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ABSTRACT

TENSOR FUSION: LEARNING IN HETEROGENEOUS

AND DISTRIBUTED DATA

In this thesis, we focus on coupled matrix and tensor factorization models ; that

provide a good modeling accuracy – practicality trade off for modeling large-scale

and/or heterogeneous data that are collected from diverse sources. Our main concern

in this thesis will be to develop inference methods for coupled tensor factorization

models. We will first develop a rigorous tensor factorization notation, that aims to

cover all possible model topologies and coupled factorization models. Our notation

highlights the partially separable structure of tensor factorization models, which paves

the way for developing parallel and distributed inference algorithms. Secondly, we will

develop novel methods for making inference in coupled tensor factorization models.

The proposed methods can be separated into three groups. In the first set of methods,

we will focus on optimization-based approaches for making maximum likelihood and

a-posteriori estimation of the latent variables. The second group of methods builds

up on the first group and jointly estimates the relative weights and divergence func-

tions, which play important role in coupled factorization models. Finally, in the third

group, we will focus on full Bayesian inference, where we will develop several Markov

Chain Monte Carlo methods for sampling from the posterior distributions of the latent

variables. We will evaluate our methods on several challenging applications. We will

develop novel factorization models for addressing challenging audio processing appli-

cations. We will also evaluate our distributed inference methods on large-scale link

prediction applications, where we will report successful results in all of these applica-

tions.
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ÖZET

TENSÖR TÜMLEŞTİRME: AYRI CİNSTEN VE DAĞITIK

VERİLERDE ÖĞRENME

Bu tezde, büyük çaplı ve/ya farklı kaynaklardan toplanan ayrık veriler için iyi

bir modelleme doğruluğu ve uygulanabilirlik ödünleşimi sağlayan bağlaşımlı matris ve

tensör ayrışımı modelleri üzerinde yoğunlaşıyoruz. Bu tezdeki asıl amacımız bağlaşımlı

tensör ayrışım modelleri için çıkarım yöntemi geliştirmek olacaktır. İlk olarak, olabile-

cek bütün model topolojilerini kapsamayı hedefleyen titiz bir tensör ayrışım simgelemi

geliştireceğiz. Simgelemimiz, tensör ayrışım modellerinde paralel ve dağıtık çıkarım

yapmaya olanak sağlayan kısmen ayrışabilir yapıyı vurgulamaktadır. İkinci olarak,

bağlaşımlı ayrışım modellerinde çıkarım yöntemleri geliştireceğiz. Önerdiğimiz yöntemler

üç ana grupta toplanabilir. İlk gruptaki yöntemlerde, enbüyük olabilirlik ve enbüyük

sonsal kestirim için eniyileme tabanlı yöntemler üzerinde duracağız. İkinci grup yöntemler

bağlaşımlı ayrışım modellerinde önemli bir rol oynayan ilgili ağırlık ve ıraksayları

da beraber olarak kestirmektedir. Son olarak üçüncü grupta tam Bayesçi çıkarım

yöntemleri üzerinde yoğunlaşacağız ve saklı değişkenlerin sonsal dağılımlarından örnek

çekme amacıyla birçok Markov Zinciri Monte Carlo yöntemi geliştireceğiz. Önerdiğimiz

yöntemleri birçok zorlu uygulamada sınayacağız. Bilhassa, ses işleme alanında görülen

birçok zorlu uygulama için yeni ayrışım modelleri geliştireceğiz. Ayrıca, dağıtık çıkarım

yöntemlerimizi büyük çaplı bağlantı kestirimi problemlerinde sınayacağız ve bu uygu-

lamaların hepsi için başarılı sonuçlar göstereceğiz.
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1. INTRODUCTION

We are living in the era of Big Data. Thanks to the current technological infras-

tructure, massive amounts of data are continuously produced and the cost of storing

these data gets cheaper everyday. This circumstance has opened new horizons for many

fields such as social media analysis [1], genomics [2], finance [3], audio processing [4],

computer vision [5], and retail sales [6].

The growth in the size of the data has brought new challenges. There are two

major challenges that rise with large-scale data [7]. The first one is the computational

challenge: the ‘traditional’ methods become impractical as the size of the data gets

larger. One would need efficient, parallel and distributed algorithms in order to be able

to handle large amounts of data.

In order to address this challenge, numerous algorithms have been proposed for

processing large-scale data within reasonable computational requirements. These meth-

ods include but not limited to the incremental/stochastic optimization methods [8–13],

incremental/stochastic quasi-Newton methods [14–16], stochastic variational meth-

ods [17–19], and ‘approximate’ Monte Carlo methods [20–26].

The second challenge that appear in processing large-scale data is handling data-

heterogeneity. The data are often collected from multiple sources at different time

points, using different technologies. Fusing different but related data can improve the

performance drastically, provided the different modes of the data contain sufficiently

rich information and a proper model is established for jointly modeling the different

modes.

Various research fields have focused on the data-heterogeneity problem, such as

transfer learning [27–29], multiple-kernel learning [30–32], and coupled matrix and

tensor factorizations [33–36]. Each of these fields has different application-specific

concerns and therefore approaches the problem from a different perspective, if not



2

Figure 1.1. Example observed matrices. X1 is the customer vs product matrix and

X2 is the monthly-sales vs product matrix.

completely different. We will give an overview of these methods in Section 1.5.

The main focus of this thesis will be on coupled matrix and tensor factorizations

for large-scale and/or heterogeneous data. Coupled factorization methods are useful

in various application areas such as audio processing [36–39], computational psychol-

ogy [40, 41], bioinformatics [42–44], or link prediction [45, 46], where heterogeneous

information from diverse sources are available and need to be combined for arriving at

useful predictions. Examples of such situations are abound: for example for product

recommendation, a product-buyer rating matrix can be enhanced with demographic

information from the customer and connectivity information from a social network. In

musical audio processing, one example is having a large collection of annotated audio

data and symbolic music score information. The common theme in all such applications

is the data fusion problem.

1.1. Example: Coupled Matrix Factorization

Let us consider a simple example, where we would like to model the unknown

underlying structure of two observed matrices X1(i1, i3) and X2(i2, i3) that are depicted
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in Figure 1.1. In this model, X1 can be considered as the ‘customer vs product’

matrix, so that X1(i1, i3) denotes the total amount of money that the customer i1 has

spent on the product i3. On the other hand, in the same context X2 would contain

the ‘monthly-sales vs product’ information, so that X2(i2, i3) is the total number of

times that the product i3 is sold during the month i2, where i2 ∈ {1, 2, . . . , 12} ≡
{January, . . . ,December}. As we will illustrate in our experiments, this kind of datasets

often appear in link prediction or recommender system applications, where the aim is

to recommend new products to the customers by making use of all the information

provided by X1 and X2.

The data matrices X1 and X2 share the index i3 (i.e., they both contain the

information of the same products), therefore we can assume that they are related.

Firstly, let us take a closer look at each matrix one by one. It can be clearly seen that

there are two patterns in X1, where the first pattern is active when i3 = 1, 2, 3, 7, 8,

and the second pattern is active when i3 = 4, 5, 6, 7, 8. We can interpret this as there

are three groups of products, where the first group consists of the products 1, 2, and

3, the second group consists of the products 4, 5, and 6, and the third group consists

of the products 7 and 8. We can observe that each group of products is always sold to

the same customers and the amounts that the customers have spent on these products

are very similar.

The main idea in factorization-based modeling is based on exploiting the fact

that, even though there are three different groups of products, the columns of X1 can

be approximated as a linear combination of only two different patterns: for products

1, 2, 3, only the first pattern is active, for products 4, 5, 6, only the second pattern is

active, whereas the products 7 and 8 can be expressed as a linear combination of these

two patterns. In other words, we assume matrices like X1 are low-rank noisy matrices

and therefore we can approximate them by making use of low-rank approximations.

For this example, we can decompose X1 by using a rank 2 approximation, given as
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follows:

X1(i1, i3) ≈
∑
i4

Z1(i1, i4)Z3(i4, i3) (1.1)

where, Z1 and Z3 are rank 2 matrices, i.e. i4 = 1, 2. In this modeling strategy, Z1 is

typically called as the dictionary matrix, since its columns contain the patterns that

occur in X1. Similarly, Z3 is called as the activation matrix, since its rows determine

when the patterns in Z1 are activated.

Now, let us take a look at X2 in a similar fashion. Even though it has more rows

than X1 and their scales are very different, we can still observe that X2 has a similar

underlying structure: there are two major patterns that are synchronously activated

with the patterns in X1. However, X2 has much more variation than X1 as we can

understand from its patterns to be not as crisp as the patterns of X1. Nevertheless, we

can still model X2 by following a similar approach to the one presented in Equation 1.1

and come up with the following coupled model:

X1(i1, i3) ≈
∑
i4

Z1(i1, i4)Z3(i4, i3), X2(i2, i3) ≈
∑
i4

Z2(i2, i4)Z3(i4, i3) (1.2)

where, X2 is decomposed into Z2 and Z3, where Z3 simultaneously activates the pat-

terns in Z1 and Z2. The factor Z3 is the shared factor in both decompositions, making

the overall model coupled. We call the factors Z1 and Z2 as local factors as they are

only related to specific observations. This modeling strategy is also useful for modeling

multi-modal time series, where i3 would correspond to time and X1 and X2 would be

two different modes of the same data. In this sense, Z1 and Z2 contain the bases for

each mode and Z3 forms the common activation structure over time.

The aim in this model is to estimate the latent factors Z1, Z2, and Z3 given X1

and X2, as illustrated in Figure 1.2. In this problem, we need to solve the following
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Figure 1.2. Example decomposition. Here the aim is to estimate the factors Z1, Z2,

and Z3, given the observed matrices X1 and X2.

optimization problem:

(Z?
1 , Z

?
2 , Z

?
3) = arg min

Z1,Z2,Z3

[ 1

φ1

D1(X1||Z1Z3) +
1

φ2

D2(X2||Z2Z3) + λr(Z1, Z2, Z3)
]

(1.3)

where D1 and D2 are divergence functions measuring the approximation error, the dis-

persion parameters φ1 and φ2 are the relative weights for the error in the approximation

to each observed tensor, and r(·) is a regularization term.

Note that, a possible modeling approach for this model would be forming a so

called ‘concatenated’ model, X1,2 ≈ Z1,2Z3 where X1,2 = [X1;X2] and Z1,2 = [Z1;Z2],

and trying to minimize D(X1,2||Z1,2Z3). This approach assumes that all the divergence

functions and the dispersion parameters are exactly the same (D1 ≡ D2, φ1 = φ2); an

assumption which would be violated in several real-world applications (including this

example: each entry of X1 is a real number whereas X2 contains count data, besides
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the scales of X1 and X2 are very different). On the other hand, as we will exemplify

in the next chapters, in some factorization models it will not be possible to form

a concatenated model due to model structures, therefore modeling the observations

separately will be a requirement.

1.2. An Overview of the Inference Methods Used in the Thesis

As we will describe in more detail in the next chapter, the optimization problem

given in Equation 1.3 can also be formulated as a maximum a-posteriori estimation

problem that is given as follows:

(Z?
1:3) = arg max

Z1,Z2,Z3

[
log P(X1;Z1, Z3, φ1) + log P(X2;Z2, Z3, φ2) + log P(Z1, Z2, Z3)

]
(1.4)

where P(Z1, Z2, Z3) is the prior distribution of the latent factors, where log P(Z1, Z2, Z3)

is equal to −r(Z1, Z2, Z3) up to constants. In this setting, minimizing 1
φ1
D1(X1|·) and

1
φ2
D2(X1|·) would be equivalent to maximizing log P(X1; ·) and log P(X2; ·), respec-

tively.

In this thesis, depending on the application, we will be interested in finding the

maximum likelihood (ML) or a-posteriori (MAP) estimates of the factors (as formulated

in Equation 1.4) and characterizing the full posterior distribution of the latent factors

P(Z1, Z2, Z3|X1, X2) via full Bayesian inference. In the sequel, we will provide a brief

overview of the methods that will be used throughout this thesis.

In the subsequent sections, in order to illustrate the methods, we will consider a

simple model where we observe N independent observations x = {x1, . . . , xN}, each of

them being generated from the following probabilistic generative model:

z ∼ P(z) (1.5)

xi|z ∼ P(xi|z), ∀i = 1, 2, . . . , N (1.6)
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where z is a latent variable whose posterior distribution is of interest.

1.2.1. Point Estimation via Optimization

In maximum a-posteriori estimation, our aim is to find the mode of the posterior

distribution by solving the following optimization problem:

z? = arg max
z

P(z|x) = arg max
z

[P(x|z)P(z)] = arg max
z

[log P(x|z) + log P(z)]. (1.7)

Equivalently, we can cast this problem as a cost minimization problem that is given as

follows:

z? = arg min
z

[f(z) + r(z)] (1.8)

where f(z) = −∑N
i=1 log P(xi|z) is the loss function, r(z) = − log P(z) is the regular-

ization term, and the total cost is f(z) + r(z).

Gradient descent (GD) is a well-known optimization algorithm that is based on

first order information. GD aims to find a local minimum of a cost function by itera-

tively taking steps in the negative direction of the gradient, given as follows:

z(t+1) = z(t) − ε(t+1)
(
∇f(z(t)) +∇r(z(t))

)
(1.9)

where t denotes the iteration number, ε(t) is the step-size (also called as the learning

rate), and ∇ is the gradient. In Section 3.1, we will develop a GD algorithm for

making inference in small- and medium-scale coupled factorization models. Besides,

we will also present an adaptive GD algorithm which would be suitable for non-negative

factorizations.

As we will illustrate in our experiments, GD-based approaches can be very pow-

erful in various applications. However, when the size of the observed data increases
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(i.e., N gets larger), GD-based methods become impractical since they need to evaluate

the gradient of f(z) at each iteration, which requires a complete pass on all the data

points. As opposed to GD, incremental gradient descent (IGD) and stochastic gradient

descent (SGD) algorithms make use of a noisy gradient that is computed over a subset

of the data points, instead of the whole data set. Accordingly, the update equation

can be written as follows:

z(t+1) = z(t) − ε(t+1)
(
∇fΩ(t)(z(t)) +∇r(z(t))

)
(1.10)

where Ω(t) ⊂ {1, . . . , N} and

∇fΩ(z) = − N

|Ω|
∑
i∈Ω

∇ log P(xi|z). (1.11)

Here |Ω| denotes the number of elements in Ω. IGD and SGD differ in the way that

they select the subsample Ω(t) at each iteration. These algorithms provide great com-

putational advantages over GD since usually |Ω| � N . Provided certain conditions

are met, these algorithms guarantee z(t) to converge to a local optimum [8,47]. In Sec-

tion 3.2, we will develop a parallel and distributed IGD algorithm for making inference

in large-scale coupled factorization models where the observations could be distributed

among many nodes.

Due to their simplicity and nice theoretical properties, GD, SGD, and IGD are

widely used in practical applications. However, since they are solely based on first

order information, they can suffer from slow convergence. On the contrary, Newton’s

method utilizes second order information to circumvent such problems by applying the

following update rules:

z(t+1) = z(t) − (H(t))−1
(
∇f(z(t)) +∇r(z(t))

)
(1.12)

where H = ∇2(f(z) + r(z)) is the Hessian matrix. Even though this algorithm enjoys

far better properties in terms of convergence speed, it requires huge computational
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requirements: at each iteration, we need to estimate H and solve a large linear system,

which make the method impractical except for very small-scale problems.

Quasi-Newton (QN) methods aim to make use of the second order information

in an efficient way by replacing H with an approximate Hessian Ĥ which is often

computed by using the past gradients that are computed throughout the optimization

procedure:

z(t+1) = z(t) − ε(t+1)(Ĥ(t))−1
(
∇f(z(t)) +∇r(z(t))

)
. (1.13)

However, these methods still suffer from computational complexity in large-scale set-

tings where computing the gradients on the whole data set and storing them in the

memory would not be possible.

By borrowing ideas from incremental optimization algorithms, in Section 3.3,

we will develop a parallel and distributed incremental QN algorithm for large-scale

coupled factorizations where the gradients and the approximate Hessian is computed

over subsamples of the dataset:

z(t+1) = z(t) − ε(t+1)Ĥ−1
Ω(t)

(
∇fΩ(t)(z(t)) +∇r(z(t))

)
. (1.14)

Since it incorporates second order information, this method is also expected to have nice

convergence properties, while at the same time it would be computationally efficient

since it makes use of incremental gradients.

1.2.2. Full Bayesian Inference via Markov Chain Monte Carlo

Maximum likelihood and a-posteriori estimation methods provide us useful and

practical tools that can be used in various applications. However, in certain cases, they

are prone to over-fitting since they fall short at capturing uncertainties that arise in

the inference process. Instead of aiming to obtain single point estimates of the latent

variables, full Bayesian inference aims to characterize the full posterior distribution over
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the latent variables. Apart from being able to handle the uncertainties and therefore

being robust to over-fitting, full Bayesian inference has many advantages over the point

estimation methods in various tasks such as the model selection problem.

Monte Carlo methods are a set of numerical techniques to estimate expectations

of the form:

〈ϕ(z)〉π(z) =

∫
ϕ(z)π(z)dz ≈ 1

M

M∑
t=1

ϕ(z(t)) (1.15)

where 〈ϕ(z)〉π(z) denotes the expectation of the function ϕ(z) under the distribution

π(z) and z(t) are independent samples drawn from the target distribution π(z), that

will be the posterior distribution P(z|x) in our case. Under mild conditions on the test

function ϕ, this estimate converges to the true expectation as M goes to infinity. The

challenge here is obtaining independent samples from a nonstandard target density π.

Markov Chain Monte Carlo (MCMC) techniques generate subsequent samples

from a Markov chain defined by a transition kernel T , that is, one generates z(t+1)

conditioned on z(t) as follows:

z(t+1) ∼ T (z|z(t)). (1.16)

The transition kernel T does not need to be formed explicitly in practice; we only need

a procedure that samples a new configuration, given the previous one. Perhaps sur-

prisingly, even though these subsequent samples are correlated, Equation 1.15 remains

still valid, and estimated expectations converge to their true values when number of

samples M goes to infinity, provided that T satisfies certain ergodicity conditions. In

order to design a transition kernel T such that the desired distribution is the stationary

distribution, that is,

π(z) =

∫
T (z|z′)π(z′)dz′ (1.17)
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various strategies can be applied, where the most popular MCMC strategy being the

Metropolis-Hastings (MH) algorithm [48]. In Section 5.1, we will develop block and

collapsed Gibbs samplers for sampling from the posterior distribution of the latent

factors in small- and medium-scale coupled factorization models. In Section 5.2, we

will develop a stochastic gradient based parallel and distributed MCMC method that

can gracefully scale up to large scale problems.

1.3. The Objectives and the Contributions of the Thesis

In this thesis, we aim to address the following problems:

(i) Maximum likelihood and a-posteriori estimation of the latent factors: The latent

factors Z1, Z2, and Z3 are clearly the most important variables in the model.

These variables are particularly useful for analyzing the observed matrices or

predicting missing parts of the observed matrices. High quality estimation of

these variables is key to the success of an application.

(ii) Estimation of the dispersions: The dispersion parameters φ1 and φ2 play an

important role in coupled factorizations as they form the balance between the

approximation error to X1 and X2, for example observations may have been

recorded using different and unknown scales, as the case in our running example.

Typically, such weight parameters are selected manually [36, 39] and data is as-

sumed to be suitably preprocessed. In a statistical setting, these relative weights

are directly proportional to the observation noise variances and can be estimated

directly from data.

(iii) Automatic selection of the divergences: Squared Euclidean distance is commonly

used in tensor models, implicitly related to a conditionally Gaussian noise as-

sumption. However, heavy-tailed noise distributions are often needed for robust

estimation and more specific noise models are needed for sparse data, where

Gaussian assumptions fall short. Choosing suitable divergence functions D1 and

D2 becomes even more critical in coupled models due to the data heterogeneity,

where X1 and X2 may have different statistical characteristics. In such cases, it

is useful to choose a specific divergence for each observed matrix, where we call
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total cost functions such as Equation 1.3 as mixed divergences.

(iv) Full Bayesian inference for the latent factors: Maximum likelihood and a-posteriori

estimation of the latent factors provide us useful and practical tools that can be

used in various applications. However, in certain cases, they are prone to over-

fitting since they fall short at capturing uncertainties that arise in the inference

process. Instead of aiming to obtain single point estimates of the latent variables,

full Bayesian inference aims to characterize the full posterior distribution over the

latent variables. Apart from being able to handle the uncertainties and therefore

being robust to over-fitting, full Bayesian inference has many advantages over the

point estimation methods in various tasks such as the model selection problem.

(v) Distributed and parallel inference: Modern computing infrastructure comprises

of systems with hybrid architectures and the data may be distributed across

several computers where each computer has multiple processors such as a mul-

ticore system or a graphics processing unit (GPU). Coupled tensor models are

naturally adopted for such hybrid architectures. For example, X1 and X2 can be

distributed in a large-scale setting. This motivates the development of distributed

and parallel methods for inference.

(vi) Handling arbitrary model topologies: So far, we have motivated the open ques-

tions on the example model of Equation 1.2. However, in applications, as we

will also demonstrate in Chapters 6, 8, and 7, one often needs to develop cus-

tom model topologies, where either the observed objects or the latent factors

have multiple entities and cannot be represented without loss of structure using

a matrix. To have this modeling flexibility for real world data sets that may

consist of several tensors and require custom models, we would like to develop an

algorithmic framework to handle a broad variety of model topologies.

Our main contributions are as follows:

(i) We rigorously develop the tensor factorization notation of [35], that aims to cover

all possible model topologies and coupled factorization models. Our notation

highlights the partially separable structure of tensor factorization models, which

paves the way for developing parallel and distributed inference algorithms.
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(ii) We develop two novel, inherently parallel optimization algorithms for maximum

and a-posteriori estimation of the latent variables. As we demonstrate in our

applications, these algorithms are particularly suited for distributed applications.

(iii) For jointly inferring the dispersions and the divergences, we develop two novel

methods. The first method is focused on a particular family of noise distributions,

whereas the second method is more general.

(iv) We develop novel Markov Chain Monte Carlo (MCMC) methods for making full

Bayesian inference in the models. For moderate-sized data, we develop ‘block’ and

‘collapsed’ Gibbs samplers. For large-scale applications, we develop an inherently

parallel stochastic gradient-based MCMC method, that can gracefully scale up

to large-scale, distributed problems.

(v) We develop several novel factorization models that aim to solve various challeng-

ing problems. Our main application focus will be on audio processing. We report

successful results in several applications.

(vi) Finally, we develop a novel factorization model with α-stable observations, that is

particularly suited for impulsive or corrupted data that appear in several domains

such as audio processing. We develop a novel MCMC method for sampling from

the posterior distributions of the latent variables in this model.

1.4. Factorization-Based Data Modeling

In this section, we will describe the basics of factorization based modeling, and

describe extensions such as coupled tensor factorizations and nonnegative decomposi-

tions.1

In many applications, data can be represented as a matrix, for example, the spec-

trogram of an audio signal (frequency vs time), a dataset of images (pixel coordinates

vs instances), word frequencies among different documents (words vs documents), and

the adjacency structure of a graph (nodes vs nodes) to name a few. Here the indices

of the matrix correspond to the entities, and the matrix elements describe a relation

between the two entities. Matrix Factorization (MF) models are one of the most widely

1This section is based on the material published in [49].
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used methods for analyzing the data that involve two entities [50–53]. The goal in these

models is to calculate a factorization of the form:

X1(i, j) ≈ X̂1(i, j) =
∑
k

Z1(i, k)Z2(k, j) (1.18)

where X1 is the given data matrix, X̂1 is an approximation to X1, and Z1, and Z2 are

factor matrices to be estimated. Even though we have a single observed matrix in this

model, we use a subscript in X1 since we will consider factorization models that involve

more than one observed matrix or tensor, later in this section. Here, X1 is expressed

as the product of Z1 and Z2, where Z1 is considered as the dictionary matrix and Z2

contains the corresponding weights (or activations). From another perspective, X1 is

approximated as the sum of inner products of the columns of Z1 and the rows of Z2,

as illustrated at the top of Figure 1.4. Note that, if Z1 would have been fixed, the

problem would have been equivalent to basis regression where the weights (expansion

coefficients) Z2 are estimated [54]. In contrast, in matrix factorization the dictionary

(the set of basis vectors) is estimated along with the coefficients. This modeling strategy

has been shown to be successful in various fields including signal processing, finance,

bioinformatics, and natural language processing [51].

Matrix factorization models are applicable when the observed data encapsulates

the relation of two different entities (e.g., i and j in Equation 1.18). However, when the

data involves multiple entities of interest, such as ternary or higher order relations it

cannot be represented without loss of structure by using matrices. For example a mul-

tichannel sound library of several instances may be represented in the time-frequency

domain conveniently as an object with several entities, say the power at each (frequency,

time, channel, instance). One could in principle ‘concatenate’ each spectrogram across

time and instances to obtain a big matrix, say (frequency × channel, time × instance)

but this representation would obscure important structural information – compare

simply with representing a matrix with a column vector. Hence one needs naturally

multiway tables, the so-called tensors, where each element is denoted by T (i, j, k, . . . ).

Here, T is the tensor and the indices i, j, k, . . . are the entities. The number of distinct
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Figure 1.3. Illustration of a) a vector X(i): an array with one index b) a matrix

X(i, j) an array with two indices c) a tensor X(i, j, k): an array with three or more

indices. In this study, we refer vectors as tensors with one mode and matrices as

tensors with two modes.

entities dictates the mode of a tensor. Hence a vector and a matrix are tensors of mode

one and two respectively. Tensors are illustrated in Figure 1.3 and we will give a more

precise and compact definition in Chapter 2.

For modeling multiway arrays with more than two entities the canonical polyadic

decomposition [55, 56] (also referred as, CP, PARAFAC, or CANDECOMP) is one of

the most popular factorization models. The model, for three entities, is defined as

follows:

X2(i,m, r) ≈ X̂2(i,m, r) =
∑
k

Z1(i, k)Z3(m, k)Z4(r, k) (1.19)

where the observed tensor X2 is decomposed as a product of three different matrices.

Analogous to MF models, this model approximates X2 as the sum of ‘inner products’

of the columns of Z1, Z3, and Z4 as illustrated at the bottom of Figure 1.4. This

model has been shown to be useful in chemometrics [57], psychometrics [55], and signal

processing [51].
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⇡ + + . . . +

Z3(:, 1)
Z 4

(:,
1)

X2

i

m

r

Z1(:, 1)

Z3(:, K)Z3(:, 2)
Z 4

(:,
2)

Z 4
(:,

K
)

Z1(:, K)Z1(:, 2)

⇡ + + . . . +X1

i

j Z2(1, :) Z2(2, :) Z2(K, :)

Z1(:, 1) Z1(:, K)Z1(:, 2)

Figure 1.4. Coupled MF-PARAFAC illustration. The observed matrix X1 is

approximated as the sum of inner products of the columns of Z1 and the rows of Z2.

Similarly, X2 is approximated as the sum of ‘inner products’ of the columns of Z1, Z3,

and Z4. The overall model is coupled since the matrix Z1 is shared in both

factorizations. Here K denotes the size of the index k: k ∈ {1, . . . , K}.

Tucker model [58] is another important model for analyzing tensors with three

modes, which is a generalization of the PARAFAC model. The model is defined as

follows:

X3(i, j, k) ≈ X̂3(i, j, k) =
∑
p

∑
q

∑
r

Z1(i, p)Z2(j, q)Z3(k, r)Z4(p, q, r) (1.20)

where X3 is expressed as the product of three matrices (Z1:3) and a ‘core tensor’ (Z4).

When the core tensor Z4 is chosen as super diagonal (Z4(p, q, r) 6= 0 only if p = q = r),

Tucker decomposition reduces to PARAFAC.

1.4.1. Coupled Factorization Models

In certain applications, information from different sources are available and need

to be combined for obtaining more accurate predictions [37, 40, 42, 45, 59]. In musical
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audio processing, one example is having a large collection of annotated audio data

and a collection of symbolic music scores as side information. Similarly, in product

recommendation systems, a customer-product rating matrix can be enhanced with

connectivity information from a social network and demographic information from the

customer. For these problems, a single factorization model would not be sufficient for

exploiting all the information in the data and we need to develop more comprehensive

modeling strategies in order to be able to combine different data sources in a single

factorization model. Such models are called as coupled tensor factorization models,

where the aim is to simultaneously factorize multiple observed tensors that share a set

of latent factors.

Let us consider an example coupled matrix-tensor factorization model where two

observed tensors X1 and X2 are collectively decomposed as

X1(i, j) ≈ X̂1(i, j) =
∑
k

Z1(i, k)Z2(k, j)

X2(i,m, r) ≈ X̂2(i,m, r) =
∑
k

Z1(i, k)Z3(m, k)Z4(r, k) (1.21)

where X1 is decomposed by using an MF model and X2 is decomposed by using a

PARAFAC model. The factor Z1 is the ‘shared factor’ in both decompositions, making

the overall model coupled. Figure 1.4 illustrates this model. In our experiments,

we will illustrate the usefulness of various factorization models on audio processing

applications.

1.4.2. Non-Negative Tensor Factorizations

So far, we have described some of the most important matrix and tensor factoriza-

tion models. However, even if two factorization models have the exact same topology

(e.g., both models are MF models with the same number of parameters), depending on

the constraints placed over the latent factors, the factorizations might have completely

different interpretations. For instance, in the MF models, one option is not to restrict

the factors by not placing any constraints over them. On the other hand, we can have
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orthogonality constraints on the factors, where the factorization would turn into the

principal component analysis.

Even if we place highly restrictive constraints such as orthogonality, the estimated

factors would be dense and their physical interpretations in applications would be quite

limited as long as their elements are allowed to take any positive and negative values.

In this study, we will mainly consider non-negative factorization models [51], where we

will restrict all the elements of the factors to be non-negative. Here, the non-negativity

constraint implicitly imposes an additive structure on the model, where the contribu-

tions of the latent factors are always added since there will not be any cancellations

due to negative values, as opposed to the aforementioned cases. Therefore, this strat-

egy promotes sparsity on the factors since most of the entries in the factors would be

close to zero in order the model to be able to fit the data, and more importantly the

estimated factors will have physical interpretations that might be essential in many

fields, such as audio processing. On the other hand, as we will describe in more de-

tail in Chapters 2 and 5, by modeling tensors with probabilistic tensor factorization

models, we essentially decompose the parameters of a probabilistic model that are non-

negative by definition (e.g., the intensity of a Poisson distribution or the mean of a

gamma distribution) and are constructed as the sum of non-negative sources [52]. In

this modeling strategy, the non-negativity constraint on the factors is rather a necessity

than an option.

Moreover, in our audio processing applications, we will model the energies of

signals in the time-frequency domain that are known as the magnitude or power spectra.

For modeling these spectra, the non-negativity constraint turns out to be very natural,

since realistic sounds can be viewed as being composed of purely additive components.

For example, music signals consist of multiple instruments, and the signal of each

instrument consists of multiple notes played by the instrument. Speech signals consist

of basic units such as phonemes and words. Cancellation of sounds happens only

intentionally and in very specific scenarios, for example in echo cancellation systems.
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1.5. Related Fields

Various other research fields have considered the data-heterogeneity problem. In

this section, we will briefly describe two of the most important research fields, namely

multiple kernel learning and transfer learning, that aim to model heterogeneous data

in a systematic manner.

1.5.1. Multiple Kernel Learning

Multiple Kernel Learning (MKL) algorithms handle heterogeneous data by com-

bining more than one kernel instead of using a single kernel in kernel machines such as

support vector machines. Let us consider the support vector machine, which aims to

find the linear discriminant function of the form f(x) = w>Φ(x) + b, where x is N ×D
training data (N samples, D dimensions), and Φ(·) is a mapping function. The optimal

discriminant function is obtained by solving the following optimization problem:

min
w,ξ,b

1

2
||w||22 + C

∑
i

ξi

subject to yi(w
>Φ(xi) + b) ≥ 1− ξi ∀i (1.22)

where y represents the class labels (yi ∈ {−1, 1}), b is the bias term, w denotes the

weights, ξ is a collection of slack variables, and C is a trade-off parameter. The dual

of this problem can be obtained by using the Lagrangian dual function, that is given

as follows:

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj Φ(xi)
>Φ(xj)︸ ︷︷ ︸

κ(xi,xj)

subject to
∑
i

αiyi = 0, C ≥ αi ≥ 0, ∀i (1.23)

where α is a vector containing dual variables and κ(·) is the kernel function. In practice,

the kernel function κ(·) is usually selected as the linear, polynomial, or the Gaussian

kernel [30]. There are also application-specific kernel functions such as [60,61].
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MKL algorithms use multiple kernel functions instead of a single kernel function:

κη(xi, xj) = fη

(
κ1(xi, xj), κ2(xi, xj), . . . , κK(xi, xj)

)
(1.24)

where fη(·) is the combination function and κi(·) denotes the kernel functions to be

combined. As investigated in detail in [30], combining multiple kernels can serve two

main purposes: 1) different kernels would correspond to different similarity measures

for the data, instead of picking a single kernel, we can combine the kernels in order to

get a better similarity measure, 2) we can use different kernels for modeling different

parts of the data, if different parts of the data are coming from multiple sources (i.e.,

they are heterogeneous). MKL algorithms aim to estimate the combination function

fη(·) along with the parameters of the kernel functions κi(·). MKL techniques have

been shown to be useful for many applications such as emotion prediction [62], image

retrieval [63], and bioinformatics [31]. A comprehensive overview of MKL algorithms

is provided in [30].

Even though it might not be clear at a first sight, Potluru has showed that there

are close connections between SVMs and factorization models [64]. We can indeed

show that the objective function in Equation 1.23 can be rewritten as follows:

min
α

1

2

(∑
i∈A

∑
j∈A

ρij − 2
∑
i∈B

∑
j∈A

ρij +
∑
i∈B

∑
j∈B

ρij

)
−
∑
i

αi (1.25)

where we define ρij = αiαjκ(xi, xj), A = {i|yi = 1}, and B = {i|yi = −1}. By making

use of the definition of κ(xi, xj), we can rewrite Equation 1.25 as follows:

min
α

1

2
‖Φ(xA)>αA − Φ(xB)>αB‖2

2 −
∑
i

αi (1.26)

where xA and xB denotes the data samples that belong to different classes, and α is

split into αA and αB accordingly. We can view the first term of this problem as a
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factorization model with the following form

Z ≈
[

Φ(xA) −Φ(xB)
]> [

αA αB

]
(1.27)

where each element of the matrix Z is set to zero and the second term in Equation 1.26

acts as a regularization term.

For certain choices for the combination function fη(·) and the kernels κk(·) defined

in Equation 1.24, the MKL problem can also be casted as a factorization problem.

However, in the general case the MKL problem drifts apart from a MF problem.

1.5.2. Transfer Learning

Majority of the machine learning algorithms assume that the training and test

data are in the same feature space and have the same underlying distribution. However,

in some cases, the training data for a certain problem can be insufficient and we might

have a sufficiently large set of data from a different but related problem, where the

this data might have different statistical properties and might even lie in a different

space. Transfer learning methods aim to transfer the information learned from a source

task to a target task. In this section, we will consider the transfer learning examples

provided in [27].

Let us first consider the supervised feature learning problem given in [28]. Here,

the aim is to learn higher level features by using a source data and target data whose

class labels are all known. The authors proposed an ‘inductive’ transfer learning ap-

proach, where the aim was to optimize the following optimization problem:

min
U,As,At

D(ys||AsUXs) +D(yt||AtUXt) + γ(||As||2,1 + ||As||2,1)

subject to U is orthogonal (1.28)

where ys and yt are the class labels, Xs and Xt are the data matrices, As and At
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are the parameter matrices of the source and target, respectively. Here, the aim is to

estimate the matrices U , As, and At. As and At will be the higher level features and

U is responsible for the information transfer. It is easy to verify that this problem is

actually a coupled factorization problem of the form of Equation 1.3, where the model

can be rewritten as ys ≈ AsUXs and yt ≈ AtUXt with additional penalty terms.

Another example for transfer learning is the unsupervised feature construction

problem given in [29]. Here, the aim is again to learn higher level features by using a

source and target data. However, in this case the class labels ys and yt are not known.

For this problem, the authors proposed a two-step algorithm, where the first stage

solves the following optimization problem:

min
As,B

||Xs − AsB||22 + β||As||1

subject to ||Bj|| < 1, ∀j (1.29)

where B will form a basis for both source and target data and As is the features for

the source data. When we estimate the matrices As and B, we proceed to the next

step, where we solve the following optimization problem:

min
At

||Xt − AtB||22 + β||At||1 (1.30)

where B is fixed for this problem. By learning the basis B on the source data and

fixing it from then on, we transfer information from source to the target. Similar to the

supervised transfer learning example, this problem can also be seen as a factorization

problem, where we first factorize the matrix Xs ≈ AsB, then we factorize the matrix

Xt ≈ AtB.

There are many other forms of transfer learning, such as transferring parameters,

transferring relational knowledge, transferring instances, transferring feature represen-

tations. A comprehensive survey of transfer learning is provided in [27].
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1.6. Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we describe our tensor factoriza-

tion notation in detail and define our main probabilistic model for tensor factorizations.

In Chapter 3, we describe three methods for obtaining the maximum likelihood and

a-posteriori estimates of the latent factors; the first method is suited for moderate-sized

data, whereas the remaining ones are suited for large-scale applications. In Chapter 4,

we develop two methods for jointly estimating the mixed divergences along with the la-

tent factors. In Chapter 5, we develop two different Monte Carlo methods for sampling

from the full posterior distribution of the latent factors, where one of the methods

can be used in large, distributed settings. In Chapters 6, 7, and 8, we present our

experimental results on various applications. Finally, Chapter 9 concludes this thesis.
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2. PROBABILISTIC MODELING OF COUPLED TENSOR

FACTORIZATIONS

As demonstrated in Chapter 1, one often needs to develop custom model topolo-

gies, where either the observed objects or the latent factors can have multiple entities

and cannot be represented without loss of structure using a matrix. To have this mod-

eling flexibility for real world data sets that may consist of several tensors and require

custom models, we would like to deal with a broad variety of tensor factorization mod-

els. In this chapter, we will rigorously develop the non-standard tensor notation of [35],

that aims to cover all possible model topologies and coupled factorization models.

In our notation, a tensor is an N -way array, where we refer vectors as tensors

with one index and matrices as tensors with two indices. We will denote tensors with

capital letters, such as A, with its elements denoted by A(i1, i2, . . . , iN). Here, A has

N distinct indices i1, i2, . . . , iN . We let I = [N ] to be the index set of A, where [N ]

denotes the set {1, 2, . . . , N}. Each index ik for k ∈ I runs from 1 to its cardinality,

denoted by sk; i.e., we have ik ∈ {1 . . . sk}, alternatively, ik ∈ [sk]. Each element of A

is a real number and we write A ∈ Rs1×···×sN .

Example 2.1. Suppose we have a 3-way tensor A(i1, i2, i3) where i1 ∈ {1, 2}, i2 ∈
{1, 2, 3} and i3 ∈ {1, 2}. Then, the index set is I = {1, 2, 3}, N = 3, and the index

sizes are s1 = 2, s2 = 3, s3 = 2; hence A ∈ R2×3×2.

In order to be able to handle a broad variety of tensor models and avoid unneces-

sary model specific notation, we index the elements of tensors with index configurations.

An index configuration v is an N -tuple from the product space of the domains of all

indices defined as:

v ∈ CI(I) ≡
∏
k∈I

[sk] = [s1]× [s2]× · · · × [sN ].
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We will call the set C as the set of index configurations. Given an index configuration

v, we will write v(k) to refer specifically to the value of the index ik, i.e., v(k) = ik.

Given the index set I, a tensor element A(i1, i2, . . . , iN) is denoted more compactly by

A(v).

Often, we need to iterate over configurations on a particular subset Iα ⊂ I. Given

a particular v ∈ CI(I), we define vα as the index configuration such that

vα(k) = v(k) = ik

for all k ∈ Iα and, vα(k) = 1 for all k /∈ Iα. That is,

vα ∈ CI(Iα) =
∏
k∈I

[s
1(k∈Iα)
k ] = [s

1(1∈Iα)
1 ]× [s

1(2∈Iα)
2 ]× · · · × [s

1(N∈Iα)
N ] (2.1)

where 1(x) = 1 if x is true, and 1(x) = 0 otherwise. We will call CI(Iα) as the set of

index configurations of Iα with respect to the domain I where Iα ⊂ I.

Example 2.2. Following Example 2.1, the set of index configurations CI(I) is as fol-

lows: CI(I) = {(1, 1, 1), (1, 1, 2), (1, 2, 1) . . . , (2, 3, 1), (2, 3, 2)}.

We define the tensor contraction as the operation of summing a tensor over a

subset of its indices. Often, we are required to contract a tensor F with index set J

over a subset of its indices to obtain a tensor X̂ with index set I0 ⊂ J . We define the

index configurations v ∈ CJ(J), v0 ∈ CJ(I0), and v̄0 ∈ CJ(Ī0) where Ī0 = J \ I0 denotes

the indices that are not present in X̂. We write

X̂(v0) =
∑
v̄0

F (v0 ∪ v̄0) =
∑
v̄0

F (v),

where the union is defined as (v0 ∪ v̄0) ∈ CJ(I0 ∪ Ī0) such that (v0 ∪ v̄0)(k) = v(k) for

all k such that ik ∈ I0 ∪ Ī0 and (v0 ∪ v̄0)(k) = 1 otherwise.

Example 2.3. Suppose we wish to sum the tensor A in Example 2.1 over i2 to obtain
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Table 2.1. Illustration of different factorization models in the GCTF notation. Here

Nx is the number of observed tensors, Nz is the number of latent factors, I is the set

of all indices in the model, I0,ν are the set of indices of Xν , Iα are the set of indices of

Zα, R is the coupling matrix.

Nx Nz I I0,ν Iα R

MF (Eq.1.18) 1 2 {i, j, k} {i, j} {i, k}, {k, j} [1, 1]

PARAFAC (Eq.1.19) 1 3 {i, j, k, r} {i, j, k}
{i, r},

[1, 1, 1]
{j, r}, {k, r}

TUCKER (Eq.1.20) 1 4 {i, j, k, p, q, r} {i, j, k}
{i, p}, {j, q},

[1, 1, 1, 1]
{k, r},{p, q, r}

MF-PARAFAC (Eq.1.21) 2 4 {i, j, k,m, r}
{i, j}, {i, k}, {k, j},

1 1 0 0

1 0 1 1


{i,m, r} {m, k},{r, k}

the tensor X̂. Here, the result X̂ would be a tensor with two indices i1 and i3, with the

index set as I0 = {1, 3}. In traditional notation, the contraction would be denoted as

X̂(i1, i3) =
∑
i2

A(i1, i2, i3).

Instead of dropping index i2, we write the result of the contraction as

X̂(i1, 1, i3) =
∑
i2

A(i1, i2, i3)

adopting the convention that X̂(i1, 1, i3) and X̂(i1, i3) refer to the same object. Hence

the summation over the index i2 is equivalent to computing

X̂(i1, 1, i3) = A(i1, 1, i3) + A(i1, 2, i3) + A(i1, 3, i3)

for each possible configurations of the pair i1, i3. This is exactly the elements of the

sets of index configurations of I0 given as

CI(I0) = {(1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)}.
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We have Ī0 = I \ I0 = {2} and the set of index configurations of Ī0 is:

CI(Ī0) = {(1, 1, 1), (1, 2, 1), (1, 3, 1)}.

Similarly, we define the tensor product as the operation of multiplying two tensors.

Two tensors Z1 and Z2 with index sets I1 and I2 can be mutiplied to obtain the tensor

product G on the index set J = I1 ∪ I2. We write

G(w) = Z1(v1)Z2(v2)

where w = v1 ∪ v2. More generally, for index sets Iα ⊂ J where J = ∪αIα for α ∈ [Nz],

we let w ∈ CJ(J) and vα ∈ CJ(Iα). The product is a tensor G with the index set J , and

Zα are a collection of tensors, each with the index set Iα. When w = v1∪v2∪· · ·∪vNz ,
we write

G(w) =
∏

α∈[Nz ]

Zα(vα) = Z1(v1)Z2(v2) . . . ZNz(vNz).

The generalized coupled tensor factorization (GCTF) framework is a statistical

model for multiple observed tensors Xν for ν ∈ [Nx]. Each observed tensor Xν is

approximated by a model output tensor X̂ν that is obtained by the product of some

latent tensors Zα for α ∈ [Nz]. The model is defined as follows:

Xν(uν) ≈ X̂ν(uν) =
∑
ūν

∏
α

Zα(vα)R
ν,α

(2.2)

Here, uν ∈ CI(I0,ν) denotes the index configuration of Xν and vα ∈ CI(Iα) denotes

the index configuration of Zα, where I0,ν and Iα denote the index sets of an observed

tensor Xν and a latent factor Zα, respectively. The set of all indices of a GCTF model

is denoted by the index set I = {1, 2, . . . , N}; it is the union of all indices used in the
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Table 2.2. The correspondence between the elements of relational databases and the

GCTF framework.

Relational Database GCTF Model Notation

View Observed tensor ν Xν

Table Latent tensor α Zα

Primary keys of a view Visible index set of the ν’th observed tensor I0,ν

All keys of all views Visible index set ∪νI0,ν
Primary keys of a table Set of latent indices of the α’th latent tensor Iα

All keys of all tables Set of latent indices ∪αIα
A unique key combination of a view Index configuration uν

A unique key combination of a table Index configuration vα

A data field of a view Observed tensor Element Xν(uν)

A data field of a table Latent tensor Element Zα(vα)

model, both the indices of observed and latent tensors:

I =

(⋃
ν

I0,ν

)
∪
(⋃

α

Iα

)
. (2.3)

R is an Nx×Nz matrix with binary entries (0 or 1) that describes the coupling structure

of a GCTF model, where each entry Rνα specifies if the model output tensor X̂ν is a

function of Zα:

Rνα =

 1 Xν is connected to Zα

0 Xν is not connected to Zα
. (2.4)

Finally, ūν ∈ CI(Ī0,ν) denote the index configurations that X̂ν is contracted on, where

Ī0,ν =

( ⋃
α,Rνα=1

Iα

)
\ I0,ν . (2.5)

The factors Zα are called local if they are connected to a single observed tensor

(
∑

ν Rνα = 1) and shared if they are connected to multiple observed tensors (
∑

ν Rνα >
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1). Table 2.1 lists all the factorization models described earlier in the thesis as specific

instances of the GCTF notation.

Our tensor notation is deliberately non-standard as our aim is developing a frame-

work that can handle a broad class of model structures, including standard and appli-

cation specific ones. The GCTF model can be viewed as a latent variable model for a

relational database. Remember that a relational database contains several tables and

information is linked across tables via keys, that are shared among tables. Information

from distinct tables can be joined by using the shared keys across tables to create

views. In this respect, each view is a particular projection of the data, as computed

by a distinct query that joins a multiple of database tables. In GCTF, we envisage

a process in the reverse direction; here the data is provided to us only by a fixed set

of views, and we wish to approximately construct the latent tables of the database,

that is to collectively factorize out the tables from the observed views. Analogous to a

collection of tables in a relational database, GCTF defines a system of latent tensors

Zα, which share indices. The analogies are given in Table 2.2.

2.1. The Probabilistic Model

GCTF assumes the following probabilistic model on the observed tensors:

P(Xν |X̂ν , φν , pν) =
∏
uν

T Wpν

(
Xν(uν); X̂ν(uν), φν

)Mν(uν)
, ν = 1, . . . , Nx (2.6)

Here, Mν is a binary mask tensor of size Xν , where

Mν(uν) =

 1 Xν(uν) is observed

0 Xν(uν) is missing
. (2.7)

Besides, T W denotes Tweedie distribution and X̂1:Nx are the model output tensors

that are defined in Equation 2.2. Tweedie distribution is an important special case of

exponential dispersion models, characterized by three parameters, described in more

detail in Appendix B. Tweedie densities T Wp(x; x̂, φ) can be written in the following
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Figure 2.1. Illustration of the Tweedie distribution with different power and

dispersion parameters.

moment form:

P(x; x̂, φ, p) = K(x, φ, p) exp

(
−1

φ
dp(x||x̂)

)
(2.8)

where x̂ is the mean, φ is the dispersion, p is the power parameter and dp(·) denotes

the β-divergence defined as follows:

dp(x||x̂) =
x2−p

(1− p)(2− p) −
xx̂1−p

1− p +
x̂2−p

2− p (2.9)

with p = 2 − β. This model is also known as the power variance model, since the

variance of the data has the following form: var(x) = φx̂p.

By taking appropriate limits, it is easy to verify that dp(·) is the Euclidean dis-

tance square, information divergence, and Itakura-Saito divergence for p = 0, 1, 2,

respectively. In the probabilistic counterpart, different choices of p yield well-known

important distributions such as Gaussian (p = 0), Poisson (p = 1), compound Poisson
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Table 2.3. Tweedie distributions with corresponding normalizing constants and

divergence forms. The general form of the distribution is given in Equation 2.8.

p Divergence Distribution Normalizing Constant Divergence Form

2− β β-divergence Tweedie K(x, φ, p) dp(x||x̂)

0 Euclidean Gaussian (2πφ)1/2 1

2
(x− x̂)2

1 Kullback-Leibler Poisson
ex/φΓ(x/φ+ 1)

(x/φ)x/φ
x log

(x
x̂

)
− x+ x̂

2 Itakura-Saito Gamma Γ(1/φ)(eφ)1/φx
x

x̂
− log

(x
x̂

)
− 1

3 – Inverse Gaussian (2πx3φ)1/2 1

2

(x− x̂)2

xx̂2

(1 < p < 2), gamma (p = 2) and inverse Gaussian (p = 3) distributions. Excluding the

interval 0 < p < 1 for which no exponential dispersion model exists, for all other values

of p, one obtains Tweedie stable distributions [65]. Figure 2.1 illustrates the Tweedie

distribution for different p and φ values. Table 2.3 shows the normalizing constants

and the divergence forms for p ∈ {0, 1, 2, 3}.

An important property of the Tweedie distribution is that the normalization

constant K does not depend on x̂; hence it is easy to see that for fixed p and φ,

solving a maximum likelihood problem for x̂ is indeed equivalent to minimization of

the β-divergence. For the familiar Gaussian case, we have

T W0(x; x̂, φ) = (2πφ)−1/2 exp(−1

φ
d0(x; x̂))

where d0(x; x̂) = (x − x̂)2/2 and the dispersion is simply the variance. As for all

admissible p, we have a similar form; Tweedie models generalize the established theory

of least squares linear regression to more general noise models (restricted to identity

link functions).

For regularization and incorporating prior knowledge, we place prior distributions

over the latent factors. Depending on the application, we might consider different prior
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distributions on the latent factors. For example, we can choose an exponential prior

over the latent factors that can be used for all the cases of the power parameter p,

shown as follows:

Zα(vα) ∼ E(Zα(vα);Aα(vα)) (2.10)

where E denotes the exponential distribution. We can also choose more sophisticated

priors for individual cases of p. For instance, in the case of Poisson observations (p = 1),

we can choose a gamma prior model

Zα(vα) ∼ G(Zα(vα);Aα(vα), Bα(vα))

where G denotes the gamma distribution. We further regularize φ and assume an

inverse gamma prior on φ:

φ ∼ IG(φ, τφ, κφ) (2.11)

The definitions of the distributions that are mentioned in this thesis are given in Ap-

pendix A.

In this probabilistic setting, the power parameter pν determines the divergence

function (e.g., D1 or D2 in Equation 1.3), the dispersion φν determines the relative

weight of the cost, and the mean parameter X̂ν is the output of the desired factorization

as given in Equation 2.2.

Once we observe the tensors X1:Nx , we would like to make inference in the proba-

bilistic model defined in Equation 2.6. In the next chapter, we will focus on estimating

the latent factors Z1:Nz , given the dispersion φ1:Nx and power parameters p1:Nx . In

particular, we will develop methods for obtaining point estimates, such as maximum

likelihood (ML) or maximum a-posteriori (MAP):
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(i) ML: Z?
1:Nz

= arg max
Z1:Nz

log
[
P(X1:Nx|Z1:Nz)

]
(ii) MAP: Z?

1:Nz
= arg max

Z1:Nz

log
[
P(X1:Nx|Z1:Nz)P(Z1:Nz)

]
.

In Chapter 4, apart from the estimation of the latent factors, we will develop methods

for joint estimation of all the parameters including the dispersion and power parame-

ters:

(Z1:Nz , p1:Nx , φ1:Nx)
? = arg max

Z1:Nz ,p1:Nx ,φ1:Nx

log P(Z1:Nz , p1:Nx , φ1:Nx|X1:Nx). (2.12)

Finally, in Chapter 5, we will develop Monte Carlo methods for sampling from the full

posterior distribution of the latent factors: P(Z1:Nz |X1:Nx).

2.2. Extension: Alpha-stable Matrix Factorization

The GCTF framework with Tweedie observations provides very flexible and pow-

erful modeling tools. However, when the data is impulsive (i.e. it may contain outliers)

and it is not necessarily non-negative (i.e., the values can be also negative) the only

Tweedie model we can use is the Gaussian distribution, which is not well-suited to such

impulsive data since the distribution is not heavy-tailed.

In this section, we will focus on a matrix factorization (MF) model with a par-

ticular observation model and present αMF: a matrix factorization model that makes

use of a family of heavy-tailed distributions as the observation model, so called the

α-stable distributions. As we will describe in Section 2.2.1, similar to the Tweedie dis-

tributions, stable distributions have a rich structure and cover a broad range of noise

distributions, where several important distributions appear as special cases. Stable

distributions have been used in signal processing, especially in robust time-series mod-

eling [66–70]. However, to the best of our knowledge, this is the first study to develop

a MF framework with α-stable observations. Note that, αMF can be easily extended

to the general case of coupled tensor factorization given in Equation 2.2. However, for

notational simplicity, we will stick to the MF model throughout this section.
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In this section, after a brief introduction to α-stable distributions, we describe

αMF in detail. In Section 5.1.3, we will develop a Gibbs sampler for sampling from

the posterior distributions of the latent variables.

2.2.1. α-Stable Distributions

Stable distributions are heavy-tailed distributions and appear as the limiting

distributions in the generalized central limit theorem [71]. The probability density

function of a stable distribution, S(x;α, β, σ, µ) cannot be written in closed-form except

for certain special cases; however, the characteristic function of the distribution can be

written as follows:

ϕ(ω) =

∫
exp(iωx)S(x; ·)dx = exp(ψα,β(ω) + iµω) (2.13)

where Stable distributions are characterized by four parameters:

(i) α ∈ (0, 2] is called the characteristic exponent and determines the tail thickness of

the distribution. As this parameter gets smaller, the distribution will be heavier-

tailed, and therefore the observations will be more impulsive.

(ii) β ∈ [−1, 1] is called the skewness parameter and determines whether the distribu-

tion is left- or right-skewed. The distribution is called symmetric α-stable (SαS)

if β = 0.

(iii) σ ∈ (0,∞) is called the scale or the dispersion parameter. It measures the spread

of the random variable around its mode.

(iv) µ ∈ (−∞,∞) is the location parameter.

As special cases of the stable distributions, we obtain the Gaussian distribution (α = 2,

β = 0), the Cauchy distribution (α = 1, β = 0), and the Lévy distribution (α = 0.5,

β = 1).

α-stable distributions are readily extended to the case of vectors, and in particular

to complex random variables x ∈ C. In this thesis, we will make use of the complex
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isotropic α-stable distribution, which is shortly noted as SαSc(x;σ), that reduces to

S(x;α, 0, σ, 0) in the real case [71,72].

2.2.2. The Alpha-Stable Factorization Model

In this section, we describe the α-Stable Matrix Factorization (αMF) model.

αMF models all the entries of an i1 × i2 complex matrix X as independent and SαSc
distributed with dispersion parameter decomposed as follows:

X|W,H, α ∼
∏
fn

SαSc
(
X(f, n); [

∑
k

W (f, k)H(k, n)]1/α
)
. (2.14)

with Nx = 1, Nz = 2, Z1:2 ≡ {W,H}, and i1:3 ≡ {f, n, k}. In order to preserve

conjugacy, we assume generalized gamma priors on the latent factors:

W (f, k)|α ∼ GG(W (f, k); aw, bw,−2/α)

H(k, n)|α ∼ GG(H(k, n); ah, bh,−2/α), (2.15)

Finally, we assume uniform prior on α: α ∼ U(α; (0, 2])).
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3. MAXIMUM LIKELIHOOD AND A-POSTERIORI

ESTIMATION: OPTIMIZATION-BASED APPROACHES

In this chapter, we will focus on estimating the latent factors Z1:Nz , given the

dispersion φ1:Nx and power parameters p1:Nx . ML estimation of the factors Z1:Nz re-

duces to the problem of minimizing the β-divergence between the observations and the

product of the latent factors, given as follows:

minimize
∑
ν

∑
uν

1

φν
dpν
(
Xν(uν)||

∑
ūν

∏
α

Zα(vα)R
ν,α)

subject to Zα(vα) ∈ C, ∀α ∈ [Nz], vα ∈ CI(Iα) (3.1)

where, C is a constraint set, typically chosen as the non-negative real numbers R+.

Here, the power parameter pν determines the cost function to be used for Xν and the

dispersion parameter φν determines the relative weight of the approximation error to

Xν . ML and MAP estimation of the latent factors Zα can be achieved via iterative

methods, by fixing all factors Zα′ for α′ 6= α but one Zα and updating in an alternating

fashion.

In this chapter we will describe three methods for obtaining the point estimates.

We will first present a gradient descent-based approach where we will derive mul-

tiplicative update rules that resemble practical implementations when the data and

factors are non-negative. Then, we will develop two distributed incremental methods

for large-scale applications.

3.1. Gradient Descent and Multiplicative Update Rules

Gradient descent (GD) is a well-known optimization algorithm that is based on

first order information. GD aims to find a local minimum of a cost function by taking

steps in the negative direction of the gradient. In order to estimate the latent factors,
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we can iteratively apply the following GD updates, given as follows:

Z(t)
α = Z(t−1)

α − ε(t)∇ZαL(X1:Nx) (3.2)

where t denotes the iteration number and ∇ZαL(·) is the gradient of the objective

function defined in Equation 3.1. In this section, we will derive a GD algorithm for

GCTF in detail.

Before deriving the partial derivatives with respect to Zα, let us write down the

following derivatives that will become handy at the final derivation step. The general

form the derivative of the β divergence with respect to x̂ is given as follows:

∂dp(x||x̂)

∂x̂
= −xx̂−p + x̂1−p =

x̂− x
x̂p

Similarly, the derivative of the β-divergence dpν (Xν(uν); X̂ν(uν)) with respect to an

element of the model output tensor X̂ν(uν) is given as follows:

∂dpν (Xν(uν); X̂ν(uν))

∂X̂ν(uν)
=
X̂ν(uν)−Xν(uν)

X̂ν(uν)pν
(3.3)

By using Equation 3.3, we can obtain the partial derivatives that are required in the

GD algorithm as follows:

∂L(X1:Nx)

∂Zα(vα)
=
∑
ν

1

φν

∑
uν

∂dpν (Xν(uν); X̂ν(uν))

∂X̂ν(uν)

∂X̂ν(uν)

∂Zα(vα)

=
∑
ν

[
Rν,α 1

φν

∑
v̄α

(
X̂ν(uν)−Xν(uν)

X̂ν(uν)pν

) ∏
α′ 6=α

Zα′(vα′)
Rν,α

]
(3.4)

It is easy to verify that Equation 3.4 can be re-written in the following form:

∇ZαL(X1:Nx) =
∑
ν

[
Rν,αφ−1

ν ∆α,ν(X̂
1−pν
ν )

]
−
∑
ν

[
Rν,αφ−1

ν ∆α,ν(X̂
−pν
ν ◦Xν)

]
(3.5)
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where the function ∆α,ν(·) is defined as follows:

∆α,ν(A) =

[ ∑
uν∩v̄α

A(uν)
∑
ūν∩v̄α

∏
α′ 6=α

Zα′(vα′)
Rν,α

′
]
. (3.6)

When the model is non-negative, one possible option for enforcing non-negativity

is to use projections where each Zα(vα) is set to max(0, Zα(vα)) at the end of each itera-

tion. Another popular approach for developing optimization methods for non-negative

models is called the multiplicative update rules (MUR). Provided all the factors and

observed tensors are non-negative, we can observe that in the right hand side of the

Equation 3.5 both terms are non-negative. By making use of this observation, MUR

makes use of the following adaptive step size in order to preserve the non-negativity of

the latent factors during the estimation process:

ε(t) =
Z

(t−1)
α∑

ν

[
Rν,αφ−1

ν ∆α,ν(X̂
1−pν
ν )

] (3.7)

where the division is element-wise. By plugging this step size into Equation 3.2, we

obtain the multiplicative update rules as follows:

Zα ← Zα ◦
∑

ν R
ν,αφ−1

ν ∆α,ν(X̂
−pν
ν ◦Xν)∑

ν R
ν,αφ−1

ν ∆α,ν(X̂
1−pν
ν )

, (3.8)

where ◦ is the element-wise product and the division operator is also element-wise. For

MAP inference, the derivation procedure is the same up to adding one more term to

the overall objective function. The monotonicity of these update rules for Nx = 1 is

analyzed in [73].

For MAP inference, the objective given in Equation 3.1 will have an additional

regularization term that involves Zα. The resulting algorithm for MAP inference turns

out to be similar to the ML schema. For exponential priors over the factors, the update
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equation becomes a simple modification:

Zα ← Zα ◦
∑

ν R
ν,αφ−1

ν ∆α,ν(X̂
−pν
ν ◦Xν)

Aα +
∑

ν R
ν,αφ−1

ν ∆α,ν(X̂
1−pν
ν )

. (3.9)

For other conjugate priors, the update rules have similar forms [33].

The benefit of GD and MUR is that they can be applied on any tensor fac-

torization model and are rather simple to implement. However, these methods are

computationally extensive and do not scale to to large-scale problems.

3.2. Distributed Incremental Gradient Descent

In this section, we will be concerned with distributed and parallel inference in

coupled tensor factorization models. We will develop a parallel and distributed algo-

rithmic framework for GCTF where we will solve the optimization problem given in

Equation 3.1 in large-scale setting. Here, we envision a distributed-data/distributed-

processing scenario, where each observed tensor Xν may reside at a different site (for

example a cluster or a multicore machine) and each site has multiple processors with

parallel, whilst limited, computational capacity. Our approach to optimization is in-

spired by the distributed and parallel stochastic gradient descent method for matrix

factorizations (MF) in [12, 13, 74]. These methods make use of the conditional inde-

pendence structure of factorization models, where the data is carefully segmented into

mutually disjoint blocks that can be processed in parallel. On the other hand, our ap-

proach is geared towards the distributed data scenario and we never need to transmit

any data across sites, that would be crucial for certain privacy critical applications.

Let us simplify and rewrite the optimization problem in Equation 3.1 by using

the iterate u that covers all (ν, uν) pairs as follows:

min
Z1:Nz

U∑
u=1

fu(Z1, . . . , ZNz), (3.10)
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subject to the same constraints and fu(·) is the appropriate cost function. If U is

sufficiently small, more classical algorithms such as MUR can be used here. However,

when U is large, operating on the entire cost function (i.e., computing the gradient

on the full data tensors) becomes impractical. Besides, in large-scale applications the

data is usually distributed among many processing units, which brings motivation to

utilize distributed incremental methods.

Incremental gradient descent (IGD) methods are powerful algorithms that operate

on a subset of samples Ω ⊂ [U ] at each iteration, rather than the entire cost function [8].

The idea is to take a small step at each iteration in the opposite direction of the gradient

computed on Ω:

Zα(vα)(t) = Zα(vα)(t−1) − ε(t)
( U

|Ω(t)|
∑
u∈Ω(t)

∂fu(Z1:Nz)
)

(3.11)

where Ω(t) denotes the subset of the data samples that are selected at iteration t and

|Ω(t)| denotes the number of elements in Ω(t). For convergence, the step size ε(t) must

satisfy the following conditions:

∞∑
t=0

ε(t) =∞,
∞∑
t=0

(ε(t))2 <∞ (3.12)

A typical choice for the step size is ε(t) = O(1/t).

The way of selecting the subsets Ω is very important and might result in different

computational requirements depending on the problem structure. Here, we exploit the

conditional independence structure of coupled tensor factorizations and construct a

partially separable cost function as follows:

min
Z1:Nz

S∑
s=1

Bs∑
b=1

∑
u∈Ωs,b

fu(Z1,b, . . . , ZNz ,b) (3.13)

where s is called as a part, b is called as a block, Ωs,b denotes the data points in part



41

Part 1

≈

≈

X1

X2

Z1

x
Z3

i1

i2

i3

i3

Site
 1

Site
 2

Z2

Part 2

≈

≈

X1

X2

Z1

x
Z3

Z2

Part 3

≈

≈
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Z1,2
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Z3,1 Z3,2 Z3,3 Z3,4 Z3,5

Figure 3.1. Illustration of DIGD on the coupled matrix factorization model given in

Equation 1.2, X1 ≈ Z1Z3, X2 ≈ Z2Z3. There are 2 different sites and 5 nodes in total;

the first site has 3 nodes and the second site has 2 nodes. The nodes are represented

with different textures.

s and block b, S is the total number of parts, and Bs is the total number of blocks in

part s. Example parts and blocks are illustrated in Figure 3.1.

In large-scale applications, these blocks and the corresponding factors Zα,b will

be fully distributed. The key point here is to form each part in such a way that the

parameter spaces of the blocks in a part become disjoint; enabling these blocks to be

updated in parallel. In other words, we aim to iterate sequentially over the index s and

process the summation over b in parallel. We now describe how to form such blocks

and parts for coupled tensor factorization that supports data locality.

We start by defining a partition for each index ik. For the observed indices
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(k ∈ ∪νI0,ν), we define the partition

Pk = {(πk)1, . . . , (πk)Nk} (3.14)

on the set [sk], where (πk)i are non-empty, disjoint subsets of [sk] and Nk denotes the

number of subsets in Pk. We will not need partitions for the hidden indices (k /∈ ∪νI0,ν),

however for notational consistency, we define a partition with a single element for each

hidden index: Pk = {(πk)1}, where (πk)1 = [sk]. Then a block of an observed tensor

Xν(uν) is specified by the set of index configurations defined as follows:

uν ∈ BI(I0,ν ,bs,b, ts,b) =
∏
k∈I

(πk)
1(k∈I0,ν ,ts,b(ν)=1)

bs,b(k) (3.15)

where we define S1 = S and S0 = {1} for the set S, and bs,b and ts,b are arrays of

integers that fully determine the structure of the block b in part s. Here, ts,b(ν) ∈ {0, 1}
determines whether the block will contain the elements of Xν and each bs,b(k) ∈ [Nk]

determines the element that will be selected from Pk, so that (πk)bs,b(k) is the bs,b(k)th

element of Pk. In this sense Ωs,b ≡
⋃
ν BI(I0,ν ,bs,b, ts,b).

We define the corresponding blocks for the factors Zα,b similarly; we set Zα,b ≡
{Zα(vα)|vα ∈

⋃
ν BI(Iα,bs,b, ts,b)}. In practice, the data is usually sparse and partition-

ing the data into balanced blocks can be an important but a highly nontrivial task. In

our applications, we will utilize a simple heuristic approach for data-dependent index

partitioning where each observed index is partitioned separately.

A part Ωs =
⋃Bs
b=1 Ωs,b is a collection of non-overlapping blocks. Here, for each

pair of blocks b 6= b′, we have bs,b(k) 6= bs,b′(k) for all

k ∈
⋃
ν

ts,b(ν)=1
ts,b′ (ν)=1

I0,ν . (3.16)

We construct the parts in such a way that, the collection of the parts will cover the



43

whole observed data:
⋃
s Ωs =

⋃
s

⋃
b Ωs,b ≡

⋃
ν CI(I0,ν).

Example 3.1. Let us consider the example partitioning given in Figure 3.1. The blocks

are obtained by partitioning the observed indices i1, i2, i3 into N1 = 3, N2 = 2, and

N3 = 5 pieces, respectively. We have S = 3 parts, each of them containing Bs = 5

different blocks. In order to obtain the blocks in Part 1, we choose b1,1 = [1, 1, 1, 1, 1],

t1,1 = [1, 0], b1,2 = [2, 1, 2, 1, 1], t1,2 = [1, 0], b1,3 = [3, 1, 3, 1, 1], t1,3 = [1, 0], b1,4 =

[1, 1, 4, 1, 1], t1,4 = [0, 1], b1,5 = [1, 2, 5, 1, 1], and t1,5 = [0, 1]. Similarly, for Part

2 we have b2,1 = [2, 1, 1, 1, 1], t2,1 = [1, 0], b2,2 = [3, 1, 2, 1, 1], t2,2 = [1, 0], b2,3 =

[1, 1, 3, 1, 1], t2,3 = [0, 1], b2,4 = [1, 2, 4, 1, 1], t2,4 = [0, 1], b2,5 = [1, 1, 5, 1, 1], and

t2,5 = [1, 0].

By making use of the parts and their corresponding blocks, we develop a parallel

and distributed incremental gradient descent (DIGD) algorithm for coupled tensor

factorizations. Since the elements of the partitions are disjoint by definition and there

are no common elements in two different blocks, the parameter spaces of the blocks in

a part will also be disjoint by construction. This enables parallelism, since each Zα,b

can be updated independently:

Zα(vα)(t) = Zα(vα)(t−1) − ε(t)
( U

|Ω(t)
s,b|

∑
u∈Ω

(t)
s,b

∂ log fu(Z1,b, . . . , ZNz ,b)
)

(3.17)

where vα ∈ Ωs,b. For non-negative factors, we use projections by setting

Zα(vα)(t) ← max(0, Zα(vα)(t)) (3.18)

at each iteration.

Figure 3.2 summarizes DIGD for generalized coupled tensor factorization. One

outer iteration of DIGD (lines 3-11) consists of several inner iterations (lines 5-10).

After Ωs is formed, we run the IGD updates in parallel for each block Ωs,b as shown in

Equation 3.17. The inner iterations are continued until all parts are processed; therefore

all the entries of the observed tensors are seen. Here, first we assign the blocks of local



44

1 Input: X1:Nx , R, p1:Nx , φ1:Nx , η, γ, Z
(0)
1:Nz

2 t← 1

3 repeat

4 εt = (η/t)γ

5 for s = 1, . . . , S do

6 for b = 1, . . . , Bs do in parallel

7 // ∀α = 1, . . . , Nz, vα ∈ Ωs,b

8 Zα(vα)(t) = Zα(vα)(t−1) − ε(t)
(

U

|Ω(t)
s,b|

∑
u∈Ω

(t)
s,b

∂fu(Z1,b, . . . , ZNz ,b)
)

9 // Optional projection step for non-negativity

10 Zα(vα)(t) ← max(0, Zα(vα)(t))

11 t← t+ 1

12 until convergence or t > max epochs

Figure 3.2. DIGD (Distributed incremental gradient descent).

factors to the processors, then we circulate the blocks of the shared factors among the

processors (see Figure 3.1). The proposed algorithm is a valid IGD algorithm; provided

all the elements of the observed tensors are processed at each iteration, the proof of

convergence proceeds in the same lines as in [8].

3.3. Distributed Incremental Quasi-Newton

DIGD provides a significant computational advantage when compared to sequen-

tial or batch methods thanks to its inherently parallel structure. However, since it

is solely based on the first order information, it can suffer from slow convergence. It

is well known in optimization, that second order methods such as Newton’s method

enjoy far better properties in terms of convergence speed, however are rather imprac-

tical for medium to large-scale problems as they typically require the estimation of a

Hessian matrix and solving a large linear system. Quasi-Newton methods provide a

practical alternative by incorporating local curvature information without inverting a

large Hessian matrix. Yet these methods are batch methods that need explicit knowl-
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1 Input: X1:Nx , R, p1:Nx , φ1:Nx , z(1) ≡ Z(1)
1:Nz

2 t← 1

3 repeat

4 Update ρ(t)

5 ξ(t,1) ← z(t)

6 H(t) ← An approximate Hessian matrix at z(t)

7 for s = 1, . . . , S do

8 for b = 1, . . . , Bs do in parallel

9 ξ
(t,s)
b ← arg minzQ(z; ξ

(t,s)
b ,∇fΩs,b(ξ

(t,s)
b ), [H(t)]b, ρ

(t))

10 ξ(t,s+1) ← ξ(t,s)

11 z(t+1) ← ξ(t,S+1)

12 t← t+ 1

13 until convergence or t > max epochs

Figure 3.3. HAMSI (Hessian Approximated Multiple Subsets Iteration).

edge of the exact objective. In this section, we will develop a distributed incremental

Quasi-Newton method for making inference in large-scale couple factorization models.

The idea of second order incremental methods has been investigated before. Bert-

sekas proposed such a method specifically designed for the least squares problem [75].

His proposal is an incremental version of the Gauss-Newton method. An extension

of this method for general functions has recently been proposed by Gürbüzbalaban et

al. [14]. They have shown linear convergence for the method under strong convexity

and gradient growth assumptions. Moreover, their method requires the computation

and inversion of exact Hessian matrices of component functions. In another study, an

incremental aggregated quasi-Newton algorithm has been proposed, where the main

idea is to update the quadratic model of one component function at each iteration [76].

Applying a quasi-Newton method with incremental (or stochastic) gradients is not

straightforward as it may cause a data consistency problem (cf. [15, 16]).
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In this section, we extend DIGD and present an incremental and parallel al-

gorithm that also incorporates (approximate) curvature information for distributed

large-scale optimization. Our experiences have confirmed that using second order in-

formation can help fast convergence even with incremental gradients. The proposed

algorithm uses incremental gradients and incorporates a second order information into

the optimization steps. This second order information comes from an approximation

to the Hessian of the objective function. As we also work on multiple parts of the

data, the algorithm is aptly called Hessian Approximated Multiple Subsets Iteration

(HAMSI).

Before describing HAMSI in detail, let us simplify our notation one more time

and rewrite the optimization problem in Equation 3.13 as follows:

min
Z1:Nz

∑
s

∑
b

∑
u∈Ωs,b

fu(Z1,b, . . . , ZNz ,b) ≡ min
z

∑
s

∑
b

∑
u∈Ωs,b

fu(zb) (3.19)

where zb is defined as [vec(Z1,b)
>, . . . ,vec(ZNz ,b)

>]> and similarly z is defined as

[z>1 , . . . , z
>
Sb

]>. The key idea of the algorithm is to use a local convex quadratic approx-

imation at each iteration

Q(ξ; z, g,H, ρ) ≡ (ξ − z)>g +
1

2
(ξ − z)>H(ξ − z) +

1

2
ρ‖ξ − z‖2 (3.20)

for step size computation. Here, g denotes the incremental gradient computed on the

subset of the data, H is (an approximation to) the Hessian of the objective function.

The parameter ρ is crucial not only to bound the step length but also to control the

oscillation of the incremental steps.

Figure 3.3 gives the generic form of HAMSI. Here, ∇fΩs,b(·) denotes the gradient

that is computed over Ωs,b. We also denote the sth inner iterate of the tth outer

iteration with ξ(t,s), and z(t) are the outer iterates. It is important to note that the

inner loop in Figure 3.3 (lines 8-9) computes the blocks of each inner step in parallel.

The algorithm passes through the subsets of the observed data in a cyclic manner
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similar to DIGD. Once a cycle is complete, one outer iteration is finished and the outer

iterate is updated (line 11). Note that the same (approximate) matrix H(t) is employed

at all inner iterations during the tth cycle. However, the inner iterations use different

blocks of H(t) denoted by the submatrix [H(t)]b. The parameter ρ(t) is also constant

during the inner iterations and then it is updated with each outer iteration (line 4).

HAMSI assumes that all the elements of the factors can take values in the whole

of R. For non-negativity constraints on the latent factors, we can apply two-metric pro-

jections as described in [77]. However, currently we do not have a proof of convergence

for HAMSI with such projections. We leave it as future work.

Above description of the algorithm overlooks several important implementation

details; in particular, how to construct the quadratic approximation and how to solve

the corresponding subproblems. Before presenting an implementation, where we ex-

emplify these details, we first show in the next theorem the convergence properties of

HAMSI under the quite generic setting given in Figure 3.3. We give a sketch of the

proof of the theorem. The details along with the assumptions are given in Appendix C.

Theorem 3.1. Consider the iterates z(t) of Algorithm HAMSI. Suppose that ρ(t) →∞
as t → ∞, and ρ(t) increases slowly enough so that ρ(t) = O(‖∇f(z(t))‖−σ) with σ ∈
(0.5, 1) for large t. Then

lim
t→∞

inf ‖∇f(z(t))‖ = 0.

Proof Sketch. The proof of this theorem depends on two intermediate results

given by two lemmas. The first one establishes a bound on the difference between the

true gradient of a block at z(t) and the evaluated gradients at ξ(t,s). The second lemma

gives a bound on the error committed by taking incremental steps at inner iterates

ξ(t,s) instead of the exact Newton step at z(t). The final theorem uses the boundedness

of the objective function f and obtains the desired result by simple contradiction. �
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Note that the condition on ρ(t) can be satisfied by choosing for instance

ρ(t) = max{O(t), ‖∇f(z(t))‖−2/3}.

We give an example implementation of HAMSI in Figure 3.3. Here, the approx-

imate Hessian matrices H(t) are obtained using BFGS quasi-Newton update formula.

In particular, the compact form of limited memory BFGS (L-BFGS) [78] is used in

inner iterations to form the quadratic models, and to obtain their analytical solu-

tions directly. L-BFGS allows the computation of (H(t) + ρ(t)I)−1v for a given vector

v without forming any V × V matrices, and without any O(V 2) operations, where

V =
∑

α

∏
k s

[k∈Iα]
k is the total number of elements in the latent tensors. Moreover,

the memory requirement is only O(MV ), where M is the memory size. Quasi-Newton

approximations require data pairs; a step in z and the corresponding change in the gra-

dients. A limited memory quasi-Newton algorithm uses a collection of M such pairs

to update the approximate Hessian; we denote the corresponding memory matrices of

size V ×M as Ξ and Φ. Since our algorithm requires the update to be done in blocks,

the memory matrices are also held in blocks (see lines 10 and 11). The computations

in lines 11-20 are nothing else but the direct use of compact form formulas; we refer

to [78] for details. The algorithm sets the initial Hessian approximation to a multiple

of the identity θI, this is why incremental gradient steps are taken in the first cycle;

i.e. when t = 1 (line 20). We should also note that the condition in line 9 ensures

that the memory (therefore H(t)) is updated once in a cycle, and the differences are

computed by using the same component function to provide consistency. Finally, the

reduce primitive appearing in the algorithm, accumulates local data from each node

and distributes the results back.
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1 Input: X1:Nx , R, p1:Nx , φ1:Nx , η, γ, z(1) ≡ Z(1)
1:Nz

, M

2 t← 1

3 repeat

4 ρ(t) = (ηt)γ , ξ(t,1) ← z(t)

5 for s = 1, . . . , S do

6 for b = 1, . . . , Bs do in parallel

7 g
(t,s)
b = ∇fΩs,b(ξ

(t,s)
b )

8 if t > 1 then

9 if s = (t− 1 mod S) + 1 then

10 Ξb =
[
Ξb(:, 2 : M), ξ

(t,s)
b − ξ(t−1,s)

b

]
,

Φb =
[
Φb(:, 2 : M), g

(t,s)
b − g(t−1,s)

b

]
11 Wb = [Φb θΞb], Ab = Ξ>b Φb, Eb = Ξ>b Ξb, Cb = Φ>b Φb

12 reduce

13 A =
∑

bAb, E =
∑

bEb, C =
∑

bCb

14 LA = tril(A), DA = diag(A), UA = triu(A)

15 V =

C A>

A E

, R =

−DA L>A

LA θE

−1

, N = (I − 1

θ
RV )−1

16 reduce

17 ḡ =
∑

bWbg
(t,s)
b

18 ξ
(t,s)
b ← ξ

(t,s)
b − 1

ρ(t)θ
(g

(t,s)
b +

1

θ
WbNRḡ)

19 else

20 ξ
(t,s)
b ← ξ

(t,s)
b − 1

ρ(t)θ
g

(t,s)
b

21 ξ(t,s+1) ← ξ(t,s)

22 z(t+1) ← ξ(t,S+1)

23 t = t+ 1

24 until convergence or t > max epochs

Figure 3.4. HAMSI with L-BFGS updates.
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4. LEARNING MIXED DIVERGENCES

So far, we have focused on the estimation of the latent factors. However, in

coupled models, the success of a method may hinge on a good setting of the dispersion

and power parameters, φ1:Nx and p1:Nx , yet manual selection is not straightforward

especially when the number of observed tensors, Nx, is large.

In order to illustrate the importance of the dispersion and power parameters, let

us consider the following sparse non-negative dictionary learning problem:

min
Z1,Z2≥0

1

2

∑
i,j

(
X1(i, j)−

∑
k

Z1(i, k)Z2(k, j)
)2

+ λ
(∑

ik

|Z1(i, k)|
)

(4.1)

where, we would like decrease the approximation error to X1, while trying to keep the

elements of the dictionary matrix Z1 close to zero as much as possible. Here λ is the

sparsity parameter that is often chosen manually.

Even though there is only one observed matrix X1 in this problem, we can still

rewrite this problem as a coupled matrix factorization problem, that is given as follows:

X1(i, j) ≈
∑
k

Z1(i, k)Z2(k, j) (4.2)

X2(i, k) ≈ Z1(i, k) (4.3)

where X2 is a matrix whose entries are all set to zero. We can verify that, maximum

likelihood estimation in this coupled model is indeed equivalent to the optimization

problem given in Equation 4.1 if we set p1 = 0 and p2 = 1 in the GCTF framework.

Therefore, in this setting, the dispersion parameters φ1 and φ2 will play the role of

the sparsity parameter. Furthermore, we can also change p1 and p2 in order to obtain

different loss and regularization functions.

Here, we present a simple experiment where we would like to decompose the



51

p2 = 1

�2 = 0.005

p2 = 1

�2 = 0.01

p2 = 1

�2 = 0.5

p2 = 2

�2 = 0.5

p2 = 2

�2 = 0.01

p2 = 2

�2 = 0.005

Figure 4.1. Dictionary matrices obtained with different dispersion and power

parameters.

magnitude spectrogram (X1) of a short audio signal by using the model that is defined

above. We fix p1 = 0 and φ1 = 1, and run the MUR algorithm in order to estimate

Z1 and Z2 where we try several values for p2 and φ2. Figure 4.1 shows the dictionary

matrices that are estimated for different p2 and φ2 values. It can be clearly seen that,

the choice of the dispersion and power parameters drastically changes the structure of

the estimated dictionaries. We can also observe that, for smaller φ2 we obtain sparser

dictionaries as expected, whereas the choice of p2 becomes unimportant when φ2 is not

set to a reasonable value (0.5).

In practical applications, manual selection of these parameters is not trivial and

can be time consuming. One can consider cross validation for selecting these variables in
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supervised problem settings, however, this would also be problematic when Nx is large.

On the other hand, we cannot use cross validation in unsupervised problem settings.

In this chapter, we will focus on developing methods for estimating the dispersion and

power parameters for the GCTF framework.

Even though coupled factorization models have been widely studied in several

domains, estimation of the relative weights and divergences (here, corresponding to φ

and p) has not been extensively explored. In [40], a maximum likelihood estimator for

φ was presented under Gaussian observation models. In [79] a score matching approach

was proposed for estimating the power parameter p only for the non-negative matrix

factorization model that uses a Tweedie distribution with unitary dispersion (φ = 1) as

the observation model. Recently, a score matching approach was proposed in [80] for

making inference in Tweedie distributions with p ≥ 0, where the Tweedie distribution

was approximated by an ‘exponential divergence’ distribution. The authors estimated

the dispersion and power parameter by running a grid search procedure on this ap-

proximate distribution. Besides the β−divergence, the authors also enabled automatic

selection of α, γ, and Rényi divergences through non-linear transformations. The need

for a general and efficient method for coupled factorization models that would handle

the whole Tweedie family still prevails.

In this chapter, we will develop two methods for jointly estimating the mixed

divergences along with the latent factors in Tweedie models. Firstly, we will focus on a

particular Tweedie model, called as the Tweedie compound Poisson distributions that

is suitable for sparse observations. Then, we will develop an alternative method that

can be applied to the whole Tweedie family.

4.1. Learning the β-Divergence in Tweedie Compound Poisson Models

In this section, we will focus on a particular observation model, called as the com-

pound Poisson distribution, that coincides with the Tweedie model with 1 < p < 2.2

Here, we give a compact characterization of the compound Poisson distribution as a

2This section is based on the material published in [81].
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Tweedie model [65]. The generative model is the compound Poisson distribution is

as follows. A random variable x that is the sum of n independent and identically dis-

tributed Gamma random variables is compound Poisson distributed, when n is Poisson

distributed [65]; formally:

x =
n∑
i=1

gi (4.4)

where n and gi are

n ∼ PO(n;λ) gi ∼iid G(gi; a, b) (4.5)

Here, PO and G denote the Poisson and Gamma densities, respectively. The marginal

density P(x) is compound Poisson. More compactly, we can also write x|n ∼ G(x; an, b).

To show the equivalence to the Tweedie, we first note that the cumulant gen-

erating function (CGF) Ku(s) of a random variable u with density P(u) is defined as

Ku(s) = logGu(e
s) where Gu(z) = 〈zu〉P(u) is a generating function. From basic prob-

ability theory, we know that the generating function of the sum of a random number

of iid variables is obtained by nesting as Gx(z) = Gn(Gg(z)), where

Gn(z) = exp(λ(z − 1)) Gg(z) = (1− log(z)/b)−a (4.6)

are generating functions for the Poisson and Gamma densities. By substitution we

obtain the CGF of x as

Kx(s) = λ((1− s/b)−a − 1). (4.7)

Now, we will show that we obtain the same CGF starting from the power variance

assumption. We can easily verify that CGF for the exponential dispersion model
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(EDM) (see Appendix B, Equations B.1 and B.2) is given by [65,82]

Kx(s; θ, φ) =
1

φ
(κ(sφ+ θ)− κ(θ)) . (4.8)

If we substitute the expression for κ(θ) in (B.4) and then express the result as a function

of the expectation parameter x̂ by noting that

θ =
x̂1−p

1− p (4.9)

(as dθ/dx̂ = v(x̂)−1 = x̂−p), we obtain

Kx(s; θ, φ) =
x̂2−p

(2− p)φ
((

1− sφ(p− 1)x̂p−1
) 2−p

1−p − 1
)

(4.10)

that has the same form as (4.7). By matching term by term, we see that the Tweedie

distribution for 1 < p < 2 is the compound Poisson distribution with the following

parameter mapping:

λ =
x̂2−p

φ(2− p) , a =
2− p
p− 1

, b =
x̂1−p

φ(p− 1)
. (4.11)

By using this mapping, the joint distribution can be written as follows:

P(x, n|x̂, φ, p) =P(x|n, x̂, φ, p)P(n|x̂, φ, p)

=
[
exp(− x̂2−p

(2− p)φ)
][n=0][

exp(− n

p− 1
log(φ) + n

2− p
p− 1

log
x

p− 1

− n log(2− p)− log Γ(n+ 1)− log Γ(
2− p
p− 1

n)− log(x)

− 1

φ

(
x̂1−px

(p− 1)
+

x̂2−p

(2− p)

)
)
][n>0]

. (4.12)

It turns out that
∑

n P(x, n|·) does not have a closed form. Here, Dunn and Smyth

provide numerical methods for approximate computation [82], but we propose here two

simpler algorithms. An example pdf of a compound Poisson distribution is given in

Figure 4.2.
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Figure 4.2. The compound Poisson distribution with p = 1.3, φ = 5, and x̂ = 40.

Note that the probability mass at zero makes this distribution suitable for sparse

positive data.

Since pν and φν are conditionally independent from x̂ and therefore latent the

factors, we can make use of the methods described in Chapter 3 in order to estimate

the latent factors. Therefore, throughout this chapter we focus on estimation of the

dispersion and the power parameters and we stick to a vector notation where we define

xν ≡ vec(Xν), x̂ν ≡ vec(X̂ν), mν ≡ vec(Mν).

In the next subsections, we present three inference methods for estimating the

dispersion and power parameters in Tweedie compound Poisson models. In the first

and the second methods we follow a variational approach, where in the third method we

integrate out the dispersion parameter and make inference on the marginal distribution.

4.1.1. Variational Approach

In this section, we present two variational methods, namely the Iterative Condi-

tional Modes (ICM) and the Expectation-Maximization (EM) algorithms.

The ICM algorithm iteratively maximizes over the parameters n, φ, and p given

x and x̂. Even though the maximization over n is intractable, we can find the mode

n∗ by approximating the log Γ(·) functions in (4.12) by using Stirling’s approximation,
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as proposed in [82]. The mode has the following analytical form:

n∗ν(i) =
xν(i)

2−pν

(2− pν)φν
. (4.13)

Maximizing the dispersion parameter φν is straightforward, however, since the power

parameter pν and φν are closely related to the variance and may affect each other, it

can be necessary to regularize φν in order to have a better estimate of pν . It is easy

to verify that the conjugate prior of the dispersion parameter is the inverse Gamma

distribution. Therefore, as we mentioned in Chapter 2, we assume an inverse Gamma

prior on φν . The optimal dispersion, given the other parameters is as follows:

φ∗ν =

(∑
i
mν(i)x̂ν(i)1−pνxν(i)

(pν−1)
+ mν(i)x̂ν(i)2−pν

(2−pν)

)
+ κφ∑

imν(i)n∗ν(i)

pν−1
+ τφ + 1

. (4.14)

Surprisingly, none of the references we are aware of used this conjugate prior. In

the next section we will use this property to analytically integrate out the dispersion

parameter.

The last step of the ICM algorithm is to compute the maximization over pν . Since

the optimal pν does not have an analytical solution, we consult numerical methods. As

the domain of pν is limited to (1, 2), we run a simple grid search procedure in order to

estimate the power parameter pν .

To sum up, at each iteration of the estimation algorithm, we first estimate the

factors and compute the mean parameter x̂ν . Then, we compute the parameters n∗ν

and φ∗ν that are described above, and finally we compute the optimal power parameter

pν . This procedure is run until convergence.

The EM algorithm is quite similar to the ICM algorithm in algorithmic sense,

where we merely replace n∗ν with the expectation 〈nν〉 in (4.14). Unfortunately, com-

puting this expectation is also intractable. Therefore, we use a numerical method that

is similar to the one proposed in [82]. By using the fact that the conditional distribu-



57

tion of nν is unimodal, we approximate the expectation by numerically computing it

around the mode which is defined in (4.13). The rest of the EM algorithm is the same

as the ICM algorithm.

4.1.2. Integrating out the Dispersion Parameter

The dispersion parameter plays a key role when we deal with a coupled factoriza-

tion model. However, when we have only one observed tensor, the dispersion parameter

does not contribute to the estimation of the factors in a factorization model as it cancels

out in the estimation algorithms.

In this section, we consider the case when Nx = 1, where we integrate out the

dispersion parameter φ and n and make inference on the marginal distribution. When

assumed an inverse Gamma prior on φ, we obtain the following marginal distribution:

P(x, n) =

[
exp
(
τφ(log κφ − log(

x̂2−p

2− p + κφ)
)][n=0]

[
exp
(
n

2− p
p− 1

log
x

p− 1
− n log(2− p)− log Γ(n+ 1)− log Γ(

2− p
p− 1

n)

− log(x)− (τφ +
n

p− 1
) log(κφ +

x̂1−px

(p− 1)
+

x̂2−p

(2− p)) + τφ log κφ

+ log Γ(τφ +
n

p− 1
)− log Γ(τφ)

)][n>0]

. (4.15)

In order to estimate the power parameter p, we also marginalize out n by using nu-

merical methods. Finally, the optimal p is found by a grid search algorithm, similar to

ICM and EM.

4.2. Learning Mixed β-Divergences in the Full Tweedie Model

In this section we present an algorithmic framework for MAP estimation of all

the variables without restricting the method to a certain observation model.3 Our aim

3This section is based on the material published in [83] and [84].
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is to solve the following optimization problem:

min
Nx∑
ν=1

[
sν∑
i=1

(
logK(xν(i), φν , pν) +

1

φν
dp(xν(i)||x̂ν(i))

)
− log P(φν)

]
(4.16)

with respect to Z1:Nz , φ1:Nx , and p1:Nx . Here, sν =
∏

k s
[k∈I0,ν ]
k is the number of elements

in xν and P(φν) is the prior distribution of the dispersions.

In order to estimate the latent factors, dispersions, and power parameters jointly,

we present an iterative schema where we divide the optimization problem of Equa-

tion 4.16 into simpler subproblems. The ultimate method is an ICM algorithm, where

each parameter is updated at each iteration given the up-to-date values of the remain-

ing parameters. Here, each iteration t consists of three estimation steps, stated as

follows:

Z(t+1)
α = arg max

Zα

∑Nx

ν=1
log P(xν |Z1:Nα , φ

(t)
ν , p

(t)
ν ), ∀α (4.17)

φ(t+1)
ν = arg max

φν

log
(
P(xν |φν , x̂(t+1)

ν , p(t))P(φν)
)
, ∀ν (4.18)

p(t+1)
ν = arg max

pν

log P(xν |x̂(t+1)
ν , φ(t+1)

ν , pν), ∀ν (4.19)

Given the dispersions and the power parameters, the first problem (Equation 4.17)

reduces to the well-known problem of minimizing the β-divergence between the obser-

vations Xν and the model outputs X̂ν with respect to Z1:Nz . Therefore, we can make

use of any of the algorithms presented in Chapter 3.

We first focus on learning the dispersion parameters φν for integer values of

pν = {0, 1, 2, 3}. We estimate the optimal dispersion for these distributions by setting

the derivative of the log-likelihood to zero and then solving it for φν . Note that, since

the normalizing constants of the Poisson and the Gamma distributions are complicated

(see Appendix B), we replace the terms involving log Γ(·) functions with Stirling’s
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approximation:

log Γ(n) ≈ −1

2
log n+ n log n− n. (4.20)

Finally, we obtain the optimal dispersion parameters in closed form as follows:

φ?ν =

(∑N
i=1 dpν (xν(i)||x̂ν(i))

)
+ κφ

sν/2 + τφ + 1
, p ∈ {0, 1, 2, 3} (4.21)

where dp(·) is the β-divergence, defined in Equation 2.9.

Secondly, we focus on the remaining cases of p, where the probability density

functions cannot be written in closed-form analytical expressions. However, they can

be expressed as infinite series that is defined as follows: [65]

T Wp(x; x̂, φ) =
1

xξp

(
∞∑
k=1

Vk(x, p, φ)

)
exp

{
1

φ

(
x̂1−px

1− p −
x̂2−p

2− p

)}
(4.22)

and ξp = 1 for p ∈ (1, 2) and ξp = π otherwise. The terms Vk(·) are given in Appendix B.

In order to estimate the dispersions in the compound Poisson and the Tweedie

stable distributions, we use a limited memory, bounded quasi-Newton method, namely

the L-BFGS-B algorithm [78]. This method requires the gradient of the map objective

function that is given as follows:

∂g(φν)

∂φν
=

1

φ2
ν

[ sν∑
i=1

(
x̂ν(i)

2−pν

2− pν
+
xν(i)x̂ν(i)

1−pν

pν − 1
) + κφ

]

− 1

φν

[
cp

sν∑
i=1

∞∑
k=1

kVk(xν(i), pν , φν)

sν∑
i=1

∞∑
k=1

Vk(xν(i), pν , φν)
+ τφ + 1

]
(4.23)

where g(φν) = − log P(xν , φν |x̂ν , pν) and cp = 1 − pν for pν < 0 and cp = 1/(pν − 1)

otherwise.
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1 Input: X1:Nx , R, Z
(0)
1:Nz

, φ
(0)
1:Nx

, p
(0)
1:Nx

2 repeat

3 // Run MUR, DIGD, or HAMSI until convergence

4 Z
(t)
α = arg maxZα

∑Nx
ν log P(Xν |Z(t−1)

1:Nα
, φ

(t−1)
ν , p

(t−1)
ν ) ∀α = 1, . . . , Nz

5 // If pν ∈ {0, 1, 2, 3}, use Equation 4.21, otherwise use Equation 4.23

6 φ
(t)
ν = arg maxφ log

(
P(Xν |φ, X̂(t)

ν , p(t−1))P(φ)
)

∀ν = 1, . . . , Nx

7 // Run grid search for the power parameters

8 p
(t)
ν = arg maxp log P(Xν |X̂(t)

ν , φ
(t)
ν , p) ∀ν = 1, . . . , Nx

9 t← t+ 1

10 until convergence or t > max epochs

Figure 4.3. Joint inference in coupled factorization models.

The gradient requires two infinite summations to be computed, which is in-

tractable. Here, we utilize efficient numerical methods by following [82] for approx-

imate computation of these summations. This method locates the indices k where the

terms Vk make the major contribution to the sum. The infinite sum is then approxi-

mated by summing up the terms in the located region. The cases p ∈ (1, 2) and p > 2

is described in [82]; for completeness we explain the method for p < 0 in Appendix D.

The last step of the proposed method (Equation 4.19) is to compute the maximum

likelihood estimate of the power parameter p. Unfortunately, the optimal p does not

have an analytical solution. Similar to Section 4.1, we utilize a grid search procedure

in order to estimate the power parameter p given the other parameters. Note that, the

proposed methods are scalable; in large-scale and/or distributed settings, they can be

implemented in an embarrassingly parallel fashion as the problem is separable over the

indices i. The method is illustrated in Figure 4.2.
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5. FULL BAYESIAN INFERENCE VIA MARKOV CHAIN

MONTE CARLO

Maximum likelihood and a-posteriori estimation methods provide us useful and

practical tools that can be used in various applications. However, in certain cases, they

are prone to over-fitting since they fall short at capturing uncertainties that arise in

the inference process. Instead of aiming to obtain single point estimates of the latent

variables, full Bayesian inference aims to characterize the full posterior distribution over

the latent variables. Apart from being able to handle the uncertainties and therefore

being robust to over-fitting, full Bayesian inference has many advantages over the

point estimation methods in various tasks such as the model selection problem. In

this chapter, we will develop two MCMC methods that are based on MH for sampling

from the posterior distribution P(Z1:Nz |X1:Nx), namely the Gibbs sampler and parallel

stochastic gradient Langevin dynamics.

5.1. Gibbs Sampler

One particularly convenient and simple MH strategy is the Gibbs sampler where

one samples each block of variables from the so called full conditional distributions.4

Deriving a single Gibbs sampler for all the cases of the power parameter p is not

straightforward, therefore one needs to focus on individual cases of the Tweedie family.

For the Poisson model (p = 1), we define the following augmented generative model:

Zα(vα) ∼ G(Zα(vα);Aα(vα), Bα(vα)) factor priors

Λν(v) =
∏
α

Zα(vα)Rν,α intensities

Sν(v)|Z1:Nz ∼ PO(Sν(v); Λ(v)) sources

Xν(uν) =
∑
ūν

Sν(v) outputs (5.1)

4This section is based on the material published in [85].
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Figure 5.1. Graphical representation of the GCTF framework. The nodes represent

the random variables and the arrows represent the conditional independence

structure.

In the model defined in Equation 2.6, the observed tensors Xν directly depend on

the latent factors Zα. Here, we form a so called composite model where we augment

the model in Equation 2.6 by defining the intensity tensors Λν and the source tensors

Sν as intermediate layers, where in this model, the observed tensors are deterministic

functions of the sources. Figure 5.1 illustrates this model. Note that, the Tweedie

models with p = 0 and p = 2, can also be represented as composite models [86];

however, the other cases have not been explored in the literature.

The Gibbs sampler for the GCTF model with Poisson observations can be formed

by iteratively drawing samples from the full conditional distributions as follows:

S(t+1)
ν ∼ P(S|Z(t)

1:Nz
, Xν ,Θ) ν = 1 . . . Nx (5.2)

Z(t+1)
α ∼ P(Zα|S(t)

1:Nx
, Z ′¬α, X1:Nx ,Θ) α = 1 . . . Nz (5.3)

where Z ′¬α denotes the most recent values of all the factors but Zα, Θ denotes the prior

distribution parameters {Aα, Bα}Nzα=1, and the full conditionals are defined as:

P(Sν |Z1:Nz , Xν ,Θ) =
∏
uν

M
(
Sν(uν , Ūν);

Λν(uν , Ūν)

X̂ν(uν)

)
(5.4)
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1 Input: X1:Nx , R

2 Initialize factors: Z
(0)
α ∼ G(Zα;Aα, Bα) ∀α = 1, . . . , Nz

3 repeat

4 // Compute the intensity and parameter tensors: ∀ν = 1, . . . , Nx, v ∈ CI(I)

5 Λν(v) =
∏

α Zα(vα)Rν,α

6 X̂ν(uν) =
∑

ūν
Λν(v)

7 // Sample Sources: ∀ν = 1, . . . , Nx, ∀uν ∈ CI(I0,ν)

8 Sν(uν , Ūν)
(t) ∼M

(
Sν(uν , Ūν);

Λν(uν ,Ūν)

X̂ν(uν)

)
9 // Sample Factors: ∀α = 1 . . . Nz, vα ∈ CI(Iα)

10 Z
(t)
α (vα) ∼ G (Zα(vα); Σα(vα),Φα(vα))

11 until t > max epochs

Figure 5.2. Block Gibbs Sampler.

P(Zα|S1:Nx , Z¬α, X1:Nx ,Θ) =
∏
vα

G
(
Zα(vα); Σα(vα),Φα(vα)

)
(5.5)

where

Σα(vα) = Aα(vα) +

[∑
ν

Rν,α

(∑
v̄α

Sν(v)

)]
(5.6)

Φα(vα) = Bα(vα) +

[∑
ν

(∑
v̄α

∏
α′ 6=α

Zα′(vα′)
Rν,α′

)]
(5.7)

Here, M denotes the multinomial distribution. Verbally, given a particular instance

of observed indices uν , the full conditional of Sν is a multinomial distribution over all

the latent index configurations Ūν ≡ CI(Ī0,ν). The pseudo-code is given in Figure 5.1.

Note that, the algorithm presented in [53] is a special case of the presented sampling

algorithm.
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5.1.1. Partially Collapsed Gibbs Sampling via Space Alternating Data Aug-

mentation

Sampling the latent sources in a ‘block’ fashion as in Equation 5.4, i.e., jointly

sampling Sν(uν , Ūν), can be problematic in practice since it could yield computational

inefficiencies and requires sampling from degenerate distributions when p = 2. To

address these problems, we develop a partially collapsed Gibbs sampler by using space

alternating data augmentation (SADA).

SADA was first presented in [87] for making inference in Gaussian mixture mod-

els. In [88], Fevotte et al. presented an MCMC procedure with SADA for making

inference in composite models including NMF. In this section we will generalize this

procedure for tensor factorization models. However, deriving a SADA sampler for cou-

pled factorizations is not straightforward, therefore in this section we focus on the case

where a single tensor is observed (Nx = 1).

The main idea behind SADA is sampling each slice of the sources from their

marginal distribution instead of sampling all the slices from their full conditional at

the same time. This approach significantly reduces the memory requirements of a

sampler since it only requires storing s0,1 elements instead of
[(∏Nz

α=1 sα
)(∏Nx

ν=1 s0,ν

)]
elements of the latent components at each iteration of the sampling procedure.

Directly applying the SADA algorithm to tensor factorizations is not straight-

forward since the index structure for different models can lead to different conditional

independence structures. Therefore, we rewrite the original model (2.2) as a collection

of several ‘marginal’ models, one for each latent factor Zα as follows:

X̂1(u1) =
∑
ū1∩vα

Zα(vα)
∑
ū1∩v̄α

∏
α′ 6=α

Zα′(vα′)︸ ︷︷ ︸
≡Λ1,α(λα)

(5.8)

where λα = v \ (ū1 ∩ v̄α). We also define S1,α(λα) by using the additivity property of
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1 Input: X1 (Nx = 1)

2 Initialize factors: Z
(0)
α ∼ G(Zα;Aα, Bα) ∀α = 1, . . . , Nz

3 repeat

4 for α = 1 . . . Nz, vα ∈ CI(Iα) do

5 X̂1(u1) =
∑

ūν

∏
α Zα(vα)

6 // Sample Slices of Sources: u1 ∈ CI(I0,1)

7 Λ1,α(vα ∪ u1) =
∑

v̄α∩ū1

∏
α′ Z

′
α′(vα′)

8 S
(i)
1,α(vα ∪ u1) ∼ BI

(
S1,α;X1(u1), Λ1,α(vα∪u1)

X̂(u1)

)
9 // Sample Factors:

10 Z
(t)
α (vα) ∼ G (Zα(vα); Σα(vα),Φα(vα))

11 until t > max epochs

Figure 5.3. SADA Sampler.

Poisson distribution:

S1,α(λα) ∼ PO(S1,α(λα); Λ1,α(λα)) (5.9)

X1(u1) =
∑
ū1∩vα

S1,α(λα). (5.10)

In the SADA algorithm, each slice of S1,α is drawn from its marginal distribution and

then each Zα is drawn by conditioning on S1,α. Curious reader is referred to [88] for

a detailed description and the proof of convergence for the matrix case. The pseudo-

code is given in Figure 5.1.1. Note that the BI symbol in the pseudocode refers to the

Binomial distribution.

5.1.2. Marginal Likelihood Estimation with Chib’s Method

The marginal likelihood of the observed data under a tensor factorization model

P(X1:Nx) is often necessary for certain problems such as model selection. This quantity

can be estimated from the Gibbs output and it is known as the Chib’s method [89].
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This method is applied in [53] for NMF; here we generalize it in order to estimate the

marginal likelihood for the GCTF framework with Nx = 1.

Suppose the Gibbs sampler has been run until convergence and we haveN samples

for each variable. The marginal likelihood is defined as:

P(X1) =
P(S1, Z1:Nz , X1)

P(S1, Z1:Nz |X1)
. (5.11)

This equation holds for all points (S1, Z1:Nz). Provided that the distribution is uni-

modal, a good candidate point in the configuration space is a configuration near the

mode (S̃1, Z̃1:Nz). The numerator (the full joint distribution) is straightforward to

evaluate. We can expand the denominator as follows:

P(S̃1, Z̃1:Nz |X1) =P(Z̃1|Z̃2:Nz , S̃1)P(Z̃2|Z̃3:Nz , S̃1) . . .P(Z̃Nz−1|Z̃Nz , S̃1)P(Z̃Nz |S̃1)P(S̃1|X1)

=P(S̃1|X1)P(Z̃1|Z̃2:Nz , S̃1)
Nz∏
α=2

P(Z̃α|Z̃α+1:Nz , S̃1),

where P(Z̃Nz |Z̃Nz+1, S̃1) = P(Z̃Nz |S̃1). The ordering of the variables at this expansion

step can be changed, however without loss of generality we assume that the ordering

is Z1 . . . ZNz .

The term P(Z̃1|Z̃2:Nz , S̃1) is full conditional, so it is available for the Gibbs sam-

pler. We can also approximate P(S̃1|X1) as:

P(S̃1|X1) =

∫
dZ1:Nz P(S̃1|Z1:Nz , X1)P(Z1:Nz |X1) (5.12)

≈ 1

N

N∑
i=1

P(S̃1|Z(t)
1:Nz

, X1). (5.13)

Evaluating the term P(Z̃α|Z̃α+1:Nz , S̃1) is more complicated. Firstly, we start by rewrit-
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ing the term P(Z̃Nz |S̃1) as:

P(Z̃Nz |S̃1) =

∫
dZ1:Nz−1 P(Z̃Nz |Z1:Nz−1, S̃1)P(Z1:Nz−1|S̃1) (5.14)

The first term here is again full conditional. However, we do not have samples from the

distribution P(Z1:Nz−1|S̃1) since the sampler gives us samples from P(Z1:Nz−1|X1). The

solution is approximating this term by running the Gibbs sampler M more iterations

and clamping S1 at S̃1: (Z
(N+m)
1:Nz

) ∼ P(Z1:Nz |S1 = S̃1). The estimate is as follows:

P(Z̃Nz |S̃1) ≈ 1

M

N+M∑
m=N+1

P(Z̃Nz |Z(m)
1:Nz−1, S̃1). (5.15)

We can apply the same idea to the rest of the terms in (5.12) by clamping some of the

factors and running the sampler M more iterations for each α = (Nz − 1), . . . , 2. The

resulting estimation is as follows:

P(Z̃α|Z̃α+1:Nz , S̃1) =

∫
dZ1:α−1 P(Z̃α|Z1:α−1, Z̃α+1:Nz , S̃1)P(Z1:α−1|Z̃α+1:Nz S̃1)

≈ 1

M

uα∑
m=lα

P(Z̃α|Z(m)
1:α−1, Z̃α+1:Nz , S̃1) (5.16)

where lα and uα denote the first and the last indices of the drawn samples while

P(Z̃α|Z̃α+1:Nz , S̃1) is being estimated and they are defined as lα = N + (Nz − α)M + 1

and uα = N + (Nz − α + 1)M .

After replacing the terms in (5.12) with their estimates that are defined in (5.13)

and (5.16), Chib’s method estimates the marginal likelihood as follows:

log P(X1) = log P(S̃1, Z̃1:Nz , X1)− log P(S̃1, Z̃1:Nz |X1) (5.17)

≈ log P(S̃1, Z̃1:Nz , X1)− log P(Z̃1|Z̃2:Nz , S̃1)− log
N∑
i=1

P(S̃1|Z(t)
1:Nz

, X1)

−
Nz∑
α=2

log
uα∑

m=lα

P(Z̃α|Z(m)
1:α−1, Z̃α+1:Nz , S̃1) + log(K − 1)MN. (5.18)
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5.1.3. Gibbs Sampler for Alpha-Stable Matrix Factorization

In this section, we develop a Gibbs sampler for sampling from the posterior

distributions of the latent variables that appear in the αMF model. Firstly, by following

a similar idea that we described in Section 5.1, we make use of an equivalent formulation

to Equation 2.14 by using augmentation, which leads to the following composite model:

S(f, n, k)|W,H, α ∼ SαSc
(
S(f, n, k); [W (f, k)H(k, n)]1/α

)
X(f, n) =

∑
k

S(f, n, k) (5.19)

where S(:, :, k) are called the latent sources. Since we need to sample from the condi-

tional distributions of the latent variables, we express αMF as conditionally Gaussian

by making use of the product property of the stable distributions [68,69], as follows:

Φ(f, n, k)|α ∼ S
(

Φ(f, n, k);
α

2
, 1, 2(cos

πα

4
)2/α, 0

)
S(f, n, k)|Φ,W,H, α ∼ Nc

(
S(f, n, k); 0,Φ(f, n, k)[W (f, k)H(k, n)]2/α

)
X(f, n) =

∑
k

S(f, n, k), (5.20)

where Nc denotes the complex isotropic Gaussian distribution and Φ is the impulse

variable. This formulation will allow us to analytically derive the conditional distri-

butions of S, W , and H. Besides, now we can clearly see the impulsive structure of

the model, where the variances of the Gaussian observations are modulated by infi-

nite variance stable random variables, whose impulsiveness is controlled by α. The

graphical representation of αMF is given in Figure 5.4.

The full conditional distributions of W and H are given as follows:

P(W (f, k)|α, S,H,Φ) = GG(W (f, k); a′w, b
′
w,−2/α) (5.21)

P(H(k, n)|α, S,W,Φ) = GG(H(k, n); a′h, b
′
h,−2/α) (5.22)
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α

W Φ H

S

X

Figure 5.4. The graphical model αMF. The nodes represent the random variables, the

arrows determine the conditional independence structure, and the shaded the nodes

represent the observed variables.

where

a′w = aw +
N

2
, b′w = (b2/α

w +
∑
n

|S(f, n, k)|2
2H(k, n)2/αΦ(f, n, k)

)α/2, (5.23)

a′h = ah +
F

2
, b′h = (b

2/α
h +

∑
n

|S(f, n, k)|2
2W (f, k)2/αΦ(f, n, k)

)α/2. (5.24)

To sample the latent sources, it is possible to develop a ‘block’ Gibbs sampler similar

to the one that we developed in Section 5.1, where we would need to sample S(f, n, :)

jointly at each iteration. However, this approach requires sampling from a degenerate

multivariate Gaussian and could yield computational inefficiencies in certain cases.

Therefore, we utilize a SADA sampler (see Section 5.1.1) for sampling S where we

draw samples from the marginal conditional distribution of S(f, n, k) instead of the

full conditional distribution, given as follows:

P(S(f, n, k)|α,W,H,Φ, X) =Nc(S(f, n, k);µ′s, σ
′
s) (5.25)
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where

µ′s = gfnkX(f, n), (5.26)

σ′s = (1− gfnk)[W (f, k)H(k, n)]2/αΦ(f, n, k), (5.27)

gfnk =
[W (f, k)H(k, n)]2/αΦ(f, n, k)∑
k′ [W (f, k′)H(k′, n)]2/αΦ(f, n, k′)

. (5.28)

Unfortunately, the full conditional distributions of α and Φ cannot be derived

analytically, therefore we resort to Metropolis Hastings (MH) algorithm for sampling

from their full conditional distributions. The MH algorithm generates samples from

π(α) = P(α|·) in two steps. First, it generates a random sample α′ from a proposal

distribution α′ ∼ q(α′|α(t)), then computes an acceptance probability a(α(t) → α′) and

draws a uniform random number u ∼ U([0, 1]). If u < a(α(t) → α′), it accepts the

sample and set α(t+1) = α′; otherwise it rejects the sample and sets α(t+1) = α(t). The

acceptance probability is given as follows:

a(α→ α′) = min{1, q(α|α
′)π(α′)

q(α′|α)π(α)
}. (5.29)

Here, we choose a symmetric proposal distribution q(α′|α) = N (α′;α, σ2
α), that would

explore the state space of α by a random walk. The acceptance probability for α then

becomes:

a(α→ α′) = min(1,
P(S,W,H,Φ, α′)

P(S,W,H,Φ, α)
) (5.30)

Evaluating this probability requires stable densities to be evaluated twice at each epoch.

Therefore, we have developed a fast numerical method for evaluating stable densities

by making use of their power series representation [69,90]. The details of this method

is given in Appendix D.

We follow a similar procedure for Φ, where we choose the prior distribution of

Φ(f, n, k) as its proposal distribution: q(Φ(f, n, k)) = P(Φ(f, n, k)). Accordingly, the
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acceptance probability simplifies and we obtain the following expression:

a(Φ(f, n, k)→ Φ′(f, n, k)) = min(1,
Nc(S(f, n, k); 0, [W (f, k)H(k, n)]2/αΦ′(f, n, k))

Nc(S(f, n, k); 0, [W (f, k)H(k, n)]2/αΦ(f, n, k))
).

(5.31)

5.2. Parallel and Distributed Stochastic Gradient Markov Chain Monte

Carlo for Large-Scale Problems

Despite the well known advantages, Monte Carlo methods are typically not the

method choice in large scale MF problems as they are perceived to be computationally

very demanding. Indeed, the approaches that are presented in the previous section

require passing over the whole data set at each iteration, which makes the methods

impractical for large data sets. Recently, alternative approaches have been proposed

to scale-up MCMC inference to large-scale regime. An important attempt was made

by Welling and Teh [22], where the authors combined the ideas from a gradient-based

MCMC method, so called the Langevin dynamics (LD) [91] and the popular optimiza-

tion method, stochastic gradient descent (SGD) [47], and developed a scalable MCMC

framework called as the stochastic gradient Langevin dynamics (SGLD). Unlike con-

ventional batch MCMC methods, SGLD requires to ‘see’ only a small subset of the data

per iteration similar to SGD. With this manner, SGLD can handle large datasets while

at the same time being a valid MCMC method that forms a Markov Chain asymp-

totically sampling from the target density. Approximation analysis of SGLD has been

studied in [92] and [93]. Several extensions of SGLD have been proposed. Ahn et

al. [23] made use of the Fisher information besides the noisy gradients, Patterson and

Teh [25] applied SGLD on the probability simplex. Chen et al. [24] and Ding et al. [94]

considered second order Langevin dynamics and made use of the momentum terms,

extending the vanilla SGLD.

In this section, we develop a parallel and distributed MCMC method for sam-

pling from the full posterior of the latent factors. Our approach is carefully designed for

factorization models and builds upon the generic distributed SGLD (DSGLD) frame-
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work that was proposed in [26] where separate Markov chains are run in parallel on

different subsets of the data that are distributed among worker nodes. When applied

to factorization models, DSGLD results in computational inefficiencies since it cannot

exploit the conditional independence structure of them. Besides, DSGLD requires all

the latent variables (i.e., Z1:Nz) to be synchronized once in a couple of iterations which

introduces a significant amount of communication cost. On the other hand, for large

problems it may not even be possible to store the latent variables in a single machine;

one needs to distribute the latent variables among the nodes as well.

We develop a parallel and distributed variant of SGLD tailored for GCTF, that

we call Parallel SGLD (PSGLD). PSGLD has very favorable scaling properties with

increasing data size, remarkably up to the point that the resulting sampler is compu-

tationally not much more demanding than an optimization method such as DIGD (see

Chapter 3). Reminiscent to DSGD, PSGLD achieves high performance by exploit-

ing the conditional independence structure of factorization models for sub-sampling

the data in a systematic manner as to allow parallelization. The main advantages of

PSGLD can be summarized as follows:

(i) Due to its inherently parallel structure, PSGLD is faster than SGLD and Gibbs

sampler by several orders of magnitude while being as accurate.

(ii) As we will illustrate in our experiments, PSGLD can easily be implemented in

both shared-memory and distributed architectures. This makes the method suit-

able for very large data sets that might be distributed among many nodes.

(iii) Unlike DSGLD, which requires to communicate all the latent factors among the

worker nodes, PSGLD communicates only small parts of the shared factors. This

drastically reduces the communication cost for large problem sizes.

(iv) We show that, the probability distribution of the samples generated by PSGLD

converges to the Bayesian posterior.

We note that, a DSGLD-based, distributed matrix factorization (MF) frame-

work has been independently proposed by Ahn et al. [95], where the authors focus

on a particular MF model, called as the Bayesian probabilistic matrix factorisation
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(BPMF) [96]. In this study, we develop our method on GCTF, in which we obtain

several observation models that have been used in important MF models (such as

BPMF, Poisson-NMF [50], Itakura-Saito NMF [52]) as special cases. On the other

hand, since [95] is based on DSGLD, the latent factors are not distributed and need to

be synchronized throughout the iterations, which might cause inefficiency in memory

and communication time.

5.2.1. Parallel Stochastic Gradient Langevin Dynamics for Factorization

Models

In the last decade, SGD has become very popular due to its low computational

requirements and convergence guarantee. SGLD brings the ideas of SGD and LD to-

gether in order to generate samples from the posterior distribution in a computationally

efficient way. In algorithmic sense, SGLD is identical to SGD except that it injects

a Gaussian noise at each iteration. For GCTF models, SGLD iteratively applies the

following update rules in order to obtain the sample Zα(vα)(t):

Zα(vα)(t) = Zα(vα)(t−1) − ε(t)
( U

|Ω(t)|
∑
u∈Ω(t)

∂fu(Z1:Nz)
)

+ Ψα(vα)(t)

Here, we make use of the notation presented in Equation 3.10, where the iterate u

covers all (ν, uν) pairs and Ω(t) ⊂ [U ] is the subset that is drawn at iteration t. We can

clearly see that, SGLD is very similar to the IGD algorithm given in Equation 3.11 in

algorithmic sense, apart from the injected noise. The elements of the noise tensor Ψ
(t)
α

are independently Gaussian distributed:

Ψα(vα)(t) ∼ N (Ψα(vα)(t); 0, 2ε(t)). (5.32)

For convergence, the step size ε(t) must satisfy the conditions given in Equation 3.12.

In SGLD, the subset Ω(t) can be drawn randomly with or without replacement.

When dealing with tensor factorization models, instead of sub-sampling the data arbi-
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1 Input: X1:Nx , R, p1:Nx , φ1:Nx , η, γ, Z
(0)
1:Nz

2 t← 1

3 repeat

4 εt = (η/t)γ

5 for s = 1, . . . , S do

6 for b = 1, . . . , Bs do in parallel

7 // ∀α = 1, . . . , Nz, vα ∈ BI(Iα, b)
8 Zα(vα)(t) = Zα(vα)(t−1)− ε(t)

(
U

|Ω(t)
s,b|

∑
u∈Ω

(t)
s,b

∂fu(Z1,b, . . . , ZNz ,b)
)

+ Ψα(vα)(t)

9 // Optional mirroring step for non-negativity

10 Zα(vα)(t) ← |Zα(vα)(t)|

11 t← t+ 1

12 until convergence or t > max epochs

Figure 5.5. PSGLD (Parallel stochastic gradient Langevin Dynamics).

trarily, we make use of the partitioning approach that we introduced in Section 3.2 for

reducing the computational burden drastically. By making use of the notions of parts

and blocks, we enable parallelism; given a part Ωs, the SGLD updates can be applied

to different blocks b of the latent factors in parallel:

Zα(vα)(t) = Zα(vα)(t−1) − ε(t)
( U

|Ω(t)
s,b|

∑
u∈Ω

(t)
s,b

∂fu(Z1,b, . . . , ZNz ,b)
)

+ Ψα(vα)(t) (5.33)

where vα ∈ Ωs,b. The pseudo-code of PSGLD is given in Figure 5.2.1.

5.2.2. Convergence Analysis

Since we are making use of a biased sub-sampling schema, it is not clear that

the samples generated by PSGLD will converge to the Bayesian posterior. In this

section, we will define certain conditions on the selection of the parts and provided

these conditions hold, we will show that the probability distribution of the samples
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Z
(t)
1:Nz

converges to the Bayesian posterior P(Z1:Nz |X1:Nx).

For theoretical use, we define z as the parameter vector, that contains all the

factors:

z , [vec(Z1)>, . . . ,vec(ZNz)
>]> (5.34)

where vec(·) denotes the vectorization operator. We also define

L(z(t)) , log P(z(t)) +
∑
u∈[U ]

log P(X(u)|z(t))

L̂(z(t)) , log P(z(t)) +
U

|Ω(t)|
∑
u∈Ω(t)

log P(X(u)|z(t))

where, we make use of X(u) = Xν(uν) since u ≡ (ν, uν). Then, the stochastic noise is

given by

ξ(t) = ∇zL̂(z(t))−∇zL(z(t)). (5.35)

Under the following conditions Theorem 5.1 holds.

Condition 5.1. The step size ε(t) satisfies Equation 3.12.

Condition 5.2. The part Ω(t) is chosen from nonoverlapping parts whose union covers

the whole data tensors X1:Nx. The probability of choosing a part Ω(t) at iteration t is

proportional to its size:

P(Ω(t) = Ω) =
|Ω|
U
.

Condition 5.3. E[(ξ(t))k] <∞, for integer k ≥ 2.

Theorem 5.1. Let qt(z) be the probability density function of the samples z(t) that

are generated by PSGLD. Then, the probability distribution of z(t) converges to the
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Bayesian posterior P(z|X1:Nx):

lim
t→∞

qt(z) = P(z|X1:Nx). (5.36)

Proof Sketch. Under Condition 5.2, we can show that L̂ is an unbiased esti-

mator of L; therefore the stochastic noise ξ(t) is zero-mean:

〈
ξ(t)
〉

= 0.

The rest of the proof is similar to [92]. Under conditions 1 and 3, we can show that qt(z)

follows the (multi-dimensional) Fokker-Plank equation and therefore the stationary

distribution of qt(z) is P(z|X1:Nx) ∝ exp(−L(z)). �

5.2.3. Non-negativity Constraints

In an SGD or IGD framework, the latent factors can be kept in a constraint set by

using projections that apply the minimum force to keep the variables in the constraint

set, as shown in Equation 3.18. However, since we are in an MCMC framework, it is

not clear that appending a projection step to the PSGLD updates would still result in

a proper MCMC method. Instead, similar to [25], we make use of a simple mirroring

trick, where we replace the negative entries of Z
(t)
α with their absolute values. Formally,

we let Zα(vα) take values in the whole R, however we parametrize the prior and the

observation models with the absolute values, |Zα(vα)|. Since Zα(vα) and −Zα(vα) will

be equiprobable in this setting, we can replace the negative elements of Z
(t)
α with their

absolute values without violating the convergence guarantee.
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6. EXPERIMENTS USING ML AND MAP ESTIMATION

METHODS

In this chapter, we will focus on evaluating the methods that are described in

Chapter 3. In the subsequent chapters, we will evaluate the methods that we have

introduced in Chapters 4 and 5. Most of our experiments are conducted on various

audio processing applications, whereas we also evaluate our some of our methods on

synthetic data and link prediction experiments.

In this chapter, we will apply our ML and MAP estimation methods for estimat-

ing the latent factors on several challenging applications. In particular, we will address

two audio processing applications by using the MUR algorithm. In these applications,

our primary aim is to demonstrate the advantages of the coupled factorization models.

Then, we will present our experimental results on large-scale link prediction experi-

ments where we evaluate HAMSI on a distributed matrix factorization task.

6.1. Audio Restoration

Audio restoration is an important audio processing application where the aim is

to restore the missing or corrupted parts of an audio signal. This problem often arises

in practice; when network packets are dropped during digital communication in an

audio streaming scenario or certain parts of a vinyl recording could be corrupted and

the corruption would result in ‘click’ sounds. The problem is illustrated in Figure 6.1.

Audio restoration problem is often cast to a matrix completion problem, where

the aim would be to come up with a model for a corrupted audio spectrum X as follows:

M(f, t)X(f, t) ≈M(f, t)X̂(f, t), (6.1)

where X̂ is an approximation of X and M is the binary mask defined in Equation 2.7,
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Figure 6.1. Illustration of audio restoration. The aim is to reconstruct the true

spectrogram given the observed spectrogram that has missing parts.

denoting whether X(f, t) is missing or not. From the probabilistic point of view, when

a data sample is missing, i.e., M(f, t) = 0, this is equivalent that the noise variance

on X(f, t) is infinite. Therefore, this particular sample does not contribute to the

likelihood.

Various audio restoration methods have been proposed in the literature, to name a

few [97–99]. The majority of these methods propose different models that are assumed

to capture the underlying process of how the audio signals are generated. Impressive

results have been reported in these studies, however, these methods have at least one

of the two major problems: The first one is that, it is not straightforward to introduce

domain specific information to these methods, i.e. the methods that are proposed

in [97, 98] both require heavy computational needs. Modifying these methods would

yield even slower estimation process while requiring more complex inference schemes.

The second problem is, as the case in [99], some methods cannot restore the missing

parts if entire frames of audio are missing.

In this section, we will address these problems and illustrate some of the ad-

vantages of coupled factorization in audio processing.5 We present a model for piano

spectrogram restoration by using the GCTF, where the main idea is to incorporate

different kinds of musical information through coupled factorization while estimating

5This section is based on the material published in [100].
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the missing parts of the audio: the reconstruction will be aided by an approximate

musical score, not necessarily belonging to the played piece, and spectra of isolated

piano sounds.

We aim to reconstruct the missing parts of an audio spectrogram of a piano

piece X1(f, t), that represents the short time Fourier transform coefficient magnitude

at frequency bin f and time frame t. This is a difficult matrix completion problem since

entire time frames (columns of X1) can be missing, low rank reconstruction techniques

are likely to be ineffective.

In order to restore the missing parts in the audio, we form a model that incorpo-

rates musical information of chords structures and how they evolve in time. In order

to achieve this, we first decompose X1 by using the NMF model, as follows:

X1(f, t) ≈ X̂1(f, t) =
∑
i

D(f, i)E(i, t) (6.2)

where D is called as the spectral dictionary and E is called as the excitations. The

main assumption in this modeling strategy is that each column of X1 would be a noisy

realization of a linear combination of the columns of the dictionary matrix D, where

the weights of the linear combination is determined by E. Smaragdis and Brown [101]

have demonstrated that, provided that model order is properly chosen, the computed

factors D and E tend to be semantically meaningful as they correlate well with the

intuitive notion of spectral templates of individual notes and a musical score of the

corresponding piece, as illustrated in Figure 6.2.

Since, whole columns of X1 could be missing, we would like to incorporate tem-

poral information to the model. Therefore, we hierarchically decompose the excitation

matrix E by using the non-negative matrix factor deconvolution (NMFD) model [102]

that aims to express E as a convolution of some basis matrices and their weights, given
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≈

Figure 6.2. An example audio spectrogram decomposed by using NMF. X1 contains

the individual notes and the triad of C major that are played consequently. After the

decomposition, D encapsulates the spectral shapes of individual notes and E

determines the excitation patterns of these notes.

as follows:

E(i, t) =
∑
k,τ

B(i, τ, k)C(k, t− τ). (6.3)

Since E is similar to a musical score, the basis tensor B would encapsulate both har-

monic (in musical sense) and temporal information of the notes that are likely to be

used in a musical piece. After replacing E with the decomposed version, we get the

following model:

X̂1(f, t) =
∑
i,τ,k

D(f, i)B(i, τ, k)C(k, t− τ).

An example excitation matrix that is decomposed with the NMFD model is illustrated

in Figure 6.3.

In order to guide the restoration and provide data-driven regularization, we in-

troduce side information. We provide a score matrix X2, where X2(i, n) would denote
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≈ *

E (excitations) B (chord dictionary) C (chord excitations)
k=1 k=2 k=3 k=4 k=5

Figure 6.3. An example excitation matrix decomposed by using NMFD. B

encapsulates both harmonic and temporal information of the musical score: each slice

of B forms a temporal template for the chords that appear in the musical piece.

These templates are then activated by the excitation matrix C.

if the note i is played at the time-frame n. This matrix can be possibly obtained

from a MIDI file. We also provide an additional audio spectrogram X3 that contains

isolated piano recordings where it is constructed by concatenating isolated recordings

corresponding to different notes.

Since we assume X2 and E would have a similar harmonic structure, we decom-

pose X2 in the same fashion as we decomposed E:

X̂2(i, n) =
∑
τ,k

B(i, τ, k)G(k, n− τ)

where the musical piece to be reconstructed will share B, possibly played at different

times or tempi as modelled by G. Finally, we decompose X3 by using another NMF

model where the spectral dictionary is shared with X1:

X̂3(f, p) =
∑
i

D(f, i)F (i, p)T (i, p) (6.4)

where T is a 0 − 1 matrix, where T (i, p) = 1(0) if the note i is played (not played)

during the time frame p and F models the time varying amplitudes of the isolated
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notes. Then the ultimate model is given as follows:

X̂1(f, t) =
∑
i,τ,k

D(f, i)B(i, τ, k)C(k,

d︷ ︸︸ ︷
t− τ) Audio Spectrogram

=
∑
i,τ,k,d

D(f, i)B(i, τ, k)C(k, d)Z(d, t, τ) (6.5)

X̂2(i, n) =
∑
τ,k

B(i, τ, k)G(k,

m︷ ︸︸ ︷
n− τ) Symbolic Music Data (MIDI)

=
∑
τ,k,m

B(i, τ, k)G(k,m)Y (m,n, τ) (6.6)

X̂3(f, p) =
∑
i

D(f, i)F (i, p)T (i, p) Isolated Notes

(6.7)

Here, we have introduced new dummy indices d and m, and new (fixed) factors

Z(d, t, τ) = δ(d − t + τ) and Y (m,n, τ) = δ(m − n + τ) to express this model in

our framework. Figure 6.4 visualises the general structure of the model.

In GCTF notation, we have Nx = 3, Nz = 8 with Z1:8 ≡ {D,B,C, Z,G, Y, F, T},
and i1:8 ≡ {f, t, i, τ, k, d, n,m}. The coupling matrix R for this model is defined as

follows:

R =


1 1 1 1 0 0 0 0

0 1 0 0 1 1 0 0

1 0 0 0 0 0 1 1

 . (6.8)

In order to evaluate our model, we have conducted several experiments. We have

used the MIDI Aligned Piano Sounds (MAPS) piano database [103]: 16 bit 44.1 kHz

piano samples are down-sampled to 11.025 Hz and the test files are corrupted by erasing

big chunks of samples. In all our experiments the audio is subdivided into frames of

93 milliseconds.

In the experiments, we have used the first 20 seconds of 6 different recordings of 3
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Figure 6.4. General sketch of the audio restoration model. The idea is to incorporate

information from the recordings of the instrument and a score of the same genre. The

blocks visualize the tensors that are defined in the model and the relation between

them. The lower-case letters and arrows near the blocks represent the indices of a

particular tensor.

pieces from J. S. Bach. In 2 of these 6 different recordings, the piano samples (X3) are

available for each isolate note. The remaining 4 recordings are from different pianos. In

order to obtain the restored version of the corrupted spectra we have simply combined

the observed parts of X1 and the estimated parts of X̂1: M1 ◦ X1 + (1 −M1) ◦ X̂1,

where M1 is the 0− 1 mask that is introduced in Equation 2.7.

In our first experiment, after synthetically corrupting the test files, we have re-

stored them by using their own transcriptions as the side information. In the second

experiment, we have used transcriptions of different pieces. Figure 6.5 illustrates the

performance the model for different missing data percentages and different cost func-

tions. For both cases the Euclidean cost function seems to perform better than the

others. It can also be observed that, the results of both experiments are similar. One

interpretation of this observation is that as long as the musical score (X2) reflects

the chord structure and its temporal evolution of corrupted the audio, it does not

necessarily belong to the same piece as X1.
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(b) Second experiment

Figure 6.5. Results of the audio restoration experiments. As side information (X2),

we used a) own transcriptions of the test files, b) different transcriptions of other test

files. Initial SNR is computed by substituting 0 as missing values.

In order to assess the quality of our reconstructions, we measure the signal-to-

noise ratio (SNR) between the true and the reconstructed spectrograms. In both cases,

we get about 5 dB SNR improvement where 50% of the data is missing; gracefully

degrading from 10% to 80% missing data. We believe that the results are encouraging

as quite long portions of audio are missing.

6.2. Audio Source Separation

Audio source separation is another key problem in computer music and audio sig-

nal processing. The aim is to estimate individual sources from an audio mixture. For

instance, in musical signal processing, given an audio recording that contains multiple

instruments, one would like to separate the signals of the individual musical instru-

ments, that would correspond to different sources in a source separation application.

This problem is called underdetermined if the number of channels is less than the num-

ber of sources in the mixture. Figure 6.6 illustrates underdetermined source separation

problem.

The first approaches to solve underdetermined source separation involved blind

source separation techniques [104]. However, audio signals are highly complex, and

blind methods fall short in exploiting useful domain specific knowledge. Incorporat-
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Mixture
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Figure 6.6. Illustration of underdetermined source separation. The aim is to separate

individual source signals from an audio mixture.

ing domain specific information via signal models yields to informed source separation

methods and there exists several studies that make use of different kinds of infor-

mation. In the case where the original source signals are known beforehand, [105]

presented a method which is based on extracting side information from the original

sources and using this information at the source separation process. Another informed

source separation method is proposed in [106] which makes use of a temporally aligned

transcription of the audio mixture.

In this section, we present two tensor factorization models for informed musical

source separation.6 Both models are based on NMF and the basic idea in our models

follows the notion of decomposing the magnitude spectrum of the mixture (X1) as

the multiplication of a spectral dictionary (D) and the corresponding excitations (E),

similar to Section 6.1. By this approach, we can obtain the source estimates by Wiener

filtering after the factors D and E are estimated:

Xsource = X1 ◦
DsourceEsource

X̂1

(6.9)

where Dsource and Esource are the parts of D and E that belongs to the ‘source’, and ◦

6This section is based on the material published in [38].
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Figure 6.7. General sketch of the first source separation model. The idea is to

incorporate information from the recordings of the instruments. The excitation

matrix is also restricted by a temporally aligned transcription. The blocks visualize

the tensors and the arrows denote the relation between them. The lower-case letters

and small arrows near the blocks represent the indices of a particular tensor. Note

that N and T matrices are masks that are applied on E and F , respectively.

and ·
· denote element-wise product and division.

In our first model, we combine two different NMF models that share the dictionary

matrix D. The aim in this model is to incorporate spectral information by coupling

the observed mixture with isolated note recordings. Here, the excitation matrix E is

further restricted by a temporally aligned transcription of the mixture (N). The model

is defined as follows:

X̂1(f, t) =
∑
i

D(f, i)E(i, t)N(i, t) (6.10)

X̂2(f,m) =
∑
i

D(f, i)F (i,m)T (i,m) (6.11)

where f is the frequency index, t and m are time frame indices, and i is the index

of the spectral templates. Under Euclidean or KL divergences, X1 is the magnitude
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Figure 6.8. General sketch of the second source separation model. The idea is to

incorporate spectral information from the recordings of the instruments and harmonic

information from an approximate score which is not necessarily aligned. The blocks

visualize the tensors and the arrows denote the relation between them. The lower-case

letters and small arrows near the blocks represent the indices of a particular tensor.

spectrum of the audio mixture and X2 is the magnitude spectrum of concatenation of

isolated recordings corresponding to different notes. If IS divergence is chosen, both

X1 and X2 are power spectra. Besides, N is the temporally aligned transcription of

the mixture where N(i, t) = 1(0) if the note i is played (not played) during the time

frame t. Similarly, T is also a 0− 1 matrix, where T (i,m) = 1(0) if the note i is played

(not played) during the time frame m and F models the time varying amplitudes of

the isolated notes. Figure 6.7 visualizes the general structure of the model.

In GCTF notation, we have Nx = 2, Nz = 5 with Z1:5 ≡ {D,E,N, F, T}, and

i1:4 ≡ {f, t, i,m}. The coupling matrix R for this model is defined as follows:

R =

 1 1 1 0 0

1 0 0 1 1

 . (6.12)

A similar model to this model was proposed in [36] for drum source separation in

polyphonic music signals. In that model, the spectral templates are coupled between

a polyphonic audio recording and a collection of drum recordings in order to obtain
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better drum separation performance.

In our second model, we hierarchically factorize the excitation matrix E as mul-

tiplication of a chord dictionary matrix B and its weights C as follows:

E(i, t) =
∑
k

B(i, k)Z(i, k)C(k, t). (6.13)

Here the basis matrix B encapsulates the harmonic structure of the music and incor-

porates additional information to the source separation system. The basic idea behind

factorizing the excitation matrix E is to capture the repeated harmonic patterns in the

music and form a harmonic basis for the musical piece.

After replacing E with the decomposed version, we get the following model:

X̂1(f, t) =
∑
i,k

D(f, i)B(i, k)Z(i, k)C(k, t) (6.14)

X̂2(f,m) =
∑
i

D(f, i)F (i,m)T (i,m) (6.15)

X̂3(i, n) =
∑
k

B(i, k)Z(i, k)G(k, n)Y (k, n) (6.16)

where X3 is a score matrix, which can be possibly obtained from a MIDI file: X3(i, n)

is set to a constant value if the ith note is active at time frame n. X1 and X3 do

not necessarily belong to the same piece, however, in this study we select X3 as a

transcription of X1.

Furthermore, Z and Y are 0 − 1 matrices that allow the model to handle audio

mixtures with multiple instruments. Z(i, k) = 1 if ith note and kth chord template

belong to the same instrument. Similarly, Y (k, n) = 1 if the instrument that kth chord

template belongs to is active at time n. G models the time varying amplitudes of the

chord templates. Figure 6.8 visualizes the general structure of the model.

In GCTF notation, we have Nx = 3, Nz = 8 with Z1:8 ≡ {D,B,Z,C, F, T,G, Y },
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Table 6.1. Evaluation results of the source separation models. M1 denotes the first

model and M2d denotes the second model where d is the duration of the transcription

in seconds. The best results are shown in bold.

SIR SAR SDR

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

M1 12.09 14.82 18.76 9.62 10.23 8.54 7.03 8.55 8.01

M245 7.85 20.08 21.02 6.31 13.25 6.72 2.06 12.34 6.42

M230 7.53 14.51 18.18 6.83 10.97 6.21 2.66 8.66 5.36

M210 6.39 11.17 14.91 8.12 9.35 6.25 2.57 5.37 4.82

and i1:8 ≡ {f, t, i, k}.The coupling matrix R for this model is defined as follows:

R =


1 1 1 1 0 0 0 0

1 0 0 0 1 1 0 0

0 1 1 0 0 0 1 1

 . (6.17)

For evaluation of the models, we have synthesized 3 piano and cello duets by using

RWC Musical Instrument Sound database [107] and a simple concatenative synthesis

algorithm and then we have selected 3 excerpts of 45 seconds from random parts of

each piece yielding 9 test cases. In all our experiments the audio is subdivided into

frames of 186 milliseconds where the audio spectrum is computed via Modified Discrete

Cosine Transform (MDCT).

Since our second model needs only an approximate transcription, we also tested

this model on different transcription durations: we used the first 10, 30, and 45 seconds

of the transcriptions during the tests.

We have run the inference algorithms for 50− 75 iterations for both models and

we have used 134 spectral templates that correspond to 88 piano and 46 cello notes.

We have also used 80 chord templates for the second model; 50 templates for piano and
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30 templates for cello. The factors B, C, D, E, F , and G are initialized randomly and

updated during the estimation process. The other factors are clamped to their initial

values.

In order to measure the performance of our models, we compute the signal to

interference ratio (SIR), signal to artifact ratio (SAR), and signal to distortion ratio

(SDR) by using the BSSEVAL toolbox (v3.0) [108]. The evaluation results are given in

Table 6.1. It can be observed that, despite the first model uses the temporally aligned

transcription, the second model yields a similar performance and it even performs

better than the first model for all metrics when KL divergence is chosen. We can also

observe that increasing the duration of the transcription that is used in the second

model improves the performance of the system which validates the idea behind the

model. Some audio examples can be found in http://www.cmpe.boun.edu.tr/~umut/

eusipco2012/.

6.3. Large-Scale Link Prediction via Distributed Matrix Factorization

In this section, we present the performance of HAMSI on a large-scale, distributed

matrix factorization application. We focus on the following problem: (Nx = 1)

X1(i, j) ≈ X̂1(i, j) =
∑
k

Z1(i, k)Z2(k, j) (6.18)

where we select p1 = 0 and we do not restrict the factors to be non-negative. Here, we

set i1:3 ≡ {i, j, k}.

Figure 6.9 illustrates the partitioning schema that we use in our implementation.

Resulting partitions allow us to immediately realize separable subproblems. The mem-

ory matrices Ξb and Φb in Algorithm 3.3 (line 10) are also distributed across the nodes.

Thus, we also construct the submatrices Ξ1b and Ξ2b as well as Φ1b and Φ2b.

In our experiments, we consider a distributed architecture that contains two main
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Figure 6.9. Illustration of the parts and the blocks used in the experiments.

components: (i) data nodes that store the blocks of X1; (ii) computation nodes that

complete the inner HAMSI iterations in parallel. We have chosen to implement HAMSI

by a low-level message passing protocol in C using the OpenMPI library. Though, an

implementation using higher level distributed computation primitives, like Hadoop

MapReduce, is also possible.

In our implementation, each subset has the same number of blocks Bs = S for

all s, where S is also the number of available nodes. As illustrated in Figure 6.10,

throughout the optimization, the submatrices Z1b, Ξ1b and Φ1b are local to each com-

putation node. On the other hand, at the end of each iteration each node transfers the

corresponding submatrices Z2b, Ξ2b and Φ2b to its neighboring node in a cyclic fashion.

We conduct our experiments on a cluster with 15 interconnected computers each

of them with 8 Intel Xeon 2.50GHz CPUs and 16 GB of memory. Therefore, provided

that the memory is sufficient, we are able to run 120 concurrent processes.

We evaluate HAMSI on three large movie ratings datasets, namely MovieLens

1M, MovieLens 10M, and MovieLens 20M (grouplens.org). MovieLens 1M contains

1 million ratings applied to s1 = 3883 movies by s2 = 6040 users, resulting in a sparse

data matrix X1 with 4.3% non-zero entries. For MovieLens 10M, we have 10 million

ratings applied to 10681 movies by 71567 users with 1.3% non-zero entries. Finally, in

MovieLens 20M, there are 20 million ratings applied to 27278 movies by 138493 users

with 0.5% non-zero entries. In all our experiments, we set latent dimension, s3 = 50

and memory size, M = 5.
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Figure 6.10. Illustration of the communication mechanism with 3 nodes. At each

iteration, a node transfers the submatrices Z2b, Ξ2b, and Φ2b to a neighboring node.

The submatrices Z1b, Ξ1b, and Φ1b are kept in the same node throughout the

optimization.

Table 6.2. The list of the parameters in the MovieLens experiments.

MovieLens 1M MovieLens 10M MovieLens 20M

DSGD HAMSI DSGD HAMSI DSGD HAMSI

η 1e− 7 100 1e− 8 800 1.2e− 8 500

γ 0.51 0.51 0.6 0.51 0.51 0.51

θ − 200 − 1000 − 500

In our first set of experiments, we compare HAMSI with the state-of-the-art

distributed optimization algorithm for MF, namely, the distributed stochastic gradient

descent (DSGD) [12]. In algorithmic sense, DSGD coincides with the DIGD algorithm

that we presented in Section 3.2 (with Nx = 1, p1 = 0).

In this experiment, on each dataset, we report the root mean squared error

(RMSE) between X and X̂1 after running each algorithm for a fixed computation

time. RMSE is a standard metric that has been used in link prediction, where the

RMSE between X1 and X̂1 is defined as follows:

RMSE(X1,X̂1) =

√
1

s1s2

∑
ij

(
X̂1(i, j)−X1(i, j)

)2

. (6.19)
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Figure 6.11. RMSE values on MovieLens datasets.

For DSGD, we choose the step-size as (ηDSGD/t)
γDSGD . For each method, we

tried several values for the algorithm parameters (η, γ, θ, ηDSGD, γDSGD) and report

the typical results selected among the best performing ones. The list of the selected

parameters are given in Table 6.2.

Figure 6.11 shows the RMSE values of HAMSI and DSGD on the three datasets

as function of wall-clock time. The parameters used to obtain these results are given in

the supplementary document. Since, HAMSI coincides with DSGD until the memory

matrices are full (line 20, Algorithm 3.3), we observe the same behavior from both

algorithms at the beginning of each experiment. When the memory matrices are filled

after M iterations, HAMSI starts to incorporate the approximate curvature informa-

tion. A single iteration of HAMSI is computationally heavier than DSGD: First, the

compact form L-BFGS update requires more computation than simple gradient eval-

uation. Formally, this overhead is in the order of O((M2 max(s1, s2)s3)/S2). Second,

the communication cost of HAMSI is O(s2s3(2M + 1)/S) per iteration, whereas the

communication cost of DSGD is O(s2s3/S). However, the use of second order infor-

mation compensates quickly for this slight increase in computational complexity as it

helps HAMSI converge much faster than DSGD. This is clearly seen in Figure 6.11 by

the significant gap in RMSE values between the two methods.

In our second experiment, we demonstrate the favorable scalability property of

HAMSI. In different computational experiments, we vary the number of nodes from 5
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Figure 6.12. Scalability of HAMSI. a) The size of the data is kept fixed, the number

of nodes is increased b) The size of the data and the number of nodes are increased

proportionally.

to 120 and run the algorithm for 100 iterations in each setting. Figure 6.12a shows

the wall-clock times of HAMSI for different number of computation nodes. The results

show that the running time reduces almost linearly as we increase the number of nodes

up to S = 45. After that the communication overhead seems to dominate and the

speed-up becomes marginal.

To illustrate how HAMSI scales with the size of the data, we construct three

data matrices, XS=15
1 , XS=30

1 and XS=60
1 by artificial replication. The data matrix

XS=15
1 is the MovieLens 10M, XS=30

1 = h(XS=15
1 ) and XS=60

1 = h(XS=30
1 ), where

h(X) = [X X;X X]. The largest data matrix, XS=60
1 is then of size 170896× 1145072

with 160 million non-zero entries. For each dataset, the number of computation nodes

is also increased in line with the data matrices to keep the data-to-processor ratio con-

stant. Consequently, for each data matrix, the number of computation nodes matches

S. Figure 6.12b shows the total running times of HAMSI after 10 iterations for vary-

ing data sizes and the number of nodes. The observed results are typical. For the

smaller datasets, the wall-clock time stays roughly the same. However, for the larger

datasets the communication becomes a key bottleneck due to the increasing traffic on

the network.
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7. EXPERIMENTS USING DIVERGENCE LEARNING

METHODS

In this chapter, we will our evaluate methods that are described in Chapter 4. We

will first consider a rather simple case, where we assume that the power parameters are

given and estimate the dispersion parameters. Then, we will conduct experiments on

the Tweedie compound Poisson model, where we will present an interesting application

that aims to predict the lyrics of a song given the feature of the song. Finally, we will

present our results where we aim to estimate all the parameters of Tweedie model

for all possible values of the power parameter. We will use the MUR algorithm for

estimating the factors, unless stated otherwise.

7.1. Dispersion Learning

In this section, we evaluate our dispersion estimation method for p ∈ {0, 1, 2, 3},
given in Equation 4.21. We will first conduct experiments on synthetic data, then we

will apply our method on a real audio processing model.7

7.1.1. Synthetic Data

We conduct experiments on two synthetic datasets. First, we illustrate our

method on tensor reconstruction model given in Equation 7.1-2, then we use model

given in Equation 7.3-5 for the same task. For both of the experiments, we compare

two cases. In the first case, we estimate the factors without using the dispersion pa-

rameters (i.e. setting φ1:3 = φ) and they do not contribute to the estimation process.

In the second case, we also estimate the dispersion parameters by using the proposed

method while making inference.

Our method can be used for enhancing missing data recovery when data from

7This section is based on the material published in [83].



96

30 50 70 90
0

0.02

0.04

0.06

0.08

0.1

0.12
Model1

Amount of Missing Data (%)

T
e
n
s
o
r 

C
o
m

p
le

ti
o
n
 E

rr
o
r 

(R
M

S
E

)

 

 

Disp.

No Disp.

(a)

30 50 70 90
0

0.02

0.04

0.06

0.08

0.1

0.12
Model2

Amount of Missing Data (%)

T
e
n
s
o
r 

C
o
m

p
le

ti
o
n
 E

rr
o
r 

(R
M

S
E

)

 

 

Disp.

No Disp.

(b)

Figure 7.1. Illustration of the tensor reconstruction performances of (a) Model 1 and

(b) Model2. In both of the figures, completion error of proposed method with

(dashed) and without (solid) estimating the dispersion parameters in terms of RMSE

under different amounts of missing data are given.

different sources have the same underlying low-rank structure (at least in one mode) but

some of the data sets have missing entries. Here, we provide an example to illustrate

that how the missing entries can be recovered more accurately when we estimate the

dispersion parameters. For both of the datasets, we used our method for data recovery

when X1 has missing entries. We use two coupled tensor factorization models. The

first model is given as follows:

X1(i, j, k) ≈ X̂1(i, j, k) =
∑
r

A(i, r)B(i, r)C(i, r) (7.1)

X2(j,m) ≈ X̂2(j,m) =
∑
r

B(j, r)D(k, r) (7.2)

where Z1:4 ≡ {A,B,C,D} and i1:5 ≡ {i, j, k,m, r}. For this model, the simulated data

size for observables is s1 = 100, s2 = s3 = 20, s4 = 50 while the latent dimension is

s5 = 5. We set the power parameters as p1 = 0, p2 = 2 and true dispersion parameters

as φ1 = 0.5, φ2 = 5. The hyper-parameters are selected as τφ = 10 and κφ = 1.



97

We define our second model as follows:

X1(i, j, k) ≈ X̂1(i, j, k) =
∑
r

A(i, r)B(i, r)C(i, r) (7.3)

X2(j,m) ≈ X̂2(j,m) =
∑
r

B(j, r)D(k, r) (7.4)

X3(j, n) ≈ X̂3(j, n) =
∑
r

B(j, r)E(n, r) (7.5)

where Z1:5 ≡ {A,B,C,D,E} and i1:6 ≡ {i, j, k,m, n, r}. Here, the simulated data size

for observables is s1 = 500, s2 = s5 = 50, s3 = s4 = 200 while the latent dimension is

s6 = 5. This time, we set the power parameters as p1 = 1, p2 = 2, p3 = 0 and the true

dispersion parameters as φ1 = 2, φ2 = 0.7, φ2 = 1.

We set different amounts, i.e., {30, 50, 70, 90}%, of randomly unobserved elements

and report the RMSE scores of ten independent runs for the two cases. We can clearly

observe from Figure 7.1 that estimating the dispersion parameters yields better per-

formance on tensor reconstruction.

7.1.2. Drum Source Separation

In this section, we apply our dispersion estimation method on a coupled ma-

trix factorization model for drum separation for professionally recorded audio. This

model combines the information that is gathered from the audio mixture, isolated drum

sounds and an approximate transcription of drum track of the audio mixture.

Suppose we observe the magnitude spectrum of an audio mixture X1(f, t), where

f and t denote the frequency and time frame indices, respectively. Here, we assume

that matrix X1 is decomposed by using an NMF model:

X1(f, t) ≈ X̂1(f, t) =
∑
i

D(f, i)G(i, t) (7.6)

where D is the spectral dictionary and G is the corresponding excitation matrix. Since
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Figure 7.2. Illustration of the drum separation model. The blocks visualize the

matrices and the relation between them. The lower-case letters and arrows near the

blocks represent the indices of a particular matrix.

the aim of this model is drum track separation, we will assume that some of the

spectral templates, say the first Ib columns of D, denoted as D(:, 1 : Ib) model the

background sources and the remaining model the drum track. Suppose we observe

another magnitude spectrum X2(f, n), which is obtained from a database of drum

sounds. Here f is again the frequency index and n is the time frame index. We can

also decompose this matrix using a similar approach:

X2(f, n) ≈ X̂2(f, n) =
∑
i

D(f, i)T1(f, i)E(i, n) (7.7)

where D is the same spectral dictionary in Equation 7.6 and E is the excitation matrix

for the example drum sounds. Here, T1 is a pre-determined binary matrix that makes

sure that the drum sounds use only the related spectral templates: T1 takes values

of 0 for the background part of the dictionary and 1 otherwise: T1(:, 1 : Ib) = 0 and

T1(:, Ib + 1 : s4) = 1, where s4 is the number of spectral templates. So far, we have the

coupled factorization model of [36], which incorporates the spectral information that

is obtained from the drum sounds to the drum separation model.

As we are modeling musical signals, we may also assume the excitation matrix

G is composed of the superposition of some certain patterns that repeat over time.

With this assumption, we can also factorize the matrix G using another NMF model
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Figure 7.3. Example results of the drum separation experiment. The figures illustrate

the reconstructed audio spectra of the drum track Xd, computed via Wiener filtering:

Xd = X1 ◦ D(:,Ib+1:s4)B(Ib+1:s4,:)F

X̂1
. In (a) the dispersion parameters are set to the same

value; they do not contribute to the estimation process. In (b) the dispersion

parameters are also estimated by the proposed approach.

as follows: G(i, t) =
∑

k B(i, k)F (k, t), where B is the dictionary for the excitations

and F denotes the excitations that correspond to this dictionary. By making use of

the relation between an excitation matrix and a musical score, we can also couple the

matrices B and F with an approximate transcription of the drum track as follows:

X3(i, t) ≈ X̂3(i, t) =
∑
k

B(i, k)T2(i, k)F (k, t). (7.8)

Here, X3(i, t) takes a constant value if a drum event i (e.g. snare hit, hi-hat hit, etc.)

is present at time frame t, and becomes 0 otherwise. Furthermore, T2 is another pre-

determined binary matrix similar to T1, where T2(1 : Ib, :) = 0 and T2(Ib + 1 : I, :) = 1.

Finally, we can define the combined model as follows:

X̂1(f, t) =
∑
i,k

D(f, i)B(i, k)F (k, t) Mixture (7.9)

X̂2(f, n) =
∑
i

D(f, i)T1(f, i)E(i, n) Drum (7.10)
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X̂3(i, t) =
∑
k

B(i, k)T2(i, k)F (k, t) MIDI (7.11)

where Nx = 3, Nz = 6, Z1:6 ≡ {D,B, F, T1, E, T2}, and i1:5 ≡ {f, t, n, i, k}. Figure 7.2

illustrates this model. The goal is to estimate the latent factors D, B, F , and E as the

sources can be separated by Wiener filtering after the factors D, B, and F are obtained

(see Equation 6.9). Since we are dealing with audio signals, selecting p1 = p2 = 2 as

Itakura-Saito divergence would be appropriate as suggested in [52]. Besides, we may

want to select p3 = 1 as the KL divergence. However, we may wish to give different

weights to each observed matrix. In particular, we know that the transcription matrix

X3 is not very accurate, we don’t need to fit this matrix precisely. The dispersion

parameters play a key role here, as they determine the noise variance of each observed

matrix. For this particular example, selecting a large φ3 seems to be an accurate

modeling strategy.

We illustrate our dispersion estimation method on our drum source separation

model. Here, we conduct our experiments on a famous pop song ‘Chasing Pavements’

by Adele. Firstly, we estimate the factors without using the dispersion parameters (i.e.

setting φ1:3 = φ) and then we also estimate the dispersion parameters by using the

proposed method while making inference.

We compute the magnitude spectrum of a 20 second excerpt of the piece and

obtain X1. For X2, we compute the spectra of the drum sounds that are obtained from

the RWC Musical Instrument Sound Database. Finally, we compute X3 by using an

approximate transcription of the drum track of the piece, which can be obtained from

online MIDI databases. In our experiments we used s4 = 813 (the number of spectral

templates): 13 templates for the drum part and 800 templates for the harmonic part,

s5 = 100, and we set the divergence parameters as p1 = 2, p2 = 2, and p3 = 1.

Figure 7.3 visualizes the drum source separation results for the particular exper-

iment. It can be visually observed that estimating the dispersion parameters while

estimating the other factors yields better results. We can see that, the high frequency
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components of the drum sounds cannot be recovered if the dispersion parameters are

fixed to the same number.

7.2. Learning the Divergences in Tweedie Compound Poisson Models

In this section, we will evaluate our methods that are presented in Section 4.1.8

We will jointly estimate all the variables, where we will restrict p ∈ (1, 2). Firstly, we

will evaluate our methods on modeling symbolic representations for polyphonic music.

Secondly, we will define a coupled tensor factorization model and evaluate our methods

on prediction of the lyrics of a song from its audio features.

7.2.1. Symbolic Music Modeling

Recent studies suggest that, when designed properly, polyphonic pitch tran-

scription methods with higher level musical models yield better transcription perfor-

mance [109]. In this section, we present a tensor factorization model for symbolic

musical data modeling. This model can be used as a side model for factorization-based

audio models.

Symbolic music representation is similar to the sheet representation of music,

where symbolic data contain high level musical information, such as note onset times,

note durations, and the pitch of the notes that occur in a musical piece. Musical Instru-

ment Digital Interface (MIDI) is one of the standards of symbolic music representation.

One disadvantage of the symbolic representation is that it does not reflect the

temporally varying characteristics of the musical notes. We have the information of the

velocities at the note onsets, however we cannot obtain the damping structure that the

notes naturally have. Therefore, in order to have a better representation, we quantize

the time into time-frames and encode the musical information into a matrix X1(n, t)

where n is the note index and t is the time frame index. Here X1(n, t) simulates the

time-varying velocity (volume) of note n during time frame t. For instance, if the note

8This section is based on the material published in [81].
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n is active at both the time-frame t and t + 1, then the velocities have the following

relation: X1(n, t + 1) = αX(n, t) where 0 < α < 1. This representation mimics the

structure of an excitation matrix of the NMF model.

By construction, only a couple of notes will be active at a given time frame t,

therefore X1 will consist of mostly zeros and some positive values. We can observe that

assuming a compound Poisson observation model is quite reasonable as the compound

Poisson distribution has a nonnegative probability mass at 0 and a continuous density

on positive values.

In this section, we use the NMFD in order to model the modified symbolic musical

data. The model is given as follows:

X1(n, t) ≈ X̂1(n, t) =
∑
τ,k

D(n, τ, k)E(k, t− τ) (7.12)

where D is the dictionary tensor and E encapsulates the corresponding excitations.

Here Nx = 1, Nz = 2, Z1:2 ≡ {D,E}, and i1:4 ≡ {n, t, τ, k}. Apart from using

the benefits of the NMF model, this model is also capable of modeling the temporal

information of the music.

Since we have only one observed tensor in this model, we can use all three of the

inference methods that have been described in Section 4.1. In order to evaluate our

methods on modeling the symbolic data, we conduct a restoration experiment similar

to the one presented in Section 6.1. We firstly erase some columns (time frames)

of the data, then reconstruct the missing parts by using the NMFD model. This

reconstruction problem is not trivial as entire time frames (columns of X1) can be

missing.

In these experiments we also use the MAPS database. We use 10 excerpts from

5 different classical music pieces. After generating the X1 matrices from the symbolic

data, we randomly erase some columns of the data which are going to be reconstructed
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Figure 7.4. Results of the MIDI reconstruction experiments. Initial SNR is computed

by substituting 0 as missing values.

later on. In order to obtain the reconstructed symbolic data, we simply combine the

observed parts of X1 and the estimated parts of X̂1: M1 ◦X1 + (1−M1) ◦ X̂1, where

M1 is the binary mask that is introduced in Equation 2.7. We evaluate and compare

the performances of our methods by measuring the SNR between the corrupted and

the reconstructed symbolic musical data.

In our experiment settings, the duration of the excerpts is 10 seconds, where we

use time frames of 93 milliseconds. We select τφ = 5 and κφ = 3, s3 = 5, and s4 = 50

for all methods. The results are shown in Figure 7.4.

The results suggest that, the methods always improve the quality of the corrupted

symbolic data. The ICM and the EM algorithm give similar results, where the Bayesian

method seems to be more sensitive to the missing data than the variational methods.

The estimated index parameter p differs for each piece that is reconstructed. Besides,

each algorithm finds different p values: the average values for the index parameter are

1.01 (ICM), 1.19 (EM), and 1.26 (Bayesian). For all methods, we get about 4 dB SNR

improvement where 50% of the data is missing; gracefully degrading from 10% to 90%

missing data. Figure 7.5 visualizes an example reconstruction. It can be observed that

the compound Poisson model yields a better reconstruction, where the Gaussian model
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Figure 7.5. Visualization of the symbolic music reconstruction.

introduces spurious notes.

As the results are encouraging even when quite long portions of the data are

missing, we can say that modeling the polyphonic music with this approach seems

reasonable and might produce good results when used in more complicated models.

7.2.2. Coupled Audio and Lyrics Modeling

In this section, we will illustrate how our approaches can be used with multimodal

data. In particular, we will demonstrate that how the index parameter p and the corre-

sponding dispersion φ will be estimated under coupled models with mixed observation

models where at least one of the observation model is the compound Poisson model.
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and arrows near the blocks represent the indices of a particular matrix.

In this experiment, we present a coupled matrix factorization model which com-

bines audio features and the lyrics of songs. The aim of this application is to predict

the bag-of-words representation of the lyrics of a song given its audio features. This

is an interesting application which tries to estimate the keywords that should exist in

the lyrics of a song by making use of its audio features and the information from other

songs.

Suppose we observe the matricesX1 ≡ {X1(f, s)} andX2 ≡ {X2(w, s)}, whereX1

contains the song-level audio features and X2 contains the bag-of-words representation

of the lyrics of the songs in their columns. Here, f denotes the audio feature index,

s is the song index, w is the word index. We decompose these matrices by using the

NMF model as follows:

X1(f, s) ≈ X̂1(f, s) =
∑
k

D1(f, k)E1(k, s) (7.13)

X2(w, s) ≈ X̂2(w, s) =
∑
n

D2(w, n)E2(n, s) (7.14)

where D1 and D2 are the dictionary matrices and E1 and E2 are the corresponding
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excitation matrices. By also assuming a low rank model over the excitation matrices,

we hierarchically factorize the excitations by using another NMF model as follows:

E1(k, s) =
∑
r

B1(k, r)C(r, s) (7.15)

E2(n, s) =
∑
r

B2(n, r)C(r, s), (7.16)

where B1 and B2 are the dictionaries for the excitations. With a final assumption that

a particular song would use the same columns of the dictionaries B1 and B2, we can

say that it would have the same excitations. By this approach, we can relate the audio

features to the lyrics. We define the ultimate coupled model as follows:

X̂1(f, s) =
∑
k,r

D1(f, k)B1(k, r)C(r, s) (7.17)

X̂2(w, s) =
∑
n,r

D2(w, n)B2(n, r)C(r, s). (7.18)

Here, Nx = 2, Nz = 5, Z1:5 ≡ {D1, B1, C,D2, B2}, and i1:6 ≡ {f, s, w, k, r, n}. Fig-

ure 7.6 visualizes this model. Note that, an NMF-based approach is proposed for

modeling lyrics in [110] and the authors report successful results.

One can come up with many different applications by using this model; in this

study, we focus on the prediction of the lyrics of a song in a bag-of-words representation.

It is fairly easy to predict the lyrics of a particular song by using this model: we mark

the related parts of the binary mask M2 (see Equation 2.7) as unobserved, then make

predictions by using X̂2.

In our experiments we use the Million Song Dataset (MSD) and the MusiXmatch

dataset [4]. The MSD is a free collection of audio features and metadata that are

gathered from a large number of music tracks. These features include the key, tempo,

time signature, duration, genre tags, year, loudness, and the chroma features of the

songs. We use the song level features of random 500 pop songs where we use 2827

features for each song, yielding an audio feature matrix X1 of size 2827× 500.
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Figure 7.7. The ROC curve belonging to the word detection performance.

The MusiXmatch dataset contains the lyrics of the songs in a bag-of-words rep-

resentation. This dataset contains more than 230 thousand songs, all being matched

with the ones of MSD. Here, we use the number of occurrences of the most common

5000 words of each song, where these 5000 words cover over 92% of all the words in the

dataset. We use the same songs that are selected while constructing X1. Therefore,

we have the lyrics matrix X2 of size 5000 × 500, where each column of X2 holds a

bag-of-words lyrics of a song.

In our experiment settings, we select p1 = 1 with unitary dispersion, which cor-

responds to the Poisson observation model. Note that, we could also optimize the dis-

persion φ1, but this is out of the scope of this study. We set s4 = s6 = 25 and s5 = 10.

In order to estimate the factors, we use the MUR method given in Section 3.1. At

each run, we estimate the factors, the index parameter p2, and the dispersion φ2. We

predict the lyrics of random 10 songs at once and we repeat this process 5 times.

In order to assess the quality of the predictions, we measure the word detection

performance. We estimate the predictions X̂2 and then consider the words as detected

if the corresponding entries in X̂2 are above some threshold. We compute the true
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positive and the false positive rates as the performance metrics.

Figure 7.7 visualizes the results. It can be observed that both algorithms yield

very similar results. We get more than 80% of true positive rate while keeping the false

positive rate less than 20%. Besides, the ICM algorithm seems more advantageous

since its computational requirements are much lower than the EM algorithm. These

results are encouraging since the lyrics are predicted by solely using the song level

audio features.

7.3. Learning Mixed Divergences in the Full Tweedie Family

In this section, we will apply our joint inference algorithm that is presented in

Section 4.2 on synthetic and real datasets for a link prediction problem where the aim

is to predict the missing parts of an observed tensor.9

7.3.1. Synthetic Data

We illustrate the proposed method on a coupled matrix factorization model de-

fined as follows:

X1(i1, i3) ≈ X̂1(i1, i3) =
∑
i4

Z1(i1, i4)Z3(i4, i3) (7.19)

X2(i2, i3) ≈ X̂2(i2, i3) =
∑
i4

Z2(i2, i4)Z3(i4, i3) (7.20)

Here, we randomly generate the latent variables Z1:3, φ1:2, power parameters p1:2, and

the observed tensors X1:2. Our aim is to find the MAP estimates of all the latent

variables given X1 and X2.

7.3.1.1. Small Scale. Since the true values of the latent variables and the global opti-

mum of Equation 4.16 might not coincide, in order to approximate the global optimum

9This section is based on the material published in [84].
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Table 7.1. The results of the experiments on synthetic data.

s = 25 s = 50 s = 100

MSE (power) 0.0822 0.0563 0.0635

MSE (dispersion) 0.9087 0.6933 0.2763

of Equation 4.16, we first conduct ‘oracle’ experiments where we assume that the global

optimum would be near the true values of the variables. In these experiments, we ini-

tialize all the variables (Z1:Nz , φ1:Nx , p1:Nx) to their true values and run the method

presented in Section 4.2 along with the MUR method in order to find the local opti-

mum that is closest to the true values of the variables. We treat the oracle estimates

as the global optimum. Then, we re-run the proposed method by initializing the vari-

ables randomly. We measure the mean squared error (MSE) between the oracle values

of the power and dispersion parameters and the values that we obtain with random

initialization.

In our experiments, we set the sizes of the observed indices equal to each other:

s1 = s2 = s3 = s and we set s4 = 1. We explore three different values for s: 25, 50, and

100 and repeat the experiments 100 times for each configuration of s. Table 7.1 shows

the results. The results show that, even with a small amount of data, our method is

capable of estimating the power and the dispersion parameters accurately. Besides, the

MSE is gracefully degrading as the size of data increases.

7.3.1.2. Larger Scale. In this section, we conduct a larger scale experiment, where

we use DIGD for estimation of the latent factors. In this experiment, we partition

the observed indices i1 and i2 into N1 = N2 = 4 parts and i3 into N3 = 8 parts. In

the DIGD procedure, we set the step size η(i) = (a/i)b, where i denotes the iteration

number. An important observation is that, for the shared factors, the value of a should

be smaller than the value that is chosen for the local factors, in order to have a faster

convergence. Here, we set a = 0.01 for the local factors and a = 0.001 for the shared

factors. The value of b is set to 0.51 for all factors.
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Figure 7.8. Joint estimation results with DIGD. a) The running times of the

algorithms for different data sizes b) The value of the objective function over the

iterations for s1 = s2 = s3 = 320 and s4 = 5. These iterations correspond to the

overall algorithm defined in Equations 4.17-4.19, where at each iteration DIGD is run

until convergence.

Figure 7.8a shows the comparison between the proposed approach and the sequen-

tial implementation in terms of running times. The picture reveals that we are able to

get a 6 fold performance increase on a 8 core machine when we have 10 million entries

in the observed matrices. Figure 7.8b shows that the objective is decreased quickly

during the iterations, with jumps corresponding to the estimation of divergences and

dispersions.

7.3.2. Link Prediction

In this section, we address the missing link prediction task, where the aim is to

predict missing parts of an observed tensor. We evaluate our method on the UCLAF

dataset [45]. This dataset has a main tensor X1 of size 146× 168× 5, which encap-

sulates user-location-activity informations, where X1(i, j, k) = 1 if the user i visits

location j and performs activity k there and X1(i, j, k) = 0 otherwise. The dataset

also includes additional side information: the user-location preferences matrix X2, the

location-feature matrix X3, the user-user similarity matrix X4, and the activity-activity
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Figure 7.9. General sketch of the link prediction model. The blocks visualize the

tensors that are defined in the model. The lower-case letters and arrows near the

blocks represent the indices of a particular tensor.

matrix X5. The aim in this application is to predict the missing parts of X1.

By following a similar approach to [46], we model this dataset by using the

following coupled factorization model:

X1(i, j, k) ≈ X̂1(i, j, k) =
∑
r

Z1(i, r)Z2(j, r)Z3(k, r),

X2(i,m) ≈ X̂2(i,m) =
∑
r

Z1(i, r)Z4(m, r),

X3(j, n) ≈ X̂3(j, n) =
∑
r

Z2(j, r)Z5(n, r),

X4(i, p) ≈ X̂4(i, p) =
∑
r

Z1(i, r)Z6(p, r),

X5(k, s) ≈ X̂5(k, s) =
∑
r

Z3(k, r)Z7(s, r) (7.21)

where X1 is decomposed by using a Parafac model and the remaining observed ten-

sors are decomposed by using matrix factorization (MF) models. We have i1:8 ≡
{i, j, k,m, n, p, s, r}. Figure 7.9 visualizes the general structure of the model. In our

experiments, we erase random parts of X1 at varying amounts (i.e., {10%, 30%, 50%,

70%, 90%}) and evaluate our method on the prediction of the erased parts. We set the
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Figure 7.10. F-measure comparison of the proposed method and the state-of-the-art.

number of components to i8 = 5 and use the F-measure as the evaluation metric.

We compare our method with two other methods: (i) a Parafac model with

Euclidean cost [57] that makes use of only X1, (ii) the complete model (Parafac-MF)

with with Euclidean cost and unitary dispersions (p1:5 = 0 and φ1:5 = 1). The second

method can also be considered as extended versions of [34, 46]. We also compare our

dispersion estimation method with two different dispersion estimators that have not

been explored for coupled factorization models; yet commonly used in the generalized

linear models literature, namely the Pearson and mean deviance estimators [111], that

are defined as follows:

φDeviance
ν =

1

Sν

Sν∑
i=1

dpν (xν(i)||x̂ν(i)) (7.22)

φPearson
ν =

1

Sν

Sν∑
i=1

(xν(i)− x̂ν(i))2

x̂ν(i)pν
(7.23)

For these estimators, we replace Equation 4.18 with one of these estimators and use the

same approach for estimating the other variables. Note that, each step of our method

(Equations 4.17-4.19) monotonically increases the likelihood, whereas the Pearson and

deviance estimators do not have such guarantee (for non-Gaussian cases); the likelihood

might fluctuate over the iterations when they are used in our iterative schema.
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Figure 7.10 visualizes the results of this experiment. We can observe that, both

benchmark methods (Parafac and Parafac-MF) perform poorly, where introducing side

information (Parafac-MF) results in a tiny improvement in the performance. As we

can also observe, apart from monotonically increasing the likelhood and achieving

a consistent and sound method, the proposed approach also outperforms the other

estimators, in particular when the percentage of missing data is low. Joint estimation

of p1:5 and φ1:5 yields significant performance improvement, where we have 40% F-

measure improvement even when half of the data is missing.
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8. EXPERIMENTS USING FULL BAYESIAN

INFERENCE METHODS

The aim of this chapter is to demonstrate our MCMC methods on several appli-

cations. In particular, we will apply the block Gibbs sampler and the SADA sampler

on three different models. Then, we will evaluate PSGLD on large-scale experiments.

8.1. Experiments with Gibbs Sampling

In this section, we will illustrate the block and SADA sampler and Chib’s method

on three different tensor factorization models: a deconvolution model, a Parafac model,

and an extended version of the NMF model. In all our experiments, we set Nx = 1.10

8.1.1. Non-negative Deconvolution

Convolutive models emerge in various fields such as audio processing, image pro-

cessing or seismic sciences. In order to illustrate the sampling approaches given in

Section 5.1, we first take the deconvolution problem as an example and define it as a

tensor factorization problem as follows:

X1(t) ≈ X̂1(t) =
∑
r

Z1(r)Z2(

d︷︸︸︷
t− r)

=
∑
r,d

Z1(r)Z2(d)Z3(d, t, r) (8.1)

where Z1 and Z2 are the convolved signals and X̂1 is the output signal. Similar to

the model that we presented in Section 6.1, we define a dummy index d and a dummy

tensor Z3(d, t, r) = δ(d− t+ r).

In order to build the samplers, we first start by defining the index sets for this

10This section is based on the material published in [85].
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Figure 8.1. Inference results for the deconvolution model. From top to bottom: the

first and second figures show the real and the estimated values for the first factor (Z1)

and the second factor (Z2), respectively. Third: Observed signal (X1) and the model

predictions (X̂1). Fourth: Log likelihood vs iteration plots of the samplers.

particular model. In GCTF notation, we have Nz = 3 with i1:3 ≡ {t, r, d}. After

placing these index sets in Algorithm 5.1, we obtain the block Gibbs sampler. Similarly,

we can also obtain the SADA sampler for this model by placing these index sets in

Algorithm 5.1.1. The inference results of block and SADA samplers on a toy problem

are illustrated in Figure 8.1. The results show that, even thought the problem is highly

ill-posed, our methods can successfully estimate the shapes of the signals, where SADA

yields better results in terms of visual comparison.
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Figure 8.2. Model selection results for Parafac. The marginal Likelihood of the

three-way observed data under the CP model (
∫
dZ1:3 p(X|Z1:3)p(Z1:3)) is estimated

by using Chib’s method.

8.1.2. Model Selection in PARAFAC

We conduct our second set experiment on estimating the model order of a Parafac

(CP) model, that is given as:

X1(i, j, k) ≈ X̂1(i, j, k) =
∑
m

Z1(i,m)Z2(j,m)Z3(k,m) (8.2)

where the three-way tensor X1 is decomposed into three matrices, Z1, Z2, and Z3. We

have Nz = 3 with i1:4 ≡ {i, j, k,m}. In practice, the optimal number of components

(indexed with m above) is not known beforehand and should be estimated.

In order to test our approach for model selection, we generated synthetic data

where s1 = 10, s2 = 5, s3 = 8, and s4 = 3 and applied Chib’s method to estimate

marginal likelihood of the observed tensor under CP models with different number

of components. Figure 8.2 shows the marginal likelihood estimates of the synthetic

data for different number of components. It can be seen that the marginal likelihood

estimate is at the highest when the correct number of components is selected.
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Figure 8.3. Log-likelihood vs iteration plots for the block sampler and SADA sampler.

8.1.3. Hierarchical NMF

We conduct our third experiment on an extension of the NMF model, which is

similar to the audio model defined in Section 6.2:

X̂1(f, t) =
∑
i,k

Z1(f, i)Z2(i, k)Z3(k, t) (8.3)

where X1(f, t) is the observed magnitude spectrum of the audio, f is the frequency

index, and t is the time-frame index. Here, Nz = 3 with i1:4 ≡ {f, t, i, k}.

We have run both the block sampler and the SADA sampler on a short polyphonic

piano sound. We have first estimated and fixed the spectral dictionary Z1 than run

the inference algorithms. We have used s3 = 4 spectral templates and s4 = 3 chord

templates while having s1 = 1025 frequency bins and s2 = 86 time frames. Figure 8.3

shows the log-likelihoods of the algorithms. It can be observed that, both algorithms

converge smoothly, where the computational requirements of SADA is significantly

lower.

8.1.4. Experiments on Alpha-Stable Matrix Factorization

In this section, we will evaluate αMF on both synthetic and audio data. Our im-

plementations is mostly in Matlab, apart from α-stable density evaluation and random
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Figure 8.4. Results of the synthetic data experiments.

number generation algorithms, which are implemented in C.

8.1.4.1. Experiments on Synthetic Data. We first conduct experiments on synthetic

data, where the aim is to validate our inference procedure. In these experiments, given

a fixed α, we generate the latent variablesW , H, Φ, S, and the observed complex matrix

X by using the generative model given in Equation 5.20. Then, given the observed

matrix X, we run our inference algorithm after initializing all the latent variables

randomly. In our experiments, we set s1 = 50, s2 = 80, s3 = 2, and σ2
α = 0.001 and we

repeat this experiment for several values of α.

In this experiment, we report the results of the estimation of α, since it is the

most prominent variable, determining the structure of the distribution. In Figure 8.4,

we visualize the samples α(t) that are generated by our algorithm for different true α

values. The results show that, even though the initial samples, α(0), might be far from

the true value of the variable, our inference algorithm can successfully locate the mode

near the true α and starts sampling around that mode, even when the observations are

coming from an extremely heavy-tailed distribution (α = 0.2).
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8.1.4.2. Experiments on Audio. In our next set of experiments, we evaluate αMF on

real audio data. We compare αMF with Itakura-Saito NMF [52]; a MF model that is

often used in audio processing, having the following underlying probabilistic model:

W (f, k) ∼ IG(W (f, k); aw, bw), H(k, n) ∼ IG(H(k, n); ah, bh)

S(f, n, k)|W,H ∼ Nc(S(f, n, k); 0,W (f, k)H(k, n))

X(f, n) =
∑
k

S(f, n, k) (8.4)

where IG denotes the inverse gamma distribution. Here, X is taken as a time-frequency

representation of the audio signal, with the indices f and n denoting the frequencies

and the time-frames, respectively. IS-NMF appears as a special case of αMF: if we set

α = 2, the generalized gamma distribution becomes the inverse gamma distribution,

Φ becomes deterministic, and therefore αMF reduces to IS-NMF.

IS-NMF is considered as an important model for audio modeling since there is a

rigorous statistical interpretation of the model from the waveform level to the power

spectra level: if we assume that all the time-frames are independent and wide-sense

stationary (WSS), we can show that all the entries of the short-time Fourier transform

(STFT) of the signal are indeed independent and distributed with a complex centered

isotropic Gaussian distribution [112] whose variances correspond to the power spectral

density (PSD) of the signal. In this sense, IS-NMF models the PSD of a WSS signal

by using a low rank approximation.

However, the assumption of the time-frames being WSS can be restrictive for

various types of audio signals that have impulsive nature, such as speech. The interest

of αMF in this context is that it generalizes IS-NMF by relaxing the WSS assumption

and assumes that all the time-frames are independent and stationary harmonizable

α-stable processes. With such an assumption, we can show that the STFT coefficients

are still independent but distributed with a SαSc distribution, generalizing the WSS

case α = 2 [72].
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Figure 8.5. Histograms of α for noise (top) and speech (bottom).

We conduct our experiments on NOIZEUS noisy speech corpus [113]. This dataset

contains 30 sentences that are uttered by 3 female and 3 male speakers. These sentences

are corrupted by using 8 different real noise signals (train, babble, car, exhibition

hall, restaurant, street, airport, train-station) at 4 different signal-to-noise ratio (SNR)

levels. We analyze the signals by using the STFT with a Hamming window of length

512 samples and 75% overlap.

Firstly, we run αMF on each audio signal (30 clean speech and 8 noise signals).

For each signal, we generate 2000 samples where we discard the first 100 of them as

the burn-in period. We repeat this procedure three times with different initializations

and combine all the samples in two groups: clean speech and noise. We use s3 = 5 for

each noise signal and s3 = 10 for each speech signal, and we set σ2
α = 0.01.

Figure 8.5 shows the histograms of α for speech and noise. We can observe that,

for the noise signals, the posterior distribution of α is concentrated near α = 1.89, i.e.

almost Gaussian, whereas we obtain two modes at α = 1.2 and α = 1 for the clean

speech. This is expected because it has long been observed that informative signals

such as speech tend to exhibit heavier tails than noises occurring in practice, justifying

the use of α-stable models in audio [68]. More interestingly, this outcome provides a

sound foundation to the recent empirical results obtained in [72], where the authors

demonstrated that α = 1.2 is the best performing exponent of the generalized Wiener

filter, that implicitly assumes that the audio signals are stable distributed.
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Secondly, we compare αMF with IS-NMF on a speech enhancement application,

where the aim is to recover the clean speech signal, given a noisy speech signal. In this

experiment, we follow a semi-supervised approach and use a slightly different model

for the noisy mixtures, given as follows: Xmix(f, n) = Xsp(f, n) +Xno(f, n), where

Xsp(f, n) ∼ SαSc
(
Xsp(f, n); [

∑
k

W sp(f, k)Hsp(k, n)]1/α
sp
)
, (8.5)

Xno(f, n) ∼ SαSc
(
Xno(f, n); [

∑
k

W no(f, k)Hno(k, n)]1/α
no
)
. (8.6)

Here, ‘sp’ denotes the speech and ‘no’ denotes the noise. For IS-NMF we set αsp =

αno = 2. For αMF, we set αsp = 1.2 and αno = 1.89, as suggested by the results above.

For each model, we first train the dictionary matrix W sp on the first 20 clean

speech signals (2 female and 2 male speakers) by using the following approach. We

concatenate the STFTs of the speech signals to obtain X. Then, we run the Gibbs

sampler for 3000 epochs where we set W sp to the Monte Carlo average (see Equa-

tion 1.15) by using the last 200 samples. The number of columns of W sp is chosen as

ssp
3 = 100.

At testing, for each input SNR, we apply both models on 80 different noisy

mixtures, where we fix W sp and sample the rest of the latent variables, including W no.

Note that, the noisy speech signals are obtained by combining 8 different noise signals

with 10 clean speech signals that are not used during training. For each mixture, we

set sno
3 = 5 and generate 2500 samples where we use the last 50 samples to estimate

the posterior expectations of Xsp and Xno.

For evaluating the quality of the estimates we use the signal-to-distortion ratio

(SDR), signal-to-interference ratio (SIR), and signal-to-artifact ratio (SAR) that are

computed with BSSEVAL version 3.0 [108]. Figure 8.6 shows the results. We can

observe that, both models perform poorly when the input SNR is low. However, as we

increase the input SNR, the structure of the speech becomes more prominent, and we

see that αMF becomes more advantageous in terms of all the objective measures. We
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Figure 8.6. Evaluation results of IS-NMF and αMF on speech enhancement. Note

that, IS-NMF coincides with αMF when αsp = αno = 2.

obtain 4dB SDR improvement when the input SNR is 15dB. Besides, αMF results in

less interference and less artifacts as measured by SIR and SAR. These differences are

statistically significant with 5% significance level.

We would like to note that there have been several extensions on IS-NMF that

aim to incorporate the temporal and spatial structure of speech signals into the model

[114,115]. As a possible future direction, we believe that the performance of αMF can

be further improved by extending the model in similar aspects.

8.2. Experiments with PSGLD

In this section, we will evaluate PSGLD on synthetic and real datasets. We will

conduct our experiments on the NMF model:

X1(i, j) ≈ X̂1(i, j) =
∑
k

Z1(i, k)Z2(k, j). (8.7)
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Figure 8.7. Shared-memory experiments on PSGLD with a) the Poisson observation

model b) the compound Poisson observation model.

with i1:3 ≡ {i, j, k}. PSGLD can be beneficial in two different settings: 1) a shared-

memory setting, where we implement PSGLD on a graphics processing unit (GPU)

where the computation is done on a single computer 2) a distributed setting, where we

implement PSGLD on a cluster of computers by using a message passing protocol.

We will compare PSGLD with different MCMC methods, namely the Gibbs sam-

pler presented in Section 5.1, Langevin Dynamics [91], and SGLD [22]. It is easy to de-

rive the update equations required by the gradient-based methods (LD,SGLD,PSGLD)

for this model. However, developing a Gibbs sampler for this general model is unfortu-

nately not obvious as discussed in Section 5.1. Therefore, we develop a Gibbs sampler

by using the augmented Poisson model given in Equation 5.1 which requires the source

tensor S1(i, j, k) to be sampled at every epoch.
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8.2.1. Shared-Memory Setting

In this section, we will compare the mixing rates and the computation times of

all the aforementioned methods in a shared-memory setting. We will first compare the

methods on synthetic data, then on musical audio data.

We conduct all the shared-memory experiments on a MacBook Pro with 2.5GHz

Quad-core Intel Core i7 CPU, 16 GB of memory, and NVIDIA GeForce GT 750M

graphics card. We have implemented PSLGD on the GPU in CUDA C. We have

implemented the other methods on the CPU in C, where we have used the GNU

Scientific Library and BLAS for the matrix operations.

8.2.1.1. Experiments on Synthetic Data. In order to be able to compare all the meth-

ods, in our first experiment we use the Poisson-NMF model. We first generate Z1,

Z2, and X1 by using the generative model. Then, we run all the methods in order to

obtain the samples {Z(t)
1 , Z

(t)
2 }Tt=1. For simplicity, we choose s1 = s2 and we set s3 = 32.

In order to obtain the blocks, we make use of the same partitioning approach that is

described in Section 6.3. Since the sizes of all the parts are the same, Condition 5.2 is

satisfied.

In LD, we use a constant step size ε, whereas in SGLD and PSGLD, we set the

step sizes as ε(t) = (η/t)γ, where γ ∈ (0.5, 1]. For each method, we tried several values

for the parameters and report the results for the best performing ones. In LD we set

ε = 0.2, in SGLD we set η = 1, γ = 0.51, and in PSGLD we set η = 0.01 and γ = 0.51.

The results are not very sensitive to the actual value of η and γ, provided these are

set in a reasonable range. Furthermore, in SGLD, we draw the sub-samples Ω(t) with

a with-replacement manner, where we set |Ω(t)| = s1s2/32.

Figure 8.7a shows the mixing rates and the running times of the methods under

the Poisson model for different data sizes. While plotting the log-likelihood of the state

of the Markov chain is not necessarily an indication of convergence to the stationary
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distribution, nevertheless provides a simple indicator if the sampler is stuck around a

low probability mode. We set the number of rows s1 = 256, 512, 1024 and we generate

T = 10000 samples from the Markov chain with each method. We can observe that, in

all cases, SGLD achieves poor mixing rates due to the with-replacement sub-sampling

schema while LD achieves better mixing rates than SGLD. Moreover, while the LD

updates can be implemented highly efficiently using BLAS, the reduced data access of

SGLD does not reflect in reduced computation time due to the random data access

pattern when selecting sub-samples from X1.

The results show that PSGLD and the Gibbs sampler seem to achieve much

better mixing rates. However, we observe an enormous difference in the running times

of these methods – PSGLD is 700+ times faster than the Gibbs sampler on a GPU,

while achieving virtually the same quality. For example, in a model with s1 = 1024

rows, the Gibbs sampler runs for more than 3 hours while PSGLD completes the burn-

in phase in nearly 1 second and generates 10K samples from the Markov chain in less

than 15 seconds, even when there are more than 1 million entries in X1. Naturally, this

gap between PSGLD and the Gibbs sampler becomes more pronounced with increasing

problem size. We also observe that PSGLD is faster than LD and SGLD by 60+ folds

while achieving a much better mixing rate.

We also evaluate PSGLD with the compound Poisson observation model (φ = 1,

p = 1.5). As we described in detail in Section 4.1, even though the probability density

function of this distribution cannot be written in closed-form analytical expression,

fortunately we can still generate random samples from the distribution in order to

obtain synthetic X1, by using the generative model given in Equation 4.4.

Since deriving a Gibbs sampler for the compound Poisson model is not obvious,

we will compare only LD, SGLD, and PSGLD on this model. Figure 8.7b shows the

performance of these methods for s1 = s2 = 1024. We obtain qualitatively similar

results; PSGLD achieves a much better mixing rate and is much faster than the other

methods.
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(a)

(b)

Figure 8.8. a) The audio spectrum of a short piano piece b) The spectral dictionaries

learned by PSGLD and LD.

8.2.1.2. Experiments on Audio. In our next experiment, we decompose the audio spec-

trum given in Figure 8.8a by using the NMF model and visually compare the dictionary

matrices that are learned by LD and PSGLD. The size of X1 is s1 = s2 = 256 and

we set s3 = 8. For PSGLD, we use S = 8 and choose the parts in cyclic order at

each iteration. With each method, we generate 10000 samples but discard the samples

in the burn-in phase (5000 samples). Figure 8.8b shows the Monte Carlo averages

that are obtained by different methods. We observe that PSGLD successfully captures

the spectral shapes of the different notes and the chords that occur in the piece, even

though the method is completely unsupervised. We also observe that LD is able to

capture the spectral shapes of most of the notes as well, and estimates a less sparse

dictionary. Furthermore, PSGLD runs in a much smaller amount of time; the running

times of the methods are 3.5 and 81 seconds respectively for PSGLD and LD – as a

reference the Gibbs sampler needs to run for 533 seconds on the same problem.
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Figure 8.9. RMSE values on MovieLens 10M dataset.

8.2.2. Distributed Setting

In this section, we will focus on the implementation of PSGLD in a distributed

setting, where each block of X1 might reside at a different node. We will consider

the distributed architecture that we described in Section 6.3. We also use a similar

communication mechanism that we explained in Section 6.3, except that we do not

have the memory matrices Ξ and Ψ in this method.

In our first distributed-setting experiment, our goal is to contrast the speed of

our sampling algorithm to a distributed optimization algorithm. Clearly, the goals of

both computations are different (a sampler does not solve an optimization problem

unless techniques such as simulated annealing is being used), yet monitoring the root

mean squared error (RMSE) between X1 and X̂1 throughout the iterations provides

a qualitative picture about the convergence behavior of the algorithms. Figure 8.9

shows the RMSE values of PSGLD and DSGD [12] for 1000 iterations with S = 15

on MovieLens10M. We observe a very similar convergence behavior and running times

for both methods. The results indicate that, PSGLD makes Bayesian inference pos-

sible for factorization models even for large datasets by generating samples from the

Bayesian posterior, while at the same time being as fast as the distributed optimization

algorithms.

In our last set of experiments, we demonstrate the scalability of PSGLD. Firstly,

we differ the number of nodes from 5 to 120 and generate 100 samples in each setting.
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(a) (b)

Figure 8.10. Scalability of PSGLD. a) The size of the data is kept fixed, the number

of nodes is increased b) The size of the data and the number of nodes are increased

proportionally.

Figure 8.10a shows the running times of PSGLD for different number of nodes. The

results show that, the running time reduces almost quadratically as we increase the

number of nodes until S = 90. For S = 120, the communication cost dominates and

the running time increases.

Finally, in order to illustrate how PSGLD scales with the size of the data, we in-

crease the size of X1 while increasing the number of nodes accordingly, as we previously

demonstrated in Section 6.3. We select XS=15
1 as MovieLens10M, and construct XS=30

1 ,

XS=60
1 , and XS=120

1 in the same way as described before. In this setting, the ultimate

dataset becomes of size 683584 × 4580288 with 640 million non-zero entries and the

number of nodes becomes 120. Figure 8.10b shows the running times of PSGLD with

T = 10 epochs for increasing data sizes and number of nodes. The results show that,

even though we increase the size of the data 64 folds, the running time of PSGLD

remains nearly constant provided we can increase the number of nodes proportionally.
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9. CONCLUSION AND FUTURE WORK

Within last decade, massive amounts of data have been continuously produced

and the cost of storing these data have gotten cheaper everyday. There are two major

challenges that have risen with large amounts of data. The first one is the computa-

tional challenge, and the second one is handling data heterogeneity.

Coupled matrix and tensor factorization models are useful for analyzing large-

scale and/or heterogeneous data and have been shown to be useful in various domains,

in which heterogeneous information from diverse sources are available and need to be

combined for arriving at useful predictions. These models become advantageous in

many applications since they provide a good modeling accuracy versus practicality

trade off.

In this thesis, we have focused on developing inference methods for coupled tensor

factorization models. We have addressed several challenging problems, including:

(i) Handling arbitrary model topologies: To be able to model real world data sets

that may consist of several tensors and require custom models, we have rigorously

developed the tensor factorization notation of [35], that aims to cover all possible

model topologies and coupled factorization models.

(ii) Maximum likelihood and a-posteriori estimation of the latent factors: We have

developed two novel, inherently parallel optimization algorithms for maximum

and a-posteriori estimation of the latent variables. As we have demonstrated in

our experiments, our methods outperform the state-of-the-art in terms of com-

putational complexity and/or estimation quality in large-scale, distributed appli-

cations.

(iii) Estimation of the dispersions and the divergences: For jointly inferring the dis-

persions and the divergence functions, we have developed two novel methods. In

the first method, we have focused on Tweedie compound Poisson models. The

second method is much more general and enables joint inference in the whole
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Tweedie family. In our experiments, we have showed that joint estimation of the

dispersions and the divergences can cause dramatic performance improvements,

especially when the number of observed tensors is large.

(iv) Full Bayesian inference via MCMC: We have developed three novel MCMC meth-

ods for making full Bayesian inference. For moderate-sized data, we have devel-

oped ‘block’ and ‘collapsed’ Gibbs samplers. For large-scale applications, we have

developed an inherently parallel stochastic gradient-based MCMC method, that

can gracefully scale up to large-scale, distributed problems. Our experiments

showed that, we can enable Bayesian inference even for large-scale distributed

factorization problems, where conventional approaches suffer from high compu-

tational complexity.

(v) Alpha-stable matrix factorization: We have developed a novel factorization model

with α-stable observations, that is particularly suited for impulsive or corrupted

data that appear in several domains such as audio processing. We have also

developed an MCMC method for making in this model.

(vi) Applications: We have developed novel factorization models that aim to solve

several challenging problems, such as

• Audio restoration

• Musical audio source separation

• Lyrics prediction

• Speech enhancement

• Link prediction

As we have demonstrated in our experiments, the proposed methods are very

powerful and flexible. However, they can be further improved in several aspects. Our

current future directions are listed as follows:

(i) Asynchronous inference: Distributed and parallel inference schemes are crucial

for processing large-scale heterogeneous data. One drawback of the current tech-

niques is the synchronization problem; that is in a distributed setting, each pro-

cessor updates some part of the parameters and it needs to send the updated part

to the other processors, which can incur a heavy communication cost when the



131

number of nodes is large (see Figure 6.12). Recently, asynchronous optimization

methods have been proposed [11, 13]. In these methods, the processors are syn-

chronized only once in a while, instead of being synchronized at each iteration.

These techniques have not been applied to coupled factorizations yet and seem

very promising for the distributed settings.

(ii) Incorporation of non-identity link functions: Link functions are one of the funda-

mental components of generalized linear models [111]. The link function estab-

lishes the relation between the linear predictor and the mean of the response dis-

tribution. For instance, in the GCTF model we implicitly assume Xν ≈ f−1(X̂ν),

where f(·) is the link function that is simply selected as identity function f(x) =

x. The identity link function can be limiting for some cases especially when the

support of the distribution is not the same type of data as the parameter being

predicted, for example Bernoulli, binomial, categorical and multinomial distribu-

tions. The usage of non-identity link functions have not been extensively explored

for coupled factorizations and might yield interesting hybrid models that could

also take advantage of deep learning methodologies.

(iii) Privacy preserving factorizations: Differentially private algorithms aim to min-

imize the probability of the data samples being uncovered, while at the same

time minimizing the accuracy loss due to privatization. Preserving the privacy

in coupled tensor factorizations can be crucial in certain cases, especially when

the observed tensors are kept in different sites and the elements of these tensors

must not be identified by the sites other than their own. Even though developing

differentially private optimization algorithms is not straightforward, recently it

has been shown that stochastic MCMC inference can be made differently private

with minor algorithmic modifications [116]. Therefore, a natural next step for our

work is to develop differentially private Bayesian inference algorithms for coupled

tensor factorization models by building up on PSGLD.
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APPENDIX A: PROBABILITY DENSITY AND MASS

FUNCTIONS

(i) Binomial Distribution:

BI(s;x, p) =
x!

s!(x− s)!p
s(1− p)(x−s). (A.1)

(ii) Multinomial Distribution:

M(s;x,p) = δ(x−
∑
i

si)x!
I∏
i=1

psii
si!

(A.2)

where s = {s1, . . . , sI} and p = {p1, . . . , pI}.
(iii) Poisson Distribution:

PO(x;λ) =
λx exp(−λ)

Γ(x+ 1)
(A.3)

(iv) Exponential Distribution:

E(x; a) = a exp(−ax) (A.4)

(v) Gamma Distribution:

G(x; a, b) = xa−1ba
exp(−bx)

Γ(a)
(A.5)

(vi) Inverse gamma Distribution:

IG(x; a, b) =
x−(a+1)ba

Γ(a)
exp(−b/x) (A.6)
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(vii) Generalized gamma distribution:

GG(x; a, b, c) =
|c|

Γ(a)bca
xca−1 exp

(
−
(x
b

)c)
. (A.7)

(viii) Uniform distribution:

U(x; [a, b]) =
1

b− a. (A.8)



134

APPENDIX B: EXPONENTIAL DISPERSION MODELS

AND THE TWEEDIE FAMILY

An exponential dispersion model (EDM) can be defined by a two parameter

density as follows [65]:

P(x; θ, φ) = h(x, φ) exp

{
1

φ
(θx− κ(θ))

}
(B.1)

where θ is the canonical parameter, φ is the dispersion parameter and κ is the cumulant

(log-partition) function ensuring normalization. Here, h(x, φ) is the base measure and

is independent of the canonical parameter.

EDMs are a studied in particular as the response distribution of the generalized

linear models [111]. For an EDM, we can verify that the mean x̂ and the variance

Var[x] are obtained directly by differentiating κ(·):

κ′(θ) = 〈x〉p(x;θ,φ) ≡ x̂, κ′′(θ) =
1

φ
Var[x] ≡ v(x̂).

Here v(x̂) is also known as the variance function [65,117].

In certain cases, we need the cumulant generating function (CGM) of EDMs. The

CGF of an EDM is derived as follows

K(s; θ, φ) = log
〈
exp(sx)

〉
p(x;θ,φ)

= log

∫
a(x, φ) exp(

1

φ
(xθ − κ(θ)) + sx)dx

= log

∫
a(x, φ) exp(

1

φ
(xθ − κ(θ) + sxφ))dx

= log

∫
a(x, φ) exp(

1

φ
(x(sφ+ θ)− κ(θ)))dx
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= log

∫
a(x, φ) exp(

1

φ
(x(sφ+ θ)− κ(sφ+ θ))) exp(

1

φ
(κ(sφ+ θ)− κ(θ)))dx

= log

exp(
1

φ
(κ(sφ+ θ)− κ(θ)))

∫
a(x, φ) exp(

1

φ
(x(sφ+ θ)− κ(sφ+ θ)))dx︸ ︷︷ ︸

1


=

1

φ
(κ(sφ+ θ)− κ(θ)) (B.2)

The cumulant generating functions are unique for each distribution and we can see

that for an EDM the cumulant generating function depends only on the dispersion

parameter and the log-partition function κ. Therefore, we only need to find the log-

partition function for an EDM in order to identify the distribution.

In this thesis, we focus on a particular EDM, namely The Tweedie family T Wp(x; x̂, φ).

Tweedie distributions specify the variance function as v(x̂) = x̂p [65]. The variance

function is related to the p’th power of the mean, therefore it is called a power variance

function. Note that this choice directly dictates the form of x̂ and κ(θ) that can be

solved as

x̂(θ) =

 1
2−p ((1− p)θ) 1

1−p p 6= 1

exp(θ) p = 1
(B.3)

κ(θ) =


1

2−p ((1− p)θ)
2−p
1−p p 6= 1, 2

− log(−θ) p = 2

exp(θ) p = 1

. (B.4)

Here, different choices for p yield well-known important distributions such as the Gaus-

sian (p = 0), Poisson (p = 1), compound Poisson (1 < p < 2), Gamma (p = 2) and

inverse Gaussian (p = 3) distributions. Excluding the interval 0 < p < 1 for which no

EDM exists, for all other values of p not mentioned above, one obtains Tweedie stable

distributions [65].
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For p ∈ {0, 1, 2, 3} the densities are given as follows:

T W0(x; x̂, φ) = (2πφ)−
1
2 exp

(
−1

φ

(x− x̂)2

2

)
(B.5)

T W1(x; x̂, φ) =
(x̄/φ)

x̄
φ

e
x̄
φΓ( x̄

φ
+ 1)

exp

(
−1

φ
(x̄ log

x̄
¯̂x
− x̄+ ¯̂x)

)
(B.6)

T W2(x; x̂, φ) =
1

Γ( 1
φ
)(eφ)

1
φx

exp

(
−1

φ
(
x

x̂
− log

x

x̂
− 1)

)
(B.7)

T W3(x; x̂, φ) = (2πx3φ)−
1
2 exp

(
−1

φ

(x− x̂)2

2xx̂2

)
. (B.8)

Note that, the Poisson distribution in its well-known form, is an exponential dispersion

model with unitary dispersion (φ = 1). This distribution is called over-dispersed

(φ > 1) or under-dispersed (φ < 1) when the nominal variance is not sufficient to

determine the variance of the observations [111]. When we introduce a dispersion

parameter to the Poisson distribution, the domain of the probability distribution is

re-defined on the integer multiples of φ: x̄ ∈ {0, φ, 2φ, 3φ, . . . }. This can be interpreted

as the data are scaled by φ.

For the remaining cases of p, the probability density functions cannot be written

in closed-form analytical forms. However, they can be expressed as infinite series that

is defined as follows: [65]

T Wp(x; x̂, φ) =
1

xξp

(
∞∑
k=1

Vk

)
exp

{
1

φ

(
x̂1−px

1− p −
x̂2−p

2− p

)}
(B.9)

and ξp = 1 for p ∈ (1, 2) and ξp = π otherwise.

The Tweedie density with p ∈ (1, 2) coincides with the compound Poisson distri-

bution [65]. The compound Poisson distribution has a support for continuous positive

data and a discrete probability mass at zero. For x = 0, the density function is defined

as T Wp(x; ·) = exp(x̂2−p/(φ(p−2))) and for x > 0, it follows the form of Equation B.9,
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where the terms Vk for this distribution is defined as follows:

Vk =
x−kα(p− 1)kαφk(α−1)

(2− p)kΓ(k + 1)Γ(−kα)
(B.10)

where α = (2− p)/(1− p).

The cases p < 0 and p > 2 of the Tweedie class correspond to Tweedie stable

distributions. These distributions have many properties similar to stable distributions

[68] and they coincide with the stable distributions in certain cases [65]. Tweedie

stable models are heavy-tailed distributions and they are left-skewed for p < 0 and

right-skewed for p > 2. The Tweedie stable models with p > 2 can be useful for many

applications, including audio signal processing [118] and computer networks [119]. The

Tweedie stable models with p < 0 can be used for risk modeling [120], however their

applications on factorization models are limited. For the Tweedie models with p < 0

and p > 2, the terms Vk are defined as follows:

Vk =
Γ(1 + k

α
)φ

k
p−2 (−1)k sin(kπ

α
)

Γ(k + 1)(1− p)k(2− p)− kαx−k
,

Vk =
Γ(1 + αk)φk(1−α)(−1)k sin(−kπα)

Γ(k + 1)(p− 1)−αk(p− 2)kxαk
.
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APPENDIX C: CONVERGENCE PROOF

We reserve this appendix to show that Algorithm HAMSI converges. Our demon-

stration follows a similar construction as in Solodov [121]. To simplify our exposition,

we define

∇fs(z) ≡
Bs∑
b=1

∇fΩs,b(zb).

Our subsequent discussion is given under the following assumptions:

A.1 The twice differentiable objective function f is bounded below.

A.2 The Hessian matrices for the component functions are uniformly bounded at every

outer iteration t. That is, for every s and t, we have

‖∇2fs(z
(t))‖ ≤ L,

where L is the well-known Lipschitz constant.

A.3 The eigenvalues of the approximation matrices H(t) are bounded so that

(U + ρ(t))−1 = Ut ≤ ‖(H(t) + ρ(t))−1‖ ≤Mt = (M + ρ(t))−1

holds. Here, Ut and Mt are known constants with 0 < M ≤ U .

A.4 The gradient norms are uniformly bounded at every outer iteration t; i.e., for

every s we have

‖∇fs(z(t))‖ ≤ C,

where C is a known constant.
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Lemma C.1. At outer iteration t and inner iteration s of Algorithm HAMSI, we have

δs = ‖∇fs(ξ(s))−∇fs(z(t))‖ ≤ LMt

s−1∑
j=1

(1 + LMt)
s−1−j‖∇fj(z(t))‖. (C.1)

Proof. We use induction to prove this result. Clearly δ1 = ‖∇f1(ξ(1))−∇f1(z(t))‖ = 0.

For s = 2, we have

δ2 = ‖∇f2(ξ(2))−∇f2(z(t))‖

≤ L‖ξ(2) − z(t)‖ = L‖ξ(2) − ξ(1)‖

≤ L‖(H(t) + ρ(t)I)−1‖‖∇f1(ξ(1))‖

≤ LMt‖∇f1(ξ(1))‖ = LMt‖∇f1(z(t))‖.

Now suppose that (C.1) holds for k = 1, . . . , p− 1 and consider

δp = ‖∇fp(ξ(p))−∇fp(z(t))‖

≤ L‖ξ(p) − ξ(1)‖ = L
∑p−1

s=1 ‖ξ(s+1) − ξ(s)‖

≤ LMt

∑p−1
s=1 ‖∇fs(ξ(s))‖.

Note again by the induction hypothesis that

‖∇fs(ξ(s))‖ = ‖∇fs(z(t)) +∇fs(ξ(s))−∇fs(z(t))‖

≤ ‖∇fs(z(t))‖+ δs

≤ ‖∇fs(z(t))‖+ LMt

∑s−1
j=1(1 + LMt)

s−1−j‖∇fj(z(t))‖.

Then,

δp ≤ LMt

∑p−1
s=1

(
‖∇fs(z(t))‖+ LMt

∑s−1
j=1(1 + LMt)

s−1−j‖∇fj(z(t))‖
)

= LMt

∑p−1
j=1

(
1 + LMt

∑p−1−j−1
s=0 (1 + LMt)

s
)
‖∇fj(z(t))‖

= LMt

∑p−1
j=1(1 + LMt)

p−1−j‖∇fj(z(t))‖.
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This completes the proof.

Next lemma gives a bound on the difference between two consecutive outer iter-

ations.

Lemma C.2. Given outer iterations t and t+ 1 of Algorithm HAMSI, we have

z(t+1) − z(t) = ∆t − (H(t) + ρ(t)I)−1∇f(z(t)),

where

∆t ≡ (H(t) + ρ(t)I)−1

S∑
s=1

(∇fs(z(t))−∇fs(ξ(s)))

and

‖∆t‖ ≤MtLCS
2(1 + LM−1)S.

Proof. At outer iteration t+ 1, we have

z(t+1) = z(t) −∑S
s=1(H(t) + ρ(t)I)−1∇fs(ξ(s))

= z(t) − (H(t) + ρ(t)I)−1∇f(z(t))

+(H(t) + ρ(t)I)−1
∑S

s=1(∇fs(z(t))−∇fs(ξ(s))).

This shows that

z(t+1) − z(t) = ∆t − (H(t) + ρ(t)I)−1∇f(z(t)).

Using now (C.1), we obtain

‖∆t‖ ≤Mt‖
∑S

s=1(∇fs(z(t))−∇fs(ξ(s)))‖ ≤Mt

∑S
s=1 δs

≤M2
t L
∑S

s=1

∑s−1
j=1(1 + LMt)

s−1−j‖∇fj(z(t))‖
≤M2

t LCS
2(1 + LM−1)S,
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since 1 + LMt ≤ 1 + L(M + ρ(t))−1 ≤ 1 + LM−1.

Theorem C.3. Consider the iterates z(t) of Algorithm HAMSI. Suppose that ρ(t) →
∞ as t → ∞, and ρ(t) increases slowly enough so that ρ(t) = O(‖∇f(z(t))‖−σ) with

σ ∈ (0.5, 1) for t large. Then

lim
t→∞

inf ‖∇f(z(t))‖ = 0.

Proof. For any twice differentiable function, we have

f(z(t+1))− f(z(t)) ≤ ∇f(z(t))
T

(z(t+1) − z(t)) +
L

2
‖z(t+1) − z(t)‖2.

Using now Lemma C.2, we obtain

f(z(t+1))− f(z(t)) ≤ ∇f(z(t))
T

(−(H(t) + ρ(t)I)−1∇f(z(t)) + ∆t)

+L
2
‖ − (H(t) + ρ(t)I)−1∇f(z(t)) + ∆t‖2

≤ −Ut‖∇f(z(t))‖2 + ‖∆t‖‖∇f(z(t))‖+ L
2
M2

t ‖∇f(z(t))‖2

+L
2
‖∆t‖2 + LMt‖∇f(z(t))‖‖∆t‖

≤ −Ut‖∇f(z(t))‖2 +M2
t B‖∇f(z(t))‖+ L

2
M2

t ‖∇f(z(t))‖2

+L
2
M4

t B
2 + LM3

t B‖∇f(z(t))‖,

where B ≡ LCS2(1 + LM−1)S. The above inequality further simplifies to

f(z(t+1))− f(z(t)) ≤ (−Ut +
L

2
M2

t )‖∇f(z(t))‖2 +M2
t B(1 +LMt)‖∇f(z(t))‖+

L

2
M4

t B
2.

Since Mt = O( 1
ρ(t) ), Ut = O( 1

ρ(t) ), and ρ(t) = o(‖∇f(z(t))‖−1) for t large enough, we

have

f(z(t+1))− f(z(t)) ≤ (−Ut + L
2
M2

t )‖∇f(z(t))‖2 + o(‖∇f(z(t))‖2),

≤
(
−O

(
1
ρ(t)

)
+ L

2
O
(

1
(ρ(t))2

))
‖∇f(z(t))‖2 + o(‖∇f(z(t))‖2).
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Suppose for contradiction that

lim
t→∞

inf ‖∇f(z(t))‖ > 0.

Then, for some ε > 0, there exists t̄ such that

f(z(t+1))− f(z(t)) ≤ −ε for all t ≥ t̄.

Therefore, for any t̂ > t̄, we have

f(z(t̂))− f(z(t̄)) =
t̂−1∑
t=t̄

f(z(t+1))− f(z(t)) ≤ −ε(t̂− t̄).

Note that in the right-hand-side of the last inequality, the difference t̂ − t̄ becomes

arbitrarily large when t̂ → ∞. However, f is bounded below due to our assumption.

Hence, we arrive at a contradiction. This implies the desired result

lim
t→∞

inf ‖∇f(z(t))‖ = 0.
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APPENDIX D: NUMERICAL APPROXIMATION

D.1. Evaluating the Gradient of the Dispersion in Tweedie Models

The gradient of the cost function with respect to φ requires two infinite summa-

tions to be computed. Here, we make use of the numerical methods proposed in [82]

that locates the indices k where the terms Vk make the major contribution to the sum.

In this section we describe the method for the case when p < 0.

In order to locate the region of the contributive terms, firstly the index of the

most contributive term k? is approximately determined. We define an envelope V env
k

for Vk by discarding the terms (−1)k and sin(·), where we have V env
k ≥ |Vk(·)| for all

k. Then we approximate the gamma functions in the envelope term by using Stirling’s

formula:

log Γ(x+ 1) ≈ (x+
1

2
) log x− x+

1

2
log 2π (D.1)

For p < 0 we obtain:

log V env
k ≈k log(

xiφ
1
p−2 (2− p) 1

α

(1− p) ) + (
k

p− 2
) log k − k

α
log(α) + (

k

2− p)− 1

2
log (α).

This equation allows us to find an approximate mode k? by solving

(d log V env
k )/(dk) = 0

as if k is continuous. The lower and the upper bounds for k is found by evaluating the

terms that are at either side of k? until their contributions are negligible. For p < 0 we

obtain the mode at:

k? = x2−p
i /((1− p)φ). (D.2)
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By following a similar approach, the mode for 1 < p < 2 and p > 2 can be obtained as

k? = x2−p
i /((2− p)φ) and k? = x2−p

i /((p− 2)φ) respectively [82].

D.2. Evaluating Alpha-Stable Densities

In order to evaluate the stable densities, we follow the same approach as in the

previous section. For evaluating the stable densities, we make use of the power series

representation of the stable distribution [69,90]:

p(x) =
1

πx

∞∑
k=1

Vk (D.3)

where

Vk =


Γ(kα+1)
Γ(k+1)

(−1)k(x−α)k sin kπ
2

(γ − α) 0 < α < 1

Γ(k/α+1)
Γ(k+1)

(−1)kxk sin kπ
2α

(γ − α) 1 < α < 2

where the scale parameter is set to a = (1 + µ2 tan2(πα/2))1/(2α). In this section we

describe the method for the case when 0 < α < 1. It is straightforward to extend the

method for 1 < α < 2.

For 0 < α < 1, the envelope is given as follows:

log V env
k ≈(kα− k) log k + kα log

α

x
+ k − kα

Accordingly, we obtain the mode at:

k? = exp(
α log α

x

1− α ). (D.4)
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38. Şimşekli, U. and A. T. Cemgil, “Score Guided Musical Source Separation Using

Generalized Coupled Tensor Factorization”, European Signal Processing Confer-

ence, pp. 2639–2643, 2012.

39. Barker, T., T. Virtanen and O. Delhomme, “Ultrasound-Coupled Semi-

Supervised Nonnegative Matrix Factorisation for Speech Enhancement”, IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 2129–2133, 2014.

40. Wilderjans, T., E. Ceulemans, I. Van Mechelen and R. van den Berg, “Simultane-

ous Analysis Of Coupled Data Matrices Subject To Different Amounts Of Noise”,

British Journal of Mathematical and Statistical Psychology , Vol. 64, pp. 277–90,

2011.

41. Levin, J., “Simultaneous Factor Analysis Of Several Gramian Matrices”, Psy-

chometrika, Vol. 31, No. 3, pp. 413–419, 1966.

42. Acar, E., G. Gurdeniz, M. A. Rasmussen, D. Rago, L. O. Dragsted and R. Bro,

“Coupled Matrix Factorization with Sparse Factors to Identify Potential Biomark-

ers in Metabolomics.”, International Journal of Knowledge Discovery in Bioin-

formatics , Vol. 3, No. 3, pp. 22–43, 2012.



150

43. Alter, O., P. O. Brown and D. Botstein, “Generalized Singular Value Decompo-

sition for Comparative Analysis of Genome-scale Expression Data Sets of Two

Different Organisms”, Proceedings of the National Academy of Sciences , Vol. 100,

No. 6, pp. 3351–3356, 2003.

44. Lee, C., M. Mudaliar, D. Haggart, C. Wolf, G. Miele, J. Vass, D. Higham

and D. Crowther, “Simultaneous Non-negative Matrix Factorization for Multi-

ple Large Scale Gene Expression Datasets in Toxicology”, PLoS ONE , Vol. 7,

No. 12, p. e48238, 2012.

45. Zheng, V. W., B. Cao, Y. Zheng, X. Xie and Q. Yang, “Collaborative Filtering

Meets Mobile Recommendation: A User-centered Approach”, AAAI Conference

on Artificial Intelligence, pp. 236–241, 2010.

46. Ermis, B., E. Acar Ataman and T. Cemgil, “Link Prediction in Heterogeneous

Data via Generalized Coupled Tensor Factorization”, Data Mining and Knowledge

Discovery , Vol. 29, No. 1, pp. 203–236, 2015.

47. Kushner, H. and G. Yin, Stochastic Approximation and Recursive Algorithms and

Applications , Springer, New York, 2003.

48. Liu, J. S., Monte Carlo Strategies in Scientific Computing , Springer, New York,

2008.
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