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Linear models : a machine learning workhorse with great properties
But what if we want to learn non-negative functions ?

We model positive functions with the same good properties



Linear models : a machine learning workhorse with great properties



Introduction : linear models for machine learning tasks

Prototypical machine learning task

Goal : find f, : X — R using n training points (X;)1<i<n-

% Earg;gi;%Zﬁ;(f(X;))JrQ(f) (1)
i=1



Introduction : linear models for machine learning tasks

Prototypical machine learning task
Goal : find 6, € H using n training points (X;)1<i<n-

=

1
0, € arg min — Z&(HT@(X/')) + Q(9) (1)
=il

Linear Models

Features : ¢(x) € H (built features, kernels...)
Parametrization : by avector0 e H, fp : X - R

fo(x) =0 p(x), 0 € H



Linear models have great properties

1S
0 € arg min — > (07 o(x)) + Q(6) (2)
=il

e They preserve the convexity of the loss function

If the £; are convex, then (2) is convex

* convex analysis
* convex optimization



Linear models have great properties

1
0. € arg min — Z 407 o(x)) + Q(0) (2)
i=1

e They preserve the convexity of the loss function
e They can approximate rich classes of functions when # is infinite dimensional

Example

 feature map associated to the gaussian kernel k(x, y) = exp(—||x — y|?) on R

The linear model can approximate any continuous function :

fo=0"p(x)ford cH

f a continuous function on R
3(0,) € HN f, — f uniformly on compact sets

n—-+o0o

n



Linear models have great properties

1
0. € arg min — Z 407 o(x)) + Q(0) (2)
i=1

e They preserve the convexity of the loss function
e They can approximate rich classes of functions when 7 is infinite dimensional
e There is a finite dimensional representation with n degrees of freedom

0. = Z aip(x;)
i=1



Linear models have great properties

_ : . i nxn
0y = argarrél]lgn;&([Ka],) +Q(a), KeR (2)

e They preserve the convexity of the loss function
e They can approximate rich classes of functions when 7 is infinite dimensional
e There is a finite dimensional representation with n degrees of freedom

0. = Z a;ip(x;)
i=1

(2) is now a problem in (a;)1<i<n € R"



But what if we want to learn non-negative functions ?



What if we want to learn non-negative functions ?

What if we want f >0 7

f, eargmmfZE ) + Q(f)
f>0 i=1

Linear models do not work anymore !



Classical models lack nice properties of linear models

Some models to solve :

f, GargmmfZE Q(f) (3)

f>0 i=1



Classical models lack nice properties of linear models

0, < arg i+ > i) + 200) (3)

Generalized linear models : f)(x) = exp(0' p(x))

- Automatically have fy >0
- Good approximation properties
- Finite dimensional representer theorem



Classical models lack nice properties of linear models

0. € argin > (i(exp(07 ¢(x))) + 2A0) 3)

Generalized linear models : f)(x) = exp(6' p(x))

- Automatically have fy > 0
- Good approximation properties
- Finite dimensional representer theorem

Main drawback : (3) is not convex in 6 when the ¢; are convex



Classical models lack nice properties of linear models

. 1
0. € arg i . > li(fo(x) + Q(6) (3)
07 p(%)20, G =1

Linear models f)(x) = 0" ¢(x) with constraints on a grid

- Preserved convexity
- Good approximation properties
- Finite dimensional representer theorem



Classical models lack nice properties of linear models

. 1
0. € arg i . > li(fo(x) + Q(6) (3)
07 p(%)20, G =1

Linear models f)(x) = 0" ¢(x) with constraints on a grid

- Preserved convexity
- Good approximation properties
- Finite dimensional representer theorem

Main drawback : f; # 0, grid size untractable in high dimensions



Classical models lack nice properties of linear models

1
6. € arg min — > £i(fy(x)) + A6) 3)
6>0 i=1

Nadaraya Watson type estimators with positive kernel k

fo(x) = _Oik(x — x;), k>0, 0 €R", 0 >0.
i=1

- Preserved convexity
- fyp > 0 guaranteed



Classical models lack nice properties of linear models

1 n
0. € arg min — > Li([KO)) +Q(0), K € R™ (3)
0>0 =1

Nadaraya Watson type estimators with positive kernel k

fo(x) = _Oik(x — x;), k>0, 6 €R", 6 >0.
i=1

- Preserved convexity
- fp > 0 guaranteed

Main drawbacks : Poor approximation due to the "width” of k



Classical models lack nice properties of linear models

8 GargmlanZ Q(f) (3)

f>0 i=1

e Generalized linear models do not preserve convexity
e Linear models on a grid do not guarantee non-negativity and are not tractable in high
dimensions

e Nadaraya-Watson type kernels have poor approximation and computational properties



Proposed model for non-negative functions

Idea : start from the following GLM :
fo(x) = (0"0(x))?, OeH

It has all the good properties... except for convexity :

0, € arg (Sréi{} % Z 607 o(x))?) + Q(0) (3)



Proposed model for non-negative functions

Rewrite it differently :
fo(x) = p(x)'00"o(x), OeH

00" is a positive semi-definite rank 1 operator :

0, € arg mln - Zé (x:) 7007 o(x:)) + Q(6) (3)



Proposed model for non-negative functions

Change to a linear parametrization :
fa(x) = o(x) T Ap(x), AecS(H), A=0, rk(A) <1

The following problem is now convex in A...

A, € argAénsln 726 )T Ap(x;)) + Q(A) (3)
A>0
rk(A)<1

. except for the rk(A) < 1 constraint.



Proposed model for non-negative functions

Our model for non-negative functions :
fa(x) = p(x)TAp(x),  A€S(H), A=0

The problem is now convex in A

A, € argAemln = ZZ (x:) T Ap(x:)) + Q(A) (3)
A>—0 i=1

Non-negativity : |[A >0 — 4, >0




We model positive functions with the same good properties

10



The proposed model keeps the interesting properties

1 n

1 p— . . T .
A €arg min Z}&(s@(x,) Ap(x;)) +Q(A) (3)
A-0 f=

We prove that our model has the good properties of linear models :

(3) is convex in A if the ¢; are convex
e approximation properties match those of linear models, # infinite dimensional

finite dimensional representation with n’> parameters:

dual representation using only n parameters;
statistical complexity matches that of linear models

e ... and more !

11



Approximation properties

Approximation properties match those of linear models
when H is infinite dimensional :

With a certain feature maps ¢ our model can approximate
any non-negative continuous function

12



Finite dimensional representations

o finite dimensional representation with n’ parameters:

A, EargAGmSm Zz )T Ap(x)) + Q(A) (3)
A>—0 =l

A, can be parametrized by B € R"*" :

A*:ZBUQDX, , BeR™"

ij=1

13



Finite dimensional representations

e finite dimensional representation with n?> parameters:

1 n
B, carg min = (([KBK];)+Q(B), K €R™" 3)
BGBHSHOXH =

(3) is now a problem in B € R"™*"

*_ZBUSOXI , BcR™"
ij=1

13



Finite dimensional representations

e finite dimensional representation with n? parameters:
e dual representation using only n parameters;

1 n
' € in — 0 (noy) +
oy argc?glﬂgnn; F(nai) + Q%

Z a,—(p(x,-)go(x;)T] (3dual)

A, can be recovered from «, for certain 2.

13



Is this model computable/tractable ?

Yes |

14



Is this model computable/tractable ?

Example with a density estimation problem :

. 1 &
fi€arg min  — Z log £(x;)
./Rd f(X)dx:] i=1

14



Is this model computable/tractable ?

Example with a density estimation problem :

A, € arg T}in —= Zlog (x;) " Ap(x7))
A fpa e()e(x) Tax=1 =

14



Is this model computable/tractable ?

Example with a density estimation problem :

A, € arg T}in —= Zlog (x;) " Ap(x7))
A fpa e()e(x) Tax=1 =

Other examples:

- Heteroscedastic regression : guarantee the variance is non-negative
- Quantile regression : guarantee that quantiles do not intersect

14



Is this model computable/tractable ?

Toy problem : retrieve density of a mixture of Gaussians

0.8

ground truth
+ learned projection

0.6 1

0.4+

p(x)

0.2

0.0

_02 4

14
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