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Abstract

Reproducing Kernel Hilbert Spaces (RKHS) provide a rigorous functional analysis framework to perform non-
parametric learning. Kernel methods, optimization methods in these spaces, enjoy very nice statistical proper-
ties. However, up to recently, these methods scaled very badly in the number of data points, both in time and
memory requirements, hence their limited applicability. However, the FALKON algorithm proposed by Rudi
et al. has made a huge step in scaling down these requirements in the case of classical least-square regression,
namely scaling the complexity to O(n

√
n) in time and O(n) in memory while keeping optimal statistical prop-

erties. Our aim in this talk is to explore the possible extensions of the ideas behind Falkon to more complex
loss functions, such as the logistic loss. These methods rely two main ideas: 1) reduction of the feature space
using random projections and 2) the use of iterative solvers, combined with a good pre-conditioning
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Chapter 1

Introduction

Large-scale supervised learning problems are ubiquitous in machine learning. Their goal is usually to learn from
examples a function which generalizes well, i.e. which predicts well new data. Linear and parametric models
are often very limited and do not allow to learn complex functions; it is therefore crucial to have tractable non-
parametric methods. Among them, kernel methods are probably the ones with the best theoretical guarantees;
however, their applicability to large-scale problems is still fairly limited as they scale very badly in the number
of data points.

Overcoming these difficulties has led to a variety of practical approaches, such as stochastic methods and
pre-conditioned extensions,as well as random projections to reduce the time complexity. Random projections
have also helped reduce the memory costs; they include methods like Nystrom [4] or random features [6].

From a theoretical point of view, the key question has been keeping the balance between statistical accuracy
and computational gain. The main trade-off element appears to be the intrinsic dimension of the problem,
which is a way to formalize the way the complexity of the problem scales in terms of the number of data points.

Recently, many significant steps have been made to reduce both time and memory complexities in the least
squares error case. Recent results have shown that using both ridge regression and random features or Nystrom,
one can keep the statistical optimality of Kernel ridge regression while keeping the time complexity under O(n2).
The last very significant step was made in [5], combining both Nystrom sampling and pre-conditioning strategies
to achieve statistical optimality with complexities of O(n

√
n) in time and O(n) in memory.

During this internship, our aim was to use the FALKON algorithm as a starting point to develop fast
algorithms for other losses than the least square loss, for instance logistic or robust losses. Using the two main
components of FALKON : Nystrom sub-sampling and using an iterative solver with a pre-conditioner, we tried
developing general methods for quadratic problems, and apply them to perform second order methods on these
more complex loss functions. We succeeded in doing the former but still have not solved the latter problem.
However, we have numerical experiments which suggest that generalizing these methods should be possible from
a theoretical point of view.

The rest of the report will be organized as follows: in section 2, we will present general information on kernel
methods and motivations for extending FALKON to more general cases; in section 3, we present a modified
version of the FALKON algorithm to deal with more general quadratic functions; in section 4, we present a
statistical analysis of FALKON to quadratic losses and explain how we want to perform second order methods
as well as the limitations of our approach for the moment. Finally, in section 5, we present a few experiments
which a) show that we indeed achieve optimal statistical accuracy in the quadratic case and b) that we have
hope of achieving good rates for certain losses such as the logistic regression.
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Chapter 2

Backround

In this chapter, we introduce the backround of our work. In section 2.1, we introduce the basic framework
and aim of non-parametric supervised learning. We then present kernel methods in section 2.2 more in detail,
explaining which estimators they approximate as well as the basic computational difficulties they entail. In
section 2.3, we present large-scale methods for the square loss and in particular FALKON, the method on which
we will build throughout the rest of the report.

2.1 Supervised learning
The aim of supervised machine learning problems is, given (x1, y1), ..., (xn, yn) ∈ X×Y, to learn a good predictor
θ : X → Y such that for any new x ∈ X , θ(x) is a good prediction for the corresponding y. Throughout this
report, we will make the following hypotheses to put this learning problem in a clear mathematical setting.

• the data space X is a polish space, the target space Y = R and the observation space is Z := X × Y.
Moreover, we represent the data X in a Hilbert space H with the function φ : X → H;

• the observations zi = (xi, yi) ∈ Z are i.i.d. samples from the law of Z = (X,Y ) which is unknown; we
assume that ||φ(X)||H ≤ κ almost surely for a certain constant κ. Moreover, we note θi = φ(xi) ∈ H the
representation of the i-th data point;

• the loss function l : (z, y′) ∈ Z × R → R is made to depend on the full observation z = (x, y) in the first
coordinate and compares y′ to the objective y. We assume that for all z ∈ Z, the function l(z, ·) is convex,
three times differentiable.

Here, we see an element θ ∈ H as a function on X , by identifying ∀x ∈ X , θ(x) := 〈θ, φ(x)〉 : we can see
H as a Hilbert space of predictors. Our aim is to find the best predictor, i.e. to minimize the expected risk
E(θ) = E [l(Z, θ(X))]. Therefore, we aim at solving the following problem:

inf
θ∈H
E(θ), E(θ) = E [l(Z, 〈θ, φ(X)〉)] (P)

Given (x1, y1), ..., (xn, yn) i.i.d. samples from the law of (X,Y ), our aim will be finding an estimator θ̂ with
small excess risk R:

R(θ̂) := E(θ̂)− inf
θ∈H
E(θ)

We give here some examples of loss functions which we may comment during the report. Recall that
l : Z × R→ R where an element z ∈ Z is of the form (x, y).

Examples of losses

• the square loss l(z, y′) = (y − y′)2 which is a particular case of

• the weighed square loss l(z, y′) = w(z)(y − y′)2 where w is a positive function on the support of Z;

• the robust regression : l(z, y′) =
√

1 + (y − y′)2;
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• loss functions of the type l(z, y′) = ϕ(yy′) where ϕ is a three times differentiable non-negative convex
function;

• the logistic regression which is an instance of the previous point with ϕ(t) := log(1 + exp(−t)).

Note on the representation φ : X → H : RKHS

A particular way of embedding the space X in a Hilbert space can be constructed as follows.
A continuous function K : X × X → R is called a positive definite kernel on X if for every n ∈ N, for every

x1, ..., xn ∈ Xn, the matrix (K(xi, xj))1≤i,j≤n is positive semi-definite.
Given a positive definite kernel K on a space X , we can define Kx := K(x, ·) for all x ∈ X , and (H, 〈·, ·〉H)

the Hilbert space associated to the inner product defined by K that is

H = span {Kx | x ∈ X}, ∀x, x′ ∈ H, 〈Kx,Kx′〉 = K(x, x′)

(This definition can be formalized, see [1])
The mapping φ : x ∈ X 7→ Kx ∈ H embeds the space X in the Hilbert space H and this embed-

ding reflects the similarity measure K. Note that H is a space of functions on X . Moreover, we have that
∀θ ∈ H, ∀x ∈ X , 〈θ, φ(x)〉H = 〈θ,Kx〉H = θ(x). Moreover, for any x, x′ ∈ X , φ(x) · φ(x′) = K(x, x′).

Thus, computing any coefficient of a matrix of the type (φ(xi) · φ(x̃j)) 1≤i≤n
1≤j≤M

is in the same complexity as a

so-called kernel evaluation, which can be very fast and only uses the function K. In practice, all the matrices
we will consider in our algorithms will be products of matrices of this form.

2.2 Regularized ERM and Kernel Ridge Regression
In this section, we present the main estimators we will consider for θ∗, the solution of our problem of interest (P),
obtained through regularized Expected Risk Minimization (sub-section 2.2.1). We will present these estimators
as solutions to finite-dimensional convex problems (see sub-section 2.2.2) and make this problem explicit in the
case of the Kernel Ridge Regression, the problem associated to the squared loss (see sub-section 2.2.3). This
will illustrate the computational difficulties which motivated the introduction of the tools in the next section.

2.2.1 Finding a good estimator : Expected Risk Minimization
Recall that the aim is to find a good estimator of the solution to (P):

inf
θ∈H
E(θ), E(θ) = E [l(Z, 〈θ, φ(X)〉)] (P)

Natural estimators θ̂ come from the minimizing of the so-called empirical risk i.e. the solution to

θ̂n∗ ∈ arg min
θ
Ên(θ), Ên(θ) :=

1

n

n∑
i=1

l(zi, 〈θi, θ〉) (P̂n)

However, since Ên is not strongly convex and because the problem is ill-conditioned, one usually considers
the solution to the regularized ERM (Expected Risk Minimization), for a certain λ > 0:

θ̂λ,n∗ ∈ arg min
θ
Êλn(θ), Êλn(θ) :=

1

n

n∑
i=1

l(zi, 〈θi, θ〉) +
λ

2
||θ||2H (P̂λn)

In the case where the loss we consider is the squared loss l((x, y), y′) = 1
2 |y− y

′|2, this is called Kernel Ridge
Regression problem (KRR).

The statistical properties of these estimators have been studied for certain specific losses and for different
notions of risk. For example:

• if we consider the least-squares problem infθ∈H E[|Y − θ(X)|2] which corresponds to the squared loss
function l((x, y), y′) = |y−y′|2, the main result in [3] shows that the KRR estimator is optimal if λ = n−1/2

and that
R(θ̂λ,n∗ ) = O(n−1/2), λ =

1√
n

(2.1)
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• In the case where we are looking at the regularized risk Rλ (which is a bit different from the risk we are
considering in this report), the main result in [8] shows that under certain conditions on the loss function

Rλ(θ̂λ,n∗ ) = O

(
1

λn

)
(2.2)

These statistical bounds are useful not only in the study of the general problem but in the way we should
compute our estimator. Indeed, they show that we can "afford" committing a certain error if we compute our
estimator θ̂ as a an approximation of the exact solution to a certain optimization problem (as in (P̂λn)), namely
an error of same order as the risk of this exact solution.

2.2.2 Optimization and finite dimensional formulation of ERM
We will now formulate the computing of this estimator as an optimization problem in order to simplify notations.
We are actually solving a problem of the form

θλ,n∗ ∈ arg min
θ∈H

Eλn(θ), Eλn(θ) =
1

n

n∑
i=1

ϕi(〈θ, θi〉H) +
λ

2
||θ||2H (Pλn)

where the ϕi are three times differentiable convex functions.
Introducing the operator Sn : θ ∈ H 7→ n−1/2(θ ·θi)1≤i≤n ∈ Rn, we see that Eλn is of the form Φ◦Sn+ λ

2 || · ||
2
H

where Φ is of the form Φ : v ∈ Rn 7→ 1
n

∑n
i=1 ϕi(

√
nvi), where the ϕi are convex and three times differentiable

functions.
Denote with Hn = span {θi : 1 ≤ i ≤ n} which is also the range of S∗n : it is easy to see that if there is

a solution to (Pλn) in H, then there exists a unique minimizer and it is in Hn. This reduces problem (Pλn) to
a n-dimensional problem by looking for a solution of the form θ = S∗nα = 1√

n

∑n
i=1 αiθi. If we denote with

Lnn the matrix SnS∗n = 1
n (〈θi, θj〉)1≤i,j≤n, then we can reformulate (Pλn) as the following finite dimensional

problem:

min
α∈Rn

Eλn(α), Eλn(α) = Φ (Lnnα) +
λ

2
αTLnnα (Pλn)

2.2.3 The specific case of squared loss and KRR
In the case of the squared loss l((x, y), y′) = 1

2 |y − y
′|2, problem (Pλn) becomes

min
θ∈H

1

2n

n∑
i=1

|yi − 〈θ, θi〉H|2 +
λ

2
||θ||2 (2.3)

and its finite-dimensional form, the Kernel Ridge Regression, is the following:

min
α∈Rn

1

2

n∑
i=1

∣∣∣∣ yi√n − [Lnnα]i

∣∣∣∣2 +
λ

2
αTLnnα (2.4)

whose solution is simply α = (Lnn + λI)−1 1√
n

(yi)1≤i≤n.

It is clear that the exact solving of this system cannot scale up to high dimensional problem as it is in O(n3).
Taking into account (2.1), we can solve afford to solve this problem with an error of O(n−1/2), using iterative
solvers for example, and obtain a time complexity of O(n2). This is still too large for problems with millions of
data points. This motivated the introduction of new large-scale methods for the squared loss, described in the
next section.

2.3 Large scale methods for squared loss
In this section, we present the basis of large scaled methods for the squared loss, based on dimension reduction,
and then describe informally the FALKON algorithm, a large-scale method for the squared loss introduced in
[5], based on the addition of iterative solvers with pre-conditioning.
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In order to reduce time and memory complexities, we reduce the dimension of the space of solutions by
considering a subspace HM of H of dimension at most M << n. We define this subspace as the image of a
mapping S∗M : RM → H, seeing it as a dual map to be coherent with our notations Sn. The following example
will be crucial in the developments of this report.

Example 1 (Important form for S∗M ). The following form of S∗M : RM → H will be of particular interest to us
in many respects. We will formulate them as assumptions, to refer to them later on.

• The first interesting forms are S∗M which satisfy

∀α ∈ RM , S∗Mα =
1√
M

M∑
j=1

αiφ(x̃j) =
1√
M

M∑
j=1

αiθ̃j where (x̃j)1≤j≤M ∈ X
M , θ̃j = φ(x̃j) (M-1)

• We can also consider the following stronger assumption:

S∗M satisfies (M-1) and (x̃j)1≤j≤M is a sub-family of (xi)1≤i≤n (M-2)

When restricting to HM , problem (2.3) becomes

min
θ∈HM

1

2n

n∑
i=1

|yi − 〈θ, θi〉H|2 +
λ

2
||θ||2 (2.5)

Define LMM = SMS
∗
M and LnM = SnS

∗
M and assume any coefficient of these matrices is computable in

near-constant time (in the case of (M-1), they are simple kernel evaluations). The solution of this problem θλ,M∗
is of the form SMα

λ,M
∗ where αλ,M∗ is solution to

min
α∈RM

1

2n

n∑
i=1

∣∣∣∣ yi√n − [LnMα]i

∣∣∣∣2 +
λ

2
αTLMMα (2.6)

that is αλ,M∗ =
(
LTnMLnM + λLMM

)−1
LTnM

1√
n

(yi)1≤i≤n.
Solving this problem exactly is still too costly as computing LTnMLnM will take O(nM2) (for statistical

reasons, M ≈ n1/2). In [5], Rudi et al. introduce a new algorithm which avoids this computation time by
combining iterative methods and pre-conditioning.

2.3.1 Falkon for squared loss
The idea of the original FALKON algorithm is the use of iterative solvers and pre-conditioning. The principle
of iterative solvers is the following : given a positive definite symmetric matrix A ∈ S++

n and a vector b ∈ Rn,
solve Ax = b not directly but by considering it as a convex optimization problem (minx

1
2x

TAx − bTx). One
can then use an iterative method such as gradient descent with a certain rate τ : xt+1 ← xt + τ(b−Axt).

The interesting thing about these methods is that they only rely on matrix-vector products, and that there-
fore, if we were to apply it to

(
LTnMLnM + λLMM

)
, an iteration would only cost O(nM) since the matrix would

never be computed explicitly.
The number of iterations needed in such algorithms, however, is controlled by the condition number of A,

where the condition is defined as the ration between the largest and lowest eigenvalue of A:

Cond(A) =
σmax(A)

σmin(A)

The convergence is given usually by a bound of the type ||xt − A−1b||A ≤ ε||A−1b||A if t = Ω(Cond(A) log 1
ε ).

Thus, if we control the condition number of the matrix, we can solve the problem with certain precision ε in
quasi-constant time.

Coming back to (2.6), we see that it is equivalent to solving the linear system Hα = Γ where H =(
LTnMLnM + λLMM

)
and Γ = LTnM

1√
n

(yi)1≤i≤n. However, we have no control on the condition number of
H which is necessary to apply an iterative solver in an effective way. That is why we pre-condition the matrix
H.

The idea of pre-conditioning is to find a matrix B called a preconditioner so that BTHB has a small condition
number. A good pre-conditioner typically satisfies BBT ≈

(
LTnMLnM + λLMM

)−1. We then compute quickly
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an approximation to the solution of the system BTHBβ = BTΓ (since the problem is well conditioned) and set
α = Bβ.

In [5], S∗M is obtained under the form (M-2) by randomly sub-sampling M points from (xi). H is pre-
conditioned by setting BBT =

(
LTMMLMM + λLMM

)−1, which is a problem which costs O(M3) and running a
conjugate gradient algorithm with a constant number of iterations t. The total complexity of the algorithm is
then in order O(nMt+M3), and by takingM = Ω(

√
n), optimal statistical accuracy is reached for t = Ω(log n).

Thus, FALKON is kernel method which reaches statistical optimality with complexities of O(n
√
n) in time and

O(n) in memory for the squared loss problem, making it the first large scale kernel method.
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Chapter 3

FALKON for smooth losses

In this internship, our goal was to start from FALKON, which solves (P) for the squared loss (infθ E[|Y−θ(X)|2]),
to create a large-scale kernel method for solving problem (P) for more general smooth losses (infθ E[l(Z, θ(X))]
). We would like to keep the complexities of O(n

√
n) in time and O(n) in memory to scale well in the number

of points for methods such as such as for logistic regression or robust regression.

3.1 Generalizing FALKON to smooth losses : reduction to a quadratic
optimization problem

In the general case, recall that minimizing the regularized ERM and finding θ̂λ,n∗ , the solution of (P̂λn) can be
seen as an instance of an optimization problem of the type

θλ,n∗ ∈ arg min
θ∈H

Eλn(θ), Eλn(θ) =
1

n

n∑
i=1

ϕi(〈θ, θi〉H) +
λ

2
||θ||2H (Pλn)

where ϕi(θ · θi) = l(zi, θ · θi) = l(zi, θ(xi)).
We can apply the same dimension reduction principle as in section 2.3 and perform the minimization not on

H or equivalently Hn but on a subspace HM ↪→ H given as the image of a certain linear map S∗M : RM → H
(we give important examples of form of maps in section 2.3)

θλ,M∗ ∈ arg min
θ∈HM

Eλn(θ) or arg min
θ∈H

ẼλM (θ), ẼλM (θ) =
1

n

n∑
i=1

ϕi(〈θ, PMθi〉H) +
λ

2
||θ||2H (P̃λM )

Where PM is the orthogonal projection on HM . As in the squared loss case, defining LMM = SMS
∗
M and

LnM = SnS
∗
M , solving problem (P̃λM ) is equivalent to solving

min
α∈RM

ẼλM (α) =
1

n

n∑
i=1

ϕi
(√
n[LnMα]i

)
+
λ

2
αTLMMα (P̃λM )

and taking θ = S∗Mα.

For now, assuming that θλ,M∗ will have good statistical properties if considered as a proxy for θλ,n∗ in a statis-
tical setting, suppose that our aim is to compute a good approximation of θλ,M∗ . Since FALKON heavily relies
on pre-conditioning, transposing it directly to the solving of (P̃λM ) is impossible.

On the other hand, second order methods like the newton method rely on iteratively solving quadratic
approximations of the function we want to minimize. Our goal in this section is therefore to generalize FALKON
to solving quadratic problems of the form

arg min
θ∈HM

1

n

n∑
i=1

wi(θ · θi)2 −
1√
n

n∑
i=1

biθ · θi +
λ

2
||θ||2 (QλM )

because taylor expensions of ẼλM around θ0 ∈ HM can be put into this form for wi = ϕ′′(θ0 · θi) and
bi = wiθ0 · θi −ϕ′(θ0 · θi). The solution to this quadratic approximation is called Newton step at θ0, and can in
turn be used to compute θλ,M∗ using a second-order method.
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3.2 Extending FALKON to more general quadratic optimization prob-
lems

As explained in the previous section, the main work of this report is to generalize the FALKON algorithm to
solve problems of type (QλM ) ("with weights"). Hence we suppose we are given the following:

• a positive diagonal matrix Wn = diag (wi)1≤i≤n ∈ Rn×n;

• a vector b = (bi) ∈ Rn

One way to see FALKON is to consider problem (P̃λM ) and approximately solve this problem in the "quadratic
case", that is where ϕi : t ∈ R 7→ 1

2wit
2 − bit. We can write this problem down in the following condensed way

(we denote with θλ,M∗ the solution to the FALKON problem in the rest of the chapter)

θλ,M∗ ∈ arg min
θ∈H

1

2
〈θ, PM S∗nWnSn︸ ︷︷ ︸

Cn

PMθ〉H − 〈PMS∗nb, θ〉H +
λ

2
||θ||2H (QλM )

Where PM is the orthogonal projector onHM . Note that Cn = 1
n

∑n
i=1 wiθi ⊗ θi =

∑n
i=1 (
√
wiθi)⊗ (

√
wiθi).

The solution of (QλM ) is

θλ,M∗ = (PMS
∗
nWnSnPM + λI)

−1
PMS

∗
nb (3.1)

and can be obtained by solving the equivalent finite dimensional problem

αλ,M∗ ∈ arg min
α∈RM

1

2
〈α,
(
LTnMWnLnM + λLMM

)
α〉RM − 〈LMnb, α〉RM (QλM )

setting θλ,M∗ = S∗Mα
λ,M
∗ .

The original FALKON solves this problem for Wn = In. In this slightly more general case, we keep the core
idea of combining iterative solvers and pre-conditioning to solve (QλM ).

In this context, we are solving the linear systemHα = Γ whereH =
(
LTnMWnLnM + λLMM

)
and Γ = LTnMb.

As in the original FALKON algorithm explained in section 2.3.1, to apply the conjugate gradient algorithm in
an effective way, we need to pre-condition H.

3.2.1 The algorithm
In this section, we describe the FALKON algorithm with weights and particularly the construction of the pre-
conditioner. In this section, we suppose SM is given; the way we select those points will be discussed later.
FALKON therefore simply solves the optimization system (QλM ) approximately.

Recall that and ideal pre-conditioner would satisfy BBT =
(
LTnMWnLnM + λLMM

)−1. However, comput-
ing this pre-conditioner would be, in terms of complexity, equivalent to directly computing a solution to (QλM ).
Instead, we compute a pre-conditioner by sub-sampling Q elements from {1, ..., n} according to a certain prob-
ability distribution.

Throughout the report, we will adopt and discuss three different sub-sampling strategies which we can use
to sample either the M points or the Q points. We describe two of them below; the third one will be developed
specifically for the statistical case and will be described in C.

• Uniform sampling : we select indices in {1, ..., n} without replacement;

• Sampling according to the weights : we select indices in {1, ..., n} according to the probability vector
pi = wi∑n

j=1 wj
= wi

nw where w =
∑n
j=1 wj

n

Throughout the rest of the report, given a sub-family J = (jk) of size p in {1, ..., n}, denote with WJ the
diagonal matrix of size p with coefficients (WJ)kk = wjk . When the context is clear (i.e. the size of a family
refers to this particular family), we will simply write Wp = WJ ;

Definition 1 (Sub-sampling). Suppose we are given a probability vector on {1, ..., n} which we denote with
(pi)1≤i≤n. Let J̄ = (jk)1≤k≤Q be Q iid samples from p.

11



We define

• DQ ∈ RQ×Q the diagonal matrix with coefficients (DQ)kk =
√

1
npjk

, 1 ≤ k ≤ Q;

• SQ : x ∈ H 7−→ 1√
Q

(x · θjk)1≤k≤Q ∈ RQ;

• LMQ := SMS
∗
Q ∈ RM×Q and LQM = SQS

∗
M ∈ RQ×M

Note that since the Q points are sub-sampled respecting the condition (M-2), the computation of LQM is
easy, especially if the Kernel is easily computable.

Using these sampled vectors, we will find a pre-conditioner for H.
To do so, intuitively, we do the following approximation (in the uniform case) :

H ≈ (SMS
∗
QW

2
QSQS

∗
M + λSMS

∗
M )

and look for a preconditioner of the form BBT = (SMS
∗
QW

2
QSQS

∗
M + λSMS

∗
M )−1

In the non uniform case, we add a sampling term as we can see in the following formal definition.

Operation Time Complexity Memory Complexity
Computing and saving T,U M3 M2

Computing and saving A M3 +MQ2 +QM2 M2 +MQ
Computing and saving Bβ or BTβ for β ∈ Rm M2 M

Computing and saving Hα for α ∈ RM nM n

Computing H̃α for α ∈ RM nM n
Total complexity with T iterations M3 +MQ2 + TnM max(n,M2,MQ)

Figure 3.1: Time and memory complexities in computing the FALKON estimator

Definition 2 (pre-conditioner). Let U =∈ RM×m be a partial isometry such that UTU = I and T ∈ Rm×m a
triangular matrix such that

UTTTUT = SMS
∗
M

A ∈ Rm×m a triangular matrix such that

ATA = T−TUT (LMQDQWQDQLQM )UT−1 + λIm

Then we define the preconditioner as follows :

B = UT−1A−1 ∈ RM×m

Numerically computing the pre-conditioner can be done effectively using the following QR and Cholesky
decompositions

(U,_) = qr(SMS
∗
M ), T = chol(UTLMMU), A = chol(T−TUTLMQDQWQDQLQMUT

−1 + λIm)

Definition 3 (preconditioned problem). Using the preconditioner B defined in definition 2, define the precon-
ditioned matrix

H̃ := BT (LMnWnLnM + λLMM )B ∈ Rm×m

Given Γ and defining Γ̃ = BTΓ, the preconditioned problem is

βλ,M,Q
∗ ∈ arg min

β

1

2
βT H̃β − (BTΓ)Tβ = βT H̃β − Γ̃Tβ (3.2)

12



Definition 4 (FALKON computations). To compute the solution βλ,M,Q
∗ to the preconditioned problem (3.2),

define βλ,M,Q,t
∗ to be the t-th iteration of the conjugate gradient algorithm with matrices H̃ and Γ̃

The resulting approximation of αλ,M∗ in problem (QλM ) is αλ,M,Q,t
∗ := Bβλ,M,Q,t

∗ . We define the FALKON
estimator to be the element HM associated to αλ,M,Q,t

∗ which we write θλ,M,Q,t
∗ .

In order to measure the complexity of the algorithm, we measure the time complexity in number of matrix
coefficient evaluations (which we suppose to be fast, which is the case when they are kernel evaluations for
instance). As for the memory complexity, we measure it in the number of coefficients we need to have saved
at a given time. Note that given a matrix of size (n,M) and a vector in RM , we can compute the matrix
vector multiplication by computing stocking one block of the matrix at a time and therefore achieve a memory
complexity of order n if M < n. We present a table of the step-by-step complexity of the FALKON algorithm
in figure 3.2.1.

The algorithm itself can be found in algorithm 1.

Algorithm 1 FALKON method
Require: b, Wn x1, ..., xn, J̃ for the M points, λ, number of iterations in the conjugate gradient algorithm t,
{When we write @ in front of a matrix, we mean the function associated to this matrix}
Sample Q indexes and compute LMM and LMQ

{Computing the pre-conditioner}
(U,_)← qr(LMM )
T ← chol(UTLMMU)

A← chol
(
T−TUTLMQW

1/2
Q D2

QW
1/2
Q LQMUT

−1 + λIm

)
@B ←

(
β 7→ UT−1A−1β

)
@H,Γ← (α 7→ @LMn (Wn@LnM (α)) + λLMMα) ,@LMnb {Original system}
@H̃, Γ̃←

(
β 7→ @BT (@H(@B(β)))

)
,@BT (Γ) {Preconditioned system}

Perform t steps of the conjugate gradient algorithm to retrieve βλ,M,Q,t
∗

αλ,M,Q,t
∗ ← @B(βλ,M,Q,t

∗ )

return αλ,M,Q,t
∗ the FALKON estimator

13



Chapter 4

Theoretical results

In this chapter, we present theoretical results on the FALKON algorithm we have just derived. In section 4.1, we
show that under certain conditions on Q, our algorithm is effective in solving the optimization problem (QλM ).
In section 4.2, we show that in our general statistical setting, in the case of a quadratic loss, the FALKON
estimator can achieve statistical optimality with complexities of O(n

√
n) in time and O(n) in memory. Finally,

in section 4.3, we present the directions of future work in solving more general problems using second-order
methods.

4.1 Results for FALKON with weights in the optimization setting
In this section, we consider FALKON as a solver of problem (QλM ) and evaluate its performance as such (and
not as that of the underlying statistical problem like in next sections).

The speed at which we solve (QλM ) is determined by the condition number of H̃, the result of the pre-
conditioning. In lemma 10, we obtain the following result :

Lemma 1 (bound on the condition number). Let Q be an integer, and suppose we sample (x̄1, ȳ1), ..., (x̄Q, ȳQ)
from (x1, y1), ..., (xn, yn) according to the probability vector pi := wi∑n

ĩ=1
wĩ
, 1 ≤ i ≤ n. Let 0 < λ ≤ ||Cn|| η > 0

and δ > 0.
Then with probability at least 1− δ, if

Q ≥ 8d

[
wN∞(λ)

((
1 + η

η

)2

+
1 + η

3η

)
+

1 + η

3η

]

with d = log 8wκ2

λδ and N∞(λ) = sup1≤i≤n ||C
−1/2
λn θi||2 ≤ κ2

λ , then

Cond(H̃) ≤ 1 + η

This result shows that as soon as Q ≥ Ω( 1
λ ), the condition number of the pre-conditioned matrix H̃ is

bounded by a constant, and therefore that our pre-conditioning is effective. This yields the following convergence
result of the falkon method towards θλ,M∗ (it is a restatement of lemma 24).

Proposition 1 (performance of the FALKON wrt θλ,M∗ ). Let Q be an integer, and suppose we sample the Q
points according to the probability vector pi := wi∑n

ĩ=1
wĩ
, 1 ≤ i ≤ n. Let 0 < λ ≤ ||Cn|| and δ > 0.

If Q ≥ d (16.4wN∞(λ) + 3.4), then with probability at least 1− δ,

∀t ≥ 0,
[
ẼλM (θλ,M,Q,t

∗ )− ẼλM (θλ,M∗ )
]1/2

≤ 2e−tẼλM
(
θλ,M∗

)1/2
where d = log 8wκ2

λδ and N∞(λ) = sup1≤i≤n ||C
−1/2
λn θi||2 ≤ κ2

λ .

Again, in this proposition, we see that θλ,M,Q,t
∗ converges exponentially fast to θλ,M∗ as soon as the condition

number is bounded and therefore as soon as Q ≥ Ω(1/λ).
Note: We can get similar results for random sub-sampling instead of sampling along the weights; the major

change is that instead of a w, a sup1≤i≤n wi appears in the bounds, which makes them worse.
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4.2 Theoretical Guarantees of FALKON with weights in the statisti-
cal setting

In this section, we show how FALKON with weights can directly provide good estimators for quadratic machine
learning problems of the form (P), generalizing the statistical results in [5] with the same complexites of O(n

√
n)

in time and O(n) in memory.
Consider problem (P) with losses of the type

• l(z, y′) = 1
2w(z)|y′ − r(z)|2

• l(z, y′) = 1
2w(z)(y′)2 − b(z)y′

These formulations are equivalent under the following assumptions which we will keep throughout this entire
statistical part.

The main statistical problem we will consider is therefore

θ∗ ∈ arg min
θ∈H

E[l(Z, 〈φ(X), θ〉H)] =
1

2
〈θ,E[w(Z)φ(X)⊗ φ(X)]θ〉H − 〈E[b(Z)], b〉H (Q)

Hypotheses

In order for this problem to be defined/solvable, we will make the following hypothesis

• we assume that the data is bounded by a constant κ :

||φ(X)||H ≤ κ almost surely (S-1)

• Denote with w the so-called weight function : we assume it has the following properties :

w positive measurable on Z and ||w||∞ := inf
t>0
{|w(Z)| ≤ t a.s.} ≤ ∞ (S-2)

Note that the first assumption makes the two losses equivalent. Moreover, this conditions implies that
||w||1 = E[w(Z)] ≤ ||w||∞ ≤ ∞.

• r is called the target function (indeed we wish to lessen the gap between y′ and r); we will usually use one
of the following hypotheses:

||r||2L2(Z,wdρ) = E[r(Z)2w(Z)] ≤ ∞⇔ ||b||2L2(Z,w−1dρ) = E[b(Z)2w−1(Z)] ≤ ∞ (S-3)

E[|r(Z)|w(Z)] ≤ ∞⇔ E[|b(Z)|] ≤ ∞ (S-3 bis)

Note that (S-3) implies (S-3 bis)

• We will assume that problem (Q) has a solution, that is

∃θ∗ ∈ arg min
θ∈H

E[l(Z, 〈φ(X), θ〉H)] (S-4)

4.2.1 Bounds for the risk of the algorithm
Using these assumptions and the FALKON algorithm, we have the following bounds for the FALKON estimator
(this is a consequence of theorem D.2).

Theorem 1. Assume (S-1), (S-2) and (S-4), and that b is bounded or r is bounded (one can make either
hypothesis). There exists constants n0, t0 and c0 such that for any n ≥ n0 and any δ > 0, if

λ =
1√
n
, M ≥ 5

(
||w||∞κ2 + 1

)√
n log

44κ2||w||1n
δ

, Q ≥ 17
(
(||w||1 + 0.08||w||∞)κ2 + 1

)√
n log

264||w||1κ2n
δ

Then if t ≥ 1
2 log n+ t0,

R(θ̂λ,M,t
∗ ) ≤

c0 log2 6
δ√

n

Where c0, t0 and n0 do not depend on λ,M,Q, t, n and c0 does not depend on δ, and using random sampling
for M and weights sampling for Q.
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4.2.2 Fast rates and Nystrom leverage scores
In this section, we present a slightly more general result and conditions with which we can obtain faster rates.
Define :

• C = E[w(Z)φ(X) ⊗ φ(X)] the co-variance operator, such that for any θ, θ′ ∈ H, E [w(Z)θ(X)θ′(X)] =:
〈θ, θ′〉L2(Z,w) = 〈θ, Cθ′〉H;

• N (λ) := Tr((C + λI)−1C) the effective dimension of the problem.

In order to get faster rates, one must make two types of hypothesis :

• A source condition : there exists s ∈ [0, 1/2] such that C−sθ∗ exists. s controls the regularity of the
solution θ∗ in the space of solutions; s = 0 is simply the previous case.

• A size condition of the type N (λ) = O(λ−γ) where γ ∈ (0, 1]; γ is a parameter which measures the size of
the RKHS H with respect to the problem. γ = 1 is the generic case.

We also mention a different way of sub-sampling Q and M points which is defined in appendix C : Nystrom
leverage scores, which allow us to reduce the number of necessary M points and Q points even more.

Theorem 2 (Fast rates). Assume (S-1), (S-2) and (S-4), and that r is bounded (one can make either hypothesis).
There exists constants n0, t0 and c0 such that for any n ≥ n0 and any δ > 0, if

λ = n−
1

1+2s+γ , t ≥ 1

2
log n+ t0

Then
R(θ̂λ,M,t

∗ ) ≤ c0
(

log2 6

δ

)
n−

1+2s
1+2s+γ

The bounds needed for M are the following depending on the different sampling schemes, setting d =

log 132Tr(C)
λδ ≤ log 132||w||1κ2

λδ :

• In the random case, M ≥ (d− log 22
4 )(4.5Nw(λ) + 2)

• In the Nystrom case M ≥ 8d
3 + 21.2dq2N (λ)

• in the weighted case, M ≥ 8d
3 + 21.2d||w||1N∞(λ)

And on Q, setting d̃ = log 264Tr(C)
λδ ≤ log 234||w||1κ2

λδ :

• In the weighted case Q ≥ d̃
(

16.4||w||1N∞(λ) + 3.4
)

• In the Nystrom case Q ≥ d̃
(
44q2N (λ) + 3.4

)
4.3 Second-order methods
Main direction of research

In this section, we do not assume the loss is quadratic anymore, but come back to a convex three times differ-
entiable loss function l. In order to find a good estimator θ̂ of the solution to problem (P) : minθ∈H E[l(Z, θ(X))],
we would like to proceed in the following way:

• Find a statistical bound showing that for a certain M << n (and a certain sub-sampling strategy), the
estimator

θ̂λ,M∗ ∈ arg min
θ∈H

ÊλM (θ) :=
1

n

n∑
i=1

l(zi, 〈θ, PMθi〉H) +
λ

2
||θ||2 (P̂λM )

has a small excess risk, i.e. find a reasonable bound on R(θ̂λ,M∗ );

• Find an effective way of computing an approximation to this θ̂λ,M∗ using second order methods and the
FALKON algorithm.
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For the moment, we have not yet succeeded in proving good statistical bounds for R(θ̂λ,M∗ ).

Applying FALKON to compute a newton step

In order to minimize ÊλM , we would like to apply second order methods to use FALKON. The typical
second-order method is the Newton scheme, which works as follows:

• Start at θ0 ∈ HM (usually 0)

• Given the t-step θt, compute the second-order approximation of ÊλM around θt:

ÊλM (θ) ≈ ÊλM (θt) +∇ÊλM (θt) · (θ − θt) +
1

2
〈θ − θ0,∇2ÊλM (θt)(θ − θt)〉H

• Then set θt+1 to be the minimizer of the quadratic approximation.∆t = θt+1 − θt is the newton step
and in closed form

∇2ÊλM (θt)∆t = −∇ÊλM (θt) (4.1)

Computing the Hessian and gradient of ÊλM , it is easy to see that equation (4.1) is of the form which
FALKON can deal with as explained in 3.1. Indeed,

∀θ ∈ H, ∇2ÊλM (θ) =
1

n

n∑
i=1

l′′(zi, θ(xi))︸ ︷︷ ︸
:=wi(z)

θi ⊗ θi + λI

In particular, applying directly lemma 24, we have that

Proposition 2 (performance of the FALKON to compute a newton step). Suppose we are at θ0 and let ∆ be
the full newton step at point θ0, i.e. ∆ = −∇2ÊλM (θ0)−1∇ÊλM (θ0) Let Q be an integer, and suppose we sample
the Q points according to the probability vector pi := l′′(zi,θ(xi))∑n

ĩ=1
l′′(zj ,θ(xj))

, 1 ≤ i ≤ n. Let 0 < λ ≤ ||∇2ÊλM (θ)|| and
δ > 0. Let ∆̃ be the approximation of ∆ obtained by solving the pre-conditioned system after t iterations.

If Q ≥ d
(

16.4
∑n
i=1 l

′′(zi,θ(xi))

n N∞(λ) + 3.4
)
, then with probability at least 1− δ,

||∆− ∆̃||∇2ÊλM (θ0)
≤ 2e−tν(θ0)

where d = log 8wκ2

λδ and N∞(λ) = sup1≤i≤n ||C
−1/2
λn θi||2 ≤ κ2

λ . ν(θ0) := 〈∇ÊλM (θ0), ∇2ÊλM (θ0)−1∇ÊλM (θ0)〉H is
called the newton decrement at point θ0.

Making second order methods work: problems and possible directions

The previous proposition shows that we are able to effectively compute an approximation of a newton step
of the function ÊλM at any point using FALKON. However, to the best of our knowledge, it is very hard to prove
the fast convergence of a Newton method. Indeed, there exists a fast regime for Newton methods, but only once
the starting point θ0 is sufficiently close to the optimal value (this region is called the Dynkin ellipsoid).

For example, if we assume that the function l satisfies the generalized self-concordance hypothesis (see [2]
or [9]), that is |l′′′(z, ·)| ≤ Cl′′(z, ·), then ÊλM is Cκ generalized self-concordant, that is

∀θ ∈ H, h, δ ∈ H,
∣∣∣D3ÊλM (θ)[h, δ, δ]

∣∣∣ ≤ Cκ||h||H||δ||2∇2ÊλM (θ)

Typically, this is the case for the logistic loss with C = 1. This combined with the fact that ÊλM is λ strongly
convex shows that the Newton method converges quadratically in the region ν(θ) ≤ Cste

√
λ. However, outside

this region, the full newton step algorithm has no guarantee of converging quickly, and even no guarantee of
converging at all ! (we can modify it a bit using a learning rate, i.e. set θt+1 = θt + τ∆t to make it converge
but no good time guaranties).

For the moment, we are therefore constrained by the size of this ellipsoid which is very small a priori.
However, we aim to find conditions under which this ellipsoid can be made bigger, so that we could somehow
get in it with with another less effective algorithm and then use FALKON to compute newton steps.
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Chapter 5

Experiments

Here, we present FALKON’s performace on two large-scale data-sets. As we are only in the beginning of our
experimentation, we have not proceeded to all of the classical pre-processing for these different data-sets but
rather on making a small comparison between the FALKON method and SAGA, both on the least squares
problem and the logistic regression. We indicate the performance of FALKON in terms of classification error
for both losses; however, our tuning of the parameters being very rough, they are not to be considered the
baseline results of the method. For more complete results on least squares, see [5] which performs an in-depth
experimentation of the performance of FALKON

In these experiments, we used a single TESLA P100 GPU with 16GB of RAM. We consider the two following
datasets:

SUSY (n = 5 × 106, d = 18, binary classification) We used a Gaussian Kernel with σ = 10, λ = 10−6 for
both least squares and logistic regression. When comparing to SAGA, we extracted n = 105 elements and used
M = 3000 Nystrom points in order for SAGA to still be tractable.

HIGGS (n = 1.1×107, d = 28, binary classification) We used a Gaussian Kernel with σ = 10, λ = 10−4 for
both least squares and logistic regression. We did not perform the usual pre-processing of the Higgs data-set
(substracting the mean of each feature and dividing by its variance). When comparing to SAGA, we extracted
n = 105 elements and used M = 3000 Nystrom points in order for SAGA to still be tractable.

We obtained the values of λ and σ by doing a quick cross-validation on the parameters.These parameters
should be tuned more precisely.

Note on SAGA in the kernel setting
In order to perform SAGA in an efficient way, we proceed in the following way. Using the statistical properties

of Nystrom points, we consider a Nystromized SAGA to reduce computations, i.e. we solve a problem of the
type :

min
α∈RM

1

n

n∑
i=1

l(zi, [LnMα]i) +
λ

2
αTLMMα

In order to easily fall in the SAGA framework, we compute a square root TTT = LMM and set β to be the
new variable β = Tα such that the problem is of the form

min
β∈RM

1

n

n∑
i=1

l(zi, [L̃nMβ]i) +
λ

2
||β||2

where L̃nM = LnMT
−1. We do this to find a problem which is regularized in the natural norm and thus

that can be solved using SAGA.

5.1 FALKON for the least squares regression
Here, we consider the least squares loss.

In figure 5.2, we compare the performance of FALKON and SAGA in terms of time. In figure 5.2, we compare
the performance of FALKON and SAGA in terms of epochs, where an epoch is defined (in the FALKON case)
as one evaluation in the conjugate gradient algorithm. We see that in terms of time, FALKON clearly outstrips
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SAGA whereas they are comparable in terms of epochs even if FALKON seems to generalize better (an epoch
in SAGA is much more expensive in terms of time).

Figure 5.1: Comparison between SAGA and FALKON on the HIGGS (left) and SUSY (right) data sets for least
squares regression as a function of time

Figure 5.2: Comparison between SAGA and FALKON on the HIGGS (left) and SUSY (right) data sets for least
squares regression as a function of epochs

If we use the complete power of FALKON to solve the least squares problem, we obtain the results classified
in figure 5.1.

5.2 Experiments on logistic regression
To perform the FALKON method for logistic regression, we used a full newton method starting at 0. While we
cannot prove that this converges to the optimum, this is a standard way of optimizing the logistic regression.

In figure 5.1, we compare the performance of FALKON and SAGA in terms of time. In figure 5.1, we compare
the performance of FALKON and SAGA in terms of epochs, where an epoch is defined (in the FALKON case)
as one iteration in the newton scheme. We make the same observation as previously, that is that in terms of
time, FALKON clearly outstrips SAGA whereas they are comparable in terms of epochs even if FALKON seems
to generalize better (an epoch in SAGA is much more expensive).

data set number of training points M,Q number of test points time (s) classification error (%)
SUSY 4× 106 104 2× 105 300 19.905
HIGGS 107 104 2× 105 300 34.7065

Figure 5.3: Time and classification error on a test set after training with FALKON for the least squares regression
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Figure 5.4: Comparison between SAGA and FALKON on the HIGGS (left) and SUSY (right) data sets for the
logistic regression as a function of time

Figure 5.5: Comparison between SAGA and FALKON on the HIGGS (left) and SUSY (right) data sets for
logistic regression as a function of epochs

If we use the complete power of FALKON to solve logistic regression on a significant part of the data set,
we obtain results which are classified in figure 5.2.

data set number of training points M,Q number of test points time (s) classification error (%)
SUSY 4× 106 104 2× 105 2000 19.835
HIGGS 107 104 2× 105 3000 36.0305

Figure 5.6: Time and classification error on a test set after training for logistic regression
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Conclusion

In this report, we have tried extending FALKON in order to find methods capable of dealing with large scale
Kernel methods. Combining random projections and pre-conditioning, we have succeed in generalizing FALKON
to solve a wider range of quadratic learning problems with complexity guarantees of O(n

√
n) in time and O(n)

in memory (up to log factors), making weighed kernel ridge regression tractable for large-scale problems.
We have also tried using FALKON in order to solve non-quadratic learning problems using second order

methods. Experimentally, they seem to be promising for certain losses like the logistic loss, if we perform a
Newton method.

The aim for future work is to try to get satisfactory theoretical results and rates for second order methods.
This entails both finding good statistical bounds on the estimator we compute with FALKON as well as guar-
anteeing that this computation can be done in a limited number of iterations. In particular, a key element in
this analysis seems to be the better control of the so-called Dynkin ellipsoid, the region in which second-order
methods perform very well.
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Appendix A

Definitions and notations

A.1 Optimization setting
In the entire analysis, we will use the letter n to denote functions or operators attached to the family (xi)1≤i≤n,
Q to denote functions or operators attached to the sub-family (x̄j)1≤j≤Q which is a sub-family of (xi) used
to compute the pre-conditioner and the letter M to denote functions or operators linked to the reduction of
dimension. Recall the following definitions:

Definition 5 (Global problem). Recall that we are given a positive diagonal matrix Wn ∈ Rn×n. Moreover, we
define :

• Sn : H → Rn such that Sn(x) = 1√
n

(x · θi)1≤i≤n, with adjoint

• S∗n : Rn → H such that S∗n (ai)1≤i≤n = 1√
n

∑n
i=1 aivi

• Cn : H → H such that Cn = 1
n

∑n
i=1 wiθi ⊗ θi = S∗nWnSn

• Cλn = Cn + λI

Definition 6 (reduction to HM ). In the whole of the report, we assume that we are given a linear map

SM : H → RM

and its dual map:
S∗M : RM → H

We denote with HM the range of S∗M and PM the orthogonal projector on HM .

Definition 7 (sub-sampling the Q-Points). Recall that we sub-sample the Q points from the (xi) according to
a certain probability vector p. Denote with (i1, ..., iQ) the sampled indices. We define

• WQ = Diag (wik)1≤k≤Q ∈ RQ×Q and DQ = Diag
(√

1
npik

)
1≤k≤Q

;

• SQ : θ ∈ H 7−→ 1√
Q

(x · θjk)1≤k≤Q ∈ RQ

• GQ = S∗QDQWQDQSQ = 1
Q

∑Q
k=1

(√
wik
npik

θik

)
⊗
(√

wik
npik

θik

)
and GλQ = ĜQ + λI

Definition 8 (matrices). We define

• Lnn := SnS
∗
n ∈ Rn×n and LMM := SnS

∗
n ∈ RM×M ;

• LMn := SMS
∗
n ∈ RM×n and LnM = SnS

∗
M ∈ Rn×M ;

• LMQ := SMS
∗
Q ∈ RM×Q and LQM = SQS

∗
M ∈ RQ×M

Note that we always consider the computation of one of the coefficient of these matrices to be possible/in constant
time.

Definition 9 (Intrinsic dimensions). Define

N∞(λ) := sup
1≤i≤n

||C−1/2λn θi||2

We have N∞(λ) ≤ κ2

λ .
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A.2 Statistical setting
Recall that L2(Z) is the space of measurable functions ψ : Z → R such that E[|ψ(Z)|2] < +∞.

Definition 10. Under the assumptions above, for any θ ∈ H, ψ ∈ L2(Z)

• S : H → L2(Z) such that Sθ : (x, y) 7→ 〈θ, φ(x)〉 with adjoint

• S∗ : L2(Z)→ H such that S∗ψ = E[ψ(Z)φ(X)]

• W : L2(Z)→ L2(Z) such that Wψ = wψ

• C : H → H such that C = S∗WS. Note that C = E[w(Z) φ(X)⊗ φ(X)]

We also use all the previous notations for discrete operators, but with a hat on top to signify their dependance
on the data.

Let us introduce the two following quantities :

Definition 11 (effective dimension). Define

N (λ) := Tr
(
C(C + λI)−1

)
, N∞(λ) := sup

x∈X
||φ(x)(C + λI)−1/2||2, Nw(λ) := sup

x,y
||
√
w(x, y)φ(x)(C + λI)−1/2||2

We have N (λ) ≤ ||w||1N∞(λ), Nw(λ) ≤ ||w||∞N∞(λ) and N∞(λ) ≤ κ2

λ . N (λ) is called the effective dimension
and is somehow a measure of the complexity of the space H with respect to the measure wdρ.
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Appendix B

Analytic results

In this section, we provide purely analytic results, seeing FALKON as the solving of the optimization problem
(QλM ). These results will then be exploited in all settings, changing the notations depending on whether we are
in the optimization setting or statistical setting.

B.1 Controlling the condition number of H̃

The objective of this section is to bound the condition number of the matrix H̃ (see definition 3) associated to
the pre-conditioned linear system. We wish to do so by bounding this condition number by quantities we can
more easily control in probability (see lemma 5).

Lemma 2. Let λ > 0, H̃ as in definition 3, B,A as in definition 2. The matrix H̃ is characterized by :

H̃ = A−TV ∗(Cn + λI)V A−1, where V = SMBA

Moreover, V is a partial isometry such that V ∗V = Im and V has the range of S∗M which is HM .

Proof. First, decompose the matrix we precondition in the following way :

H = (LMnWnLnM + λLMM )

= (SMS
∗
nWnSnS

∗
M + λSMS

∗
M )

= SM (Cn + λI)S∗M

Since by definition of V , V A−1 = S∗MB,

A−TV ∗(Cn + λI)V A−1 = BTSM (Cn + λI)S∗MB = BTHB

where the last equality comes from the preliminary calculation. By definition of H̃, we have shown that
A−TV ∗(Ĉn + λI)V A−1 = H̃.

To obtain the partial isometry, note that using the definitions of A,U, T in definition 2, we find V = S∗MBA =
S∗MUT

−1. Then, using equation 1. in proposition ??, we find that

V ∗V = T−TUTSMS
∗
MUT

−1

= T−TUTUTTTUTUT−1 = Im

Finally, since SMS∗M = (UTT )(UTT )T , and T is invertible, the range of U is the same as the range of SM .
Thus, the range of S∗MU is equal to the range of SM and thus the range of V = S∗MUT

−1 is also the range of
S∗M .

Lemma 3. H̃ = I + E where E = A−TV ∗(Cn − ĜQ)V A−1. In particular, if ||E|| < 1, then

cond(H̃) ≤ 1 + ||E||
1− ||E||
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Before proving this lemma, we will prove the following technical lemma, which shows that our preconditioner
satisfies the good matrix properties (see discussion before definition 2)

Lemma 4 (technical properties of the preconditioner). The preconditioner we defined in Definition 2 satisfies
the following property:

BT
(
SMS

∗
QDQWQDQSQS

∗
M + λnSMS

∗
M

)
B = BTSM

(
ĜQ + λI

)
S∗MB = Im (B.1)

Proof. Using the matrices U, T,A introduced in definition 2, we have by definition of A:

UTTATATUT = UTT
(
T−TUTSMS

∗
QDQWQDQSQS

∗
MUT

−1 + λIm
)
TUT

= UUT
(
SMS

∗
QDQWQDQSQS

∗
M

)
UUT + λUTTTUT

Using the fact that UUTSM = SM (the span of SM is the span of SMS∗M ) and UTTTUT = SMS
∗
M (see

definition 2),
UTTATATUT = SMS

∗
QDQWQDQSQS

∗
M + λSMS

∗
M

Using this equality, since B = UT−1A−1 and UTU = Im (see definition 2), equation (B.1) falls directly.

We can now prove lemma 3, simply using the previous technical lemma:

Proof. We need to show that A−TV ∗(ĜQ + λI)V A−1 = I. To do so, develop this using operators :

A−TV ∗(GQ + λI)V A−1 = BTSM (GQ + λI)S∗MB

We then conclude using the (B.1)

Lemma 5. Let E be as defined in 3. Then

||E|| ≤ ||G−1/2λQ (Cn −GQ)G
−1/2
λQ || (B.2)

Proof. First note that in the proof of lemma 3, we prove that A−TV ∗(GQ + λI)V A−1 = I and thus

||A−TV ∗G1/2
λQ ||

2 = ||A−TV ∗(GQ + λI)V A−1|| = ||I|| = 1

Then, we multiply and divide by G−1/2λQ to obtain

||E|| = ||A−TV ∗(Cn −GQ)V A−1||

= ||A−TV ∗G1/2
λQG

−1/2
λQ (Cn −GQ)G

−1/2
λQ G

1/2
λQV A

−1||

≤ ||A−TV ∗G1/2
λQ || ||G

−1/2
λQ (Cn −GQ)G

−1/2
λQ || ||G1/2

λQV A
−1||

= ||A−TV ∗G1/2
λQ ||

2 ||G−1/2λQ (Cn −GQ)G
−1/2
λQ || = ||G−1/2λQ (Cn −GQ)G

−1/2
λQ ||

B.2 Representation of the FALKON estimator
Lemma 6 (Representation of the Falkon estimator in H).

θλ,M,Q,t
∗ = S∗Mα

λ,M,Q,t
∗ = S∗MBβ

λ,M,Q,t
∗

Moreover, we have
θλ,M∗ = S∗MBβ

λ,M,Q
∗
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Proof. The fact that θλ,M,Q,t
∗ = S∗Mα

λ,M,Q,t
∗ = S∗MBβ

λ,M,Q,t
∗ is just an immediate consequence of the definition

of the FALKON estimator.
Then note that by definition, βλ,M,Q

∗ = H̃−1BTSMS
∗
nb, so that

S∗MBβ
λ,M,Q
∗ =

(
S∗MBH̃

−1BTSM

)
S∗nb

Using the notations in Lemma 2, we see that H̃−1 = A (V ∗CnV + λI)
−1
AT and thus, using the fact that

V = SMBA,
S∗MBH̃

−1BTSM = V (V ∗CnV + λI)
−1
V ∗

and therefore
S∗MBβ

λ,M,Q
∗ = V (V ∗CnV + λI)

−1
V ∗S∗nb

On the other hand, using the fact that V is a partial isometry with range HM (see lemma 2), we see that
V V ∗ = PM where PM is the orthogonal projection on HM . Starting from the characterization of θλ,M∗ in (3.1),

θλ,M∗ = (PMS
∗
nWnSnPM + λI)

−1
PMS

∗
nb = PMS

∗
nW

1/2
n

(
W 1/2
n SnPMS

∗
nW

1/2
n + λI

)−1
W−1/2n b

= V V ∗S∗nW
1/2
n

(
W 1/2
n SnV V

∗S∗nW
1/2
n + λIn

)−1
W−1/2n b

= V (V ∗S∗nWnSnV + λIm)
−1
V ∗S∗nb

which gives us the result.

Lemma 7. Recall that βλ,M,Q
∗ is the solution to H̃βλ,M,Q

∗ = BTSMS
∗
nb. Then

||H̃1/2βλ,M,Q
∗ ||Rm = || (PMCnPM + λI)

−1/2
PMS

∗
nb|| = ||C

1/2
λn θ

λ,M
∗ ||

Proof. Using the definition of H̃, we can develop

||H̃1/2β∞||2 = ||H̃−1/2BTSMS∗nb||2 = bTSnS
∗
MBH̃

−1BTSMS
∗
nb

= bTSnV (V ∗CnV + λI)
−1
V ∗S∗nb = bTSnPM (PMCnPM + λI)

−1
PMS

∗
nb

= || (PMCnPM + λI)
−1/2

PMS
∗
nb||2 = ||C1/2

λn θ
λ,M
∗ ||2

This yields the following lemma, using theorem 6.6 of [7]

Lemma 8 (performance of the conjugate gradient method). We can bound the performance of the conjugate
gradient method in the following way:

||H̃1/2(βt − β∞)|| ≤ Q(H̃, t)|| (PMCnPM + λI)
−1/2

PMS
∗
nb|| = Q(H̃, t)||C1/2

λn θ
λ,M
∗ || (B.3)

where Q(H̃, t) = 2

(
1− 2√

cond(H̃)+1

)t
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Appendix C

Probabilistic estimates

Throughout the report, we will adopt and discuss three different sub-sampling strategies which we can use to
sample either the M points (especially when we consider the statistical case and under the assumption (M-2))
or the Q points.

• Uniform sampling : we select indices in {1, ..., n} without replacement;

• Sampling according to the weights : we select indices in {1, ..., n} according to the probability vector
pi = wi∑n

j=1 wj
= wi

nw where w =
∑n
j=1 wj

n

• Sampling using (q, λ0, δ)-approximate leverage scores

This method of sampling is meaningful only if we are in the statistical setting and not in the optimization
one. Let n ∈ N and λ > 0. We adapt the definitions from [4]. In this context, the exact leverage scores
are defined by

∀1 ≤ i ≤ n, lλ(i) =
(
W 1/2
n LnnW

1/2
n (W 1/2

n LnnW
1/2
n + λI)−1

)
ii

We then define approximate leverage scores:

Definition 12 ((q, λ0, δ)-approximate leverage scores). Let δ > 0, λ0 > 0 and q > 1. A (random)
sequence (l̂λ(i))1≤i≤n is denoted as (q, λ0, δ)-approximate leverage scores, when the following holds with
probability at least 1− δ:

∀λ ≥ λ0, ∀1 ≤ i ≤ n,
1

q
lλ(i) ≤ l̂λ(i) ≤ qlλ(i)

Thus, if we are given a sequence of approximate leverage scores (l̂λ(i))1≤i≤n, we can sample indices in
{1, ..., n} according to the probability vector given by pi = l̂λ(i)∑n

j=1 l̂λ(j)
.

C.1 Optimization case

C.1.1 Bounds involving Q for the condition number
In the optimization case, the only sampling we can really consider for the Q points is sampling along weights.

Lemma 9. Let Q be an integer, and suppose we sample (x̄1, ȳ1), ..., (x̄Q, ȳQ) from (x1, y1), ..., (xn, yn) according
to the probability vector pi := wi∑n

ĩ=1
wĩ
, 1 ≤ i ≤ n. Let 0 < λ ≤ ||Cn|| and µ > 0.

Then with probability at least 1− µ,

||G−1/2λQ (Cn −GQ)G
−1/2
λQ || ≤ t

1− t
with t ≤ 2d(1 + wN∞(λ))

3Q
+

√
2dwN∞(λ)

Q
(C.1)

where d = log 8wκ2

λµ and N∞(λ) is defined in definition 9. Recall N∞(λ) ≤ w κ2

λ .

Proof. • The aim is to bound the following quantity :

||G−1/2λQ (Cn −GQ)G
−1/2
λQ || ≤ ||G−1/2λQ C

1/2
λn ||

2||C−1/2λn (Cn −GQ)C
−1/2
λn ||
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≤
(

1− λmax(C
−1/2
λn (Cn −GQ)C

−1/2
λn )

)−1
||C−1/2λn (Cn −GQ)C

−1/2
λn ||

≤ t

1− t
where t = ||C−1/2λn (Cn −GQ)C

−1/2
λn ||

In this sequence we have used different inequalities to precise in [6]

• Define u to be the random variable distributed as follows:

u =

√
wj
pjn

θj =
√
wθj with probability pj , ∀1 ≤ j ≤ n

It is easy to see that in our case, GQ is of the form 1
Q

∑Q
i=1 ui ⊗ ui where the ui are independent and

identically distributed following the law of u.

Let us now check the hypothesis for proposition 6 in the paper [6]

– By definition of u:

E[u⊗ u] =

n∑
j=1

pj

(√
wj
pjn

θj

)
⊗
(√

wj
pjn

θj

)
=

1

n

n∑
j=1

wjθj ⊗ θj = Cn

– Let us now show the bound on the eigenvalues :

〈u,C−1λn u〉 ≤ sup
1≤j≤n

||C−1/2λn

√
wjθj ||2

pjn
=

∑n
j=1 wi

n
sup

1≤j≤n
||C−1/2λn θj ||2

= wN∞(λ) ≤ wκ
2

λ

Therefore we can apply the inequality in [6] to find, as long as 0 < λ ≤ ||Cn||, so that for all µ ≥ 0, with
probability at least 1− µ,

||C−1/2λn (Cn −GQ)C
−1/2
λn || ≤ 2d(1 + wN∞(λ))

3Q
+

√
2dwN∞(λ)

Q

where d = log 8w
λµ .

Lemma 10 (bound on the condition number). Let Q be an integer, and suppose we sample (x̄1, ȳ1), ..., (x̄Q, ȳQ)
from (x1, y1), ..., (xn, yn) according to the probability vector pi := wi∑n

ĩ=1
wĩ
, 1 ≤ i ≤ n. Let 0 < λ ≤ ||Cn|| η > 0

and δ > 0.
Then with probability at least 1− δ, if

Q ≥ 8d

[
wN∞(λ)

((
1 + η

η

)2

+
1 + η

3η

)
+

1 + η

3η

]

with d = log 8wκ2

λδ , then
Cond(H̃) ≤ 1 + η

Proof. Using the notation from lemma C.1, we see that combining lemma 5 and C.1, we find that with probability
1− δ, since 0 < λ < ||Cn||, for any integer Q,

Cond(H̃) ≤ 1

1− 2t
, with t ≤ 2d(1 + wN∞(λ))

3Q
+

√
2dwN∞(λ)

Q

Solving the previous inequality, we easily find that
√
Q must be greater than the solution of an order 2

polynomial, and bounding this solution, we obtain the desired inequality.
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C.1.2 Bounds involvingM to measure the precision of the Nyström approximation
in the sub-sampling case

In this section and only in this section, we will always make the assumption (M-2) wich we recall below:

S∗M : α 7→
M∑
j=1

αjθij where (ij)1≤j≤M ∈ {1, ..., n}M (M-2)

This allows us to make a probabilistic analysis of the effect of PM and is also the most natural way to reduce
dimension. Let us define the different operators associated to this sub-sampling.

Definition 13 (M -points by sub-sampling). Suppose we make the assumption (M-2). Suppose the (ij)1≤j≤M
are iid samples from {1, ..., n} according to the probability vector p = (pi)1≤i≤n. We define

• WM = Diag
(
wij
)
1≤k≤M ∈ RM×M and DM = Diag

(√
1

npij

)
1≤j≤M

;

• SM : x ∈ H 7−→ 1√
M

(
x · vij

)
1≤j≤M ∈ RM

• GM = S∗MDMWMDMSM = 1
M

∑Q
j=1

(√
wij
npij

θij

)
⊗
(√

wij
npij

θij

)
and GλM = GM + λI

Lemma 11 (Nystrom approximation in the empirical setting, non-uniform). Suppose we sample Nystrom points
by sampling M points from {1, ..., n} along the probability vector p = (pi)1≤i≤n where pi = wi∑

ĩ wĩ
= wi

nw . Suppose

we have δ > 0, η > 0 and 0 < λ < ||Cn||. If M ≥ d
(

2wN∞(λ)
(

1+η
η

)2
+ 4

3
1+η
η

)
, then with probability at least

1− δ,
||(I − PM )C

1/2
λn ||

2 ≤ λ(1 + η)

where d = log 4Tr(Cn)
λδ ≤ log 4wκ2

λδ In particular, if η = 2, if M ≥ d
(
9
2wN∞(λ) + 2

)
, then with probability at least

1− δ,
||(I − PM )C

1/2
λn ||

2 ≤ 3λ

Proof. Recall that GM = 1
M

∑M
j=1

(√
wj
pjn

θ̃j

)
⊗
(√

wj
pjn

θ̃j

)
= w

M

∑M
j=1 θ̃j ⊗ θ̃j which has the same range as PM .

Using proposition 3 and 8 of [4], we find that

||(I − PM )C
1/2
λn ||

2 ≤ λ

1− λmax

(
C
−1/2
λn (Cn −GM )C

−1/2
λn

)
Proceeding as in lemma C.1, and applying proposition 6 of [6], we find that with probability at least 1− δ,

λmax

(
C
−1/2
λn (Cn −GM )C

−1/2
λn

)
≤ 2d

3M
+

√
2dwN∞(λ)

M
, where d = log

4Tr(Cn)

λδ
≤ log

4wκ2

λδ

Following the same proof, we have the following lemma for uniform sampling.

Lemma 12 (Nystrom approximation in the empirical setting,uniform). Suppose we have a subset of M points
of {1, ..., n} sampled uniformly at random with replacement and ||Cn|| > λ > 0. Take δ > 0, η > 0. With

probability at least 1− δ, if M ≥ d
(

2 sup1≤i≤n wiN∞(λ)
(

1+η
η

)2
+ 4

3
1+η
η

)
, then with probability at least 1− δ,

||(I − PM )C
1/2
λn ||

2 ≤ λ(1 + η)

where d = log 4Tr(Cn)
λδ ≤ log 4wκ2

λδ In particular, if η = 2, if M ≥ d
(
9
2 sup1≤i≤n wiN∞(λ) + 2

)
, then with

probability at least 1− δ,
||(I − PM )C

1/2
λn ||

2 ≤ 3λ

Proof. We can obtain a bound with the "with replacement" version. However, in practice it is much better
without replacement and one must use an equivalent of Berstein thing with operators without replacement.
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C.2 Statistical case

C.2.1 Bounds involving Q for the condition number
n the statistical case, there are two possible ways of sampling the Q points which make sense : sampling
according to the weights or sampling according to leverage scores.

Sampling according to the weights

Lemma 13. Let Q be an integer, δ > 0. Suppose we sample indexes i1, ..., iQ from {1, ..., n} according to the
re-normalized weights. When n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 36κ2||w||∞

δ , if 19κ2||w||∞
n log 3n

2δ ≤ λ ≤ ||C||, with
probability at least 1− δ,

||Ĝ−1/2Qλ

(
Ĉn − ĜQ

)
Ĝ
−1/2
Qλ || ≤

t

1− t
where t ≤ 2d(1 + (||w||1 + ε||w||∞)N∞(λ))

3Q
+

√
2d (||w||1 + ε||w||∞)N∞(λ)

Q

where d = log 132κ2||w||1
λδ and ε =

√
1
2n log 3

δ

Proof. • Using techniques similar to the previous ones, for all µ > 0 and λ > 0

||Ĉ−1/2nλ

(
Ĉn − ĜQ

)
Ĉ
−1/2
nλ || ≤ 2d(1 + wN∞ (λ))

3Q
+

√
2dwN∞ (λ)

Q

where d = log
4intdim(Ĉ−1

λn Ĉn)
µ

• Applying the bound from proposition 3, we find that for any µ > 0, n ≥ 405κ2||w||∞∨67κ2||w||∞ log 12κ2||w||∞
µ ,

if 19κ2||w||∞
n log n

2µ ≤ λ ≤ ||C||, then the following holds with probability at least 1− µ :

intdim
(
Ĉ−1λn Ĉn

)
≤ 11Tr (C)

λ
≤ 11||w||1κ2

λ
and ||Ĉ−1/2λn C

1/2
λ ||

2 ≤ 3

2

• Using the Hoeffding inequality, if ε =
√

1
2n log 1

µ , then with probability at least 1−µ, w ≤ ||w||1 + ε||w||∞

• Performing a union bound, we have for all µ > 0, n ≥ 405κ2||w||∞∨67κ2||w||∞ log 12κ2||w||∞
µ , if 19κ2||w||∞

n log n
2µ ≤

λ ≤ ||C||, with probability at least 1− 3µ, for ε =
√

1
2n log 1

µ ,

||Ĉ−1/2nλ

(
Ĉn − ĜQ

)
Ĉ
−1/2
nλ || ≤ 2d(1 + (||w||1 + ε||w||∞)N∞(λ))

3Q
+

√
2d (||w||1 + ε||w||∞)N∞(λ)

Q

where d = log 44κ2||w||1
λµ

Lemma 14 (Sampling according to weights). Let Q be an integer, δ > 0, η > 0. Suppose we sample indexes
i1, ..., iQ from {1, ..., n} using pi = wi

nw . When n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 36κ2||w||∞
δ , if 19κ2||w||∞

n log 3n
2δ ≤

λ ≤ ||C||, then if

Q ≥ 8d (||w||1 + ε||w||∞)N∞(λ)

(
1 + η

3η
+

(
1 + η

η

)2
)

+ 8d
1 + η

3η

with probability at least 1− δ,
Cond(H̃) ≤ 1 + η

where d = log 132Tr(C)
λδ ≤ log 132||w||1κ2

λδ and ε =
√

1
2n log 3

δ

Sampling according to leverage scores

Lemma 15. Let Q be an integer, δ > 0, q ≥ 1, λ0 > 0. Suppose we sample indexes i1, ..., iQ from {1, ..., n} using
(q, λ0, δ)-leverage scores. When n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 24κ2||w||∞

δ , λ0 ∨ 19κ2||w||∞
n log n

δ ≤ λ ≤ ||C||,
then with probability at least 1− δ,
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||Ĝ−1/2Qλ

(
Ĉn − ĜQ

)
Ĝ
−1/2
Qλ || ≤

t

1− t
with t ≤ 2d(1 + 2.65q2N (λ))

3Q
+

√
5.3dq2N (λ)

Q

where d = log 88Tr(C)
λδ ≤ log 88||w||1κ2

λδ

Proof. • As in a previous lemma :

||Ĝ−1/2Qλ

(
Ĉn − ĜQ

)
Ĝ
−1/2
Qλ || ≤

t

1− t
where t = ||Ĉ−1/2nλ

(
Ĉn − ĜQ

)
Ĉ
−1/2
nλ ||

• Let us express the leverage scores using the operators we have introduced in section 3.

lλ(i) = eTi W
1/2
n L̂nnW

1/2
n

(
W 1/2
n L̂nnW

1/2
n + λnI

)−1
ei

= eTi W
1/2
n Ŝn

(
W 1/2
n Ŝn

)∗ (
W 1/2
n Ŝn

(
W 1/2
n Ŝn

)∗
+ λI

)−1
ei

= eTi

(
W 1/2
n Ŝn

)((
W 1/2
n Ŝn

)∗ (
W 1/2
n Ŝn

)
+ λI

)−1 (
W 1/2
n Ŝn

)∗
ei

=
1

n
〈
√
wiθi,

(
Ĉn + λI

)−1√
wiθi〉H

=
1

n
||Ĉ−1/2λn

√
wiθi||2 =

1

n
Tr
((

Ĉn + λI
)−1

wiθi ⊗ θi
)

In particular, the last equation easily shows that
∑n
j=1 lλ(j) = Tr

((
Ĉn + λI

)−1
Ĉn

)
= N̂ (λ)

• Define v to be the random variable distributed as follows:

v =

√
wj

√
pjn

θj with probability pj , ∀1 ≤ j ≤ n

It is easy to see that in our case, ĜQ is of the form 1
Q

∑Q
i=1 vi ⊗ vi where the vi are independent and

identically distributed following the law of v.

Let us now check the hypothesis for proposition 6 in the paper [6]

– By definition of v:

E[v ⊗ v] =

n∑
j=1

pj

( √
wj

√
pjn

θj

)
⊗
( √

wj
√
pjn

θj

)
=

1

n

n∑
j=1

wjθj ⊗ θj = Ĉn

– Let us now show the bound on the eigenvalues :

〈v, Ĉ−1λn v〉 ≤ sup
1≤j≤n

||Ĉ−1/2λn

√
wjKxj ||2

pjn
= sup

1≤j≤n

lλ(j)

pj
= sup

1≤j≤n

lλ(j)

l̂λ(j)

∑
j̃

l̂λ(j̃)

≤ q2 lλ(j)

lλ(j)

∑
j̃

lλ(j̃) = q2N̂ (λ)

Therefore we can apply proposition 8 in [4] to find, for all 0 < λ, µ ≥ 0, with probability at least 1− µ,

||Ĉ−1/2λn

(
Ĉn − ĜQ

)
Ĉ
−1/2
λn || ≤ 2d(1 + q2N̂ (λ))

3Q
+

√
2dq2N̂ (λ)

Q

where d = log
4intdim(Ĉ−1

λn Ĉn)
µ .
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• Applying the bound from proposition 3, we find that for any µ > 0, n ≥ 405κ2||w||∞∨67κ2||w||∞ log 12κ2||w||∞
µ ,

if 19κ2||w||∞
n log n

2µ ≤ λ ≤ ||C||, then the following holds with probability at least 1− µ :

intdim
(
Ĉ−1λn Ĉn

)
≤ 11Tr (C)

λ
≤ 11||w||1κ2

λ
and N̂ (λ) ≤ 2.65N (λ)

Therefore, applying a good union bound with the previous result, with probability at least 1− 2µ,

||Ĉ−1/2λn

(
Ĉn − ĜQ

)
Ĉ
−1/2
λn || ≤ 2d(1 + 2.65q2N (λ))

3Q
+

√
5.3dq2N (λ)

Q

where d = log 44Tr(C)
λµ ≤ log 44||w||1κ2

λµ

Lemma 16 (Bound on the condition number with Nystrom points). Let Q be an integer, δ > 0, q ≥ 1,
λ0 > 0, η > 0. Suppose we sample indexes i1, ..., iQ from {1, ..., n} using (q, λ0, δ)-leverage scores. When
n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 24κ2||w||∞

δ , λ0 ∨ 19κ2||w||∞
n log n

δ ≤ λ ≤ ||C||, then if

Q ≥ 21.2dq2N (λ)

(
1 + η

3η
+

(
1 + η

η

)2
)

+ 8d
1 + η

3η

with probability at least 1− δ,
Cond(H̃) ≤ 1 + η

where d = log 88Tr(C)
λδ ≤ log 88||w||1κ2

λδ

C.2.2 Bounds involvingM to measure the precision of the Nyström approximation
in the sub-sampling case

Lemma 17 (Nystrom approximation in the continuous setting, uniform). Suppose we have a subset of M points
of {1, ..., n} sampled uniformly at random amongst subsets of Mpoints of {1, ..., n} and λ > 0. Take δ > 0.
With probability at least 1− δ, if M ≥ d

(
9
2Nw(λ)λ+ 2

)
then

||(I − PM )C
1/2
λ ||

2 ≤ 3λ

where Nw(λ) = supz∈Z ||C
−1/2
λ

√
w(z)φ(x)||2 ≤ ||w||∞ κ2

λ and d = log 4Tr(C)
λδ ≤ log 4||w||1κ2

λδ .

Proof. Recall that ĈM = 1
M

∑M
j=1

(√
wj θ̃j

)
⊗
(√

wj θ̃j

)
and ĈM has range HM as long as the wj are stricly

positive (positive weights hypothesis). Using proposition 3 of [4], we find that

||(I − PM )C
1/2
λ || ≤ λ

1/2||Ĉ−1/2λM C
1/2
λ ||

Then, using proposition 8 of [6], we have that

||(I − PM )C
1/2
λ ||

2 ≤ λ

1− λmax

(
C
−1/2
λ

(
C − ĈM

)
C
−1/2
λ

)
Let us apply proposition 6 of [6]. Define v to be the random variable

√
w(Z)φ(X). We see that with our

hypotheses, ĈM = 1
M

∑M
j=1 vj ⊗ vj where the vj are i.i.d. and follow the law of v. Let us now check the

hypotheses of proposition 6 in [6].

• By definition of v, we have E[v ⊗ v] = C.

• 〈v, C−1λ v〉 ≤ Nw(λ) := supz∈Z ||C
−1/2
λ

√
w(z)φ(x)||2 ≤ ||w||∞ supx∈X ||C

−1/2
λ φ(x)||2 ≤ ||w||∞ κ2

λ

We can therefore apply the proposition : with probability 1− δ, we have

λmax

(
C
−1/2
λ

(
C − ĈM

)
C
−1/2
λ

)
≤ 2d

3M
+

√
2dNw(λ)

M
, where d = log

4Tr(C)

λδ
≤ log

4||w||1κ2

λδ

Then note that with the M we want, we systematically have λmax <
2
3 which suffices.
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Lemma 18 (With Nystrom leverage scores). Let M be an integer, δ > 0, q ≥ 1, λ0 > 0, and suppose the indices
i1, ..., iQ have been sampled using (q, λ0, δ)-leverage scores. When n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 24κ2||w||∞

δ ,
λ0 ∨ 19κ2||w||∞

n log n
δ ≤ λ ≤ ||C||, then if M ≥ 8d

3 + 21.2dq2N (λ), with probability at least 1− δ,

||(I − PM )C
1/2
λ ||

2 ≤ 3λ

Proof. Recall that ĜM = 1
M

∑M
j=1

(√
wj
npj

θ̃j

)
⊗
(√

wj
npj

θ̃j

)
and ĜM has range HM as long as the wj are stricly

positive (positive weights hypothesis). Using proposition 3 of [4], we find that

||(I − PM )C
1/2
λ ||

2 ≤ λ||Ĝ−1/2λM C
1/2
λ ||

2 ≤ λ||C1/2
λ Ĉ

−1/2
λn ||2||Ĝ−1/2λM Ĉ

1/2
λn ||

2

Then, using proposition 8 of [6], we have that

||(I − PM )C
1/2
λ ||

2 ≤ λ(
1− λmax

(
C
−1/2
λ

(
C − Ĉn

)
C
−1/2
λ

))(
1− λmax

(
Ĉ
−1/2
λn

(
Ĉn − ĜM

)
Ĉ
−1/2
λn

))
Let us apply proposition 6 of [6] : with probability 1− τ and all λ > 0, we have

λmax

(
Ĉ
−1/2
λn

(
Ĉn − ĜM

)
Ĉ
−1/2
λn

)
≤ 2d

3M
+

√
2dq2N̂ (λ)

M
, where d = log

2intdim
(
Ĉ−1λn Ĉn

)
τ

For any τ > 0, n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 12κ2||w||∞
τ , if 19κ2||w||∞

n log n
2τ ≤ λ ≤ ||C||, then the following

holds with probability at least 1− τ :

intdim
(
Ĉ−1λn Ĉn

)
≤ 11Tr (C)

λ
≤ 11||w||1κ2

λ
, ||Bn|| ≤

1

3
, N̂ (λ) ≤ 2.65N (λ)

Taking a union bound and τ = δ
2 , we see that for any n ≥ 405κ2||w||∞∨67κ2||w||∞ log 24κ2||w||∞

δ , if 19κ2||w||∞
n log n

δ ≤
λ ≤ ||C||

||(I − PM )C
1/2
λ ||

2 ≤ 3λ

2
(

1− λmax

(
Ĉ
−1/2
λn

(
Ĉn − ĜM

)
Ĉ
−1/2
λn

))
and

λmax

(
Ĉ
−1/2
λn

(
Ĉn − ĜM

)
Ĉ
−1/2
λn

)
≤ 2d

3M
+

√
5.3dq2N (λ)

M
, where d = log

44Tr (C)

λδ

The right hand side quantity is upper bounded by 1
2 as soon as M ≥ 8d

3 + 21.2dq2N (λ) hence the result.

Lemma 19 (With weights). Let M be an integer, δ > 0, and suppose the indices i1, ..., iM have been sampled
using the weights. When n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 36κ2||w||∞

δ , 19κ2||w||∞
n log 3n

2δ ≤ λ ≤ ||C||, then if
M ≥ 8d

3 + 21.2d (||w||1 + ε||w||∞)N∞(λ) , with probability at least 1− δ,

||(I − PM )C
1/2
λ ||

2 ≤ 3λ

where d = log 66Tr(C)
λδ and ε =

√
1
2n log 3

δ

Proof. As previously

||(I − PM )C
1/2
λ ||

2 ≤ λ(
1− λmax

(
C
−1/2
λ

(
C − Ĉn

)
C
−1/2
λ

))(
1− λmax

(
Ĉ
−1/2
λn

(
Ĉn − ĜM

)
Ĉ
−1/2
λn

))
Let us apply proposition 6 of [6] : with probability 1− τ and all λ > 0, we have

λmax

(
Ĉ
−1/2
λn

(
Ĉn − ĜM

)
Ĉ
−1/2
λn

)
≤ 2d

3M
+

√
2dwN̂∞(λ)

M
, where d = log

2intdim
(
Ĉ−1λn Ĉn

)
τ

For any τ > 0, n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 12κ2||w||∞
τ , if 19κ2||w||∞

n log n
2τ ≤ λ ≤ ||C||, then the following

holds with probability at least 1− τ :

intdim
(
Ĉ−1λn Ĉn

)
≤ 11Tr (C)

λ
≤ 11||w||1κ2

λ
, ||Bn|| ≤

1

3
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Using the Hoeffding inequality, if ε =
√

1
2n log 1

τ , then with probability at least 1− τ , w ≤ ||w||1 + ε||w||∞
Taking a union bound and τ = δ

3 , we see that for any n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 36κ2||w||∞
δ , if

19κ2||w||∞
n log 3n

2δ ≤ λ ≤ ||C||

||(I − PM )C
1/2
λ ||

2 ≤ 3λ

2
(

1− λmax

(
Ĉ
−1/2
λn

(
Ĉn − ĜM

)
Ĉ
−1/2
λn

))
and

λmax

(
Ĉ
−1/2
λn

(
Ĉn − ĜM

)
Ĉ
−1/2
λn

)
≤ 2d

3M
+

√
5.3d (||w||1 + ε||w||∞)N∞(λ)

M

where d = log 66Tr(C)
λδ and ε =

√
1
2n log 3

δ

The right hand side quantity is upper bounded by 1
2 as soon as M ≥ 8d

3 + 21.2 (||w||1 + ε||w||∞)N∞(λ)
hence the result.

C.3 Bounds for the intrinsic dimension
We first take this bound from proposition 1 in [4], easily adapted to the case with weights.

Lemma 20 (Empirical effective dimension). Recall that N̂ (λ) = Tr
(
Ĉ−1λn Ĉn

)
. For any δ > 0, n ≥ 405κ2||w||∞∨

67κ2||w||∞ log 6κ2||w||∞
δ , if 19κ2||w||∞

n log n
4δ ≤ λ ≤ ||C||, then the following holds with probability at least 1− δ,

|N̂ (λ)−N (λ)| ≤ 1.65N (λ)

Remark 1. Under the same conditions, with probability 1− 2δ :

|N̂ (λ)−N (λ)| ≤ 1.65N (λ) and ||Bn|| ≤
1

3

where Bn = C
−1/2
λ

(
C − Ĉn

)
C
−1/2
λ .

Proposition 3 (Bound on the intrinsic dimension). Recall the definition of the intrinsic dimension of a
trace-class operator T : intdim (T ) = Tr(T )

||T || . For any δ > 0, n ≥ 405κ2||w||∞ ∨ 67κ2||w||∞ log 12κ2||w||∞
δ , if

19κ2||w||∞
n log n

2δ ≤ λ ≤ ||C||, then the following holds with probability at least 1− δ :

intdim
(
Ĉ−1λn Ĉn

)
≤ 2.65

(
1 +

λ

||C||

)
intdim

(
C−1λ C

)
≤ 5.3intdim

(
C−1λ C

)
and

intdim
(
Ĉ−1λn Ĉn

)
≤ 5.3Tr (C)

||C||
+

5.3Tr (C)

λ
≤ 11Tr (C)

λ
≤ 11||w||1κ2

λ

Proof. Let δ > 0 Using the previous, under the conditions of the theorem, we have with probability at least
1− δ :

|N̂ (λ)−N (λ)| ≤ 1.65N (λ) and ||Bn|| ≤
1

3

where Bn = C
−1/2
λ

(
C − Ĉn

)
C
−1/2
λ . Note that

Ĉ−1λn Ĉn − C
−1
λ C = −λC−1/2λ (I −Bn)−1BnC

−1/2
λ

Thus,

||Ĉ−1λn Ĉn − C
−1
λ C|| ≤ λC−1λ ||(I −Bn)−1Bn|| ≤

λ

||C||
||C−1λ C|| ||Bn||

1− ||Bn||
≤ λ

2||C||
||C−1λ C||

Noting that intdim
(
Ĉ−1λn Ĉn

)
= N̂ (λ)

||Ĉ−1
λn Ĉn||

, applying a simple bound, we get

intdim
(
Ĉ−1λn Ĉn

)
=

N̂ (λ)

||Ĉ−1λn Ĉn||
≤ 2.65

1− λ
2||C||

N (λ)

||C−1λ C||
=

2.65

1− λ
2||C||

intdim
(
C−1λ C

)
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Then, using the fact that if λ ≤ ||C|| , 1
1− λ

2||C||
≤ 1 + λ

||C|| and intdim
(
C−1λ C

)
≤ 2Tr(C)

λ ,

intdim
(
Ĉ−1λn Ĉn

)
≤ 5.3Tr (C)

||C||
+

5.3Tr (C)

λ
≤ 11Tr (C)

λ
≤ 11||w||1κ2

λ

C.4 Bounds for the sampling error in the statistical case

In this section, we aim to bound the sampling error, that is the quantity S(λ, n) =
∥∥∥C−1/2λ

(
Ŝ∗nb̂n − Ĉnθ∗

)∥∥∥ =∥∥∥C−1/2λ

(
Ŝ∗nWnr̂n − Ĉnθ∗

)∥∥∥.
We will consider two different technical hypotheses depending on the point of view and precision we need.

Assume that hypothesis (S-4) is satisfied.

∃σ > 0, L > 0, ∀p ≥ 2, E [|b(Z)− w(Z)〈φ(X), θ∗〉H|p] ≤
1

2
p!σ2Lp−2 (S-5)

∃σ > 0, L > 0, ∀p ≥ 2, ∀z ∈ Z, |r(z)− 〈θ∗, φ(x)〉H|p w(z) ≤ 1

2
p!σ2Lp−2 (S-5b)

We now state two lemmas whose proof is straightforward using proposition 11 in [4].

Lemma 21. Assume (S-5). Then for any τ > 0, with probability 1− τ ,

S(λ, n) ≤
2
√
N∞(λ)L log 2

τ

n
+

√
σ2N∞(λ) log 2

τ

n

Lemma 22. Assume (S-5b). Then for any τ > 0, with probability 1− τ ,

S(λ, n) ≤
2
√
N∞(λ)L log 2

τ

n
+

√
σ2N (λ) log 2

τ

n

Remark 2. We have the two following particular cases.

• If ||b||∞ < +∞, if we assume (S-1), (S-2) and (S-4), then (S-5) and (S-3 bis) are satisfied, with σ = L =
(||b||∞ + κ||w||∞||θ∗||H);

• if ||r||∞ < ∞, if we assume (S-1), (S-2) and (S-4), then (S-5b) and (S-3) are satisfied with σ =

(||r||∞ + κ||θ∗||H) ||w||1/2∞ and L = (||r||∞ + κ||θ∗||H).

Lemma 23. Assume (S-1), (S-2) and (S-4).

• If (S-5) is satisfied, then with probability at least 1− τ ,

∥∥∥Ĉ1/2
λn θ̂

λ,M
∗

∥∥∥ ≤ λ−1/2κ
√2σ2 log 1

τ

n
+
L log 1

τ

n
+ σ + κ||θ∗||H||w||1

 (C.2)

• If (S-5b) is satisfied, then with probability at least 1− τ ,∥∥∥Ĉ1/2
λn θ̂

λ,M
∗

∥∥∥ ≤√σ2 + ε1 +
√
||w||1 + ε2||w||∞κ||θ∗|| (C.3)

where ε1 =
4L2||w||∞ log 2

τ

n +

√
2(4Lσ)2||w||1 log 2

τ

n and ε2 =

√
log 2

τ

2n

Proof. Recall that∥∥∥Ĉ1/2
λn θ̂

λ,M
∗

∥∥∥ =

∥∥∥∥(PM ĈnPM + λI
)−1/2

PM Ŝ
∗
nb̂n

∥∥∥∥ =

∥∥∥∥(PM ĈnPM + λI
)−1/2

PM Ŝ
∗
nWnr̂n

∥∥∥∥
• Assume (S-5). Using the first part of the equality, we easily get :∥∥∥Ĉ1/2

λn θ̂
λ,M
∗

∥∥∥ =

∥∥∥∥(PM ĈnPM + λI
)−1/2

PM Ŝ
∗
nb̂n

∥∥∥∥
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≤ λ−1/2
∥∥∥∥∥ 1

n

n∑
i=1

biφ(xi)

∥∥∥∥∥
≤ λ−1/2κ

(
1

n

n∑
i=1

|bi − wiφ(xi) · θ∗|+
1

n

n∑
i=1

|wiφ(xi) · θ∗|

)

≤ λ−1/2κ

(
1

n

n∑
i=1

|bi − wiφ(xi) · θ∗|+ κ||θ∗||H||w||1

)

Thus, using a basic Bernstein inequality, we find that with probability at least 1− τ ,

∥∥∥Ĉ1/2
λn θ̂

λ,M
∗

∥∥∥ ≤ λ−1/2κ
√2σ2 log 1

τ

n
+
L log 1

τ

n
+ σ + κ||θ∗||H||w||1


• Assume (S-5b). Using the second part of the equality, we get∥∥∥Ĉ1/2

λn θ̂
λ,M
∗

∥∥∥ ≤ ∥∥∥∥(PM ĈnPM + λI
)−1/2

PM Ŝ
∗
nW

1/2
n

∥∥∥∥︸ ︷︷ ︸≤ 1
∥∥∥W 1/2

n r̂n

∥∥∥
Let us now bound the term

∥∥∥W 1/2
n r̂n

∥∥∥. Separating it in two, we get

∥∥∥W 1/2
n r̂n

∥∥∥ =

√∑n
i=1 wi|ri|2

n
≤
√∑n

i=1 wi|ri − θ∗ · φ(xi)|2
n

+

√∑n
i=1 wi|θ∗ · φ(xi)|2

n

The second term is easily bounded by
√
wκ||θ∗||H. To bound the first term, we set ζ = w(Z) |r(Z)− θ∗ · φ(X)|2

and apply a Bernstein inequality. Indeed, let s := E[ζ]. Using (S-5b), we get that for all p ≥ 2,

E[|ζ|p] ≤ 1

2
(2p)!σ2L2p−2||w||p−2∞ ||w||1

≤ 1

2
p!42σ2L2||w||1(4L2||w||∞)p−2

Setting L̃ = 4L2||w||∞ and σ̃ = 4σL||w||1, a ∀p ≥ 2, E[|ζ|p] ≤ 1
2p!σ̃

2L̃p−2. Thus, with probability at least
1− τ ,

1

n

n∑
i=1

ζi − E[ζ] ≤
L̃ log 1

τ

n
+

√
2σ̃ log 1

τ

n

Finally, since E[ζ] ≤ σ2, we get our final bound, with probability at least 1− τ :

1

n

n∑
i=1

wi|ri − θ∗ · φ(xi)|2 ≤ σ2 +
L̃ log 1

τ

n
+

√
2σ̃ log 1

τ

n
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Appendix D

Final bounds for FALKON with weights

D.1 Optimization setting

Since FALKON approximates θλ,M∗ i.e. the solution to problem (QλM ) using a conjugate gradient algorithm,
our first step is to estimate the distance between our FALKON estimator θλ,M,Q,t

∗ and this quantity, which is
the purpose of the following lemma:

Lemma 24 (performance of the FALKON wrt θλ,M∗ ). Let Q be an integer, and suppose we sample the Q points
according to the probability vector pi := wi∑n

ĩ=1
wĩ
, 1 ≤ i ≤ n. Let 0 < λ ≤ ||Cn|| and δ > 0.

For all ν > 0, if Q ≥ 8d cosh2
(
ν
2

) [(
1
3 + cosh2

(
ν
2

))
wN∞(λ) + 1

3

]
, then, with probability at least 1− δ,

∀t ≥ 0, ||C1/2
λn (θλ,M,Q,t

∗ − θλ,M∗ )|| ≤ 2e−νt||C1/2
λn θ

λ,M
∗ ||

where d = log 8wκ2

λδ .
In particular, if Q ≥ d (16.4wN∞(λ) + 3.4), then with probability at least 1− δ,

∀t ≥ 0, ||C1/2
λn (θλ,M,Q,t

∗ − θλ,M∗ )|| ≤ 2e−t||C1/2
λn θ

λ,M
∗ ||

which is equivalent to saying

∀t ≥ 0, ẼλM (θλ,M,Q,t
∗ )− ẼλM (θλ,M∗ ) ≤ 4e−2tẼλM (θλ,M∗ )

Proof. • By lemma 2, H̃ = BTSM (Cn + λI)S∗MB. Using lemma 6,

||H̃1/2(βλ,M,Q,t
∗ − βλ,M,Q

∗ )||2 = ||C1/2
λn (θλ,M,Q,t

∗ − θλ,M∗ )||2

Since ||H̃1/2(βλ,M,Q,t
∗ − βλ,M,Q

∗ )||2 ≤ Q(H̃, t)||H̃1/2βλ,M,Q
∗ ||, combining the previous calculation with

lemma 8, we have
||C1/2

λn (θλ,M,Q,t
∗ − θλ,M∗ )||2 ≤ Q(H̃, t)||C1/2

λn θ
λ,M
∗ ||

• Bounding the term Q(H̃, t) is equivalent to bounding the condition number with the right constant, and
then use lemma 10.

Note: If we use random sub-sampling instead of weights, we only need to replace w by sup1≤i≤n wi.

D.2 Statistical setting
Recall that we always make the (S-4) assumption on the existence of a solution to problem (Q). In this section,
we study the problem under the more general hypotheses (the so-called source condition)

∃s ∈ [0, 1/2], C−sθ∗ exists and ∃R ≥ 1, ||C−sθ∗|| ≤ R (S-4b)
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Let us now decompose the risk between θ̂λ,M∗ and θ∗, as is done in Theorem 2 of [4].

Lemma 25. Let s be as in assumption (S-4b) and θ̂λ,M∗ be the Nystrom estimator. Then for any λ,M > 0, we
have the following bound on the objective:

|E(θ̂λ,M∗ )− E(θ∗)|1/2 ≤ k22S(λ, n) +R
[
(1 + k1k2)C(M)1/2+s + k22λ

1/2+s
]

(D.1)

where k1 = ||Ĉ1/2
λn C

−1/2
λ ||, k2 = ||C1/2

λ Ĉ
−1/2
λn ||, S(λ, n) = ||C−1/2λ Ŝ∗n(b̂n −WnŜnθ∗)|| and C(M) = ||C1/2

λ (I −
PM )||2.

Proof.

|E(θ̂λ,M∗ )− E(θ∗)|1/2 = ||C1/2
(
θ̂λ,M∗ − θ∗

)
||

≤ ||C1/2gλ,M (Ĉn)Ŝ∗n(b̂n −WnŜnθ∗)||︸ ︷︷ ︸
A

+ ||C1/2
(
I − gλ,M (Ĉn)Ĉn

)
θ∗||︸ ︷︷ ︸

B

where gλ,M (Ĉn) = V
(
V ∗ĈnV + λI

)−1
V ∗

• Let us first bound term A.

A ≤ ||C1/2Ĉ
−1/2
λn || ||Ĉ1/2

λn gλ,M (Ĉn)Ĉ
1/2
λn || ||Ĉ

−1/2
λn C

1/2
λ || ||C

−1/2
λ Ŝ∗n(b̂n −WnŜnθ∗)||

And thus, using techniques from [4]
A ≤ k22S(λ, n)

• Dealing with term B is done exactly as in the proof of Theorem 2 in [4].

Theorem 3. Let δ > 0. Assume (S-1),(S-2),(S-4b). Assume that n, λ satisfy n ≥ 405κ2||w||∞∨67κ2||w||∞ log 72||w||∞κ2

δ ∨
100 max(1, ||w||∞) log 6

δ ,
19κ2||w||∞

n log 3n
δ ∨ λ0 ≤ λ ≤ ||C||. With probability at least 1− δ,

∀t ≥ tmin, R
(
θ̂λ,M,t
∗

)1/2
≤ 4

3
S(λ, n) + 10Rλ1/2+s (D.2)

Where, assuming (S-5),

tmin = log
κ (1.2σ + 0.01L+ κ||θ∗||H||w||1)

8Rλ1+s
and S(λ, n) =

2
√
N∞(λ)L log 6

δ

n
+

√
σ2N∞(λ) log 6

δ

n

and assuming (S-5b),

tmin = log
σ + 0.3L+

√
||w||1κ||θ∗||H

8Rλ1/2+s
and S(λ, n) =

2
√
N∞(λ)L log 6

δ

n
+

√
σ2N (λ) log 6

δ

n

The bounds needed forM are the following depending on the different sampling schemes, setting d = log 132Tr(C)
λδ ≤

log 132||w||1κ2

λδ :

• In the random case, M ≥ (d− log 22
4 )(4.5Nw(λ) + 2)

• In the Nystrom case M ≥ 8d
3 + 21.2dq2N (λ)

• in the weighted case, M ≥ 8d
3 + 21.2d||w||1N∞(λ)

And on Q, setting d̃ = log 264Tr(C)
λδ ≤ log 234||w||1κ2

λδ :

• In the weighted case Q ≥ d̃
(

16.4||w||1N∞(λ) + 3.4
)

• In the Nystrom case Q ≥ d̃
(
44q2N (λ) + 3.4

)
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where ||w||1 = ||w||1 + 0.08||w||∞.

Proof. First note that

R
(
θ̂λ,M,t
∗

)1/2
≤
∥∥∥C1/2

(
θ̂λ,M∗ − θ̂λ,M,t

∗

)∥∥∥+
∥∥∥C1/2

(
θ̂λ,M∗ − θ∗

)∥∥∥
Using the definitions in the previous lemma, we have∥∥∥C1/2

(
θ̂λ,M∗ − θ∗

)∥∥∥ ≤ k22S(λ, n) +R
[
(1 + k1k2)C(M)1/2+s + k22λ

1/2+s
]

and ∥∥∥C1/2
(
θ̂λ,M∗ − θ̂λ,M,t

∗

)∥∥∥ ≤ 2k2Q(H̃, t)
∥∥∥Ĉ1/2

λn θ̂
λ,M
∗

∥∥∥
Then we combine the following elements:

• we bound k1 and k2 using section C.3, which is essentially asking that n be greater than a certain constant;

• we bound S(λ, n) using the bounds we obtain in section C.4;

• we bound C(M) by 3λ under the conditions given in section C.2.2, depending on the sub-sampling strategy;

These three elements allow us to bound
∥∥∥C1/2

(
θ̂λ,M∗ − θ∗

)∥∥∥ = R(θ̂λ,M∗ )1/2 by

4

3
S(λ, n) + 8.5Rλ1/2+s

To bound
∥∥∥C1/2

(
θ̂λ,M∗ − θ̂λ,M,t

∗

)∥∥∥, we use

• once again the bound on k2;

• the bound on
∥∥∥Ĉ1/2

λn θ̂
λ,M
∗

∥∥∥ provided in section C.4

• the bound on Q(H̃, t) given in section C.2.1 depending on the sampling strategy for Q.

We can now apply this result to obtain the generalization bounds, only supposing that θ∗ exists.
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