

Modelling probability distributions

Main properties needed and issues

Goal : Find model f_{θ} for un-normalized distributions (P) Positivity : $f_{\theta} \ge 0$

- (I) Integrability : $I_{\theta} = \int_{\infty} f_{\theta}(x) dx$ computable
- (A) Good approximation power. $\exists \theta, \frac{f_{\theta}}{L} \approx p$ for many p

Models in the literature:

- 1) Generalised linear models $g_{\theta}(x) = \exp(\theta^{\top} \varphi(x))$ (I)
- 2) Linear models $g_{\theta}(x) = \theta^{\top} \varphi(x)$ (P)
- 3) Nadarawa-Watson : $f_{\alpha}(x) = \sum \alpha_i k(x_i, x), \ k \ge 0, \ \alpha \ge 0$ (A)

Definition of PSD models

Intuition : linear model

$$g_{a}(x; (x_{j}), \tau) = \sum_{j=1}^{m} a_{j}k_{\tau}(x, x_{j}), \ k_{\tau}(x, x') = e^{-\tau ||x-x'||^{2}}$$
Rank-1 PSD model : square of a linear model

$$f_{A}(x) = g_{a}(x)^{2} = \sum_{i,j=1}^{m} A_{ij}k_{\tau}(x, x_{j})k_{\tau}(x, x_{i}), \ A = aa^{T}$$
General PSD model :

$$f_{A}(x) = \sum_{i,j=1}^{m} A_{ij}k_{\tau}(x, x_{j})k_{\tau}(x, x_{i}), \ A \ge 0$$

Properties

- 1) (P), (I), and (A) satisfied
- 2) **Convexity** : if L is a convex loss, the following is convex:

$$\min L(f_A(\tilde{x}_1), \dots, f_A(\tilde{x}_n)) + Tr(A)$$

3) Integrals on hyper-rectangles can be computed easily

$$I(Q) = \int_Q f_A(x) \, dx = \sum_{ij} A_{ij} K_{ij} G_{ij} \text{ where } K_{ij} = k_{\tau/2}(x_i, x_j)$$

 $[G_Q]_{ij}$ is computable using the *erf* function $erf(t) = \int e^{-u^2} du$

Algor	
1:	fu
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	en
15	c
15:	fu
16:	

Sampling from arbitrary distributions using PSD Models

Ulysse Marteau-Ferey, Francis Bach, Alessandro Rudi

Sampling from PSD models

Sampling from arbitrary distributions

Step 1 : Learning a PSD model from a an

Step 2 : Apply algorithm with ρ **on** \hat{p}

Assumption : $p = q^2$, $\partial_{\alpha} q \in L^2(\mathcal{X})$, $|\alpha| \leq \beta$