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Presentation of the problem



Learning Problem

Setting: input X, output Y € )
Linear Predictor: f(x) =60 - ®(x), ®(x) € H feature map, H infinite dimensional

Problem: Find

0* € argmin L(0),  L(0) = E[((Y,0- d(X))]
0cH

(-, -) loss function, (X, Y) unknown, n i.i.d. samples (x;, yi)i<i<n-

Basic assumption: # Hilbert space, Y, ®(X) bounded.



Regularized Empirical Risk minimization

Problem

0* € argmin L(0),  L(0) = E[((Y,0- d(X))]
0cH

Classical Estimator : Regularized Empirical Risk Minimizer

~

~ A X =

0 = argmin L(0) + =%, L(O) = - Z(f(y,-. 0-d(x))

OcH 2 n 4
B i=1

A: regularization parameter — controls overfitting

Question : Statistical performance of @\,\

L(6y) — L(6%) < C(n,A)



Existing results



A first general result : slow rates

Assumption: £(y,-), y € Y Lipschitz Lipschitz constant: R.

Slow rates in O(1/+/n) (Sridharan et al., 2009)

Bias-variance decomposition

0 * * R?||¢ go
L) — L(E7) < 07 P A+ S
- X 1 1

L(GA)_L(9)<C%7 )\:C%

C = R||®][[|6*]| and ¢ = R[|®][o /[|6"
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Bias-variance decomposition

~ . dfs N
L(0x) = L(0") < br+ 0 == o [P @51 Y115

Example : for dfy ~ d
~ o?d od 1
L(By) — L(6F) <2—, A= — =
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+o00
0*, ;)2
by < L2AMH2r - 6% i) <
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Interpretation of the key quantities

Eigen-decomposition: X = Z, 0 Ti Yi @Y o (0
6 = 3155 (6%, %) i

b, — bias: regularity of 6* w.r.t.

+o0
9*71/}' 2
LA o Z< (7.2’l> < 00
=0 b
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. 2\ -1/
L(Q)\) . L(H*) < L2)\1+2r 2Q



Interpretation of the key quantities

Eigen-decomposition: X = 1'% 0; ¢; @ ¢); oi 0
0 =315 (0%, i) i

b, — bias: regularity of 6* w.r.t.

+00 snx 1 \2
D P BE AL g

lor:
i=0 i
dfy — variance: eigenvalue decay of X
dfy < QPA~ Y« o o;i = 0(i™%)
Fast rates (Caponnetto and De Vito, 2007)
LB - L)< Cn ", A=cn?  ye[1/2,1]

7= S5 B=a/(a(l+2) + 1), ¢ = (0Q/L)?P and € = (7 QL)
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Generalized Self Concordant functions

6
e f(t) = log(1 +e7t)
Regression: /(y. y — ) — f(t) =log((e' +e7")/2)
g (y,y) w(g y') 1 [ e =
- Square loss: 9 t — A=t

—
~
- ~—
Il
N[

- Huber loss 1: 9(
(

Classification:
- Logistic loss: £(y,y’) = log(1 +e™*")
- GLMs: {(y,y") = —y' -y +log [}, exp (¥ - 7) du(¥)

Defintion : GSC functions (Bach, 2010)

vy € ¥, £B)(y,-) <R (y,")
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Bias-variance decomposition
df\

L(é\)\) - L(e*) < b/\ + T
Example : for dfy ~ o2 d

~ N o’d o’d
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- 2 gfle
L(By) — L(6%) < bie 4+ 2 A




Conclusion

Thank you for your attention !
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