) is a zero-mean Gaussian noise.

2.2 The category model
Since the number of identical equipments can be important (e.g.
corridor light bulbs, computers or resistive heaters), it may be more
important (especially for some specific NILM applications such as
energy management of a building) to evaluate a whole category
consumption instead of each single device consumption. We then
define herein a category as the aggregation of one to many similar
equipments as follows:

ic (n, t ) =
∑
d ∈Dc

ic,d (n, t ) (2)

where ic,d is the current of device d belonging to category c . Dc
corresponds to the set of devices belonging to category c . Device d
can be seen as an instance of a particular equipment, but it can also
be used as an artificial equipment to ease the modeling of complex
devices such as "multi-state" or "continuously varying".

2.3 The device model
Finally, the current of a particular device is modeled by using a
factorization-based approach, given as follows:

ic,d (n, t ) = sc (n,d ) ac (t ,d ) , (3)

where sc (·,d ) and ac (·,d ) ≥ 0 are called respectively the current
waveform signature and the activations of device d of category c .
We use the notation sc (·,d ) for denoting an entire column of matrix
sc . The waveform signature corresponds to a fixed pattern that
describes the current response to the voltage. The activation is
a nonnegative magnitude. Its nature can depend on the type of
devices: a 0 / 1 function for on / off devices, a piecewise constant

function for multi-state devices or just any positive function for
continuously varying devices.

2.4 Overall generative process
Combining the individual models (1), (2) and (3) gives us the model
for the overall current, given as follows:

i (n, t ) =
∑
c ∈C

∑
d ∈Dc

sc (n,d ) ac (t ,d ) + ϵ (n, t ) . (4)

We obtain the following formula for the mean power per category:

pc (t ) =
∑
d ∈Dc

ac (t ,d )
1
N

∑
n

u0 (n) sc (n,d ) . (5)

This model presents several advantages: (i) it enables the use of
on/off, multi-state or continuously varying devices, (ii) it handles
categories of numerous similar equipments like computers or lamps,
(iii) it makes it possible to model continuously varying category
as the sum of simple sub-devices (which may not have a physical
meaning but a modelling purpose), (iv) it can model data that are
statistically close to residential or commercial buildings.

3 SIMULATION PROCEDURE
The main idea behind our simulation algorithm is to learn the
signatures from public datasets, to learn activation templates from
our private dataset and finally simulate from the generative model
in order to obtain a synthetic dataset.

The signatures are sampled from two public datasets of high
frequency current measurements [2, 3]. The process consists of: (i)
segmenting the data according to the voltage period (period index
times sampling index within a period), (ii) normalizing (so that
we have unitary mean active power), (iii) selecting randomly one
current period to account for the device’s signature.

The activations templates are learned on a private dataset col-
lected from two large commercial buildings. Its goal is to capture
the typical power consumption of a device category during a day.
In order to compute such templates, we averaged the power con-
sumptions of categories over several weeks of data. Since many
equipments are programmed to switch on or off at particular mo-
ments of the day (air handling unit, heaters) or depend on building
occupancy (computers), we distinguished the week days and the
off days. To take inter day variability into account, a positive noise
is added to the concatenated templates.

Our primarily evaluations, based on statistical distribution (kur-
tosis, entropy) show that simulated datasets ressemble real ones
(this will be demonstrated at the conference). Several simulations
can be found at https://perso.telecom-paristech.fr/shenriet/simu/.
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