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Abstract. We consider the problem of decomposing a regular non-negative function as a sum of squares of
functions which preserve some form of regularity. In the same way as decomposing non-negative polynomials as sum
of squares of polynomials allows to derive methods in order to solve global optimization problems on polynomials,
decomposing a regular function as a sum of squares allows to derive methods to solve global optimization problems
on more general functions. As the regularity of the functions in the sum of squares decomposition is a key indicator
in analysing the convergence and speed of convergence of optimization methods, it is important to have theoretical
results guaranteeing such a regularity. In this work, we show second order sufficient conditions in order for a p times
continuously differentiable non-negative function to be a sum of squares of p− 2 differentiable functions. The main
hypothesis is that, locally, the function grows quadratically in directions which are orthogonal to its set of zeros. The
novelty of this result, compared to previous works is that it allows sets of zeros which are continuous as opposed
to discrete, and also applies to manifolds as opposed to open sets of Rd. This has applications in problems where
manifolds of minimizers or zeros typically appear, such as in optimal transport, and for minimizing functions defined
on manifolds.

Key words. Non-negative functions, manifolds, sum of squares, global optimization, second order condi-
tions

1. Introduction. The relationship between non-negative functions and functions de-
composable as sums of squares is a fundamental question in both theoretical and applied
mathematics. From a theoretical viewpoint, the decomposability of a non-negative func-
tion in terms of sum of squares is the basis of important theoretical objects and properties:
quadratic modules [15] in algebraic geometry, regularizing operators such as Laplacians or sub-
Laplacians in (sub-)Riemannian geometry [4, 10], non-negative symbols in pseudo-differential
calculus [11,28]. From an applicative viewpoint, representing a non-negative function in terms
of sum of squares allows to simplify the analysis of probability representations and optimization
problems [14,16]. Restricting to the case of non-negative polynomials this has been applied
to global optimization and generalized methods of moments [8, 14]. More generally, the
decomposition of non-negative p-times differentiable functions allowed to derive simple and
fast optimization algorithms in the context of global optimization [24], the Kantorovich problem
in optimal transport [29], some formulations of optimal control [3]. Moreover, it allowed to
obtain an effective and concise representation for probability densities, with applications in
probabilistic inference, sampling, machine learning [17, 23].

The importance of preserving regularity. In this work, we state sufficient conditions
for a non-negative function f to be written as a sum of squares of functions fi. Of course, if
no other constraints are added, this is a trivial problem as writing f = (

√
f)2 would offer an

immediate solution. What we want to understand here are sufficient conditions which allow to
inherit a form of regularity of the function f in the sum of squares decomposition. This is not
necessarily the case when taking the square root: for example, the map (x, y) 7→ x2 + y2 is
smooth and a sum of smooth squares, but its square root is not differentiable at (0, 0).
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In general, being able to decompose the function with a certain regularity is important. Of
course, there is a complex interaction between the structural constraint of being a sum of squares
and the original regularity of the function, and the two may not work very well together (see
Theorem 1.4). However, for certain theoretical and applied problems, it is crucial to maintain
some regularity. For example, in the setting introduced in [24], the speed of convergence of
the presented algorithm of global optimization depends on the regularity of the sum of squares
representation of the function f − f∗ (where f∗ is the global minimum of f ). In polynomial
sum-of-squares (SoS) optimization, the running time depends on the degree in the sum of
squares decomposition of P − P∗.

Abstractly, we can formulate the following generic question. If f ∈ C1 where C1 describes
a form of regularity, can we write f as a sum of squares of functions of class C2, where C2
inherits the regularity properties C1 as much as possible?

Problem setting. In this work, wewill concentrate on the classCp of p times differentiable
functions with continuous p-th derivatives on Rd (or any d-dimensional manifoldsM ). For
simplicity, in this introduction, we will state the main results for functions onRd. We will show
that under a certain condition on the set of zeros Z of f , if f is a Cp non-negative function on
Rd, it can be decomposed as

(1.1) f =
∑
i∈I

f2i , fi ∈ Cp−2(Rd),

where (fi) is an at most countable family and has locally finite support. Two elements are
important in (1.1): the locally finite aspect and the regularity of the functions fi, i.e., p− 2.
This is a consequence of the fact that we will consider second order sufficient conditions, hence
the loss of two derivatives.

1.1. Intuition and previous results. Let us give an intuition as to how we obtain
decompositions in the form (1.1). First, we start by proving that this decomposition holds
locally in a neighborhood of any x0 ∈ Rd. It is then possible to invoke a result to “glue” the
local decompositions together; we develop the tools to do so in subsection 3.2 (note that this is
one of the key differences between results for polynomials and results for functions). For any
fixed x0 ∈ Rd, if f(x0) > 0, then f1 :=

√
f is well defined and of class Cp around x0, and so

(1.1) holds locally around x0 since f = f21 . The crux of the problem is to determine whether
f can be decomposed as a sum of squares around a point in the set of zeros Z of f , i.e., the
set of points x such that f(x) = 0. Since f is non-negative, all such points are necessarily
minimizers of f , hence the following necessary second-order condition:

(1.2) ∀x0 ∈ Z, ∇f(x0) = 0, ∇2f(x0) � 0.

Around any x0 ∈ Z , f can be approximated by a parabola since the eigenvalues of ∇2f(x0)
are non-negative: f(x) = x>∇2f(x0)x + o(‖x‖2) using a Taylor expansion. Since any
parabola can be written as the sum of at most d squares of linear functions (just write the
eigen-decomposition of∇2f(x0)), we see that up to the o(‖x‖2) factor, we can indeed write
f as a sum of at most d squares around x0. The whole difficulty of the following results is
to go beyond this o(‖x‖2) approximation and have an exact decomposition, using the Taylor
expansion with integral remainder.

It turns out that in the case where ∇2f(x0) � 0, that is when the Hessian has strictly positive
eigenvalues, this decomposition can be made exact. We will call this condition the strict
Hessian condition (SHC) at x0. This result exists in recent work: it is a particular case of
Theorem 2 of [24], applied to the setH = Cp−2. Precisely, it states
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Theorem 1.1 (Theorem 2 of [24]). Let f be a non-negative function of class Cp for p ≥ 2,
and assume that the zeros Z of f satisfy the strict Hessian condition:

(1.3) ∀x0 ∈ Z, ∇2f(x0) � 0.

If f has a finite numberm = |Z| of zeros, then f satisfies (1.1) with dm+ 1 functions fi.

This situation is illustrated on the left hand side of Figure 1, where the Hessian is positive
definite at all four zeros of f and hence satisfies the SHC: by Theorem 1.1, it can be decomposed
as a sum of squares. It is not the case on the right hand side, where there is a continuous
subspace of zeros: in that case, f does not satisfy the SHC.

Contribution. While the SHC condition (1.3) already offers a nice result in Theorem 1.1,
we see that there is a big difference with the necessary condition (1.2). Previous results in
the literature show that (1.2) is not sufficient to be decomposed as a sum of squares of Cp−2
functions as soon as the dimension d is greater than 3 (see Theorem 1.4 in the background
section form more details). On the other hand, (1.3) is very restrictive. In particular, it implies
that the set Z of zeros is discrete. However, in some situations such that of [29], the set of
zeros has a natural structure, which can be a sub-manifold of Rd (consider for instance the
extreme case where f = 0). In this paper, we show that if the set Z of zeros is a sub-manifold
of Rd such that the Hessian of f along this manifold is positive along all directions which
are not tangent to Z , then (1.1) still holds. This is the case for the function depicted in the
right hand side of Figure 1, and illustrates the difference between previous works and our
contributions. More formally, we prove the following result.
Theorem 1.2. Let f be a non-negative function of class Cp for p ≥ 2 and let Z denote the set
of zeros of f . If Z is a sub-manifold of Rd of class C1 such that

(1.4) ∀x0 ∈ Z, ∀h ∈ Rd \ Tx0Z, h>∇2f(x0)h > 0,

then f satisfies (1.1), and Z is of class Cp−1. Here, Tx0
Z denotes the tangent space to Z at

x0, which is a vector sub-space of Rd.

This theorem is proved as Theorem 2.8 in section 2, and the assumption (1.4) will be referred to
as the normal Hessian condition (or NHC). Note that the NHC assumption encompasses that of
the SHC assumption of Theorem 1.1; in that case, the results presented in this paper make the
result tighter by removing the assumption that Z be finite and by needing only d+ 1 squares
to represent the function, and not d|Z|+ 1 (see the full version of Theorem 2.8).

The proof techniques used to prove this theorem differ from the proof of [24] and use tools from
differential geometry and Morse theory. In particular, the proof extends naturally to functions
defined on d-dimensional manifolds, which is the object of section 3 and Theorem 3.9. This
opens the way to new problems, wich are more naturally defined on standard manifolds like
the d-dimensional sphere Sd or the d-dimensional torus Td ≈ (S1)d.

Background. The problem of decomposingCp functions as sums of squares has appeared
in the context of symbolic calculus, in the proof of the Fefferman-Phong inequality, which is
an important regularity result for partial differential operators (see [7] for the original article,
and [4] for the link with sum of squares decompositions, as well as [28]). In this context, the
following result is proved (with Ck,1loc denoting the set of k times differentiable functions with
locally Lispchitz k-th derivative):
Theorem 1.3 (Fefferman-Phong [7], Theorem 1.1 of [6]). Let Ω be an open set of Rd, d ≥ 1
and f ∈ C3,1

loc (Ω) be a non-negative function. Then f can be written as a finite sum of squares
of C1,1

loc (Ω) functions.
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Figure 1. Plots of functions z = f(x, y), where the zeros of f are highlighted in black. left: f satisfies the
SHC, right: f satisfies the NHC but not the SHC.

In the context of preserving regularity, a natural question which arises is whether increasing the
regularity of f can increase the regularity of the functions in a sum of square decomposition.
In [5, 6], it is shown that the general answer (under no further assumptions) is negative. More
precisely, if f is a function defined on a neighborhood of 0, a local decomposition of f around
0 of class C is a finite family (fi)i∈I of functions of class C defined on an open neighborhood
U of 0 such that

∑
i∈I f

2
i = f on U .

Theorem 1.4 (Theorem 2.1 of [6]). In all the following cases, there exists f ∈ C∞ defined
on an open neighborhood of 0 in Rd such that the following holds:

• if d ≥ 4, f has no local decomposition of class C2;

• if d = 3, f has no local decomposition of class C3.

The case d = 1 is explored in [5]: it is shown in Theorem 1 that if f is of class C2m for m
finite, then f can be written as the sum of squares of two functions of class Cm. Moreover,
this is shown to be tight: there exists a function f ∈ C2m with no local decomposition as a
sum of squares of functions of class Cm+k, for k ≥ 1. The case d = 2 has been explored less
in the literature (some results exist when dealing with flat minima, see for example Theorem 2
of [5]).

To summarize, these results show that without additional assumptions, as soon as the dimension
is greater than 3, inheriting the Cp regularity properties of the function f in the sum of squares
decomposition is not possible in a satisfactory way, and motivates the introduction of additional
geometric assumptions.

Polynomials. Decomposing non-negative polynomials as sums of squares has been related
to important problems in algebraic geometry during the 20th century. In 1927, on his way to
the resolution of Hilbert’s 17th problem, Artin [2] proved that any non-negative polynomial is
a sum of squares of rational functions (that is formal fractions of polynomials P (x)/Q(x)).
Moreover, Hilbert had earlier proved that there exist non-negative polynomials which cannot
be written as sum of squares of polynomials in [9] (for more than 3 variables and with degree
at least 6 for example). In algebraic geometry, the set of SoS polynomials has very interesting
properties, and finding sufficient conditions for a non-negative polynomial or even a positive
polynomial to be a sum of squares is an important question. More generally, one usually
wishes to understand under which sufficient conditions a polynomial P which is non-negative
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(or positive) on an algebraic set, i.e., defined by polynomial inequalities of the form Qi ≥ 0 for
polynomials Qi, can be written in the form P = P0 +

∑N
i=1 PiQi where the Pi are SoS. The

theoretical literature regroups these results under the name "Positivstellensatz". The most often
seen in the SoS optmization literature are the Stengel [27], Schmügden [25] and Putinar [22]
Positivstellensätzen.

If these algebraic geometry considerations seem far from applications and from decomposing
smooth functions as sums of squares (indeed, polynomials are much more rigid than smooth
functions) at first glance, they are actually related in two ways.

First, as smooth functions can be locally approximated by polynomials, results on polynomials
give a good intuition of the difficulties one can encounter at the local level when decomposing
a function as a sum of squares. Indeed, on the one hand, the general impossibility results
proved in [5, 6] (see Theorem 1.4) are obtained using Hilbert’s theorem on the existence of
non-negative polynomials which are not sum of squares. On the other hand, the fact that
there is hope using our second-order assumptions is also due to the fact that second order
non-negative polynomials can always be written as sums of squares.

Second, the certificates given by Positivstellensatz on the decomposability of certain non-
negative polynomials can be algorithmically checked in some cases, using semi-definite
programming. This has paved the way to so-called SoS hierarchies, and optimization of
polynomial objective functions with polynomial constraints. These have been developed by
Lasserre [14] (based on the Putinar Postivstellensatz [22]) and Parillo [20] (based on the
Stengel and Schmügden Positivstellensatz [25, 27]). Using these theoretical results, they can
provide certificates of lower bounds for certain optimization problems (or upper bound in the
dual “moment problem”, see [14]). Moreover, to have more interpretable results for these
more applied settings, theses works have motivated more practical Positivstellensatz, like that
in [15], which provides a condition for writing a polynomial with a finite set of zeros as as sum
of squares (this condition is actually a second order condition which greatly resembles ours in
the polynomial setting, although it deals more with the constraints Qi).

p-times differentiable functions. In the same spirit as the polynomial hierarchies, recent
works [16, 23, 24] have developed models and methods based on sum of squares of regular
functions. The computational properties of these methods are based on the fact that regular
functions can be well-approximated by functions of the form

∑
i αik(·, xi) where k is a

so-called positive definite kernel [1] and can be adapted to the regularity. In order to obtain
guarantees on these methods, it is crucial to have the equivalent of Positivstellensatz in the case
of regular functions. Contrary to the case of algebraic geometry, where such results existed for
other purposes, there is a need to build such results for regular functions from scratch. Certain
results like Theorem 1.1 have been presented. However, the aim of the present paper is to
provide more general results, to be used in most situations.

Organisation of the work. In section 2, we formalize the different notions needed to state
Theorem 1.2 in the case of non-negative functions defined on open sets of Rd. In particular, we
start by presenting a local decomposition in Theorem 2.3, which will be the cornerstone of the
work. In section 3, we extend Theorem 1.2 to the manifold setting, and detail the procedure in
which we glue local decompositions into a global one, using traditional tools from differential
geometry. In section 4, we formally prove Theorem 2.3. We finish by a discussion on the result
presented in this paper, as well as possible extensions in section 5.

2. Decomposition as sums of squares given second order conditions (Euclidean case).
In this section, we present our results on decomposing a Cp function f as a sum of squares
of Cp−2 functions on open sets of Rd.We start with a brief presentation of the notion of
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sub-manifold of Rd in subsection 2.1. It is the key geometric object we use to represent the set
of zeros Z of the function f . In subsection 2.2, we present the cornerstone result of this paper
in Theorem 2.3, as well as a sketch of its proof, which is done extensively in section 4. It shows
that as soon as a non negative function has positive Hessian in the orthogonal direction to its
zeros at a given point, then it can be decomposed as a sum of squares around that point. Finally,
in subsection 2.3, we present Theorem 2.8, which shows that given a function defined on an
open subset Ω of the Euclidean space Rd, and under conditions on the Hessian of f at its zeros,
f can be decomposed as a locally finite sum of squares of functions defined on Ω.

Definitions and notations. In general, given two topological setsM and N as well as
x0 ∈ M and y0 ∈ N , we will say that φ : (x0,M) → (y0, N) is a local map satisfying a
property (P ) if there exists an open neighborhood U of x0 inM such that φ : U → N is well
defined, satisfies φ(x0) = y0 and property (P ). We will say that φ : U ⊂ Rd → Re defined
on an open set U is of class Ck if it is k times differentiable, and its derivatives of order k
are continuous. For any function φ : (x,Rd) → Re of class C1, we denote with dφ(x) its
differential at x. It is an element of Hom(Rd,Re) the set of linear maps from Rd to Re. We
will write dφ(x)ξ or dφ(x)[ξ] the evaluation of dφ(x) at ξ. The Jacobian of φ at x is the matrix
Jφ(x) ∈ Re×d which is the matrix of dφ(x) in the canonical bases. Writing the coordinates of
φ: φ = (φ1, ..., φe), we have [Jφ]ij = ∂φi

∂xj (x).

2.1. Sub-manifolds of Rd. One of the main assumptions in order to achieve our results
will be that the set of zeros of the non-negative function f is a sub-manifold of Rd. In this
section, we restrict ourselves to introducing the definitions and results needed to state and prove
those in this paper. For a more comprehensive introduction, see chapter 1 of [13], section 2.2
of [21] (in French) or [26]. The notion of sub-manifold generalizes the notion of a curve in Rd
(a one dimensional manifold) or a surface in Rd (a two dimensional manifold). Intuitively, a
sub-manifold N is a subset of Rd such that at each point x ∈ N , N “looks like” Rd0 where
d0 is the dimension of the sub-manifold at x (one for a line, two for a surface,etc.). Another
way to put this is that N can be locally parametrized by Rd0 . To formalize this, we need the
following definitions. We fix a subset N ⊂ Rd.

A map φ : U → Rd defined on an open neighborhood U of 0 in Rd0 is said to be a local
parameterization of N around x0 of class Ck for k ≥ 1 if φ is of class Ck, and if there exists
an open set V ⊂ Rd such that the following conditions are satisfied:

(i) φ(0) = x0, φ(U) = N ∩ V , and φ : U → φ(U) is a homeomorphism, i.e., it is
bĳective and has continuous inverse;

(ii) its differential at 0 is injective (one to one), i.e., dφ(t0) ∈ Hom(Rd0 ,Rd) is injective.

The second condition guarantees that the local dimension of N is indeed d0, that φ is not an
over-parameterization. N is said to be a sub-manifold of Rd and of class Ck if there exists
a local parameterization φ of class Ck around each point x ∈ N . Given a point x ∈ N , the
dimension dx of the local parametrization is independent of the parametrization (two local
parametrizations will necessarily be of same dimension); it is called the dimension of N at
x. Similarly, the subspace TxN := dφ(x)Rdx , which is a subspace of Rd of dimension dx is
independent of the local parametrization: it is the linear approximation of N at x and is called
the tangent space to N at x (see Figure 2 and Figure 3 for more visual representations).

A sub-manifold N of Rd is said to be connected if it cannot be written as a union of disjoint
open sets. Equivalently, it is connected if any two points inN can be connected by a continuous
path γ : [0, 1]→ N . On a connected sub-manifold N , the dimension dx is the same at every
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Figure 2. Examples of sub-manifolds of R2; points are denoted with pt. Left: connected sub-manifold of
dimension 1 (a circle). Center: a sub-manifold of 4 connected components which are all points, i.e., of dimension 0
(their tangent space is not represented since it is reduced to {0}). Right: a sub-manifold of two connected components,
one point pt of dimension 0 and one of dimension 1.

point x, it is called the dimension of the connected sub-manifold N . This implies that all the
tangent spaces TxN have the same dimension.

Example 2.1. All open sets of Rd are sub-manifolds of Rd. The d-dimensional sphere Sd is a
sub-manifold of Rd+1. S1 is represented in the left hand side (l.h.s.) of Figure 2 and S2 in the
l.h.s. of Figure 3. Given a sub-manifold N of Rd, the intersection of N with any open set of
Rd is a sub-manifold of Rd.

If Ui is a family of disjoint open sets each containing a connected sub-manifold Ni of Rd, it is
clear the the disjoint union ti∈INi is also a sub-manifold. Conversely, any sub-manifold can
be decomposed into its connected components Ni; moreover, one can find a family of disjoint
open sets Ui such that Ni ⊂ Ui (see Lemma A.4).

These results, their proof and their broader context can be found in [13] in chapter 1.5. In
particular, Theorem 1.21 presents equivalent definitions of a sub-manifold. Section 2.2 of [21]
is also a good reference (in French).

2.2. Local decomposition as a sum of squares. In this section, f will always denote a
non-negative function defined on an open set of Rd. We will assume that f is of class Cp for
p ≥ 2. We will also denote with Z the set of zeros of f , i.e., the set of zeros of f . In this
section, we will make local assumptions on the Hessian of f at points x ∈ Z such that the
function f can be decomposed as a sum of squares locally around x.

We will denote with d2f(x) the second differential of f (which we will sometimes call abusively
its Hessian), which is a symmetric bilinear form on Rd. We denote with d2f(x)[ξ, η] its
evaluation on vectors ξ, η. We denote with∇2f(x) ∈ Rd×d the Hessian matrix of f at x, which
is the matrix of d2f(x) in the canonical basis of Rd, and we have d2f(x)[ξ, η] = η>∇2f(x)ξ.
For any vector sub-space space S ⊂ Rd, and any bilinear form H on Rd, we denote with H|S
the restriction of H to S, which is a bilinear form on F . We say that a bilinear form H is
positive semi-definite ifH[ξ, ξ] ≥ 0 for any ξ ∈ Rd, and is positive definite if H[ξ, ξ] > 0 for
all ξ ∈ Rd \ {0}. We use the same terminology for matrices.

We are now ready to state Theorem 2.3, which is the cornerstone of this work. For the rest
of this section (subsection 2.2), let x0 ∈ Rd and f : (x0,Rd) → R be a non-negative Cp
function, for p ≥ 2, such that f(x0) = 0. We claim that if there is a sub-manifold of class C1

and of dimension d0 around x0 of zeros of f , and if the Hessian of f at x0 has rank d− d0
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Figure 3. Two examples of sub-manifolds of R3. The blue affine spaces represent tangent spaces. Left:
connected sub-manifold of dimension 2 (the sphere S1). Right: a sub-manifold of two connected components, one of
dimension 2 (homeomorphic to the torus T2 on which lies x0), and one of dimension 1 on which lies x1.

(which we will call the normal Hessian condition), then it can be decomposed as a sum of
squares as in (1.1).
Definition 2.2 (normal Hessian condition). Let Z denote the set of zeros of f . We say that f
satisfies the normal Hessian condition (NHC) at x0 if there exists a dimension 0 ≤ d0 ≤ d and
a sub-manifold N of class Ck with k ≥ 1 and of dimension d0 such that x0 ∈ N ⊂ Z , and on
one of the following equivalent conditions is satisfied:

(i) the rank of ∇2f(x0) at x0 is d− d0;

(ii) the restriction of d2f(x0) to Tx0
N⊥ is positive definite.

The complete proof of the equivalence of these conditions as well as the proof of Theorem 2.3
can be found in section 4. To illustrate the definition of the normal Hessian condition, we refer
to Figure 4 which represents the local behavior of functions f defined locally around a point
x0 ∈ R2 in the set of zeros and which satisfies the NHC for d0 = 1.
Theorem 2.3. If f satisfies the NHC at x0 (Definition 2.2) with regularity k and dimension d0,
there exists an open neighborhood U of x0 in Rd on which f is defined and such that U ∩ Z
is a sub-manifold of Rd of dimension d0 and of class Cmax(k,p−1), and there exist functions
fi ∈ Cp−2(U) where 1 ≤ i ≤ d− d0 such that

(2.1) ∀x ∈ U, f(x) =

d−d0∑
i=1

f2i (x).

Main steps of the proof. The main steps of this proof are represented geometrically in Figure 4.

Step 1. We show that under the NHC at x0, we have Tx0N = ker(∇2f(x0)) and hence that
d2f(x0)|Tx0

N⊥ is positive definite.

Step 2. Re-parametrizing f on a basis adapted to Tx0N
⊥ ⊕ Tx0N as f(x⊥, xq), we apply the

Morse lemma (see Lemma B.3), which decomposes the function f in the form

(2.2) f(x⊥, xq) = f(ϕ(xq), xq) + 1
2d

2f(x0)|Tx0
N⊥ [ξ(x⊥, xq), ξ(x⊥, xq)],
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Figure 4. Local view of the function around a minimum lying on a 1-dimensional manifold. Top left: function

around the minimum x0. Top right: decomposition of R2 at x0 between tangent space and normal tangent space
Tx0N + Tx0N

⊥, and positive eigen-vector of the Hessian in red. Bottom left: reparametrization in the right
coordinate system, and representation of the map ϕ(x) given by the Morse Lemma. Bottom right: vector field ξ given
by the Morse lemma.

for a certain function ϕ of class Cp−1 and ξ of class Cp−2 in a certain open set around x0 (for
an easy visualization, see Figure 4).

Step 3. We show that the second term of the right hand side of (2.2) can actually be seen as a
sum of squares of d− d0 functions of class Cp−2.

Step 4. We characterize the manifold of zeros around x0.

Step 5. We show that the first term of the result of the Morse lemma is equal to zero using the
previous characterization, which shows (2.1).

Example 2.4 (case where d0 = 0). When d0 = 0, the NHC at x0 is simply the SHC (1.3),
that is the condition that x0 be a strict minimum. In that case, Theorem 2.3 simply states that
there exists an open neighborhood U of x0 such that U ∩ Z = {x0} and on which f can be
decomposed as the sum of d squares.

Remark 2.5 (Smoothing effect). Note that Theorem 2.3 induces a smoothing effect: indeed, if
we simply assume that there exists a d0 dimensional manifold of class C1 of zeros satisfying
the NHC, one sees that this manifold is actually of class Cp−1 in a neighborhood of x0.
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Figure 5. Example of functions f which satisfy the global normal Hessian condition, with sub-manifolds Z of
zeros corresponding to the sub-manifolds presented in Figure 2 in the same order

2.3. Global decomposition as a sum of squares for functions on Rd. In this section,
we fix f to be a non-negative Cp function defined on an open subset Ω of Rd. Once again,
we assume p ≥ 2. The goal is to find conditions on f to be written as a sum of squares of
functions defined on Ω. These conditions will be that the NHC holds at every x0 ∈ Z . We
will start by reformulating this assumption in a more global and geometric way. We introduce
the following definition of a manifold to which f is positively normal.

Definition 2.6 (positive normally to a sub-manifold). Let N be a sub-manifold of Rd of
class Ck for k ≥ 1 and included in Ω. We say that f is positive normally to N if:

a) N is included in the set of critical points of f (df(x) = 0 for all x ∈ N );

b) for any x0 ∈ N ∩ Ω, if d0 is the local dimension of N at x0, there exists a subspace
S ⊂ Rd of dimension d− d0 such that d2f(x0)|S positive definite.

The intuition of this definition is that if f is positively normal toN , then f grows quadratically
normally to N , which is a local minimum valley on which f is constant. Note that there can
be more than one connected component in N : this will correspond to multiple local minima
valleys (see second and third examples in Figure 5). We now reformulate the fact that the NHC
holds at every point in Z as a more geometric global assumption, using Definition 2.6.

Lemma 2.7 (Global normal Hessian condition). The following statements are equivalent and
define the global NHC condition:

(i) for all x0 ∈ Z , f satisfies the NHC;
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(ii) Z is a sub-manifold of Rd (not necessarily connected) of class C1 such that the
Hessian of f is positive normally to Z;

(iii) Z is a sub-manifold of Rd (not necessarily connected) of class Cp−1 such that the
Hessian of f is positive normally to Z .

This equivalence is a direct consequence of the local description of Z obtained in Theorem 2.3
under the local NHC. Examples of functions satisfying the global normal Hessian condition
can be found in Figure 5. They have manifolds of zeros which are depicted in the same order in
Figure 2. Under this geometric condition, we will show in Theorem 2.8 that f can be written
as a sum of squares of Cp−2 functions with locally finite support, defined below.

Locally finite support. Let X be a topological space (see [12] for full definitions). We say
that a family (Si) of subsets of X is locally finite if for every x ∈ X , there exists an open set
Ux containing x which intersects a finite number of the Si, i.e., |{i ∈ I : Ux ∩Si 6= ∅}| <∞.
A family (fi) of functions on a topological space X has locally finite support if the family
of supports (supp(fi))i∈I is locally finite (recall that supp(fi) = {x : f(x) 6= 0}). In
particular, if (fi) has locally finite support, the function

∑
i∈I f

2
i is well defined and it is also

of class Cq if the functions are of class Cq. Using this terminology, the global result can be
stated as follows.

Theorem 2.8. If f satisfies the global normal Hessian condition in Lemma 2.7, there exists
an at most countable family (fi)i∈I ∈ (Cp−2(Ω))I with locally finite support such that

(2.3) ∀x ∈ Ω, f(x) =
∑
i∈I

fi(x)2.

Moreover:

• if f satisfies the strict Hessian condition, Z is discrete and we can find such a
decomposition such that |I| ≤ d+ 1.

• if Z is compact, then |I| can be taken to be finite.

For the formal proof of this result, we refer to the next section, where this result will be proved
more generally for functions defined on manifolds (see Theorem 3.9 and section 3).

Main steps of the proof. For subtleties pertaining to the SHC case, we refer to section 3. The
gluing done in that section is slightly more elaborate.

Step 1. Since the local NHC holds at any point in Z , using Theorem 2.3 shows that at any
point x, there exists an open neighborhood Ux of x , an integer nx and functions (fx,j)1≤j≤nx

of class Cp−2 on Ux such that f =
∑nx

j=1 f
2
x,j on Ux. The collection of sets Ux is then an

open covering of Z . Since Rd is Hausdorff and second-countable (see section 3 for precise
definitions), only an at most countable subsets of them are necessary to cover Z (even a finite
number if Z is included in a compact, since it is then itself a compact). Denote with (Ui)i∈I
this open covering, and replace x by i to denote the associated fi,j and ni.

Step 2. Since Z is closed, as the set of zeros of a continuous function, the set U>0 := {x ∈
Ω : f(x) > 0} is open and the map f1 :=

√
f : U>0 → R is of class Cp and satisfies f21 = f .

We can therefore add U>0 to the collection (Ui) and still guarantee the following property: for
all i ∈ I , there exists ni ∈ N and fi,j ∈ Cp−2(Ui) such that f =

∑ni

j=1 f
2
i,j . Moreover, (Ui)

becomes an open covering of Ω; in particular, if Ui was a finite covering of Z , it now becomes
a finite covering of Ω.
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Step 3. Using Lemma 3.6, we can take a partition of unity (χi) adapted to the open covering⋃
i Ui such that

∑
i χ

2
i = 1 and which is locally finite. Define f̃i,j = fi,jχi which is now

defined on the whole of Ω (indeed, it can be extended as zero to Ω \ Ui since the support ot χi
is included in Ui). The f̃i,j satisfy

∑
i,j f̃

2
i,j = f on the whole of Ω, and is a finite family if

the covering Ui is finite (if Z is assumed to be compact for example).

3. Global decomposition as a sum of squares for functions on manifolds. In this
section, we present results analogous to those of section 2 but in the more general context
of manifolds. After a brief recap on the terminology and definitions related to manifolds, in
subsection 3.1, we will adapt the definitions of the local and global normal Hessian conditions,
as well as state the equivalent result to Theorem 2.3 in the context manifolds. In subsection 3.2,
we will introduce the tools to glue local decompositions as sum of squares together. Finally, in
subsection 3.3, we prove Theorem 3.9, the equivalent of Theorem 2.8 in the broader context of
manifolds.

Additional definitions and notations for manifolds. In this section, we introduce the
basic definitions we will need concerning manifold. For more formal introductions to manifolds,
we refer to [13,21, 26]. Informally, a manifold of dimension d is a set which “looks like Rd”
locally. This means that at every point x ∈M , we can find a chart φ which topologically maps
a neighborhood U of x to an open set of Rd.

More generally, we define a chart on a topological spaceM as a map φ : U → Rd for some
d ∈ N, defined on an open set U ofM , and which is a homeomorphism onto its image. We
define a manifoldM as a second-countable1, Hausdorff2 topological space equipped with a
collection A = (φi)i∈I of charts such that

(i) all transition maps φi ◦ φ−1j : φj(Uj ∩ Ui)→ φi(Ui ∩ Uj) are homeomorphisms;

(ii) the charts coverM entirely, i.e. M =
⋃
i∈I Ui.

The set A is called an atlas. The manifold M is said to be of class Ck for k ≥ 0 if all the
transition maps φi ◦ φ−1j are of class Ck. It is said to be of dimension d if all its charts are in
Rd. As for sub-manifolds of Rn, a manifold can always be decomposed as the union of its
connected components, and the dimension is the same on each connected component. Note
that with this definition, the restriction of a manifold to any open set is still a manifold (just by
restricting the charts).

IfM is a manifold of class at least C1, we can define at each point its tangent space TxM .
Informally, this set TxM is all the possible derivatives γ′(0) of curves γ : I →M defined on
an open interval I around 0 such that γ(0) = x. Of course γ′(0) is not yet formally defined.
Formally, TxM can be defined as the classes of C1 curves defined on an open interval I around
0 such that γ(0) = x, where we identify two curves γ and γ̃ if (φ ◦ γ)′(0) = (φ ◦ γ̃)′(0) for
a (or equivalently any) chart φ ofM around x. We denote with [γ] ∈ TxM the equivalence
class of a curve γ. It can be shown that TxM is a vector space (with the natural definition
λ[γ] + µ[γ̃] = [λγ + µγ̃]) and that it is of dimension d where d is the dimension of M
at x.

Amap g : M → Rp defined on amanifoldM is said to be of classCq ifM is of class at leastCq
and if for any chart φ, the map g◦φ−1 is of classCq . If q ≥ 1, then we can define the differential

1A topological space is said to be second countable if there exists a countable sequence of open sets Un such that
any open set U in the topology is a reunion of a part of the Un.

2A topological space is Hausdorff if for any two points x 6= x′, there exists two open sets U, V such that x ∈ U
and x′ ∈ V and U ∩ V = ∅
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Figure 6. Left: Representation of the manifoldM = S2 as well as a sub-manifoldN homeomorphic to a circle.
The tangent spaces at a given point x0 ∈ N ⊂M are represented as well. Right: Representation of a non-negative
function on the sphere as a color map; it satisfies the NHC, and its null space Z is represented in black.

of g at any point x ∈M as df(x)[γ] = (f ◦ γ)′(0). Hence, df(x) ∈ Hom(TxM,Rp).
Example 3.1. All sub-manifolds of Rd are manifolds. The notions of regularity, dimension,
and tangent space coincide.

For more precise definitions of topological spaces, atlases, charts, and details on the “Hausdorff
second-countable” condition, see for instance [12, 13, 21, 26]. The main idea behind the
introduction of manifolds as opposed to sub-manifolds of Rd is to consider the intrinsic
geometric object, and not its relation to the euclidean space it is embedded in (as such an
embedding is not unique). An example of manifold as well as a representation of the tangent
space is provided in the left of Figure 6.

3.1. Assumptions in the manifold case. In this section, we formulate the local NHC in
the case of manifolds, and rewrite Theorem 2.3 in this setting. We also extend the definitions
of being positively normal and the global NHC (Lemma 2.7).

Fix p ∈ N, p ≥ 2, and a manifoldM of regularity at least Cp and of dimension d ∈ N. To
start with, let f : Ω → R be a non-negative function defined on an open set of M and of
class Cp. As before, define Z to be the set of zeros of f .

Contrary to the Rd case, the second differential of the function f cannot be identified to a
symmetric bi-linear form everywhere. However, it is the case at so-called critical points, i.e.,
points x ∈ Ω such that df(x) = 0. In particular, since all the zeros of a C1 non-negative
function are critical points, this Hessian will be defined at all points in the set of zeros Z
of f .

Lemma 3.2 (definition of the Hessian). Let x be a critical point of f . Then there exists a
unique symmetric bi-linear form Hf (x) : TxM × TxM → R such that for any local chart
φ : (M,x)→ (Rd, 0) it holds:

∀ξ, η ∈ TxM × TxM, Hf (x)[ξ, η] = d2(f ◦ φ−1)(0)[dφ(x)ξ, dφ(x)η].

In order to prove this lemma, we simply define the bilinear form as such for a given chart φ
around x, and then show that this definition does not depend on the chart φ using the fact that
x is a critical point. This is completely proved in section 2 of [18]. In order to formulate
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the definition of the normal Hessian condition in the setting of manifolds, we further need a
definition of what a sub-manifold ofM is. A subsetN ⊂M is said to be a sub-manifold ofM
of class Ck ifM is of class Ck and if, for any x ∈ N and any local chart φ : U → Rd defined
on a neighborhood of x, φ(U ∩N) is a sub-manifold of Rd of class Ck. In the literature, this
is also called a proper sub-manifold (see on the left of Figure 6 for an example).

Definition 3.3 (Normal Hessian condition for a manifold). Let x ∈ Ω be a point in the
domain of f . We say that f satisfies the normal Hessian condition (NHC) at x if there exists a
dimension 0 ≤ d0 ≤ d and a sub-manifold N ofM of class Ck with k ≥ 1 and of dimension
d0 such that x ∈M ⊂ Z , and one of the following equivalent conditions is satisfied:

(i) the rank of Hf (x) is d− d0;

(ii) Hf (x)[ξ, ξ] > 0 for any vector ξ ∈ TxM \ TxN .

Using any local chart around the point x in the domain of f , one can apply Theorem 2.3 to
obtain the following theorem as a corollary.

Theorem 3.4. If f satisfies the NHC at x0 with regularity k and dimension d0, there exists an
open neighborhood U of x0 inM on which f is defined and such that U ∩Z is a sub-manifold
of M of dimension d0 and of class Cmax(k,p−1); and there exist functions fi ∈ Cp−2(U)
where 1 ≤ i ≤ d− d0 such that

(3.1) ∀x ∈ U, f(x) =

d−d0∑
i=1

f2i (x).

Exactly in the same way as for the definition of the NHC for manifolds, we can similarly
extend the definition of a function being positively normal to a sub-manifold in Definition 2.6
as well as the global NHC in Lemma 2.7. We will therefore say that f : M → R which is
non-negative satisfies the global NHC if it satisfies the local NHC at every point in its set of
zeros Z , or equivalently if it is positive normally to Z which is a sub-manifold ofM of class
C1 (or Cp−1). On the right hand side of Figure 6, we represent a function which satisfies the
NHC on the sphere S2 through a colormap, with a continuous set of zeros. The goal is to
prove that such a function can be decomposed as a sum of squares on S2.

3.2. Gluing local decompositions to form a global one. In this section, we present and
develop the tools to glue local decompositions such as Theorem 3.4 into a global one, which
will lead to Theorem 3.9.

The first result we need is a simple result to “extend” a function defined on an open set U ofM
to M by multiplying it by a function defined on M whose support lies in U (Lemma 3.5).
The second one is a variant of the fundamental result of existence of partitions of unity on
a manifold, adapted to our sum of squares setting (Lemma 3.6). Recall that the support of
a function has been defined in subsection 2.3. The proof of these results can be found in
Appendix A.1.

Lemma 3.5 (Extension lemma). Let q ∈ N, M be a manifold of class at least Cq. Let U
be an open set of M , g : U → R be a Cq function defined on U , and χ : M → R be a
Cq function defined on the whole ofM but with support included in U . Then the function
χg : U → R extended as 0 on M \ U , is of class Cq on the whole of M and has support
included in supp(χ) ⊂ U . We still denote with χg its extension toM .

Lemma 3.6 (Gluing lemma). Let (Ui)i∈I be an open covering of a manifoldM of class Ck
(i.e.

⋃
i∈I Ui = M ). There exists a family of functions χi : M → [0, 1] of class Ck with
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locally finite support, such that supp(χi) ⊂ Ui for all i ∈ I and satisfying:∑
i∈I

χ2
i = 1.

We can now proceed from local to global in two steps. First, we use the gluing lemma to glue
decompositions in a single connected component of the manifold of zeros (Lemma 3.7). We
then glue these different decompositions into a single global one (Lemma 3.8).

Lemma 3.7. Assume f satisfies the global NHC. Let N be a connected component of its
manifold of zeros Z . There exists an open neighborhood U of N as well as a locally finite, at
most countable family (fj)j∈J of functions of class Cp−2 such that

(3.2) ∀x ∈ U, f(x) =
∑
j∈J

fj(x)2.

Moreover, we can find J such that a) |J | = d if N = {x0} is a single point and b) J is finite if
N is compact.

Proof. The case where N = {x0} is simply Theorem 3.4 applied to x0. In the other cases,
note that for all x ∈ N , by Theorem 2.3 since the NHC is satisfied at x, there exists an open
neighborhood Ux of x as well as functions (fx,i)1≤i≤d of class Cp−2 such that f =

∑d
i=1 f

2
x,i

on Ux. Since (Ux)x∈N covers N , we can extract a covering (Uxj
)j∈J of N such that a) J is

finite if N is compact and b) J is at most countable otherwise, since N is second-countable
and Hausdorff. Denote with (Uj)j∈J this open covering, and replace x by j to denote the
associated fj,i. Denote with U the open set

⋃
j Uj .

Applying Lemma 3.6 to the manifold U , we can find a family of functions (χj)j∈J with locally
finite support, such that supp(χj) ⊂ Uj and

∑
j χ

2
j = 1 on U . By the extension Lemma 3.5,

we can therefore define the functions f̃j,i := χj fj,i for i ∈ {1, ..., d} and j ∈ J which are
defined on the whole ofM . Note that since supp(f̃j,i) ⊂ supp(χj) and since 1 ≤ i ≤ d, the
support of (f̃j,i) is also locally finite. To conclude, we use the property that

∑
j χ

2
j = 1 on U

as well as the fact that
∑
i f

2
j,i = f on supp(χj) ⊂ Uj to show that

∑
i,j f̃

2
j,i = f on U . The

number of functions f̃j,i is finite ifN is compact since J is finite, and is at most countable else
since J is at most countable.

Lemma 3.8. Let Z = ti∈INi be the manifold of zeros decomposed along its connected
components. Assume that there exists an index set J , such that for all i ∈ I , there exists an
open neighborhood Ui ofNi on which f can be decomposed as a sum of squares indexed by J:

(3.3) ∀i ∈ I, ∃(fi,j)j∈J ∈ (Cp−2(Ui))
J , ∀x ∈ Ui, f(x) =

∑
j∈J

fi,j(x)2,

and such that the families (fi,j)j∈J are all locally finite. Then there exists a locally finite
family (gj)j∈J∪{?} of Cp−2 functions onM (we add an extra element ? to J), such that

(3.4) ∀x ∈M, f(x) =
∑

j∈J∪{?}

gj(x)2.

Proof. By Lemma A.4, there exist disjoint open sets Vi ⊂M such that Ni ⊂ Vi, since Z is
a proper sub-manifold ofM by Lemma 2.7 (directly adapted to the manifold case). Hence,
we can assume that the Ui are disjoint (consider instead Ui ∩ Vi, the property still holds).
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Define U? = {f > 0}. Note that since the Ui’s cover Z , U? ∪
⋃
i∈I Ui covers M since f

is non-negative: take χ?, (χi)i∈I to be a gluing family adapted to that covering given by
Lemma 3.6. Note that for any i, i′ ∈ I , we have χiχi′ = 0 since χi is supported on Ui and
the Ui are disjoint. Consider the function gj =

∑
i∈I χifi,j , which is well defined onM and

Cp−2 by Lemma 3.5. We have g2j =
∑
i∈I χ

2
i f

2
i,j since χiχi′ = 0 when i 6= i′.

Assertion : the family (gj)j∈J has locally finite support. Let x ∈ Rd and assume gj(x) 6= 0.
Then there exists i ∈ I such that χi(x) > 0, and hence there exists an open set Ux around x
such that Ux ⊂ Ui. But in that case, χi′(x′) = 0 for all other i′ and for all x′ ∈ Ux since the Ui
are disjoint and χi′ is supported on Ui′ . Moreover, since (fi,j)j∈J is locally finite, there exists
an open set Vx around x as well as a finite J0 ⊂ J such that fi,j = 0 on Vx for all j ∈ J \ J0.
Hence, for any j ∈ J \ J0 and any x′ ∈ Ux ∩ Vx, we have fi,j(x′) = 0 and χi′(x′) = 0 thus
gj(x

′) = 0. Thus, Ux ∩ Vx ⊂M \ supp(gj) for all j /∈ J0: the family gj is locally finite.

Conclusion. Define g? = χ?
√
f , which is of class Cp since χ? is supported on {f > 0}.

Since the addition of one function changes nothing to the locally finite property of a family of
functions, the family (gj)j∈J ∪ g? is still locally finite. Using the fact that g2j =

∑
i∈I χ

2
i f

2
i,j ,

that
∑
j∈I∪{?} χ

2
i = 1 and (3.3), it holds∑
j∈J∪{?}

g2j = χ2
?f +

∑
j∈J

g2j = χ2
?f +

∑
j∈J

∑
i∈I

χ2
i f

2
i,j

= χ2
?f +

∑
i∈I

∑
j∈J

χ2
i f

2
i,j = χ2

?f +
∑
i∈I

χ2
i f = f.

3.3. Main results. We are now ready to state our main result on manifolds. On the right
hand side of Figure 6, we represent a case where this theorem applies for a non-negative
function defined on S2.

Theorem 3.9. Let M be a manifold and f : M → R be a non-negative map of class Cp.
Assume f satisfies the global normal Hessian condition. Then there exists I which is at most
countable and functions fi ∈ Cp−2(M) for i ∈ I such that the family (fi) has locally finite
support and

(3.5) ∀x ∈M, f(x) =
∑
i∈I

fi(x)2.

Moreover:

• if f satisfies the strict Hessian condition, Z is discrete and we can find such a
decomposition such that |I| ≤ d+ 1.

• if Z is compact, then |I| can be taken to be finite.

Proof. The proof of this theorem is a simple consequence of Lemma 3.7 and Lemma 3.8.
Note that the global NHC Lemma 2.7 shows that Z is a sub-manifold ofM . Let Ni denote
the connected components of Z . By Lemma A.4, we can find disjoints open sets Ui such that
Ni ⊂ Ui.

General case. Without any more assumptions, we know from Lemma 3.7 that on any connected
component Ni, we can have a decomposition of the form f =

∑
j∈J f

2
i,j with fi,j ∈ Cp−2 a

family with locally finite support on an open neighborhood Vi of Ni. Moreover, we know that
J is at most countable. Adding zeros when necessary, and reindexing, we can assume that
J = N. Now applying Lemma 3.8, we prove the general case.
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Compact case. If we assume that N is compact, since the Ui cover N , necessarily the number
of connected components is finite (just extract a finite covering of N from the Ui). We know
from Lemma 3.7 that on any connected component Ni, we can have a decomposition of
the form f =

∑ni

j=1 f
2
i,j with fi,j ∈ Cp−2 and ni ∈ N on an open neighborhood Vi of Ni,

since Ni is compact. Hence, up to adding fi,j = 0, we can assume that ni = n = maxi(ni)
since there are a finite number of connected components. Now applying Lemma 3.8 with
J = {1, ..., n}, the result is proven in the compact case with n+ 1 functions.

SHC case. If we assume that the SHC holds, every connected component Ni is a singleton
{xi}: we know from Lemma 3.7 we can have a decomposition of the form f =

∑d
j=1 f

2
i,j

with fi,j ∈ Cp−2 on an open neighborhood Vi of Ni, since Ni is compact. Now applying
Lemma 3.8 with J = {1, ..., d}, the result is proven with d+ 1 functions.

Remark 3.10. Note that the difference between the number of functions in the SHC case
is better than the one obtained in [24]. This is because of the two step procedure in the
gluing: first in a connected component, and then between connected components. The long
term goal is to be able to prove that we need only a finite number N(d) of functions per
connected component (in the compact case), and hence to have an explicit bound after gluing
the connected components together, rather than just relying on a compact extraction argument,
which is not as precise.

4. Proof of the local decomposition as a sum of squares. In this section, we formally
prove the key result of the paper, Theorem 2.3.

Proof. Note that the existence of the sub-manifold N of dimension d0 around x0 implies the
existence of a local parametrization around x0 (see for instance Theorem 1.21 of [13]): there
exists an open neighborhood W̃0 of 0 in Rd0 , an open neighborhood Ux0

of x0 in Rd and a
Ck immersion φ : W̃0 → Ux0 of class Ck such that φ is a homeomorphism from W̃0 onto
Ux0
∩N . Since restricting N to N ∩ Ux0

does not change the assumptions of the theorem,
we will will assume that N = im(φ) for a Ck immersion φ : (0,Rd0)→ (x0,Rd). We will
denote with Tx0

:= dφ0(Rd0) = Tx0
N the tangent space to N at x0.

Before starting the proof, recall that for any x ∈ Z , it holds df(x) = 0 and d2f(x) � 0
(or equivalently ∇2f(x) � 0). Moreover, note that if A ∈ S+(Rd) is a symmetric positive
semi-definite matrix, if a vector k ∈ Rd satisfies k>Ak = 0, then Ak = 0 (this is a
trivial consequence of the spectral theorem by decomposing k along an orthonormal basis of
eigenvectors).

Step 1: characterizing the null-space of the Hessian. We will prove that under the assumptions
of the theorem, a) Tx0 is equal to the null-space ker(∇2f(x0)) of the Hessian of f at x0 and
b) that for any supplementary S to Tx0

, the restricted Hessian ∇2f(x0)|S is positive definite.

To prove a), assume that there exists an element in k ∈ Tx0 such that∇2f(x0)k 6= 0. Since
∇2f(x0) is positive semi-definite, this implies that k>∇2f(x0)k > 0. Let h ∈ Rd0 such that
dφ0h = k, and let xt = φ(th) which is defined for t in an open neighborhood of 0. Using the
Taylor expansion of f around x0:

f(x)− f(x0)− df(x0)[x− x0] = 1
2 (x− x0)>∇2f(x0)(x− x0) + ε(x− x0)‖x− x0‖2,

where ε(x) →
‖x‖→0

0. Now applying this for xt, since f(xt) = f(x0) = 0 and df(x0) = 0, it

holds:
0 = 1

2 (xt − x0)>∇2f(x0)(xt − x0) + ε(xt − x0)‖xt − x0‖2.
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Using the fact that φ is differentiable at 0 yields xt−x0 = tdφ(0)[h]+ot→0(t) = tk+ot→0(t).
Injecting this in the equation above yields

0 = t2 1
2k
>∇2f(x0)k + ot→0(t2).

Hence, necessarily, k>∇2f(x0)k = 0, which is a contradiction. This proves that Tx0
⊂

ker(∇2f(x0)), and in particular, d0 ≤ dim(ker(∇2f(x0))). Since the rank of ∇2f(x0) is
actually d − d0, the rank theorem shows that dim(ker(∇2f(x0))) = d0 and hence Tx0

=
ker(∇2f(x0)).

To prove b), we just need to prove that the restriction to any supplementary to the null-space of
∇2f(x0) is positive definite. Using the small result at the beginning of the proof, any vector
k ∈ Rd \ Tx0 satisfies k>∇2f(x0)k > 0. In particular, this means that the restriction of
∇2f(x0) to any supplementary subspace S of Tx0

is positive definite.

Step 2: applying the Morse lemma. Let P = (P1, P2) ∈ Od(R) be the matrix of an
orthonormal basis adapted to the decomposition Rd = T⊥x0

⊕ Tx0 . Note that P1 ∈ Rd×(d−d0)
and P2 ∈ Rd×d0 are also orthonormal matrices, and that since P1 spans T⊥x0

, in particular
P>1 ∇2f(x0)P1 � 0.

Define g : (x′, y′) ∈ Rd−d0×Rd0 7→ f(P1x
′+P2y

′+x0) = f(A(x′, y′)), whereA(x′, y′) =
P (x′, y′)+x0 is an isometry3 (A−1x = P>(x−x0)). We have∇x′g(0, 0) = P>1 ∇f(x0) = 0
and∇2

x′x′g(0, 0) = P>1 ∇2f(x0)P1 � 0. We can therefore apply theMorse lemmaLemmaB.3
to g: there exists two open neighborhoods of zeroV ⊂ Rd−d0 ,W ⊂ Rd0 aswell asϕ : W → V
of classCp−1 such that {(x′, y′) ∈ V ×W : ∇x′g(x′, y′) = 0} = {(x′, y′) ∈ V ×W : x′ =
ϕ(y′)} and z : V ×W → Rd−d0 of class Cp−2 such that

(4.1) ∀(x′, y′) ∈ V ×W, g(x′, y′) = g(ϕ(y′), y′) + 1
2z(x

′, y′)>H ′z(x′, y′),

where H ′ is the positive definite matrix P>1 ∇2f(x0)P1.

Step 3: making the sum of squares appear. Since H ′ ∈ S+(Rd−d0) and H ′ � 0, we can
decompose it using the spectral theorem: H ′ =

∑d−d0
i=1 λiuiu

>
i where the λi > 0. Defining

gi(x
′, y′) =

√
λi/2u

>
i z(x

′, y′), (4.1) can be rewritten as

(4.2) ∀(x′, y′) ∈ V ×W, g(x′, y′) = g(ϕ(y′), y′) +

d−d0∑
i=1

g2i (x′, y′).

Note that the gi are of class Cp−2 since z is of class Cp−2. We see that if we can show that
g(ϕ(y′), y′) = 0 in a neighborhood of (0, 0), since we can go back to the original coordinate
system through A−1, we will have shown the theorem.

Step 4: characterizing Z in a neighborhood of x0. Denote with Gϕ = {(ϕ(y), y) : y ∈W}
the graph of ϕ, and which is a sub-manifold of class Cp−1 of Rd−d0 × Rd (see theorem 1.21,
point (iv) of [13]). SinceA is an isometry, the setA(Gϕ) is also a sub-manifold of class Cp−1
of Rd.

Let W̃ = φ−1(A(V ×W )): it is an open neighborhood of 0. Note thatφ(W̃ ) ⊂ Z∩A(V ×W )
by assumption, and since for any x ∈ Z , we have ∇f(x) = 0, it holds in particular that for
any x ∈ Z ∩ A(V ×W ), we have ∇x′g(A−1(x)) = P>1 ∇f(x) = 0. Hence, by the result of
the Morse lemma, it holds A−1(φ(W̃ )) ⊂ A−1(Z) ∩ (V ×W ) ⊂ Gϕ.

3An isometry is simply a map which preserves distances, and can be defined as an orthogonal transformation plus
an affine shift.
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Define ψ : (x′, y′) ∈ V ×W 7→ (x′ − ϕ(y′), y′) which is a Cp−1 diffeomorphism onto its
image with inverse (t, u) 7→ (t + ϕ(u), u). Note that ψ maps Gϕ onto {0Rd−d0 } ×W . If
π2 denotes the canonical projection π2 : Rd−d0 × Rd0 → Rd0 , we see that π2 ◦ ψ maps Gϕ
injectively ontoW ⊂ Rd0 .

Take Φ = π2 ◦ ψ ◦ A−1 ◦ φ : W̃ → Rd0 , which is well defined by definition of W̃ , and C1 by
composition. Note that it is an immersion at 0. Indeed i) φmaps 0 onto x0 and is an immersion
at 0 by assumption, hence dφ0 is injective; ii) ψ ◦ A−1 is a Cp−1 diffeomorphism from
A(V ×W ) (containing x0) to its image, and hence its differential is invertible at x0, and thus
by composition, the differential d(ψ ◦ A−1 ◦ φ)(0) is injective; iii) since A−1(φ(W̃ )) ⊂ Gϕ
by a previous statement, and since ψ(Gϕ) ⊂ {0} ×W also by a previous statement, it, it
holds that the differential d(ψ ◦ A−1 ◦ φ)(0)Rd0 ⊂ {0} × Rd0 and hence applying π2 does
not change the injectivity of the differential; hence Φ is an immersion at 0. But since dΦ0 is a
linear map from Rd0 to Rd0 , dΦ0 being injective is equivalent to dΦ0 being invertible. Hence,
by the local inversion theorem Theorem B.1, there exists an open neighborhood of 0 W̃ ′ ⊂ W̃
and an open neighborhood of 0 W ′ ⊂W such that Φ is a C1 diffeomorphism from W̃ ′ toW ′.

Define U = (π2 ◦ψ ◦A−1)−1(W ′) = A(ψ−1(Rd−d0×W ′)) ,which is an open neighborhood
of x0. Note that since Φ is a diffeomorphism from W̃ ′ toW ′, we have φ(W̃ ′) ⊂ U . Moreover,
since ψ is defined on V ×W , we have U ⊂ A(V ×W ). Finally, let u ∈ U ∩ A(Gϕ).
Since u ∈ U , there exists w̃′ ∈ W̃ ′ such that π2 ◦ ψ ◦ A−1(φ(w̃′)) = π2 ◦ ψ ◦ A−1(u).
Moreover, since π2 ◦ ψ is injective on Gϕ, and since both A−1(φ(w̃′)) and A−1(u) belong
to Gϕ (the first using the previous point since W̃ ′ ⊂ W̃ and the second by assumption), we
have A−1(φ(w̃′)) = A−1(u) and hence u = φ(w̃′) since A is one to one. This shows that
U ∩ A(Gϕ) ⊂ φ(W̃ ′).

Moreover, a previous point shows thatA−1(φ(W̃ )) ⊂ A−1(Z)∩ (V ×W ) ⊂ Gϕ. Now since
A is one to one and since W̃ ′ ⊂ W̃ we have φ(W̃ ) ⊂ Z ∩ (A(V ×W )) ⊂ A(Gϕ). Since
φ(W̃ ′) ⊂ U , we therefore have φ(W̃ ′) ⊂ Z ∩ U ⊂ A(Gϕ) ∩ U . Combining this with the
previous result, we finally have

(4.3) φ(W̃ ′) ⊂ Z ∩ U ⊂ A(Gϕ) ∩ U ⊂ φ(W̃ ′) =⇒ φ(W̃ ′) = Z ∩ U = A(Gϕ) ∩ U.

Step 5: conclusion. (4.3) shows that φ(W̃ ′) = Z ∩ U = A(Gϕ) ∩ U .

One the one hand, this shows that U ∩ Z is the intersection between an open set U and
a sub-manifold A(Gϕ) of Rd of class Cp−1 (since it is the composition of the graph of ϕ
which is Cp−1, which is a Cp−1 manifold by [13], by an isometry which is in particular a
diffeomorphism). Moreover, since φ is a Ck immersion which is a homeomorphism on its
image, φ(W̃ ′) is a sub-manifold of class Ck. Thus, U ∩ Z is a sub-manifold of Rd of class
Cmax(k,p−1).

On the other, since A−1(U) ⊂ V ×W , (4.2) becomes

(4.4) ∀u ∈ U, g(A−1(u)) = g(ϕ(y′), y′) +

d−d0∑
i=1

g2i (A−1(u)), (x′, y′) = A−1(u).

Let u ∈ U and write (x′, y′) = A−1(u). First, note that A(ϕ(y′), y′) ∈ A(Gϕ). Moreover,
since A−1u ∈ ψ−1(Rd−d0 ×W ′) by definition of U , this shows that y′ ∈ W ′ and hence
(ϕ(y′), y′) = ψ−1(0, y′) ∈ ψ−1(Rd−d0 ×W ′). This in turn shows that A(ϕ(y′), y′) ∈ U .
Hence, A(ϕ(y′), y′) ∈ A(Gϕ)∩U = Z ∩U and thus g((ϕ(y′), y′)) = f(A(ϕ(y′), y′)) = 0.
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Finally, using this in (4.4), recalling that g = f ◦A, and defining fi : u ∈ U 7→ gi(A−1u), we
have

(4.5) ∀u ∈ U, f(u) =

d−d0∑
i=1

f2i (u).

We see that fi is of class Cp−2 since gi was of class Cp−2 and A−1 is an isometry; this
concludes the proof of the theorem.

5. Discussion and possible extensions. In this work, we have provided second order
sufficient conditions in order for a non-negative Cp function to be written as a sum of squares
of Cp−2 functions. We hope this will help provide a theoretical basis to algorithms which use
functional sum of squares methods such as [23, 24, 29], which rely on the smoothness of such
decompositions. As these conditions are sufficient and not necessary, one main problems is
understanding this gap. This seems a highly difficult, and while very interesting, we present
three other more reachable subjects for future work.

The first is to have an explicit bound for the number of squares needed in the sum of squares
decomposition in the compact case. We believe that using finer tools from differentiable
geometry, we should be able to obtain a bound depending on meaningful quantities, and upper
bounded by a constant nd depending only on the dimension d of the manifold on which the
function is defined.

The second is, as in the polynomial case, to handle functions f which are non-negative on a
constrained set defined by inequalities fi ≥ 0. More precisely, we would like to show second
order sufficient conditions to write f = g +

∑
i gifi where the g, gi are sum of squares of

regular functions when f and the fi are regular. This would open up the field of constrained
optimization for methods developed for functions, such as kernel sum of squares [24]. In the
polynomial case, such conditions are given by so-called Positivstellensätzen ( [22, 25, 27]), but
usually assume the polynomial is positive. Second order conditions have been developed more
specifically in [15] to deal with non-negative polynomials with zeros.

The third is to handle functions with conic outputs which are more general than the non-
negativity one. For example, in order to represent functions which have values in a cone
defined by linear inequalities [16] or in the PSD cone [19].
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Appendix A. Around partitions of unity and gluing functions.

In this section, we detail a few topological properties of manifolds, in order to a) decompose a
manifold or a sub-manifold in connected components and b) use partitions of unity as a tool to
glue functions together. These specific properties are needed for subsection 3.2. For basics on
topological spaces (what is a topology, the notion of continuity, of homeomorphism), we refer
to Chapter 1 of [12]. Main references for manifold can be found in [13,21,26]. Recall from
subsection 3.3 the definition of a manifoldM equipped with its atlas A of class Ck, and of a
chart onM . A chart φ is said to be of class Ck

′
for k′ ≤ k if it compatible with the atlas up to

k′ smoothness, i.e. if the transitions maps φ ◦ φ−1i and φi ◦ φ−1 are all Ck
′
. A priori, the atlas

of a manifold of class Ck is not unique in the sense that more than one atlas generate the same
structure. To make it so, and to be able to say the atlas ofM of class Ck, we consider the

https://doi.org/10.1142/q0252
https://www.worldscientific.com/doi/abs/10.1142/q0252
https://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/q0252
https://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/q0252
https://doi.org/10.1007/BF01443605
https://doi.org/10.1007/BF01443605
https://doi.org/10.5802/afst.1131
afst.centre-mersenne.org/item/AFST_2006_6_15_3_599_0/
https://arxiv.org/abs/2110.10527
http://www.maths.ed.ac.uk/~aar/papers/milnmors.pdf
http://www.maths.ed.ac.uk/~aar/papers/milnmors.pdf
https://arxiv.org/abs/2111.11306
https://doi.org/10.1007/s10107-003-0387-5
https://doi.org/10.1007/s10107-003-0387-5
https://doi.org/10.1007/s10107-003-0387-5
https://www.imo.universite-paris-saclay.fr/~paulin/notescours/cours_geodiff.pdf
https://www.imo.universite-paris-saclay.fr/~paulin/notescours/cours_geodiff.pdf
https://arxiv.org/abs/2106.16116
https://arxiv.org/abs/2106.16116
https://arxiv.org/abs/2012.11978
http://eudml.org/doc/162533
https://doi.org/10.1081/PDE-120016155
https://doi.org/10.1081/PDE-120016155
https://doi.org/10.1081/PDE-120016155
https://proceedings.mlr.press/v134/vacher21a.html


22 ULYSSE MARTEAU-FEREY, FRANCIS BACH, ALESSANDRO RUDI

maximal atlas onM , i.e. the collection of all charts of class Ck onM .

A.1. Paracompactness and partitions of unity. The main point of asking a (differential)
manifold to be second countable and Hausdorff, (and not just to be locally homeomorphic to
Rd), is for the manifold to be paracompact, and and hence to be equipped with partitions of
unity. In this section, we introduce the main definitions and results on this topic.

Recall that a family of subsets (Uα) of a spaceX is said to be a covering ofX if
⋃
α Uα = X .

It is said to be locally finite if for any x ∈ X , there exists an open neighborhood U of x which
intersects only a finite number of the Uα. A family (Vβ) is said to be a refinement of (Uα) if
for all β, there exists an α such that Vβ ⊂ Uα.

A topological space X is said to be paracompact if for any open covering (Uα) of X , there
exists an open refinement (Vβ) of (Uα) such that (Vβ) is locally finite, and is an open covering
ofX . The following lemma is proved in the first part of proposition 2.3 of [21] or can be found
in Theorem 2.13 of [26].

Lemma A.1. A manifold is paracompact.

Note that in [26], a manifold is defined to be a metric space locally like Rd. In proposition
2.2 of [21], it is shown that being metric and second countable is equivalent to the countable
Hausdorff condition (under the condition of being locally homeomorphic to Rd). Spivak’s
condition in [26] is however a bit more general; in fact, it allows a manifoldM to be a union of
a possible non-countable connected component (as theorem 2 of [26] shows that any connected
component of a metric space locally homeomorphic toRd is actually second countable).

Paracompactness is an important property as it yields the existence of partitions of unity. The
following lemma is standard (a proof can be found in [21], proposition 2.3). The result is of
course also true for k = 0, but is more technical to prove.

Lemma A.2 (Standard gluing lemma, [21]). Let (Ui)i∈I be an open covering of a manifold
M of class Ck (i.e.

⋃
i∈I Ui = M ). There exists a family of functions χi : M → [0, 1] of

class Ck such that supp(χi) ⊂ Ui for all i ∈ I and with locally finite support satisfying:∑
i∈I

χi = 1.

We now prove the two technical results need in subsection 3.2.

Proof of Lemma 3.5. The proof of this lemma is immediate. Indeed, by multiplication,
we already know that χg is well defined and Cq on U . Moreover, for any point x in
V = M \ supp(χ), which is an open set, (χg)(x) = 0 (by definition if x ∈M \ U and since
χ(x) = 0 if x ∈ U ) and hence is Cq on V . Since V ∪ U = M as supp(χ) ⊂ U , the property
holds. Moreover, since χg = 0 on V , supp(χg) ⊂ supp(χ) ⊂ U .

Proof of Lemma 3.6. The proof of this result is a consequence of Lemma A.2. Indeed, this
result shows that there exists a family of function χ̃i : M → [0, 1] of class Ck such that i) for
all i ∈ I , supp(χ̃i) ⊂ Ui, ii) the support of (χ̃i) is locally finite and iii)

∑
i χ̃i = 1.

Define φ =
∑
i χ̃

2
i . Since

∑
i χ̃i = 1, and χ̃ ≥ 0, necessarily, φ > 0. Hence

√
φ is of class

Ck, and hence χi := χ̃i/
√
φ is of class Ck, and satisfies all the desired properties.

A.2. Connected components. Connectedness is a key topological notion for manifolds,
and allows to decompose manifold into separate blocks. Recall that two points x, x′ of a
topological set X are connected if there exists no two open sets U, V such that X = U ∪ V ,



DECOMPOSING SMOOTH FUNCTIONS AS SUMS OF SQUARES 23

x ∈ U and x′ ∈ V . Since being connected is an equivalence relation, we can partition X in
classes with respect to that relation, which are called "connected components". Connected
components are both open and closed4. On a connected component of a manifold, the
dimension d of the charts φ : U → Rd is the same, and is called the dimension of that
connected component (for more details, see any of the references on manifolds). Note that
as a manifoldM is assumed to be second-countable, it has at most a countable number of
connected components. Recall that a sub-manifold is defined in the main text as follows (such
a definition can be found in section 2.4.2 of [21]).

Definition A.3. Let M be a manifold of class Ck
′
, k ≤ k′. N is a sub-manifold of M of

class Ck if for any x ∈ N , and any chart φ : U → Rd defined around x and of class Ck,
φ(U ∩N) is a sub-manifold (in the sense of Rd, see subsection 2.1) of Rd around φ(x). It is
equivalent to ask the existence of one such chart per point x.

Let N be a sub-manifold of class Ck of a manifold M of class Ck
′
. Then it is naturally a

manifold of class Ck in its own right. Indeed, consider that i) N is equipped with the topology
ofM , i.e. V is open in N iif V = U ∩N for some open set ofM , and ii) the atlas of N is
(the completion of) the set of restrictions of charts φ|U∩N where φ : U → Rd is a Ck chart on
M such that φ(U ∩N) ⊂ Rd′ × {0}, where d′ is the dimension of N at x ∈ U (we identify
Rd′ × {0} ≈ Rd′ ). Note that the second-countable Hausdorff condition directly follows from
that of M . Moreover, the Ck compatibility of the charts is evident. From now on, when
considering a sub-manifoldN ⊂M as a manifold, it will be with this structure. The reason for
the introduction of all these concepts is to obtain the following lemma, which while it seems
natural, we have not found as such in the literature.

Lemma A.4. Let N be a sub-manifold of a manifold M . Let (Ni)i∈I be the connected
components of N . There exists a collection of disjoint open sets (Ui)i∈I ofM such that each
Ni ⊂ Ui.
Proof. This proof relies mainly on paracompactness.

Step 1. For all x ∈ N , there exists Ux an open set in M such that Ux ∩ N is included in
the unique connected component of x in N . Indeed, by Definition A.3, there exists a chart
φ : U → N where U is an open neighborhood of x. But since φ(U ∩N) is a sub-manifold
of Rd of class Ck around φ(x), by Theorem 2.5 of [21], there exists a Ck diffeomorphism
ψ : (φ(x), V ) → (0,W ) where V such that ψ(φ(U ∩ N) ∩ V ) = W ∩ (Rd′ × {0}) for
some d′. Taking φ̃ = ψ ◦ φ on Ũ = φ−1(V ) ∩ U , we have a chart of class Ck around x
such that φ̃ : Ũ → W ⊂ Rd such that φ̃(Ũ ∩ N) = W ∩ (Rd′ × {0}). Now let r be a
radius such that the closed ball B(0, r) ⊂ W . Set Ux = φ̃−1(B(0, r)), which is an open
neighborhood of x included in Ũ . Note that Ux ⊂ φ̃−1(B(0, r)) ⊂ Ũ since φ̃ is continuous.
Since Ux ∩N = φ̃−1(B(0, r) ∩ (Rd′ × {0})) which is connected, we have that Ux ∩N is
connected and hence is included in the unique connected component of x.

Step 2. Consider the collection of open sets Ux. By paracompactness of U :=
⋃
x∈N Ux (it

is a manifold), we can find an open cover (Uα) of U which is locally finite, and which still
satisfies the condition that for all α, Uα ∩N is included in at most one connected component
of N . Let (Ni)i∈I denote the connected components of N . For i ∈ I , let (Vi,α)α∈Ai

denote
the collection of open sets Uα such that Uα ∩N ⊂ Ni and Uα ∩N 6= ∅. These collections
satisfy a) the (Vi,α)α∈Ai

cover Ni; b) the collection (Vi,α)i∈I, α∈Ai
has locally finite support;

and c) Vi,α ∩Ni ⊂ Ni for all i ∈ I, α ∈ Ai.

4For more details on connected components, see [12]
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Step 3. For all i ∈ I , define Fi =
⋃
j∈I\{i},β∈Aj

V j,β and for all α ∈ Ai, consider the set
Wi,α = Vi,α \ Fi. Wi,α is open, andWi,α ∩N = Vi,α ∩N . Indeed, let x ∈Wi,α. Since the
(Vj,β) are locally finite, there exists Vx ⊂ Vi,α such that Vx intersects a finite number of the
Vj,β and hence of the V j,β . Hence, Vx \ Fi is still open. HenceWi,α is open. The second
condition comes from the fact that V i,α ∩N ⊂ Ni, and that the connected components are
disjoint Finally, takingWi =

⋃
α∈Ai

Wi,α, theWi satisfy all the desired properties (they are
disjoint thanks to the previous point and cover Ni since the Vi,α covered Ni).

Appendix B. Morse lemma. In order for this article to be self contained, we restate the
following classical lemmas from differential geometry and topology. Recall that a Ck-
diffeomorphism is a map φ : U ⊂ Rd → V ⊂ Rd′ which is of class Ck and whose inverse is
of class Ck (in that case, necessarily, d = d′). The following results are classical.

Theorem B.1 (Theorem 1.13 of [13]). Let f : (x0,Rd) → Rd be a function of class Ck
(k ≥ 1) defined around x0 and such that df(x0) is invertible. Then there exists a neighborhood
U of x0 such that f(U) is open and f : U → f(U) is a Ck diffeomorphism.

Theorem B.2 (Theorem 1.18 of [13]). Let f : (x0,Rd1)→ (y0,Rd2) be a function of class
Ck (k ≥ 1) defined around x0 s.t. df(x0) is surjective and f(x0) = y0. Then there exists an
open neighborhood U of x0 in Rd1 , V of y0 in Rd2 as well as a function g : V → U of class
Ck such that g(y0) = x0 and f ◦ g = IdRd2

We restate and reprove Lemma C.6.1 from [11], which is a generalization of the so-called
Morse Lemma (see lemma 2.2 of [18]), and which is the basis of Morse Theory. We will
consider a function of two variables f(x, y) defined on Rd1 × Rd2 . We will denote with
∇xf(x, y) its gradient with respect to the first variable taken at point (x, y); it is an element of
Rd1 . Similarly, we will use the notation ∇2

xxf(x, y) ∈ Rd1×d1 to denote the Hessian matrix
taken with respect to the first coordinate at point (x, y). It is symmetric.

Lemma B.3 (Lemma C.6.1 from [11]). Let d1, d2 ∈ N, p ∈ N with p ≥ 2. Let f : (x, y) ∈
U0 ⊂ Rd1 × Rd2 7→ f(x, y) ∈ R be Cp function defined on a neighborhood U0 of (0, 0).
Assume that ∇xf(0, 0) = 0 and that H := ∇2

xxf(0, 0) is non-singular.

There exists an open convex neighborhood V of 0 in Rd1 and an open convex neighborhoodW
of 0 inRd2 such that V ×W ⊂ U0, a mapϕ ∈ Cp−1(W,V ) and a map z ∈ Cp−2(V ×W,Rd1)
such that for any (x, y) ∈ V ×W ∇xf(x, y) = 0 if, and only if x = ϕ(y), and

(B.1) ∀(x, y) ∈ V ×W, f(x, y) = f(ϕ(y), y) +
1

2
z(x, y)>Hz(x, y).

To simplify the proof, we first show an intermediate result which gives ϕ.

Lemma B.4. Under the assumptions of LemmaB.3, there exists two open convex neighborhoods
of zero V0 ⊂ Rd1 , W0 ⊂ Rd2 and ϕ : W0 → V0 of class Cp−1 such that a) V0 ×W0 ⊂ U0

and b) ∀(x, y) ∈ V0 ×W0, ∇xf(x, y) = 0⇔ x = ϕ(y).

Proof. Consider the map ψ : (x, y) ∈ U0 ⊂ Rd1 × Rd2 7→ (∇xf(x, y), y). Its jacobian

at (0, 0) is of the form
(
H ?
0 Id2

)
. Since H is non-singular, this matrix is non-singular.

Applying the local inversion lemma Theorem B.1, there exists an open neighborhood U1 ⊂ U0

such that ψ is a Cp−1 diffeomorphism from U1 to ψ(U1).

Let Ṽ0 ⊂ Rd1 , W̃0 ⊂ Rd2 be open convex neighborhoods of 0 such that Ṽ0×W̃0 ⊂ U1∩ψ(U1).
Define ϕ : w ∈ W̃0 7→ π1(ψ−1(0, w)) ∈ Rd1 . Defining V0 = Ṽ0 and W0 ⊂ Rd2 to be
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an open convex neighborhood of 0 included in ϕ−1(V0) ∩ W̃0, we have ϕ(W0) ⊂ V0 and
V0 ×W0 ⊂ U1 ⊂ U0.

Moreover, for any (x, y) ∈ V0 ×W0 ⊂ U1 ∩ ψ(U1), ∇1f(x, y) = 0 iif ψ(x, y) = (0, y) ∈
ψ(U1), iif (x, y) = ψ−1(0, y) = (ϕ(y), y), iif x = ϕ(y).

We can now prove our main result.

Proof of Lemma B.3. Fix V0,W0 satisfying the properties of Lemma B.4. Let (x, y) ∈
V0 ×W0. For t ∈ [0, 1], define xt = ϕ(y) + t(x − ϕ(y)). By convexity of V0, (xt, y) ∈
V0 ×W0 ⊂ U1 ⊂ U0 for all t ∈ [0, 1]. Thus, the map g : t ∈ [0, 1] 7→ f(xt, y) is well defined,
and we can apply the Taylor formula g(1) = g(0) + g′(0) +

∫ 1

0
(1− t)g′′(t)dt and the fact

that g′(0) = ∇xf(ϕ(y), y) · (x− ϕ(y)) = 0 to obtain

f(x, y) = f(ϕ(y), y) + (x− ϕ(y))>
(∫ 1

0

(1− t)∇2
xxf(xt, y)dt

)
(x− ϕ(y))

Defining B : V0 × W0 → S(Rd1), such that B(x, y) := 2
∫ 1

0
(1− t)∇2

xxf(xt, y)dt, the
previous equation can simply be written f(x, y) = f(ϕ(y), y) + 1

2 (x− ϕ(y))>B(x, y)(x−
ϕ(y)). Note that B ∈ Cp−2(V1 ×W1, S(Rd1)) and B(0, 0) = H . Now define G : R ∈
Rd1×d1 7→ R>HR ∈ S(Rd1) which is C∞ and whose differential in IRd1 is surjective
(see [11]). Theorem B.2 shows there exists an neighborhood O of H in S(Rd1) and a C∞

function F : O → Rd1×d1 such that (G◦F )(B) = B for allB ∈ O. Let V ⊂ Rd1 , W̃ ⊂ Rd2
be two open convex neighborhoods of 0 such that V ×W̃ ⊂ B−1(O). LetW be an open convex
neighborhood of 0 such thatW ⊂ W̃ ∩ϕ−1(V ) and define z(x, y) = (F ◦B)(x, y)(x−ϕ(y)).
z satisfies (B.1).
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