Modelling functions with kernels, from logistic regression to global optimization

Ulysse Marteau-Ferey

DI ENS – Inria Paris – PSL

Supervised by Francis Bach and Alessandro Rudi September 7, 2022

Kernel methods

Logistic regression

Global optimization

Introduction : learning a prediction function

Goal - Input $x \in \mathcal{X}$

output $y \in \mathcal{Y}$

 $\begin{aligned} \mathcal{Y} &= \{\mathsf{Healthy},\mathsf{Sick}\} \\ \mathcal{Y} &= \{\mathsf{Cancer}\;\mathsf{A},\mathsf{Cancer}\;\mathsf{B}\} \\ \mathcal{Y} &= \{-1,1\} \end{aligned}$

Kernel methods

Logistic regression

Global optimization

Introduction : learning a prediction function

Goal - Input $x \in \mathcal{X}$

 $\stackrel{\mathsf{predict}}{\longrightarrow}$

output $y \in \mathcal{Y}$

 $\begin{aligned} \mathcal{Y} &= \{ \mathsf{Healthy}, \mathsf{Sick} \} \\ \mathcal{Y} &= \{ \mathsf{Cancer} \; \mathsf{A}, \mathsf{Cancer} \; \mathsf{B} \} \\ \mathcal{Y} &= \{ -1, 1 \} \end{aligned}$

Mathematically - Learning a prediction function

$$g:\mathcal{X}
ightarrow \mathcal{Y}$$

Logistic regression

Introduction : modelling

Mathematical formulation -

- Where to find g : **model** \mathcal{H} (set of test functions).
- How to find the best g : minimize a risk

 $g_* = \operatorname*{argmin}_{g \in \mathcal{H}} \mathcal{R}(g).$

Introduction : modelling

Mathematical formulation -

- Where to find g : **model** \mathcal{H} (set of test functions).
- How to find the best g : minimize a risk

$$g_* = \operatorname*{argmin}_{g \in \mathcal{H}} \mathcal{R}(g).$$

The model ${\mathcal H}$ is crucial -

- Large enough (good candidates).
- Small enough (not too many candidates).
- Impacts optimization (finding g_*).

Logistic regression

Global optimization

The linear model

Linear model -

- Features : $(\phi_i)_{1 \leq i \leq p}$, $\phi_i : \mathcal{X} \to \mathbb{R}$.
- Predictor :

$$g_{\theta}(x) = \sum_{j=1}^{p} \theta_j \ \phi_j(x) = \theta^{\top} \phi(x).$$

• Model :

$$\mathcal{H} = \{g_\theta : \theta \in \mathbb{R}^p\}$$

Logistic regression

Global optimization

The linear model

Linear model -

- Features : $(\phi_i)_{1 \leq i \leq p}$, $\phi_i : \mathcal{X} \to \mathbb{R}$.
- Predictor :

$$g_{\theta}(x) = \sum_{j=1}^{p} \theta_j \ \phi_j(x) = \theta^{\top} \phi(x).$$

$$\mathcal{H} = \{g_\theta : \theta \in \mathbb{R}^p\}$$

Great workhorse in applied mathematics -

- Practitioners : feature design (interpretability).
- Theoreticians : "simplicity" of computations.
- Convex optimization algorithms.

Motivations of the thesis and outline

Focus of the thesis : kernel methods -

- Generalization of linear models
- Non parametric : less rigid than linear models (bigger spaces)
- Very strong theoretical tools

Motivations of the thesis and outline

Focus of the thesis : kernel methods -

- Generalization of linear models
- Non parametric : less rigid than linear models (bigger spaces)
- Very strong theoretical tools

Goal : extend the use of this tool -

- Kernel methods
- O Logistic regression
- Global (non-convex) optimization

Kernel methods

Logistic regression

Global optimization

Part I - Kernel methods

2 Logistic regression

Reproducing Kernel Hilbert Spaces : two points of views

Hilbert space $\mathcal{H}, \langle \cdot, \cdot \rangle$ of functions on \mathcal{X} [Aronszajn, 1950],[Scholkopf and Smola, 2001].

Reproducing Kernel Hilbert Spaces : two points of views

Hilbert space $\mathcal{H}, \langle \cdot, \cdot \rangle$ of functions on \mathcal{X} [Aronszajn, 1950],[Scholkopf and Smola, 2001].

Function evaluations are continuous -

- feature map : $x \in \mathcal{X} \mapsto \phi(x) \in \mathcal{H}$ s.t. $g(x) = \langle g, \phi(x) \rangle$: reproducing property;
- associated **positive definite kernel** : $k(x, y) = \langle \phi(x), \phi(y) \rangle$;
- reproducing : $\langle g, k(x, \cdot) \rangle = g(x)$ since $\phi(x) = k(x, \cdot)$.

Reproducing Kernel Hilbert Spaces : two points of views

Hilbert space $\mathcal{H}, \langle \cdot, \cdot \rangle$ of functions on \mathcal{X} [Aronszajn, 1950],[Scholkopf and Smola, 2001].

Function evaluations are continuous -

- feature map : $x \in \mathcal{X} \mapsto \phi(x) \in \mathcal{H}$ s.t. $g(x) = \langle g, \phi(x) \rangle$: reproducing property;
- associated **positive definite kernel** : $k(x, y) = \langle \phi(x), \phi(y) \rangle$;
- reproducing : $\langle g, k(x, \cdot) \rangle = g(x)$ since $\phi(x) = k(x, \cdot)$.

Positive definite kernel k -

- basic functions : $g(\cdot) = \sum_{i=1}^{n} \alpha_i k(x_i, \cdot) \rightarrow \text{set } \mathcal{H}_0$;
- scalar product : $\langle k(x, \cdot), k(y, \cdot) \rangle = k(x, y)$;
- Hilbert space : $\mathcal{H} = \overline{\mathcal{H}_0}^{\langle \cdot, \cdot \rangle}$.

Kernel methods

Logistic regression

Examples of RKHS

- Polynomial functions of degree $\leq r$.
- Sobolev spaces (regularity s > d/2) on X ⊂ ℝ^d (Lipschitz continuous).

$$f\in W^s_2(\mathcal{X}) ext{ if } orall |lpha|\leq s, \ \partial^lpha f\in L^2(\mathcal{X})$$

• Gaussian kernel (bandwidth σ) :

$$k_{\sigma}(x, x') = \exp(-\|x - x'\|^2/2\sigma^2),$$

• Kernel engineering : design problem specific kernels [Scholkopf and Smola, 2001].

Kernel methods

Logistic regression

Global optimization

The kernel trick

Classical optimization problem -

$$\widehat{g}_{\lambda} = \operatorname*{argmin}_{g \in \mathcal{H}} \ rac{1}{n} \sum_{i=1}^{n} f_i(g(x_i)) + rac{\lambda}{2} \|g\|^2$$

Theorem (Representer theorem [Cucker and Smale, 2002])

• \widehat{g}_{λ} of the form $\sum_{i=1}^{n} \alpha_i k(x_i, \cdot)$ where $\alpha \in \mathbb{R}^n$.

$$\widehat{\alpha} = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n f_i([\mathbf{K}\alpha]_i) + \frac{\lambda}{2} \alpha^\top \mathbf{K} \alpha,$$
$$\mathbf{K} = (k(x_i, x_j))_{1 \le i, j \le n} \text{ kernel matrix.}$$

Kernel trick -

- Looking in a *n* dimensional space is enough.
- $\bullet~\mathcal{H}$ only appears through the kernel.

Kernel methods

Logistic regression

Global optimization

The kernel trick 2.0

Classical optimization problem -

$$\widehat{g}_{\lambda} = \operatorname*{argmin}_{g \in \mathcal{H}} \ \frac{1}{n} \sum_{i=1}^{n} f_i(g(x_i)) + \frac{\lambda}{2} \|g\|^2$$

Theorem (Representer theorem [Cucker and Smale, 2002])

• \widehat{g}_{λ} of the form $\sum_{i=1}^{n} \alpha_i k(x_i, \cdot)$ where $\alpha \in \mathbb{R}^n$.

$$\widehat{\alpha} = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n f_i([\mathbf{K}\alpha]_i) + \frac{\lambda}{2} \alpha^\top \mathbf{K} \alpha_i$$
$$\mathbf{K} = (k(x_i, x_j))_{1 \le i, j \le n} \text{ kernel matrix.}$$

Kernel trick 2.0 (informal) -

- Looking in a $m \ll n$ dimensional space is enough.
- $\bullet~\mathcal{H}$ only appears through the kernel.

Nice properties, classical drawbacks

Properties -

- Non parametric (infinite dimensional) : good approximation properties [Micchelli, Xu, and Zhang, 2006],[Sriperumbudur, Fukumizu, and Lanckriet, 2011].
- Kernel trick : finite dimensional problem + only use kernel.
- Tools for theoretical analysis : [Blanchard and Mücke, 2018], [Rudi, Carratino and Rosasco, 2017], [Scholkopf and Smola, 2001], [Caponnetto and de Vito, 2007].

Classical drawbacks -

- Scaling for large $n \ (n > 10^6)$.
- Hard to choose k (non-isotropic data).

Part II - Kernel logistic regression : extending results from least squares

Works presented in this section -

Statistics

Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and Alessandro Rudi. Beyond least- squares : Fast rates for regularized empirical risk minimization through self-concordance. COLT, 2019.

Optimization

Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Newton methods for ill- conditioned generalized self-concordant losses. NeurIPS, 2019.

Setting : supervised learning (1)

- Data : $(x_1, y_1), ..., (x_n, y_n) \in (\mathcal{X} \times \mathbb{R})^n$ i.i.d. from ρ unknown.
- Predictors : $g \in \mathcal{H}$ RKHS with kernel k.
- Loss : $\ell(y, g(x)) \in \mathbb{R}_+$:

Ideal goal - Expected risk minimization

$$g_* = \operatorname*{argmin}_{g \in \mathcal{H}} \, \mathcal{R}(g) := \mathbb{E}_{X, Y \sim
ho}[\ell(g(X), Y)]$$

- Well-specified assumption : $g_* \in \mathcal{H}$ exists.
- Access to ρ through $(x_1, y_1), ..., (x_n, y_n)$.

Kernel methods

Logistic regression

Global optimization

Setting : supervised learning (2)

Ideal goal - Expected risk minimization

$$g_* = \underset{g \in \mathcal{H}}{\operatorname{argmin}} \mathcal{R}(g) := \mathbb{E}_{X, Y \sim \rho}[\ell(g(X), Y)]$$
(1)

Approximating g_* in practice - Empirical risk minimization (ERM) :

• Replace
$$\rho \leftarrow \hat{\rho} = \sum_{i=1}^{n} \delta_{(x_i, y_i)}$$
 :

$$\widehat{g}_{\lambda} = \underset{g \in \mathcal{H}}{\operatorname{argmin}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(g(x_i), y_i)}_{\text{empirical risk}} + \underbrace{\frac{\lambda}{2} \|g\|_{\mathcal{H}}^{2}}_{\text{regularization}}.$$

• Need regularization λ .

Kernel methods

Logistic regression

Motivation : understanding and efficiently solving ERM

Previous work - quadratic case (or Kernel Ridge Regression) : closed form solutions.

$$\ell(y, y') = \frac{1}{2} ||y - y'||^2$$

Goal - Logistic regression (no closed form solutions)

$$\ell(y,y') = \log(1 + \exp(-yy'))$$

- Statistics : $\mathcal{R}(\widehat{g}_{\lambda,n}) \mathcal{R}(g_*) = \Theta(n,\lambda).$
- **2** Optimization : computing \hat{g}_{λ} .

Main tools -

- Key property of logistic : Generalized Self Concordance ([Bach, 2010]).
- Newton method type analysis.

Kernel method

Logistic regression

Global optimization

Previous work : general statistical analysis

Bias-variance decomposition -

[Sridharan et al.,2009] (assumption ℓ is *L*-Lipschitz).

$$\mathcal{R}(\widehat{g}_{\lambda}) - \mathcal{R}(g_{*}) \leq \underbrace{\lambda \|g_{*}\|^{2}}_{\text{bias } b_{\lambda}} + \underbrace{\frac{L^{2}}{\lambda n}}_{\text{variance } d_{\lambda}}$$

- b_{λ} : regularity of g_*
- d_{λ} : effective dimension of the problem

Rates of convergence -

$$\mathcal{R}(\widehat{g}_{\lambda}) - \mathcal{R}(g_{*}) \leq rac{L\|g_{*}\|}{\sqrt{n}}$$

In practice : faster convergence. Why?

Refined bias-variance decompositions

Bias-variance decomposition (non-asymptotic) -Least squares : [Caponnetto and de Vito,2007],[Blanchard and Mücke, 2018]

Logistic (GSC functions) : [M-F., Ostrovskii, Bach and Rudi, 2019]

$$\mathcal{R}(\widehat{g}_{\lambda}) - \mathcal{R}(g_*) \leq b_{\lambda} + rac{d_{\lambda}}{n},$$

Refined bias-variance decompositions

Bias-variance decomposition (non-asymptotic) -Least squares : [Caponnetto and de Vito,2007],[Blanchard and Mücke, 2018]

Logistic (GSC functions) : [M-F., Ostrovskii, Bach and Rudi, 2019]

$$\mathcal{R}(\widehat{g}_{\lambda}) - \mathcal{R}(g_*) \leq b_{\lambda} + rac{d_{\lambda}}{n},$$

	bias b_λ	effective dimension d_{λ}
<i>L</i> -lipschitz	$\lambda \ g_*\ ^2$	L^2/λ
least squares	$\lambda^2 \ (\Sigma + \lambda I)^{-1/2} g_* \ ^2$	$Tr((\Sigma + \lambda I)^{-1}\Sigma)$
logistic	$\lambda^2 \ (H + \lambda I)^{-1/2} g_* \ ^2$	$Tr((H + \lambda I)^{-1}G)$

Least squares : covariance operator Σ = E[k_X ⊗ k_X] ∈ S₊(H)
GSC functions : Hessian and Fisher information operators at g_{*} : H, G.

Finer analysis : better understanding

Least squares : minimax optimal rates

Assumptions -

- $d_{\lambda} \asymp \lambda^{-1/b}$ for $b \ge 1$
- $b_{\lambda} \asymp \lambda^{2r}$ for $r \in [1/2, 1]$

 $(b \uparrow \text{ if size of } \mathcal{H} \text{ decreases}).$ $(r \uparrow \text{ regularity of } g_*).$

Theorem ([Caponnetto and de Vito, 2007])

Minimax upper and lower bounds :

$$\mathcal{R}(\widehat{g}_{\lambda}) - \mathcal{R}(g_*) \asymp n^{-rac{2br}{2br+1}}, \qquad \lambda \asymp n^{-rac{b}{2br+1}}$$

$$\begin{array}{ccc} {\rm rate} & b=1 & b \to +\infty \\ \hline r=1/2 & n^{-1/2} & n^{-1} \\ r=1 & n^{-2/3} & n^{-1} \end{array}$$

Much more precise result, and reflects behavior in practice

Logistic regression and GSC functions

Assumptions -

- $d_{\lambda} \lesssim \lambda^{-1/b}$ for $b \ge 1$
- $b_{\lambda} \lesssim \lambda^{2r}$ for $r \in [1/2, 1]$

 $(b \uparrow \text{ if size of } \mathcal{H} \text{ decreases}).$ $(r \uparrow \text{ regularity of } g_*).$

Theorem ([M-F., Ostrovskii, Bach and Rudi (2019)])

Non asymptotic upper bounds :

$$\mathcal{R}(\widehat{g}_{\lambda}) - \mathcal{R}(g_*) \lesssim n^{-rac{2br}{2br+1}}, \qquad \lambda \asymp n^{-rac{b}{2br+1}}$$

rate

$$b = 1$$
 $b \to +\infty$
 $r = 1/2$
 $n^{-1/2}$
 n^{-1}
 $r = 1$
 $n^{-2/3}$
 n^{-1}

Much more precise result, and reflects behavior in practice

Main tool for logistic regression

Assumption/Tool - : Generalized Self-Concordance [Bach, 2010] (GSC, satisfied by logistic loss).

$$|\ell^{(3)}(\cdot, y_2)| \leq \ell^{(2)}(\cdot, y_2).$$

Useful consequences -

• Allows to **localize the minimum** when the Newton decrement is small enough :

$$\|(H+\lambda I)^{-1} \nabla \mathcal{R}(g)\| \leq r_{\lambda} \implies \|g-g_*\| \leq c.$$

• Quadratic behavior :

$$\|g-g_*\|\leq c\implies \mathcal{R}(g)-\mathcal{R}(g_*)\leq b_\lambda+\mathcal{C}(\lambda)\|g-g_*\|_H^2.$$

Kernel methods

Logistic regression

Global optimization

Finite dimensional ERM

$$\widehat{g}_{\lambda} = \operatorname*{argmin}_{g \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(g(x_i), y_i) + \frac{\lambda}{2} \|g\|^2$$

Kernel trick : finite dimensional problem-

$$\widehat{g}_{\lambda}(\cdot) = \sum_{i=1}^{n} \widehat{\alpha}_{i} k(x_{i}, \cdot),$$
$$\widehat{\alpha} = \operatorname*{argmin}_{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n} \ell([K\alpha]_{i}, y_{i}) + \frac{\lambda}{2} \alpha^{\top} K\alpha,$$
$$K = (k(x_{i}, x_{j}))_{1 \le i, j \le n}.$$

Linear system in the quadratic case -

$$(K + \lambda I)\widehat{\alpha} = Ky.$$

Fast kernel ridge regression

Key observation - Only statistical precision is needed.

Fast, scalable algorithm (FALKON, [Rudi et al., 2017])

Main techniques -

- Nyström projections ([Rudi et al. 2015]) : reduce dimension from *n* to $m = d_{\lambda} \ll n$
- Pre-conditioning + iterative method.

Theorem (Rudi et al., 2017)

There exists an algorithm which achieves statistical optimality in $O(nd_{\lambda} + d_{\lambda}^3)$ in time and O(n) in space

Scalable to large datasets - $n = 10^9$ points, λ small.

Extension to logistic regression

Key observations -

- Previous techniques : fast approximate Newton steps.
- Empirically, Newton converges for logistic.

Globally convergent Newton method - Regularization $\mu_k \downarrow \lambda$

Extension to logistic regression

Key observations -

- Previous techniques : fast approximate Newton steps.
- Empirically, Newton converges for logistic.

Globally convergent Newton method -

• Decrease regularization $\mu \downarrow \lambda$ linearly.

Theorem (M-F., Bach, Rudi, 2019)

There exists an algorithm which reaches the statistical upper bound in $O(\log(1/\lambda)(nd_{\lambda} + d_{\lambda}^3))$ in time and O(n) in space

Conclusion on logistic regression

The strength of second order methods -

- First order methods depend on **condition number** $\kappa = \frac{L}{\lambda}$.
- Small λ sometimes necessary (Higgs data set : $\lambda = 10^{-12}$).
- Second order methods : no (or logarithmic) dependence in κ .
- Good non-asymptotic analysis tool.

Conclusion on logistic regression

The strength of second order methods -

- First order methods depend on **condition number** $\kappa = \frac{L}{\lambda}$.
- Small λ sometimes necessary (Higgs data set : $\lambda = 10^{-12}$).
- Second order methods : no (or logarithmic) dependence in κ .
- Good non-asymptotic analysis tool.

Related works -

- [Beugnot, Mairal and Rudi, 2021] Theory : statistical rates for $r \ge 1$ (very smooth, not ERM).
- [Meanti et al., 2020] Experimental : library for this work and FALKON (up to $n = 10^9$).

Part III - Global (non-convex) optimization

Main work presented in this section -

- Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel approximations. Arxiv, 2020.
 Other works used in this section -
 - PSD models.

Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-negative functions. NeurIPS, 2020.

• Extension to manifolds.

Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Second order conditions to decompose smooth functions as sums of squares. Arxiv, 2022. Kernel methods

Logistic regression

Global optimization

Global non-convex optimization : setting

Zero-th order minimization - $\min_{x \in \Omega} f(x)$

- $\Omega \subset \mathbb{R}^d$ simple compact subset (e.g., $[-1,1]^d$)
- f with some regularity (here $f \in C^m(\Omega)$)
- access to function calls (no derivatives)
- no convexity assumption

Global non-convex optimization : setting

Zero-th order minimization - $\min_{x \in \Omega} f(x)$

- $\Omega \subset \mathbb{R}^d$ simple compact subset (e.g., $[-1,1]^d$)
- f with some regularity (here $f \in C^m(\Omega)$)
- access to function calls (no derivatives)

• no convexity assumption

Goal - Given $\varepsilon > 0$, find $\widehat{x} \in \Omega$ such that $f(\widehat{x}) - \min_{x \in \Omega} f(x) \leqslant \varepsilon$

- Lowest number of function calls *n*;
- Worst-case guarantees over all functions f in $C^m(\Omega)$

$$\sup_{f\in C^m(\Omega), \|f\|\leq B}\left\{f(\widehat{x})-\min_{x\in\Omega}f(x)\right\}\leqslant \varepsilon$$

Optimal algorithms

Goal - Given
$$\varepsilon > 0$$
, find $\widehat{x} \in \Omega$ such that $f(\widehat{x}) - \min_{x \in \Omega} f(x) \leqslant \varepsilon$.

Equivalent to **uniform function approximation** [Novak, 2006]. Simplest algorithm : approximate f by \hat{f} and minimize \hat{f} .

Logistic regression

Optimal rates

Optimal worst-case performance over C^m - [Novak,2006]

- *n* = number of function evaluations needed;
- m = 1, $n \propto \varepsilon^{-d}$: curse of dimensionality;

Logistic regression

Optimal rates

Optimal worst-case performance over C^m - [Novak,2006]

- *n* = number of function evaluations needed;
- m = 1, $n \propto \varepsilon^{-d}$: curse of dimensionality ;
- *m* bounded derivatives : $n \propto \varepsilon^{-d/m}$.
- NB : constants may depend (exponentially) in d

Logistic regression

Optimal rates

Optimal worst-case performance over C^m - [Novak,2006]

- *n* = number of function evaluations needed;
- m = 1, $n \propto \varepsilon^{-d}$: curse of dimensionality ;
- *m* bounded derivatives : $n \propto \varepsilon^{-d/m}$.
- NB : constants may depend (exponentially) in d

Algorithms -

- Current algorithms have **exponential** running time complexity in *n* : "approximate then optimize".
- Algorithms with **polynomial-time** complexity in *n* : "approximate **and** optimize"?

Kernel methods

Logistic regression

Global optimization

Reformulation : all optimization problems are convex

Need to **represent non-negative functions** (such as g = f - c)

PSD strengthening

Motivations -

- Constraint $g \ge 0$ hard.
- Discretizing g ≥ 0 as g(x_i) ≥ 0 does not leverage regularity
 ⇒ approximate the whole of g ?

• Approximate the whole of g?

PSD strengthening

Motivations -

- Constraint $g \ge 0$ hard.
- Discretizing g ≥ 0 as g(x_i) ≥ 0 does not leverage regularity
 ⇒ approximate the whole of g?

• Approximate the whole of g?

One possible solution : PSD strengthening -

- Feature map $\phi : \mathcal{X} \to \mathcal{H}$
- Parametrized by positive semi-definite operators

$$g_A(x) = \langle \phi(x), A\phi(x) \rangle, \ A \in S_+(\mathcal{H}).$$

• Enforces non-negativity structurally $(A \succeq 0 \implies g_A \ge 0)$ while being **linear** in *A*.

Kernel methods

Logistic regression

Global optimization

Kernel PSD models and sum of squares

$$g_A(x) = \langle \phi(x), A\phi(x) \rangle, \ A \in S_+(\mathcal{H}).$$

Kernel PSD models/sum of squares - [M-F., Bach, Rudi, 2020]

- Use $\phi(x) = k_x = k(x, \cdot)$ where k is a positive definite kernel.
- Spectral theorem : g_A are sum of squares of functions in \mathcal{H} .
- Here k_s kernel associated to $W_2^s(\Omega)$.

Kernel methods

Logistic regression 000000000000000 Global optimization

Kernel PSD models and sum of squares

$$g_A(x) = \langle \phi(x), A\phi(x) \rangle, \ A \in S_+(\mathcal{H}).$$

Kernel PSD models/sum of squares - [M-F., Bach, Rudi, 2020]

- Use $\phi(x) = k_x = k(x, \cdot)$ where k is a positive definite kernel.
- Spectral theorem : g_A are sum of squares of functions in \mathcal{H} .
- Here k_s kernel associated to $W_2^s(\Omega)$.

New problem -

$$\sup_{c\in\mathbb{R},\ A\succeq 0} c \quad \text{st} \ \forall x\in\Omega, \ f(x)-c=\langle \phi(x),A\phi(x)\rangle$$

Kernel methods

Logistic regression

Global optimization

Modelling and optimizing $f \in C^m(\Omega)$: three steps

Step 1 - Showing the strengthening is reached for some $k = k_s$, s > d/2

$$\sup_{c \in \mathbb{R}, A \succeq 0} c \quad \text{st} \quad \forall x \in \Omega, \ f(x) - c = \langle k_x, Ak_x \rangle$$

$$\sup_{c \in \mathbb{R}} c \quad \text{st} \quad \forall x \in \Omega, \ f(x) - c \ge 0$$
(3)

Modelling and optimizing $f \in C^m(\Omega)$: three steps

Step 1 - Showing the strengthening is reached for some $k = k_s$, s > d/2

$$\sup_{c \in \mathbb{R}, A \succeq 0} c \quad \text{st} \quad \forall x \in \Omega, \ f(x) - c = \langle k_x, A k_x \rangle$$
(2)

$$\sup_{c\in\mathbb{R}} c \quad \text{st} \quad \forall x\in\Omega, \ f(x)-c\geq 0 \tag{3}$$

Condition :

$$\exists A_* \in S_+(\mathcal{H}), \ f(x) = f_* + \langle k_x, A_*k_x \rangle$$

 $f - f_*$ can be written as a sum of functions in $W_2^s(\Omega)$

$$f-f_*=\sum_{i=1}^N f_i^2, \qquad f_i\in W^s_2(\Omega)$$

S

Modelling and optimizing $f \in C^m(\Omega)$: three steps

Step 1 - Showing the strengthening is tight for some $k = k_s$, s > d/2

• SC : $\exists A_* \in S_+(\mathcal{H})$ s.t. $f(x) = f_* + \langle k_x, A_*k_x \rangle$

Step 2 - Discretize using *n* evaluations points $(x_i)_{1 \le i \le n}$:

$$\widehat{c}, \widehat{A} = \operatorname*{argmax}_{c \in \mathbb{R}, A \in S_{+}(\mathcal{H})} c - \lambda \operatorname{Tr}(A)$$

$$ubject \ \operatorname{to}f(x_{i}) - c = \langle k_{x_{i}}, Ak_{x_{i}} \rangle, \ 1 \le i \le n$$

$$(4)$$

Modelling and optimizing $f \in C^m(\Omega)$: three steps

Step 1 - Showing the strengthening is tight for some $k = k_s$, s > d/2

• SC : $\exists A_* \in S_+(\mathcal{H})$ s.t. $f(x) = f_* + \langle k_x, A_*k_x \rangle$

Step 2 - Discretize using *n* evaluations points $(x_i)_{1 \le i \le n}$:

$$\widehat{c}, \widehat{A} = \operatorname*{argmax}_{c \in \mathbb{R}, A \in S_{+}(\mathcal{H})} c - \lambda \operatorname{Tr}(A)$$
subject to $f(x_{i}) - c = \langle k_{x_{i}}, Ak_{x_{i}} \rangle, \ 1 \le i \le n$
(4)

- *n* large enough to guarantee that $\|\widehat{c} f_*\| \leq \epsilon$
- regularization $\lambda \operatorname{Tr}(A)$ necessary to avoid overfitting

Kernel methods

Logistic regression

Modelling and optimizing $f \in C^m(\Omega)$: three steps

Step 1 - Showing the strengthening is tight

• SC : $\exists A_* \in S_+(\mathcal{H})$ s.t. $f(x) = f_* + \langle k_x, A_*k_x \rangle$

Step 2 - Discretize using *n* evaluations points $(x_i)_{1 \le i \le n}$:

$$\widehat{c}, \widehat{A} = \operatorname*{argmax}_{c \in \mathbb{R}, A \in S_{+}(\mathcal{H})} c - \lambda \operatorname{Tr}(A)$$
subject to $f(x_{i}) - c = \langle k_{x_{i}}, Ak_{x_{i}} \rangle, \ 1 \le i \le n$

$$(4)$$

Step 3 - Show (4) can be written as a $n \times n$ semidefinite program.

- Consequence of the representer theorem
- Solve with interior point methods $O(n^{3.5})$ [Nesterov and Nemirovskii, 1994],[Tuncel, 2004]
- Dimension reduction (Nyström, [Rudi et al., 2015])

Kernel methods

Logistic regression

Global optimization

Step 1 : tight strengthening

Theorem ([Rudi, M-F., Bach, 2020])

Assume Ω is bounded, $f \in C^m(\Omega)$ has isolated strict-second order minima, and that $\{f - f_* \leq \delta\} \subset \overset{\circ}{\Omega}$ for some $\delta > 0$. For any $s \in [d/2, m-2]$, there exists $h_1, ..., h_N \in W_2^s(\Omega)$ such that

$$orall x \in \Omega, \ f(x) = f_* + \sum_{i=1}^N h_i^2(x)$$

= $f_* + \langle k_x, A_*k_x \rangle_{\mathcal{H}}$ where $A_* = \sum h_i \otimes h_i$

- Analog of Positivstellensatz for the polynomial case ([Putinar, 1993],[Lasserre, 2010]).
- Manifolds and continuous sets of minima [M-F., Bach, Rudi, 2022], motivated by [Vacher et al.].

Step 2 : discretizing using random samples

Subsample *n* points $x_1, \ldots, x_n \in \Omega$ and solve

$$\widehat{c}, \widehat{A} = \operatorname*{argmax}_{c \in \mathbb{R}, A \succcurlyeq 0} c - \lambda \operatorname{Tr}(A) \text{ st } f(x_i) = c + \langle \phi(x_i), A \phi(x_i) \rangle.$$

Theorem ([Rudi,M-F.,Bach, 2020])

Up to logarithmic terms : $x_1, ..., x_n$ sampled uniformly from Ω . Up to log terms, if $n = O(\varepsilon^{-d/(m-d/2-3)})$, $\lambda = \varepsilon$, then it holds with probability at least $1 - \delta$:

$$|\widehat{c} - f_*| \leq \varepsilon \; \operatorname{Tr}(A_*) \; \log rac{1}{\delta}$$

- Near optimal ($\varepsilon^{-d/(m-d/2)}$ for Sobolev).
- In practice, *n* is a computational budget.

Step 3 : Pseudocode for the algorithm

Input : $f : \mathbb{R}^d \to \mathbb{R}$, $\Omega \subset \mathbb{R}^d$, $n \ge 0, \lambda > 0, s > d/2$.

- 1. Sampling : $\{x_1, \ldots, x_n\}$ sampled i.i.d. uniformly on Ω
- 2. Feature computation
 - Set $f_j = f(x_j)$, $\forall j \in \{1, \dots, n\}$
 - Compute $K_{ij} = k_s(x_i, x_j)$
 - Set $\Phi_j \in \mathbb{R}^n$ computed using a Cholesky decomposition of K $\forall j \in \{1, \dots, n\}.$
- 3. Solve

 $\max_{c \in \mathbb{R}, B \succcurlyeq 0} c - \lambda \operatorname{Tr}(B) \text{ s. t. } \forall j \in \{1, \dots, n\}, f_j - c = \Phi_j^\top B \Phi_j$

Output : c proxy for f_* .

Extension to compute \widehat{x} possible

Kernel methods

Logistic regression

Global optimization

First experiments

Example of function -

Experiments on benchmarks -

	d	error
Trid	6	0.00E+00
Watson	6	1.09E-03
Hartmann6	6	0.00E+00
LennardJones	6	0.00E+00
Thurber	7	9.70E+03
Xor	9	6.99E-03
Paviani	10	1.03E-04
Cola	17	3.35E-01

Kernel methods

Logistic regression

Global optimization

Optimization using sum of squares polymials

Polynomial sum of squares - f is a polynomial [Lasserre, 2001]

$$\rho_r = \sup_{c \in \mathbb{R}} c \quad \text{st} \quad f - c \in \Sigma_r[\mathbf{x}]$$

$$\rho_r = \sup_{c \in \mathbb{R}, \ A \succeq 0} c \quad \text{st} \quad \forall x \in \Omega, \ f(x) - c = \langle \phi(x), A \phi(x) \rangle$$

- $\phi(x) = (x^{\alpha})_{|\alpha| \leq r}$.
- \bullet Optimization on a semi-algebraic domain $\mathbb K$:

$$\mathbb{K} := \{g_i(x) \ge 0 : g_i \in \mathbb{R}[\boldsymbol{x}]\}$$

• More general framework : moment-SOS hierarchies (of lower bounds).

Parallel with moment-sos hierarchy

Moment-sos hierarchy -

- Polynomials on semi-algebraic sets
- Guarantees based on algebraic properties
- A priori guarantees on the degree needed for a given precision $(r = 1/\sqrt{\varepsilon})$
- SDP problem of dimension *d^r*
- A posteriori lower bounds
- exact extraction

Kernel Sum of Squares -

- Any function *f* (but no constraints)
- Guarantees based on regularity
- A priori guarantees on the number of samples n needed for a given precision (n = ε^{-d/(m-d/2)})
- SDP of dimension n

Summary of global non-convex optimization

Takeaways -

- Algorithm for global optimization with *n* evaluation points **polynomial** in *n* (SDP).
- Guarantees for smooth functions : error ε roughly $n = O(\varepsilon^{-d/(m-d/2)})$ points.

Related works -

- A posteriori guarantees with Fourier transform [Woodworth, Bach, Rudi, 2022].
- Set of minima is a sub-manifold of a manifold [M-F., Bach, Rudi, 2022].

Logistic regression -

- Analysis of first order methods with GSC?
- Upper rates for the misspecified setting.

Global optimization and sum of squares -

- Can constraints be added in global optimization? What are their impact?
- Finding a posteriori guarantees in certain interesting cases.
- Creation of a library.
- Models for shape constraints (outputs in the simplex or in a box for example).

Thank you for your attention !