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Learning problem in the least-squares case

Learning problem and regularized empirical risk minimization

Input: random variable X € X’;

Output: random variable Y € Y;

Law of (X, Y) : p(x,y)

Objective : find a predictor f : X — Y.
Loss function¢: Y x Y —- R

Learning problem

inf | L) =E[(F(x), )] :/

feF(x, X x

yé(f(X)J) dp(x, y)
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Learning problem in the least-squares case

Classical way of tackling the learning problem

Learning problem

inf LD ::E[e(f(x),y)]:/

feF(x,y X%

yf(f(X)7Y) dp(x, y)

Access to p only through z = (Z;)1<i<n Where z; = (x;, y;) are training samples

Regularized empirical risk minimization

inf Ia(f) = %Zé(f(xi),y,-) + %Q(f)

e 7 is a space of functions;
e Qs aregularizer.
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Learning problem in the least-squares case

Least squares case

o Wetake ((y,y') = 3lly — ¥'II%;
e we assume that Y € L3(), py).

The minimizer exists

g- =E[Y[X], g-(x) :/yy dp(y|x), € L*(X, px)

Consequence: one needs only to solve

inf E [||f(X) - YHZ]

fel?(X,px)
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Learning problem in the least-squares case

Regularized empirical risk minimization

~

inf La(f) = % 11706 = vl + 20()

feH

What space H of functions and what penalty Q ?

Requirements:

o H— [3(X,px)
e Solvable : finite dimensional ?

Classical parameterized version :
H={fh : 6O}, ©CR’

Alternative ?
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Learning problem in the least-squares case

RKHS H«

o K: X x X — R measurable
e K positive definite, i.e.

VneN, X = (X)ici<n, @ = (ai)icicn, Y ciggK(X;,X) >0

1<ij<n

VX € X, K= K(x, .) € Hrk

Hk := Span ({Kx, x € X}) endowed with (., . )3 so that
<KX7 Kx’)?—t = K(X7 X/)

Properties/Assumptions

Ve H, f(x)=(f,Ki)n
Assume K(x, x) < 2 such that

e, /fo)u dpx(x /nf KulPdpx(x) < w21 F|,
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Learning problem in the least-squares case

Formulation of the problem

Regularized empirical risk minimization

B —argmin (1) = 1 3" 100) = I+ NIIEs
feH — N—————
Il K, —yill2

Representer theorem :
. n
f; = Z (e KXi
i=1

Equivalent problem, linear and finite dimensional !

inf ol (K2 + AnKnn)a — 2(Kmy) - a < (Ko + Anl)a =y
a€RM
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Seeing a machine learning problem as a linear inverse problem

e Seeing a machine learning problem as a linear inverse problem
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Seeing a machine learning problem as a linear inverse problem

Linear inverse problem

Inverse problem setting

e H, K two Hilbert spaces
e An operator A € L(H,K)
e An objective g € K.
The aim is to reconstruct a solution to
Af=g

Machine Learning problem

Ideal problem
f(X) =Y, f € H which can be reformulated as Sf = Y.

e S:H — L3(X x Y, p)such that (Sf)(x,y) = - Ky = f(x)
o S :L3(X xY) = H,suchthat S*g = [, ., 9(x,y)Kx dp(x,y)
o C=S"S:# — M suchthat (f, Cfyx = [, [IF(x)[2dpx(x)
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Seeing a machine learning problem as a linear inverse problem

lll-posed problems

Possibly no solution to Af = g (or obviously Sf = Y)!

Alternative problem

o 2 . 2
inf IAf =gl jnf 1SF = Yy,

Pa orthogonal projector on range(A)
IAf = gllk = |Af — Pagllk + |I(1 - Pa)glk
N———
inevitable error

range(S) C LZ(X,pX) = PsY =Psg., g:(x) = / y dp(y|x)
Y

Solution if it exists :
A*"Af=A"g, Cf=8"Y = S"Psg.
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Seeing a machine learning problem as a linear inverse problem

Approximations

Inverse problem setting
Letd = (51,62) S Ri.

An approximation space K
An approximation of A : As, : H — K such that | A*A — A5 A5, || < 9

An approximation of g : g5, € K such that |1A3, g5, — A"g|| < 52

Machine Learning : approximation space limited by the data

An approximation space R"
An approximation of Y : y = \iﬁ(y,-)@-gn eR"

An approximation of S: S, : H — R”,
Snf = Ja(f - K)i<icn = 5 (F(x0))1<i<n.
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Seeing a machine learning problem as a linear inverse problem

Naive method

Potential solutions:
A*Af=A%g, S'Sf=8Y
A As fs = A5 05, SiSel = Spy
Define Cn = ;S : H — H such that C, = Y7, Ky, ® Kx,

Equivalence with empirical risk minimization for learning

n
Cf = Spy & T e argmin - 37 [1£00) — yil?
ren N5

Problems :

e The second problem is not necessarily solvable (it is in finite dimension)
¢ We want the reconstruction error to be small, i.e.

|Afs — Pag||* — 0

e Generalization error
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with approximation

Tikhonov regularization 0 C g p n

e Tikhonov regularization
@ For a generic inverse problem with approximation
@ For a machine learning problem
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For a generic inverse problem with approximation
Tikhonov regularization For a machine learning problem

Tikhonov regularization

Approximations : [[A*A — A3, As, || < 61, ||A3, g5, — A"gll < 02

Regularization method
For a given A > 0, choose

fus = (A5, As, + A1) "' A3, gs, = argmin [ Asf — g, |I° + M|
fen
Aim : choose \(¢) well to have

| Afrs).s — Pagll® 0
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For a generic inverse problem with approximation
Tikhonov regularization For a machine learning problem

Analysis of the error for Tikhonov regularization

Define f = (A"A + Al)"A"g = (A"A + Al) "A"Pag = arg min| g2, 12-

Decomposition

If A > 264, then the following holds:

Oz

01
Afvs — Pagll < |Af — Pagl + 2t + 2.
|Af\s — Pagll < ||Afy — Pagl| YR

S(N)

S()\) caracterizes the between Pag and the range of A.

If Pag € range(A), S(\) < CA'/2
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problem with approximation
Tikhonov regularization g problem

Equivalent to solving the regularized ERM

Equivalence

Ty = (S:Sn+ M) 'Sty & i € argmin ||Sof — yl[20 + A||f]%
feH

Vvn

Tikhonov regularization amounts to solving the reguralized ERM
problem

2 = IS5y — S"yll = |I5 X% yiKe — E[YKA |
81=1Cn = Cll = 17 371 Ky @ Ky — E[Kx @ Kx]l|

1 ~ 1L
Snf = —=(f(Xi))1<i<n = A 6arfgmmEZIIf(Xi)—yf||2+/\\|f||3¢
EH i=1
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For a gener problem with approximation
Tikhonov regularization For a machil g problem

Bounds in high probability

Very naive bounds: with probability at least 1 — ¢

_ IYllrilog 3
Vvn

Statistical bound on ERM

With probability at least 1 — 4,

[5.(x) = Psge (¥l 2, py < S(A) + (f)\ + R%w) '
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A finer analysis

e A finer analysis
@ Tikhonov regularization : version 2
@ Learning problems, version 2
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Tikhonov regularization : version 2
Learning problem: on 2
A finer analysis

Refinement of the bound

Consider A5A; ~ A*A, Ajgs ~ A*g. Define

er = [(A"A+ A1)~ 2(A;A; — ATA)(ATA + A1)
2 = [(A"A+\)"3(A5g5 — ATg)|

s = arg min |[Asf — g2 + A 7|
f

Tikhonov, refinement

fer <3,
||Af)\75 = PAgH < S()\) + €1+ €

S(A) = [[Af\ — Pag||
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A finer analysis

e1 = [(Ca+ A)2(Co = C)(Ca + N2

1o~ A _ - )
- HE Z Cx 1/2Kxi ® Ky Cy 2 _E [CA 2Ky @ KxC, 1/2] Il
i=1

/2 e . 1= A _
e = (C+ M) A(Siy = SVl = 17 > € ks, — B 677 vk] |

i=1

High probability results

Let doo (M) = SUPesypppy ICx "/ 2Kxl[?. Then with probability at least 1 — 4, for

any A < [|C], e1 < /=X log 1 and ez = [|y]|ooy/ 22 log 1

v

Final bound

dso ()
P

-~ 1
() = Psgu (0l 2(x,px) < SA) + (1Y lloo V1) log =
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Conclusion

Conclusion

Thank you for your attention !
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