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Learning problem and regularized empirical risk minimization

• Input: random variable X ∈ X ;

• Output: random variable Y ∈ Y;

• Law of (X ,Y ) : ρ(x , y)

• Objective : find a predictor f : X → Y.

• Loss function ` : Y × Y → R

Learning problem

inf
f∈F(X ,Y)

L(f ) := E [`(f (x), y)] =

∫
X×Y

`(f (x), y) dρ(x , y)

Ulysse Marteau-Ferey Linear Systems and Inverse problems



Introduction
Learning problem in the least-squares case

Seeing a machine learning problem as a linear inverse problem
Tikhonov regularization

A finer analysis
Conclusion

Classical way of tackling the learning problem

Learning problem

inf
f∈F(X ,Y)

L(f ) := E [`(f (x), y)] =

∫
X×Y

`(f (x), y) dρ(x , y)

Access to ρ only through z = (zi )16i6n where zi = (xi , yi ) are training samples

Regularized empirical risk minimization

inf
f∈H

L̂λ(f ) :=
1
n

n∑
i=1

`(f (xi ), yi ) +
λ

2
Ω(f )

• H is a space of functions;

• Ω is a regularizer.
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Least squares case

• We take `(y , y ′) = 1
2‖y − y ′‖2;

• we assume that Y ∈ L2(Y, ρY ).

The minimizer exists

g∗ = E [Y |X ] , g∗(x) =

∫
Y

y dρ(y |x), ∈ L2(X , ρX )

Consequence: one needs only to solve

inf
f∈L2(X ,ρX )

E
[
‖f (X )− Y‖2

]
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ERM

Regularized empirical risk minimization

inf
f∈H

L̂λ(f ) :=
1
n

n∑
i=1

‖f (xi )− yi‖2 + λΩ(f )

Question

What space H of functions and what penalty Ω ?

Requirements:

• H ↪→ L2(X , ρX )

• Solvable : finite dimensional ?

Classical parameterized version :

H = {fθ : θ ∈ Θ} , Θ ⊂ Rd

Alternative ?
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RKHS

RKHS HK

• K : X × X → R measurable

• K positive definite, i.e.

∀n ∈ N, x = (xi )16i6n, α = (αi )16i6n,
∑

16i,j6n

αiαjK (xi , xj ) > 0

• ∀x ∈ X , Kx := K (x , . ) ∈ HK

• HK := Span ({Kx , x ∈ X}) endowed with 〈 . , . 〉H so that
〈Kx ,Kx′〉H = K (x , x ′)

Properties/Assumptions

• ∀f ∈ H, f (x) = 〈f ,Kx〉H
• Assume K (x , x) 6 κ2 such that

∀f ∈ H,
∫
X
‖f (x)‖2dρX (x) =

∫
X
‖f · Kx‖2dρX (x) 6 κ2‖f‖2

H
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Formulation of the problem

Regularized empirical risk minimization

f̂λ = arg min
f∈H

L̂λ(f ) :=
1
n

n∑
i=1

‖f (xi )− yi‖2︸ ︷︷ ︸
‖f ·Kxi−yi‖2

+ λ‖f‖2
H

Representer theorem :

f̂λ =
n∑

i=1

αi Kxi

Equivalent problem, linear and finite dimensional !

inf
α∈Rn

αT (K 2
nn + λnKnn)α− 2(Knny) · α ⇔ (Knn + λnI)α = y
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Linear inverse problem

Inverse problem setting

• H,K two Hilbert spaces
• An operator A ∈ L(H,K)

• An objective g ∈ K.

The aim is to reconstruct a solution to

Af = g

Machine Learning problem

Ideal problem

f (X ) = Y , f ∈ H which can be reformulated as Sf = Y .

• S : H → L2(X × Y, ρ) such that (Sf )(x , y) = f · Kx = f (x)

• S∗ : L2(X × Y)→ H, such that S∗g =
∫
X×Y g(x , y)Kx dρ(x , y)

• C = S∗S : H → H such that 〈f ,Cf 〉H =
∫
X ‖f (x)‖2dρX (x)
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Ill-posed problems

Possibly no solution to Af = g (or obviously Sf = Y )!

Alternative problem

inf
f∈H
‖Af − g‖2

K, inf
f∈H
‖Sf − Y‖2

L2(X×Y,ρ)

PA orthogonal projector on range(A)

‖Af − g‖2
K = ‖Af − PAg‖2

K + ‖(I− PA)g‖2
K︸ ︷︷ ︸

inevitable error

range(S) ⊂ L2(X , ρX ) =⇒ PSY = PSg∗, g∗(x) =

∫
Y

y dρ(y |x)

Solution if it exists :

A∗A f = A∗g, C f = S∗Y = S∗PSg∗
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Approximations

Inverse problem setting

Let δ = (δ1, δ2) ∈ R2
+.

• An approximation space K̃
• An approximation of A : Aδ1 : H → K̃ such that ‖A∗A− A∗δ1

Aδ1‖ 6 δ1

• An approximation of g : gδ2 ∈ K̃ such that ‖A∗δ1
gδ2 − A∗g‖ 6 δ2

Machine Learning : approximation space limited by the data

• An approximation space Rn

• An approximation of Y : y = 1√
n (yi )16i6n ∈ Rn

• An approximation of S : Sn : H → Rn,
Snf = 1√

n (f · Kxi )16i6n = 1√
n (f (xi ))16i6n.
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Naive method

Potential solutions:

A∗A f = A∗g, S∗S f = S∗Y

A∗δ1 Aδ1 fδ = A∗δ1 gδ2 , S∗n Sn f̂ = S∗n y
Define Cn = S∗n Sn : H → H such that Cn =

∑n
i=1 Kxi ⊗ Kxi

Equivalence with empirical risk minimization for learning

Cn f̂ = S∗n y⇔ f̂ ∈ arg min
f∈H

1
n

n∑
i=1

‖f (xi )− yi‖2

Problems :

• The second problem is not necessarily solvable (it is in finite dimension)
• We want the reconstruction error to be small, i.e.

‖Afδ − PAg‖2 −→
δ→0

0

• Generalization error
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Tikhonov regularization

Approximations : ‖A∗A− A∗δ1
Aδ1‖ 6 δ1, ‖A∗δ1

gδ2 − A∗g‖ 6 δ2

Regularization method

For a given λ > 0, choose

fλ,δ =
(
A∗δ1 Aδ1 + λI

)−1 A∗δ1 gδ2 = arg min
f∈H

‖Aδf − gδ2‖
2 + λ‖f‖2

Aim : choose λ(δ) well to have

‖Afλ(δ),δ − PAg‖2 −→
δ→0

0
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Analysis of the error for Tikhonov regularization

Define fλ = (A∗A + λI)−1A∗g = (A∗A + λI)−1A∗PAg = arg min‖Af−g‖2+λ‖f‖2 .

Decomposition

If λ > 2δ1, then the following holds:

‖Afλ,δ − PAg‖ 6 ‖Afλ − PAg‖︸ ︷︷ ︸
S(λ)

+
δ1

λ
+

δ2√
λ
.

S(λ) caracterizes the between PAg and the range of A.

If PAg ∈ range(A), S(λ) 6 Cλ1/2
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Equivalent to solving the regularized ERM

Equivalence

f̂λ = (S∗n Sn + λI)−1S∗n y⇔ f̂λ ∈ arg min
f∈H

‖Snf − y‖2
Rn + λ‖f‖2

H

Snf =
1√
n

(f (xi ))16i6n =⇒ f̂λ ∈ arg min
f∈H

1
n

n∑
i=1

‖f (xi )− yi‖2 + λ‖f‖2
H

Tikhonov regularization amounts to solving the reguralized ERM
problem

δ2 = ‖S∗n y− S∗y‖ = ‖ 1
n

∑n
i=1 yiKxi − E [YKX ] ‖

δ1 = ‖Cn − C‖ = ‖ 1
n

∑n
i=1 Kxi ⊗ Kxi − E [KX ⊗ KX ]‖
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Bounds in high probability

Very naive bounds: with probability at least 1− δ

δ1 6
κ2 log 1

δ√
n

, δ2 6
‖y‖∞κ log 1

δ√
n

Statistical bound on ERM

With probability at least 1− δ,

‖̂fλ(x)− PSg∗(x)‖L2(X ,ρX ) 6 S(λ) +

(
κ2

√
nλ

+
κ‖y‖∞√

λn

)
.
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Refinement of the bound

Consider A∗δAδ ≈ A∗A, A∗δgδ ≈ A∗g. Define

ε1 = ‖(A∗A + λI)−1/2(A∗δAδ − A∗A)(A∗A + λI)−1/2‖

ε2 = ‖(A∗A + λI)−1/2(A∗δgδ − A∗g)‖

fλ,δ = arg min
f
‖Aδf − gδ‖2 + λ‖f‖2

Tikhonov, refinement

If ε1 <
1
2 ,

‖Afλ,δ − PAg‖ 6 S(λ) + ε1 + ε2

S(λ) = ‖Afλ − PAg‖
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ε1 = ‖(Cn + λI)−1/2(Cn − C)(Cn + λI)−1/2‖

= ‖1
n

n∑
i=1

C−1/2
λ Kxi ⊗ Kxi C

−1/2
λ − E

[
C−1/2
λ KX ⊗ KX C−1/2

λ

]
‖.

ε2 = ‖(C + λI)−1/2(S∗n y− S∗y)‖ = ‖1
n

n∑
i=1

C−1/2
λ yiKxi − E

[
C−1/2
λ YKX

]
‖

High probability results

Let d∞(λ) = supx∈suppρX
‖C−1/2

λ Kx‖2. Then with probability at least 1− δ, for

any λ 6 ‖C‖, ε1 6
√

d∞(λ)
n log 1

δ
and ε2 = ||y ||∞

√
d∞(λ)

n log 1
δ

Final bound

‖̂fλ(x)− PSg∗(x)‖L2(X ,ρX ) 6 S(λ) + (‖Y‖∞ ∨ 1) log
1
δ

√
d∞(λ)

n
.
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Conclusion

Thank you for your attention !

Ulysse Marteau-Ferey Linear Systems and Inverse problems


	Introduction
	Learning problem in the least-squares case
	Seeing a machine learning problem as a linear inverse problem
	Tikhonov regularization
	For a generic inverse problem with approximation
	For a machine learning problem

	A finer analysis
	Tikhonov regularization : version 2
	Learning problems, version 2


