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Outline

Linear models : a machine learning workhorse with great properties

But what if we want to learn non-negative functions ?

We model positive functions with the same good properties
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Introduction : linear models for machine learning tasks

Prototypical machine learning task

Goal : find f? : X → R using n training points (xi )16i6n.

f? ∈ arg min
f∈F

1

n

n∑
i=1

`i (f (xi )) + Ω(f ) (1)
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Introduction : linear models for machine learning tasks

Prototypical machine learning task

Goal : find θ? ∈ H using n training points (xi )16i6n.

θ? ∈ arg min
θ∈H

1

n

n∑
i=1

`i (θ
>ϕ(xi )) + Ω(θ) (1)

Linear Models

Features : ϕ(x) ∈ H (built features, kernels...)

Parametrization : by a vector θ ∈ H, fθ : X → R

fθ(x) = θ>ϕ(x), θ ∈ H
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Linear models have great properties

θ? ∈ arg min
θ∈H

1

n

n∑
i=1

`i (θ
>ϕ(xi )) + Ω(θ) (2)

• They preserve the convexity of the loss function

• They can approximate rich classes of functions when H is infinite dimensional

• There is a finite dimensional representation with n degrees of freedom

If the `i are convex, then (2) is convex
* convex analysis

* convex optimization
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Linear models have great properties

θ? ∈ arg min
θ∈H

1

n

n∑
i=1

`i (θ
>ϕ(xi )) + Ω(θ) (2)

• They preserve the convexity of the loss function

• They can approximate rich classes of functions when H is infinite dimensional

• There is a finite dimensional representation with n degrees of freedom

Example

ϕ feature map associated to the gaussian kernel k(x , y) = exp(−‖x − y‖2) on Rd

The linear model can approximate any continuous function :

f θ = θ>ϕ(x) for θ ∈ H
f a continuous function on Rd

∃(θn) ∈ HN, fθn −→n→+∞
f uniformly on compact sets
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Linear models have great properties

θ? ∈ arg min
θ∈H

1

n

n∑
i=1

`i (θ
>ϕ(xi )) + Ω(θ) (2)

• They preserve the convexity of the loss function

• They can approximate rich classes of functions when H is infinite dimensional

• There is a finite dimensional representation with n degrees of freedom

θ? =
n∑

i=1

αiϕ(xi )

(2) is now a problem in (αi )16i6n ∈ Rn
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Linear models have great properties

α? = arg min
α∈Rn

n∑
i=1

`i ([Kα]i ) + Ω(α), K ∈ Rn×n (2)

• They preserve the convexity of the loss function

• They can approximate rich classes of functions when H is infinite dimensional

• There is a finite dimensional representation with n degrees of freedom

θ? =
n∑

i=1

αiϕ(xi )

(2) is now a problem in (αi )16i6n ∈ Rn

5



Outline

Linear models : a machine learning workhorse with great properties

But what if we want to learn non-negative functions ?

We model positive functions with the same good properties

6



What if we want to learn non-negative functions ?

What if we want f > 0 ?

f? ∈ arg min
f∈F
f>0

1

n

n∑
i=1

`i (f (xi )) + Ω(f )

Linear models do not work anymore !
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Classical models lack nice properties of linear models

Some models to solve :

f? ∈ arg min
f∈F
f>0

1

n

n∑
i=1

`i (f (xi )) + Ω(f ) (3)

8



Classical models lack nice properties of linear models

θ? ∈ arg min
θ∈H
fθ>0

1

n

n∑
i=1

`i (fθ(xi )) + Ω(θ) (3)

Generalized linear models : fθ(x) = exp(θ>ϕ(x))

Advantages :

- Automatically have f θ > 0

- Good approximation properties

- Finite dimensional representer theorem

Main drawback : (3) is not convex in θ when the `i are convex
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Classical models lack nice properties of linear models

θ? ∈ arg min
θ∈H

θ>ϕ(x̃)>0, x̃∈G

1

n

n∑
i=1

`i (fθ(xi )) + Ω(θ) (3)

Linear models fθ(x) = θ>ϕ(x) with constraints on a grid

Advantages :

- Preserved convexity

- Good approximation properties

- Finite dimensional representer theorem

Main drawback : fθ � 0, grid size untractable in high dimensions
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Classical models lack nice properties of linear models

θ? ∈ arg min
θ∈Rn

θ>0

1

n

n∑
i=1

`i (fθ(xi )) + Ω(θ) (3)

Nadaraya Watson type estimators with positive kernel k

fθ(x) =
n∑

i=1

θik(x − xi ), k > 0, θ ∈ Rn, θ > 0.

Advantages :

- Preserved convexity

- fθ > 0 guaranteed

Main drawbacks : Poor approximation due to the ”width” of k
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Classical models lack nice properties of linear models

f? ∈ arg min
f∈F
f>0

1

n

n∑
i=1

`i (f (xi )) + Ω(f ) (3)

• Generalized linear models do not preserve convexity

• Linear models on a grid do not guarantee non-negativity and are not tractable in high

dimensions

• Nadaraya-Watson type kernels have poor approximation and computational properties
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Proposed model for non-negative functions

Idea : start from the following GLM :

fθ(x) = (θ>ϕ(x))2, θ ∈ H

It has all the good properties... except for convexity :

θ? ∈ arg min
θ∈H

1

n

n∑
i=1

`i ((θ>ϕ(xi ))2) + Ω(θ) (3)

... except for the rk(A) 6 1 constraint.
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Proposed model for non-negative functions

Rewrite it differently :

fθ(x) = ϕ(x)>θθ>ϕ(x), θ ∈ H

θθ> is a positive semi-definite rank 1 operator :

θ? ∈ arg min
θ∈H

1

n

n∑
i=1

`i (ϕ(xi )
>θθ>ϕ(xi )) + Ω(θ) (3)

... except for the rk(A) 6 1 constraint.
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Proposed model for non-negative functions

Change to a linear parametrization :

fA(x) = ϕ(x)>Aϕ(x), A ∈ S(H), A � 0, rk(A) 6 1

The following problem is now convex in A...

A? ∈ arg min
A∈S(H)
A�0

rk(A)61

1

n

n∑
i=1

`i (ϕ(xi )
>Aϕ(xi )) + Ω(A) (3)

... except for the rk(A) 6 1 constraint.
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Proposed model for non-negative functions

Our model for non-negative functions :

fA(x) = ϕ(x)>Aϕ(x), A ∈ S(H), A � 0

The problem is now convex in A

A? ∈ arg min
A∈S(H)
A�0

1

n

n∑
i=1

`i (ϕ(xi )
>Aϕ(xi )) + Ω(A) (3)

Non-negativity : A � 0 =⇒ fA > 0
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The proposed model keeps the interesting properties

A? ∈ arg min
A∈S(H)
A�0

1

n

n∑
i=1

`i (ϕ(xi )
>Aϕ(xi )) + Ω(A) (3)

We prove that our model has the good properties of linear models :

• (3) is convex in A if the `i are convex

• approximation properties match those of linear models, H infinite dimensional

• finite dimensional representation with n2 parameters:

• dual representation using only n parameters;

• statistical complexity matches that of linear models

• ... and more !
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Approximation properties

Approximation properties match those of linear models

when H is infinite dimensional :

With a certain feature maps ϕ our model can approximate

any non-negative continuous function
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Finite dimensional representations

• finite dimensional representation with n2 parameters:

• dual representation using only n parameters;

A? ∈ arg min
A∈S(H)
A�0

1

n

n∑
i=1

`i (ϕ(xi )
>Aϕ(xi )) + Ω(A) (3)

A? can be parametrized by B ∈ Rn×n :

A? =
n∑

i,j=1

B ij ϕ(xi )ϕ(xj)
>, B ∈ Rn×n
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Finite dimensional representations

• finite dimensional representation with n2 parameters:

• dual representation using only n parameters;

B? ∈ arg min
B∈Rn×n

B�0

1

n

n∑
i=1

`i ([KBK ]ii ) + Ω(B), K ∈ Rn×n (3)

(3) is now a problem in B ∈ Rn×n

A? =
n∑

i,j=1

B ij ϕ(xi )ϕ(xj)
>, B ∈ Rn×n
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Finite dimensional representations

• finite dimensional representation with n2 parameters:

• dual representation using only n parameters;

α? ∈ arg min
α∈Rn

1

n

n∑
i=1

`∗i (nαi ) + Ω∗+

[
n∑

i=1

αiϕ(xi )ϕ(xi )
>

]
(3dual)

A? can be recovered from α? for certain Ω.
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Is this model computable/tractable ?

Yes !
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Is this model computable/tractable ?

Example with a density estimation problem :

f? ∈ arg min
f>0∫

Rd f (x)dx=1

−1

n

n∑
i=1

log f (xi )

Other examples:

- Heteroscedastic regression : guarantee the variance is non-negative

- Quantile regression : guarantee that quantiles do not intersect
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Is this model computable/tractable ?

Toy problem : retrieve density of a mixture of Gaussians

4 3 2 1 0 1 2 3 4
x

0.2

0.0

0.2

0.4

0.6

0.8

p(
x)

ground truth
learned projection

14


	Linear models : a machine learning workhorse with great properties
	But what if we want to learn non-negative functions ?
	We model positive functions with the same good properties

