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Introduction Kernel methods Logistic regression Global optimization

Introduction : learning a prediction function

Goal - Input x ∈ X predict−→ output y ∈ Y

−→
Y = {Healthy, Sick}
Y = {Cancer A, Cancer B}
Y = {−1, 1}

Mathematically - Learning a prediction function

g : X → Y
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Introduction Kernel methods Logistic regression Global optimization

Introduction : modelling

Mathematical formulation -
Where to find g : model H (set of test functions).
How to find the best g : minimize a risk

g∗ = argmin
g∈H

R(g).

The model H is crucial -
Large enough (good candidates).
Small enough (not too many candidates).
Impacts optimization (finding g∗).
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Introduction Kernel methods Logistic regression Global optimization

The linear model

Linear model -
Features : (ϕi)1≤i≤p, ϕi : X → R.
Predictor :

gθ(x) =
p∑

j=1
θj ϕj(x) = θ⊤ϕ(x).

Model :
H = {gθ : θ ∈ Rp}

Great workhorse in applied mathematics -
Practitioners : feature design (interpretability).
Theoreticians : "simplicity" of computations.
Convex optimization algorithms.
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Introduction Kernel methods Logistic regression Global optimization

Motivations of the thesis and outline

Focus of the thesis : kernel methods -
Generalization of linear models
Non parametric : less rigid than linear models (bigger spaces)
Very strong theoretical tools

Goal : extend the use of this tool -
1 Kernel methods
2 Logistic regression
3 Global (non-convex) optimization
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Introduction Kernel methods Logistic regression Global optimization

Part I - Kernel methods

1 Kernel methods

2 Logistic regression

3 Global optimization
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Introduction Kernel methods Logistic regression Global optimization

Reproducing Kernel Hilbert Spaces : two points of views

Hilbert space H, ⟨·, ·⟩ of functions on X [Aronszajn,
1950],[Scholkopf and Smola, 2001].

Function evaluations are continuous -
feature map : x ∈ X 7→ ϕ(x) ∈ H s.t. g(x) = ⟨g , ϕ(x)⟩ :
reproducing property ;
associated positive definite kernel : k(x , y) = ⟨ϕ(x), ϕ(y)⟩ ;
reproducing : ⟨g , k(x , ·)⟩ = g(x) since ϕ(x) = k(x , ·).

Positive definite kernel k -
basic functions : g(·) =

∑n
i=1 αik(xi , ·) → set H0 ;

scalar product : ⟨k(x , ·), k(y , ·)⟩ = k(x , y) ;

Hilbert space : H = H0
⟨·,·⟩.
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Introduction Kernel methods Logistic regression Global optimization

Examples of RKHS

Polynomial functions of degree ≤ r .
Sobolev spaces (regularity s > d/2) on X ⊂ Rd (Lipschitz
continuous).

f ∈W s
2 (X ) if ∀|α| ≤ s, ∂αf ∈ L2(X )

Gaussian kernel (bandwidth σ) :

kσ(x , x ′) = exp(−∥x − x ′∥2/2σ2),

Kernel engineering : design problem specific kernels [Scholkopf
and Smola, 2001].
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Introduction Kernel methods Logistic regression Global optimization

The kernel trick
Classical optimization problem -

ĝλ = argmin
g∈H

1
n

n∑
i=1

fi(g(xi)) + λ

2 ∥g∥
2

Theorem (Representer theorem [Cucker and Smale, 2002])
ĝλ of the form

∑n
i=1 αik(xi , ·) where α ∈ Rn.

α̂ = argmin
α∈Rn

1
n

n∑
i=1

fi([Kα]i) + λ
2 α⊤Kα,

K = (k(xi , xj))1≤i ,j≤n kernel matrix.

Kernel trick -
Looking in a n dimensional space is enough.
H only appears through the kernel.
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The kernel trick 2.0
Classical optimization problem -

ĝλ = argmin
g∈H

1
n

n∑
i=1

fi(g(xi)) + λ

2 ∥g∥
2

Theorem (Representer theorem [Cucker and Smale, 2002])
ĝλ of the form

∑n
i=1 αik(xi , ·) where α ∈ Rn.

α̂ = argmin
α∈Rn

1
n

n∑
i=1

fi([Kα]i) + λ
2 α⊤Kα,

K = (k(xi , xj))1≤i ,j≤n kernel matrix.

Kernel trick 2.0 (informal) -
Looking in a m≪ n dimensional space is enough.
H only appears through the kernel.
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Introduction Kernel methods Logistic regression Global optimization

Nice properties, classical drawbacks

Properties -
Non parametric (infinite dimensional) : good approximation
properties [Micchelli, Xu, and Zhang, 2006],[Sriperumbudur,
Fukumizu, and Lanckriet, 2011].
Kernel trick : finite dimensional problem + only use kernel.
Tools for theoretical analysis : [Blanchard and Mücke,
2018],[Rudi, Carratino and Rosasco, 2017],[Scholkopf and
Smola, 2001],[Caponnetto and de Vito, 2007].

Classical drawbacks -
Scaling for large n (n > 106).
Hard to choose k (non-isotropic data).

17 / 57



Introduction Kernel methods Logistic regression Global optimization

Part II - Kernel logistic regression : extending results from
least squares

Works presented in this section -
Statistics
Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and
Alessandro Rudi. Beyond least- squares : Fast rates for
regularized empirical risk minimization through
self-concordance. COLT, 2019.
Optimization
Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi.
Newton methods for ill- conditioned generalized
self-concordant losses. NeurIPS, 2019.

18 / 57



Introduction Kernel methods Logistic regression Global optimization

Setting : supervised learning (1)

Data : (x1, y1), ..., (xn, yn) ∈ (X × R)n i.i.d. from ρ unknown.
Predictors : g ∈ H RKHS with kernel k.
Loss : ℓ(y , g(x)) ∈ R+ :

Ideal goal - Expected risk minimization

g∗ = argmin
g∈H

R(g) := EX ,Y ∼ρ[ℓ(g(X ), Y )]

Well-specified assumption : g∗ ∈ H exists.
Access to ρ through (x1, y1), ..., (xn, yn).
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Setting : supervised learning (2)

Ideal goal - Expected risk minimization

g∗ = argmin
g∈H

R(g) := EX ,Y ∼ρ[ℓ(g(X ), Y )] (1)

Approximating g∗ in practice - Empirical risk minimization (ERM) :

Replace ρ← ρ̂ =
∑n

i=1 δ(xi ,yi ) :

ĝλ = argmin
g∈H

1
n

n∑
i=1

ℓ(g(xi), yi)︸ ︷︷ ︸
empirical risk

+ λ
2∥g∥

2
H︸ ︷︷ ︸

regularization

.

Need regularization λ.
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Introduction Kernel methods Logistic regression Global optimization

Motivation : understanding and efficiently solving ERM

Previous work - quadratic case (or Kernel Ridge Regression) :
closed form solutions.

ℓ(y , y ′) = 1
2∥y − y ′∥2

Goal - Logistic regression (no closed form solutions)

ℓ(y , y ′) = log(1 + exp(−yy ′))

1 Statistics : R(ĝλ,n)−R(g∗) = Θ(n, λ).
2 Optimization : computing ĝλ.

Main tools -
Key property of logistic : Generalized Self Concordance
([Bach, 2010]).
Newton method type analysis.
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Introduction Kernel methods Logistic regression Global optimization

Previous work : general statistical analysis

Bias-variance decomposition -
[Sridharan et al.,2009] (assumption ℓ is L-Lipschitz).

R(ĝλ)−R(g∗) ≤ λ∥g∗∥2︸ ︷︷ ︸
bias bλ

+ L2

λn︸︷︷︸
variance dλ

bλ : regularity of g∗

dλ : effective dimension of the problem
Rates of convergence -

R(ĝλ)−R(g∗) ≤ L∥g∗∥√
n

In practice : faster convergence. Why ?

22 / 57



Introduction Kernel methods Logistic regression Global optimization

Refined bias-variance decompositions
Bias-variance decomposition (non-asymptotic) -
Least squares : [Caponnetto and de Vito,2007],[Blanchard and
Mücke, 2018]
Logistic (GSC functions) : [M-F., Ostrovskii, Bach and Rudi, 2019]

R(ĝλ)−R(g∗) ≤ bλ + dλ

n ,

bias bλ effective dimension dλ

L-lipschitz λ∥g∗∥2 L2/λ

least squares λ2∥(Σ + λI)−1/2g∗∥2 Tr((Σ + λI)−1Σ)
logistic λ2∥(H + λI)−1/2g∗∥2 Tr((H + λI)−1G)

Least squares : covariance operator Σ = E[kX ⊗ kX ] ∈ S+(H)
GSC functions : Hessian and Fisher information operators at
g∗ : H, G .

Finer analysis : better understanding
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Introduction Kernel methods Logistic regression Global optimization

Least squares : minimax optimal rates

Assumptions -
dλ ≍ λ−1/b for b ≥ 1 (b ↑ if size of H decreases).
bλ ≍ λ2r for r ∈ [1/2, 1] (r ↑ regularity of g∗).

Theorem ([Caponnetto and de Vito, 2007])
Minimax upper and lower bounds :

R(ĝλ)−R(g∗) ≍ n− 2br
2br+1 , λ ≍ n− b

2br+1

rate b = 1 b → +∞
r = 1/2 n−1/2 n−1

r = 1 n−2/3 n−1

Much more precise result, and reflects behavior in practice
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Logistic regression and GSC functions

Assumptions -
dλ ≲ λ−1/b for b ≥ 1 (b ↑ if size of H decreases).
bλ ≲ λ2r for r ∈ [1/2, 1] (r ↑ regularity of g∗).

Theorem ([M-F., Ostrovskii, Bach and Rudi (2019)])
Non asymptotic upper bounds :

R(ĝλ)−R(g∗) ≲ n− 2br
2br+1 , λ ≍ n− b

2br+1

rate b = 1 b → +∞
r = 1/2 n−1/2 n−1

r = 1 n−2/3 n−1

Much more precise result, and reflects behavior in practice

26 / 57



Introduction Kernel methods Logistic regression Global optimization

Main tool for logistic regression

Assumption/Tool - : Generalized Self-Concordance [Bach, 2010]
(GSC, satisfied by logistic loss).

|ℓ(3)(·, y2)| ≤ ℓ(2)(·, y2).

Useful consequences -
Allows to localize the minimum when the Newton
decrement is small enough :

∥(H + λI)−1∇R(g)∥ ≤ rλ =⇒ ∥g − g∗∥ ≤ c.

Quadratic behavior :

∥g − g∗∥ ≤ c =⇒ R(g)−R(g∗) ≤ bλ + C(λ)∥g − g∗∥2H .
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Introduction Kernel methods Logistic regression Global optimization

Finite dimensional ERM

ĝλ = argmin
g∈H

1
n

n∑
i=1

ℓ(g(xi), yi) + λ

2 ∥g∥
2

Kernel trick : finite dimensional problem-

ĝλ(·) =
n∑

i=1
α̂ik(xi , ·),

α̂ = argmin
α∈Rn

1
n

n∑
i=1

ℓ([Kα]i , yi) + λ
2 α⊤Kα,

K = (k(xi , xj))1≤i ,j≤n.

Linear system in the quadratic case -

(K + λI)α̂ = Ky .
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Introduction Kernel methods Logistic regression Global optimization

Fast kernel ridge regression

Key observation - Only statistical precision is needed.
Fast, scalable algorithm (FALKON, [Rudi et al., 2017])

Main techniques -
Nyström projections ([Rudi et al. 2015]) : reduce dimension
from n to m = dλ ≪ n
Pre-conditioning + iterative method.

Theorem (Rudi et al.,2017)
There exists an algorithm which achieves statistical optimality in
O(ndλ + d3

λ) in time and O(n) in space

Scalable to large datasets - n = 109 points, λ small.
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Introduction Kernel methods Logistic regression Global optimization

Extension to logistic regression

Key observations -
Previous techniques : fast approximate Newton steps.
Empirically, Newton converges for logistic.

Globally convergent Newton method - Regularization µk ↓ λ
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Introduction Kernel methods Logistic regression Global optimization

Extension to logistic regression

Key observations -
Previous techniques : fast approximate Newton steps.
Empirically, Newton converges for logistic.

Globally convergent Newton method -
Decrease regularization µ ↓ λ linearly.

Theorem (M-F., Bach, Rudi, 2019)
There exists an algorithm which reaches the statistical upper
bound in O(log(1/λ)(ndλ + d3

λ)) in time and O(n) in space
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Introduction Kernel methods Logistic regression Global optimization

Conclusion on logistic regression

The strength of second order methods -
First order methods depend on condition number κ = L

λ .
Small λ sometimes necessary (Higgs data set : λ = 10−12).
Second order methods : no (or logarithmic) dependence in κ.
Good non-asymptotic analysis tool.

Related works -
[Beugnot, Mairal and Rudi, 2021] Theory : statistical rates for
r ≥ 1 (very smooth, not ERM).
[Meanti et al., 2020] Experimental : library for this work and
FALKON (up to n = 109).
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Introduction Kernel methods Logistic regression Global optimization

Part III - Global (non-convex) optimization

Main work presented in this section -
Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach.
Finding global minima via kernel approximations. Arxiv, 2020.

Other works used in this section -
PSD models.
Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi.
Non-parametric models for non-negative functions. NeurIPS,
2020.
Extension to manifolds.
Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi.
Second order conditions to decompose smooth functions as
sums of squares. Arxiv, 2022.
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Introduction Kernel methods Logistic regression Global optimization

Global non-convex optimization : setting

Zero-th order minimization - minx∈Ω f (x)
Ω ⊂ Rd simple compact subset (e.g., [−1, 1]d)
f with some regularity (here f ∈ Cm(Ω))
access to function calls (no derivatives)
no convexity assumption

Goal - Given ε > 0, find x̂ ∈ Ω such that f (x̂)−min
x∈Ω

f (x) ⩽ ε

Lowest number of function calls n ;
Worst-case guarantees over all functions f in Cm(Ω)

sup
f ∈Cm(Ω), ∥f ∥≤B

{
f (x̂)−min

x∈Ω
f (x)

}
⩽ ε
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Introduction Kernel methods Logistic regression Global optimization

Optimal algorithms
Goal - Given ε > 0, find x̂ ∈ Ω such that f (x̂)−min

x∈Ω
f (x) ⩽ ε.

Equivalent to uniform function approximation [Novak, 2006].
Simplest algorithm : approximate f by f̂ and minimize f̂ .

x

f(x)

f(x)− ε

f(x) + ε

f̂(x)
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Introduction Kernel methods Logistic regression Global optimization

Optimal rates

Optimal worst-case performance over Cm - [Novak,2006]
n = number of function evaluations needed ;
m = 1, n ∝ ε−d : curse of dimensionality ;

m bounded derivatives : n ∝ ε−d/m.
NB : constants may depend (exponentially) in d

Algorithms -
Current algorithms have exponential running time complexity
in n : "approximate then optimize".
Algorithms with polynomial-time complexity in n :
“approximate and optimize” ?
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Introduction Kernel methods Logistic regression Global optimization

Reformulation : all optimization problems are convex

min
x∈Ω

f (x) = sup
c∈R

c

subject to f (x)− c = g(x),
g(x) ≥ 0, x ∈ Ω

f (x)

x

c

Need to represent non-negative functions (such as g = f − c)
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Introduction Kernel methods Logistic regression Global optimization

PSD strengthening
Motivations -

Constraint g ≥ 0 hard.
Discretizing g ≥ 0 as g(xi) ≥ 0 does not leverage regularity
=⇒ approximate the whole of g ?

Approximate the whole of g ?

One possible solution : PSD strengthening -
Feature map ϕ : X → H
Parametrized by positive semi-definite operators

gA(x) = ⟨ϕ(x), Aϕ(x)⟩, A ∈ S+(H).

Enforces non-negativity structurally (A ⪰ 0 =⇒ gA ≥ 0)
while being linear in A.
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Introduction Kernel methods Logistic regression Global optimization

Kernel PSD models and sum of squares

gA(x) = ⟨ϕ(x), Aϕ(x)⟩, A ∈ S+(H).

Kernel PSD models/sum of squares - [M-F., Bach, Rudi, 2020]
Use ϕ(x) = kx = k(x , ·) where k is a positive definite kernel.
Spectral theorem : gA are sum of squares of functions in H.
Here ks kernel associated to W s

2 (Ω).

New problem -

sup
c∈R, A⪰0

c st ∀x ∈ Ω, f (x)− c = ⟨ϕ(x), Aϕ(x)⟩
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Introduction Kernel methods Logistic regression Global optimization

Modelling and optimizing f ∈ Cm(Ω) : three steps

Step 1 - Showing the strengthening is reached for some k = ks ,
s > d/2

sup
c∈R, A⪰0

c st ∀x ∈ Ω, f (x)− c = ⟨kx , Akx ⟩ (2)

sup
c∈R

c st ∀x ∈ Ω, f (x)− c≥ 0 (3)

Condition :

∃A∗ ∈ S+(H), f (x) = f∗ + ⟨kx , A∗kx ⟩

f − f∗ can be written as a sum of functions in W s
2 (Ω)

f − f∗ =
N∑

i=1
f 2
i , fi ∈W s

2 (Ω)
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Introduction Kernel methods Logistic regression Global optimization

Modelling and optimizing f ∈ Cm(Ω) : three steps

Step 1 - Showing the strengthening is tight for some k = ks ,
s > d/2

SC : ∃A∗ ∈ S+(H) s.t. f (x) = f∗ + ⟨kx , A∗kx ⟩
Step 2 - Discretize using n evaluations points (xi)1≤i≤n :

ĉ, Â = argmax
c∈R, A∈S+(H)

c−λ Tr(A)

subject tof (xi)− c = ⟨kxi , Akxi ⟩, 1 ≤ i ≤ n
(4)

n large enough to guarantee that ∥ĉ − f∗∥ ≤ ϵ

regularization λ Tr(A) necessary to avoid overfitting
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Modelling and optimizing f ∈ Cm(Ω) : three steps

Step 1 - Showing the strengthening is tight for some k = ks ,
s > d/2

SC : ∃A∗ ∈ S+(H) s.t. f (x) = f∗ + ⟨kx , A∗kx ⟩
Step 2 - Discretize using n evaluations points (xi)1≤i≤n :

ĉ, Â = argmax
c∈R, A∈S+(H)

c−λ Tr(A)

subject tof (xi)− c = ⟨kxi , Akxi ⟩, 1 ≤ i ≤ n
(4)

n large enough to guarantee that ∥ĉ − f∗∥ ≤ ϵ

regularization λ Tr(A) necessary to avoid overfitting
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Modelling and optimizing f ∈ Cm(Ω) : three steps

Step 1 - Showing the strengthening is tight
SC : ∃A∗ ∈ S+(H) s.t. f (x) = f∗ + ⟨kx , A∗kx ⟩

Step 2 - Discretize using n evaluations points (xi)1≤i≤n :

ĉ, Â = argmax
c∈R, A∈S+(H)

c−λ Tr(A)

subject to f (xi)− c = ⟨kxi , Akxi ⟩, 1 ≤ i ≤ n
(4)

Step 3 - Show (4) can be written as a n × n semidefinite program.
Consequence of the representer theorem
Solve with interior point methods O(n3.5) [Nesterov and
Nemirovskii, 1994],[Tuncel, 2004]
Dimension reduction (Nyström, [Rudi et al.,2015])
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Step 1 : tight strengthening

Theorem ([Rudi, M-F., Bach, 2020])
Assume Ω is bounded, f ∈ Cm(Ω) has isolated strict-second
order minima, and that {f − f∗ ≤ δ} ⊂

◦
Ω for some δ > 0.

For any s ∈]d/2, m − 2], there exists h1, ..., hN ∈W s
2 (Ω) such that

∀x ∈ Ω, f (x) = f∗ +
N∑

i=1
h2

i (x)

= f∗ + ⟨kx , A∗kx ⟩H where A∗ =
∑

hi ⊗ hi

Analog of Positivstellensatz for the polynomial case ([Putinar,
1993],[Lasserre, 2010]).
Manifolds and continuous sets of minima [M-F., Bach, Rudi,
2022], motivated by [Vacher et al.].
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Step 2 : discretizing using random samples

Subsample n points x1, . . . , xn ∈ Ω and solve

ĉ, Â = argmax
c∈R, A≽0

c −λ Tr(A) st f (xi) = c + ⟨ϕ(xi), Aϕ(xi)⟩.

Theorem ([Rudi,M-F.,Bach, 2020])
Up to logarithmic terms : x1, ..., xn sampled uniformly from Ω. Up
to log terms, if n = O(ε−d/(m−d/2−3)), λ = ε, then it holds with
probability at least 1− δ :

|ĉ − f∗| ≤ ε Tr(A∗) log 1
δ

Near optimal (ε−d/(m−d/2) for Sobolev).
In practice, n is a computational budget.
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Step 3 : Pseudocode for the algorithm

Input : f : Rd → R, Ω ⊂ Rd , n ⩾ 0, λ > 0, s > d/2 .
1. Sampling : {x1, . . . , xn} sampled i.i.d. uniformly on Ω
2. Feature computation

Set fj = f (xj), ∀j ∈ {1, . . . , n}
Compute Kij = ks(xi , xj)
Set Φj ∈ Rn computed using a Cholesky decomposition of K
∀j ∈ {1, . . . , n}.

3. Solve
max

c∈R,B≽0
c − λ Tr(B) s. t. ∀j ∈ {1, . . . , n}, fj − c = Φ⊤

j BΦj

Output : c proxy for f∗.

Extension to compute x̂ possible
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First experiments

Example of function - Experiments on benchmarks -

d error
Trid 6 0.00E+00
Watson 6 1.09E-03
Hartmann6 6 0.00E+00
LennardJones 6 0.00E+00
Thurber 7 9.70E+03
Xor 9 6.99E-03
Paviani 10 1.03E-04
Cola 17 3.35E-01
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Optimization using sum of squares polymials

Polynomial sum of squares - f is a polynomial [Lasserre,2001]

ρr = sup
c∈R

c st f − c ∈ Σr [x]

ρr = sup
c∈R, A⪰0

c st ∀x ∈ Ω, f (x)− c = ⟨ϕ(x), Aϕ(x)⟩

ϕ(x) = (xα)|α|≤r .
Optimization on a semi-algebraic domain K :

K := {gi(x) ≥ 0 : gi ∈ R[x]}

More general framework : moment-SOS hierarchies (of lower
bounds).
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Parallel with moment-sos hierarchy

Moment-sos hierarchy -
Polynomials on
semi-algebraic sets
Guarantees based on
algebraic properties
A priori guarantees on
the degree needed for a
given precision
(r = 1/

√
ε)

SDP problem of
dimension d r

A posteriori lower bounds
exact extraction

Kernel Sum of Squares -
Any function f (but no
constraints)
Guarantees based on
regularity
A priori guarantees on
the number of samples n
needed for a given
precision
(n = ε−d/(m−d/2))
SDP of dimension n
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Summary of global non-convex optimization
Takeaways -

Algorithm for global optimization with n evaluation points
polynomial in n (SDP).
Guarantees for smooth functions : error ε roughly
n = O(ε−d/(m−d/2)) points.

Related works -
A posteriori guarantees with Fourier transform [Woodworth,
Bach, Rudi, 2022].
Set of minima is a sub-manifold of a manifold [M-F., Bach,
Rudi, 2022].
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Open questions and future work directions

Logistic regression -

Analysis of first order methods with GSC ?

Upper rates for the misspecified setting.

Global optimization and sum of squares -

Can constraints be added in global optimization ? What are their
impact ?

Finding a posteriori guarantees in certain interesting cases.

Creation of a library.

Models for shape constraints (outputs in the simplex or in a box for
example).



Thank you for your attention !
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