Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance

Ulysse Marteau-Ferey

June 27, 2019

Joint work with Dmitrii Ostrovskii, Francis Bach and Alessandro Rudi

INRIA Paris - ÉNS Paris, CS department - PSL Research University

Presentation of the problem

Learning Problem

Setting: *input* X, *output* $Y \in \mathcal{Y}$

Linear Predictor: $f(x) = \theta \cdot \Phi(x)$, $\Phi(x) \in \mathcal{H}$ feature map, \mathcal{H} infinite dimensional

Problem: Find

$$\theta^{\star} \in \operatorname*{arg\,min}_{\theta \in \mathcal{H}} L(\theta), \qquad L(\theta) = \mathbb{E}\left[\ell(Y, \theta \cdot \Phi(X))\right]$$

 $\ell(\cdot,\cdot)$ loss function, (X,Y) unknown, n i.i.d. samples $(x_i,y_i)_{1\leqslant i\leqslant n}$.

Basic assumption: \mathcal{H} Hilbert space, $Y, \Phi(X)$ bounded.

Regularized Empirical Risk minimization

Problem

$$\theta^* \in \operatorname*{arg\,min}_{\theta \in \mathcal{H}} L(\theta), \qquad L(\theta) = \mathbb{E}\left[\ell(Y, \theta \cdot \Phi(X))\right]$$

Classical Estimator: Regularized Empirical Risk Minimizer

$$\widehat{\theta}_{\lambda} = \operatorname*{arg\,min}_{\theta \in \mathcal{H}} \widehat{L}(\theta) + \frac{\lambda}{2} \|\theta\|^2, \qquad \widehat{L}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta \cdot \Phi(x_i))$$

 λ : regularization parameter o controls overfitting

Question : Statistical performance of $\widehat{\theta}_{\lambda}$

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant C(n,\lambda)$$

Existing results

A first general result : slow rates

Assumption: $\ell(y,\cdot), y \in \mathcal{Y}$ Lipschitz

Lipschitz constant: R.

Slow rates in $O(1/\sqrt{n})$ (Sridharan et al., 2009)

Bias-variance decomposition

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leq \|\theta^{\star}\|^2 \lambda + \frac{\mathsf{R}^2 \|\Phi\|_{\infty}^2}{\lambda n}$$

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{*}) \leqslant C \frac{1}{\sqrt{n}}, \qquad \lambda = c \frac{1}{\sqrt{n}}$$

$$C = \mathsf{R} \| \Phi \|_{\infty} \| \theta^{\star} \|$$
 and $c = \mathsf{R} \| \Phi \|_{\infty} / \| \theta^{\star} \|$

4

```
Assumption: square loss \ell(y,y') = \frac{1}{2}(y-y')^2.

Covariance operator: \mathbf{\Sigma} = \mathbb{E}\left[\Phi(X)\otimes\Phi(X)\right], \mathbf{\Sigma}_{\lambda} = \mathbf{\Sigma} + \lambda \mathbf{I}
```

Two main quantities

Assumption: square loss
$$\ell(y, y') = \frac{1}{2}(y - y')^2$$
.

Covariance operator:
$$\mathbf{\Sigma} = \mathbb{E}\left[\Phi(X)\otimes\Phi(X)\right]$$
, $\mathbf{\Sigma}_{\lambda} = \mathbf{\Sigma} + \lambda\mathbf{I}$

Two main quantities

-
$$b_{\lambda} = \lambda^2 \|\mathbf{\Sigma}_{\lambda}^{-1/2} \theta^{\star}\|^2 \leqslant \lambda \|\theta^{\star}\|^2 \rightarrow \text{bias}$$

regularity of θ^{\star}

Assumption: square loss $\ell(y, y') = \frac{1}{2}(y - y')^2$.

Covariance operator: $\Sigma = \mathbb{E}\left[\Phi(X)\otimes\Phi(X)\right]$, $\Sigma_{\lambda} = \Sigma + \lambda I$

Two main quantities

-
$$b_{\lambda} = \lambda^2 \|\mathbf{\Sigma}_{\lambda}^{-1/2} \theta^{\star}\|^2 \leqslant \lambda \|\theta^{\star}\|^2 \rightarrow \text{bias}$$

-
$$\mathsf{df}_\lambda = \mathsf{Tr}(\mathbf{\Sigma}_\lambda^{-1}\mathbf{\Sigma}) \leqslant \|\Phi\|_\infty^2/\lambda \quad o \quad \mathsf{variance}$$

regularity of θ^* effective dimension

Assumption: square loss $\ell(y, y') = \frac{1}{2}(y - y')^2$.

Covariance operator: $\Sigma = \mathbb{E} [\Phi(X) \otimes \Phi(X)], \Sigma_{\lambda} = \Sigma + \lambda I$

Two main quantities

-
$$b_{\lambda} = \lambda^{2} \|\mathbf{\Sigma}_{\lambda}^{-1/2} \theta^{\star}\|^{2} \leqslant \lambda \|\theta^{\star}\|^{2} \rightarrow \text{bias}$$

- $df_{\lambda} = \text{Tr}(\mathbf{\Sigma}_{\lambda}^{-1} \mathbf{\Sigma}) \leqslant \|\mathbf{\Phi}\|_{\infty}^{2} / \lambda \rightarrow \text{variance}$

regularity of θ^* effective dimension

Fast rates up to O(1/n) (Caponnetto and De Vito, 2007)

Bias-variance decomposition

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant \mathbf{b}_{\lambda} + \sigma^{2} \frac{\mathsf{df}_{\lambda}}{n}, \qquad \sigma^{2} \leqslant \|\theta^{\star}\|^{2} \|\Phi\|_{\infty}^{2} \|Y\|_{\infty}^{2}$$

Assumption: square loss $\ell(y, y') = \frac{1}{2}(y - y')^2$.

Covariance operator: $\Sigma = \mathbb{E} [\Phi(X) \otimes \Phi(X)], \Sigma_{\lambda} = \Sigma + \lambda I$

Two main quantities

-
$$b_{\lambda} = \lambda^2 \|\mathbf{\Sigma}_{\lambda}^{-1/2} \theta^{\star}\|^2 \leqslant \lambda \|\theta^{\star}\|^2 \rightarrow \text{bias}$$

- $\mathsf{df}_{\lambda} = \mathsf{Tr}(\mathbf{\Sigma}_{\lambda}^{-1}\mathbf{\Sigma}) \leqslant \|\Phi\|_{\infty}^{2}/\lambda \quad o \quad \mathsf{variance}$

regularity of θ^* effective dimension

Fast rates up to O(1/n) (Caponnetto and De Vito, 2007)

Bias-variance decomposition

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant \frac{b_{\lambda}}{n} + \sigma^{2} \frac{df_{\lambda}}{n}, \qquad \sigma^{2} \leqslant \|\theta^{\star}\|^{2} \|\Phi\|_{\infty}^{2} \|Y\|_{\infty}^{2}$$

Example : for $df_{\lambda} \approx d$

$$L(\widehat{\theta}_{\lambda}) - L(\theta^*) \leqslant 2 \frac{\sigma^2 d}{n}, \qquad \lambda = \frac{\sigma^2 d}{\|\theta^*\|^2} \frac{1}{n}$$

Eigen-decomposition:
$$\mathbf{\Sigma} = \sum_{i=0}^{+\infty} \sigma_i \ \psi_i \otimes \psi_i \ \theta^\star = \sum_{i=0}^{+\infty} \langle \theta^\star, \psi_i \rangle \ \psi_i$$

$$\sigma_i \searrow 0$$

Eigen-decomposition:
$$\mathbf{\Sigma} = \sum_{i=0}^{+\infty} \sigma_i \ \psi_i \otimes \psi_i$$
 $\sigma_i \searrow 0$ $\theta^* = \sum_{i=0}^{+\infty} \langle \theta^*, \psi_i \rangle \ \psi_i$

 $b_{\lambda} \rightarrow$ bias: regularity of θ^{\star} w.r.t. Σ

$$\mathbf{b}_{\lambda} \leqslant \mathbf{L}^{2} \lambda^{1+2r} \qquad \leftrightarrow \qquad \sum_{i=0}^{+\infty} \frac{\langle \theta^{\star}, \psi_{i} \rangle^{2}}{\sigma_{i}^{2r}} < \infty$$

Eigen-decomposition:
$$\mathbf{\Sigma} = \sum_{i=0}^{+\infty} \sigma_i \ \psi_i \otimes \psi_i$$
 $\sigma_i \searrow 0$ $\theta^* = \sum_{i=0}^{+\infty} \langle \theta^*, \psi_i \rangle \ \psi_i$

 $b_{\lambda} \rightarrow$ bias: regularity of θ^{\star} w.r.t. Σ

$$\mathsf{b}_{\lambda} \leqslant \mathsf{L}^2 \lambda^{1+2r} \qquad \leftrightarrow \qquad \sum_{i=0}^{+\infty} \frac{\langle \theta^{\star}, \psi_i \rangle^2}{\sigma_i^{2r}} < \infty$$

 $\mathsf{df}_\lambda \to \text{variance: eigenvalue decay of } \Sigma$

$$\mathsf{df}_{\lambda} \leqslant \mathsf{Q}^2 \lambda^{-1/\alpha} \qquad \leftrightarrow \qquad \sigma_i = O(i^{-\alpha})$$

Eigen-decomposition:
$$\mathbf{\Sigma} = \sum_{i=0}^{+\infty} \sigma_i \ \psi_i \otimes \psi_i$$
 $\sigma_i \searrow 0$ $\theta^* = \sum_{i=0}^{+\infty} \langle \theta^*, \psi_i \rangle \ \psi_i$

 $b_{\lambda} \rightarrow$ bias: regularity of θ^{\star} w.r.t. Σ

$$\mathsf{b}_{\lambda} \leqslant \mathsf{L}^2 \lambda^{1+2r} \qquad \leftrightarrow \qquad \sum_{i=0}^{+\infty} \frac{\langle \theta^{\star}, \psi_i \rangle^2}{\sigma_i^{2r}} < \infty$$

 $\mathsf{df}_\lambda \to \mathsf{variance} \colon \mathsf{eigenvalue} \ \mathsf{decay} \ \mathsf{of} \ \boldsymbol{\Sigma}$

$$\mathsf{df}_{\lambda} \leqslant \mathsf{Q}^2 \lambda^{-1/\alpha} \qquad \leftrightarrow \qquad \sigma_i = O(i^{-\alpha})$$

Fast rates (Caponnetto and De Vito, 2007)

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant \mathbf{b}_{\lambda} + \sigma^{2} \frac{\mathsf{df}_{\lambda}}{n}$$

Eigen-decomposition:
$$\mathbf{\Sigma} = \sum_{i=0}^{+\infty} \sigma_i \ \psi_i \otimes \psi_i$$
 $\sigma_i \searrow 0$ $\theta^* = \sum_{i=0}^{+\infty} \langle \theta^*, \psi_i \rangle \ \psi_i$

 $b_{\lambda} \rightarrow$ bias: regularity of θ^{\star} w.r.t. Σ

$$\mathsf{b}_{\lambda} \leqslant \mathsf{L}^2 \lambda^{1+2r} \qquad \leftrightarrow \qquad \sum_{i=0}^{+\infty} \frac{\langle \theta^{\star}, \psi_i \rangle^2}{\sigma_i^{2r}} < \infty$$

 $\mathsf{df}_\lambda \to \mathsf{variance} \colon \mathsf{eigenvalue} \ \mathsf{decay} \ \mathsf{of} \ \boldsymbol{\Sigma}$

$$\mathsf{df}_{\lambda} \leqslant \mathsf{Q}^2 \lambda^{-1/\alpha} \qquad \leftrightarrow \qquad \sigma_i = O(i^{-\alpha})$$

Fast rates (Caponnetto and De Vito, 2007)

$$L(\widehat{\theta}_{\lambda}) - L(\theta^*) \leqslant L^2 \lambda^{1+2r} + \sigma^2 \frac{Q^2 \lambda^{-1/\alpha}}{n}$$

Eigen-decomposition:
$$\mathbf{\Sigma} = \sum_{i=0}^{+\infty} \sigma_i \ \psi_i \otimes \psi_i$$
 $\sigma_i \searrow 0$ $\theta^* = \sum_{i=0}^{+\infty} \langle \theta^*, \psi_i \rangle \ \psi_i$

 $b_{\lambda} \rightarrow bias$: regularity of θ^{\star} w.r.t. Σ

$$\mathsf{b}_{\lambda} \leqslant \mathsf{L}^2 \lambda^{1+2r} \qquad \leftrightarrow \qquad \sum_{i=0}^{+\infty} \frac{\langle \theta^{\star}, \psi_i \rangle^2}{\sigma_i^{2r}} < \infty$$

 $\mathsf{df}_\lambda \to \mathsf{variance} \colon \mathsf{eigenvalue} \ \mathsf{decay} \ \mathsf{of} \ \Sigma$

$$\mathsf{df}_{\lambda} \leqslant \mathsf{Q}^2 \lambda^{-1/\alpha} \qquad \leftrightarrow \qquad \sigma_i = O(i^{-\alpha})$$

Fast rates (Caponnetto and De Vito, 2007)

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant C \ \mathbf{n}^{-\gamma}, \qquad \lambda = c \ \mathbf{n}^{-\beta}, \qquad \gamma \in [1/2, 1].$$

$$\gamma = \frac{\alpha(1+2r)}{\alpha(1+2r)+1}$$
, $\beta = \alpha/(\alpha(1+2r)+1)$, $c = (\sigma Q/L)^{2\beta}$ and $C = (\sigma^{\gamma}Q^{\gamma}L^{1-\gamma})^2$

Our contribution

Generalized Self Concordant functions

Regression: $\ell(y, y') = \psi(y - y')$

- Square loss: $\psi(t) = \frac{1}{2}t^2$
- <u>Huber loss 1:</u> $\psi(t) = \sqrt{1 + t^2} 1$
- Huber loss 2: $\psi(t) = \log \frac{e^t + e^{-t}}{2}$

Generalized Self Concordant functions

Regression: $\ell(y, y') = \psi(y - y')$

- Square loss: $\psi(t) = \frac{1}{2}t^2$
- Huber loss 1: $\psi(t) = \sqrt{1 + t^2} 1$
- <u>Huber loss 2:</u> $\psi(t) = \log \frac{e^t + e^{-t}}{2}$

Classification:

- Logistic loss: $\ell(y, y') = \log(1 + e^{-yy'})$
- GLMs: $\ell(y,y') = -y' \cdot y + \log \int_{\mathcal{Y}} \exp \left(y' \cdot \tilde{y} \right) d\mu(\tilde{y})$

Generalized Self Concordant functions

Regression:
$$\ell(y, y') = \psi(y - y')$$

- Square loss: $\psi(t) = \frac{1}{2}t^2$
- Huber loss 1: $\psi(t) = \sqrt{1 + t^2} 1$
- Huber loss 2: $\psi(t) = \log \frac{e^t + e^{-t}}{2}$

Classification:

- Logistic loss: $\ell(y, y') = \log(1 + e^{-yy'})$
- GLMs: $\ell(y,y') = -y' \cdot y + \log \int_{\mathcal{Y}} \exp(y' \cdot \tilde{y}) \, d\mu(\tilde{y})$

Defintion: GSC functions (Bach, 2010)

$$\forall y \in \mathcal{Y}, \ \ell^{(3)}(y,\cdot) \leqslant \mathsf{R}\ell''(y,\cdot)$$

Assumption: ℓ is GSC

Hessian at optimum: $\mathbf{H} = \mathbb{E}\left[\ell''(Y, \theta^{\star} \cdot \Phi(X)) \; \Phi(X) \otimes \Phi(X)\right], \; \mathbf{H}_{\lambda} = \mathbf{H} + \lambda \mathbf{I}$

Fisher information $\mathbf{G} = \mathbb{E}\left[\ell'(Y, \theta^\star \cdot \Phi(X))^2 \ \Phi(X) \otimes \Phi(X)\right]$

Assumption: ℓ is GSC

Hessian at optimum: $\mathbf{H} = \mathbb{E}\left[\ell''(Y, \theta^{\star} \cdot \Phi(X)) \; \Phi(X) \otimes \Phi(X)\right], \; \mathbf{H}_{\lambda} = \mathbf{H} + \lambda \mathbf{I}$

Fisher information $G = \mathbb{E}\left[\ell'(Y, \theta^\star \cdot \Phi(X))^2 \Phi(X) \otimes \Phi(X)\right]$

Two main quantities

-
$$\mathbf{b}_{\lambda} = \lambda^{2} \|\mathbf{H}_{\lambda}^{-1/2} \theta^{\star}\|^{2} \leqslant \lambda \|\theta^{\star}\|^{2} \to \mathbf{bias}$$

- $\mathbf{df}_{\lambda} = \mathrm{Tr}(\mathbf{H}_{\lambda}^{-1/2} \mathbf{G} \mathbf{H}_{\lambda}^{-1/2}) \leqslant C/\lambda \to \mathbf{variance}$

 $\begin{array}{c} \text{regularity of } \theta^{\star} \\ \text{effective dimension} \end{array}$

Assumption: ℓ is GSC

Hessian at optimum: $\mathbf{H} = \mathbb{E}\left[\ell''(Y, \theta^{\star} \cdot \Phi(X)) \; \Phi(X) \otimes \Phi(X)\right], \; \mathbf{H}_{\lambda} = \mathbf{H} + \lambda \mathbf{I}$

Fisher information $\mathbf{G} = \mathbb{E}\left[\ell'(Y, \theta^\star \cdot \Phi(X))^2 \ \Phi(X) \otimes \Phi(X)\right]$

Two main quantities

-
$$b_{\lambda} = \lambda^{2} \|\mathbf{H}_{\lambda}^{-1/2} \theta^{\star}\|^{2} \leqslant \lambda \|\theta^{\star}\|^{2} \rightarrow \mathbf{bias}$$

- $\mathsf{df}_{\lambda} = \mathsf{Tr}(\mathbf{H}_{\lambda}^{-1/2} \mathbf{G} \mathbf{H}_{\lambda}^{-1/2}) \leqslant C/\lambda \rightarrow \mathbf{variance}$

Fast rates up to O(1/n) (Marteau-Ferey et al., 2019)

Bias-variance decomposition

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant \mathsf{b}_{\lambda} + \frac{\mathsf{df}_{\lambda}}{n}$$

regularity of θ^*

effective dimension

Assumption: ℓ is GSC

Hessian at optimum: $\mathbf{H} = \mathbb{E}\left[\ell''(Y, \theta^* \cdot \Phi(X)) \Phi(X) \otimes \Phi(X)\right], \ \mathbf{H}_{\lambda} = \mathbf{H} + \lambda \mathbf{I}$

Fisher information $G = \mathbb{E}\left[\ell'(Y, \theta^* \cdot \Phi(X))^2 \Phi(X) \otimes \Phi(X)\right]$

Two main quantities

-
$$\mathsf{b}_{\lambda} = \lambda^2 \| \mathsf{H}_{\lambda}^{-1/2} \theta^{\star} \|^2 \leqslant \lambda \| \theta^{\star} \|^2 \to \mathsf{bias}$$

- $\mathsf{df}_{\lambda} = \mathsf{Tr}(\mathsf{H}_{\lambda}^{-1/2} \mathsf{GH}_{\lambda}^{-1/2}) \leqslant C/\lambda \to \mathsf{variance}$

regularity of θ^* effective dimension

Fast rates up to O(1/n) (Marteau-Ferey et al., 2019)

Bias-variance decomposition

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant \mathsf{b}_{\lambda} + \frac{\mathsf{df}_{\lambda}}{n}$$

Example : for
$$\mathrm{df}_{\lambda} \approx \sigma^2 \ d$$

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant 2 \frac{\sigma^2 d}{n}, \qquad \lambda = \frac{\sigma^2 d}{\|\theta^{\star}\|^2 \ n}$$

```
Assumption: \ell is GSC
```

Assumption: $\ell(y, y') = \frac{1}{2}(y - y')^2$

 $\mathbf{\Sigma} = \mathbb{E}\left[\Phi(X) \otimes \Phi(X)\right]$

Hessian at optimum: $\mathbf{H} = \mathbb{E} \left[1 \ \Phi(X) \otimes \Phi(X) \right] = \mathbf{\Sigma}$

Fisher information $G = \mathbb{E}\left[(Y\Phi(X) \cdot \theta^{\star})^2 \ \Phi(X) \otimes \Phi(X) \right] \preceq \sigma^2 \Sigma$

9

Assumption:
$$\ell(y, y') = \frac{1}{2}(y - y')^2$$

Hessian at optimum: $H = \Sigma$

Fisher information $\mathbf{G} \leq \sigma^2 \mathbf{\Sigma}$

$$\mathbf{\Sigma} = \mathbb{E}\left[\Phi(X) \otimes \Phi(X)\right]$$

$$\sigma^2 = \|\theta^*\|^2 \|\Phi\|_{\infty}^2 \|Y\|_{\infty}^2$$

Assumption:
$$\ell(y, y') = \frac{1}{2}(y - y')^2$$

Hessian at optimum: $H = \Sigma$

Fisher information $\mathbf{G} \prec \sigma^2 \mathbf{\Sigma}$

$$(y') = \frac{1}{2}(y - y')^2$$

 $\Sigma = \mathbb{E} \left[\Phi(X) \otimes \Phi(X) \right]$

$$\sigma^2 = \|\theta^\star\|^2 \|\Phi\|_\infty^2 \|Y\|_\infty^2$$

Two main quantities

-
$$b_{\lambda} = \lambda^{2} \|\mathbf{H}_{\lambda}^{-1/2} \theta^{\star}\|^{2}$$

- $df_{\lambda} = Tr(\mathbf{H}_{\lambda}^{-1/2} \mathbf{G} \mathbf{H}_{\lambda}^{-1/2})$

regularity of θ^* effective dimension

Assumption:
$$\ell(y, y') = \frac{1}{2}(y - y')^2$$

Hessian at optimum:
$$H = \Sigma$$

Fisher information
$$\mathbf{G} \leq \sigma^2 \mathbf{\Sigma}$$

$$\mathbf{\Sigma} = \mathbb{E}\left[\Phi(X) \otimes \Phi(X)\right]$$

$$\sigma^2 = \|\theta^\star\|^2 \|\Phi\|_\infty^2 \|Y\|_\infty^2$$

Two main quantities

-
$$\mathsf{b}_{\lambda} = \lambda^{2} \| \mathbf{\Sigma}_{\lambda}^{-1/2} \theta^{\star} \|^{2}$$

- $\mathsf{df}_{\lambda} \leqslant \sigma^{2} \operatorname{Tr}(\mathbf{\Sigma}_{\lambda}^{-1/2} \mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1/2})$

regularity of
$$\theta^*$$
 effective dimension

Assumption:
$$\ell(y, y') = \frac{1}{2}(y - y')^2$$

$$\mathbf{\Sigma} = \mathbb{E}\left[\Phi(X) \otimes \Phi(X)\right]$$

Hessian at optimum: $H = \Sigma$ Fisher information $G \prec \sigma^2 \Sigma$

$$\sigma^2 = \|\theta^\star\|^2 \|\Phi\|_\infty^2 \|Y\|_\infty^2$$

Two main quantities

$$\begin{array}{l} - \ \mathsf{b}_{\lambda} = \lambda^2 \| \mathbf{\Sigma}_{\lambda}^{-1/2} \boldsymbol{\theta}^{\star} \|^2 = \mathsf{b}_{\lambda}^{\mathtt{ls}} \\ - \ \mathsf{df}_{\lambda} \leqslant \sigma^2 \operatorname{Tr}(\mathbf{\Sigma}_{\lambda}^{-1/2} \mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1/2}) = \sigma^2 \mathsf{df}_{\lambda}^{\mathtt{ls}} \end{array}$$

regularity of θ^* effective dimension

Fast rates up to O(1/n) (Marteau-Ferey et al., 2019)

Bias-variance decomposition

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant \mathsf{b}_{\lambda} + \frac{\mathsf{df}_{\lambda}}{n}$$

Assumption:
$$\ell(y, y') = \frac{1}{2}(y - y')^2$$

$$\Sigma = \mathbb{E}\left[\Phi(X) \otimes \Phi(X)\right]$$

Hessian at optimum:
$$H = \Sigma$$

Fisher information $G \prec \sigma^2 \Sigma$

$$\sigma^2 = \|\theta^*\|^2 \|\Phi\|_{\infty}^2 \|Y\|_{\infty}^2$$

Two main quantities

$$\begin{array}{l} - \ \mathsf{b}_{\lambda} = \lambda^2 \| \mathbf{\Sigma}_{\lambda}^{-1/2} \boldsymbol{\theta}^{\star} \|^2 = \mathsf{b}_{\lambda}^{\mathtt{ls}} \\ - \ \mathsf{df}_{\lambda} \leqslant \sigma^2 \operatorname{Tr}(\mathbf{\Sigma}_{\lambda}^{-1/2} \mathbf{\Sigma} \mathbf{\Sigma}_{\lambda}^{-1/2}) = \sigma^2 \mathsf{df}_{\lambda}^{\mathtt{ls}} \end{array}$$

regularity of θ^* effective dimension

Fast rates up to O(1/n) (Marteau-Ferey et al., 2019)

Bias-variance decomposition

$$L(\widehat{\theta}_{\lambda}) - L(\theta^{\star}) \leqslant \mathsf{b}_{\lambda}^{\mathtt{ls}} + \frac{\sigma^{2} \ \mathsf{df}_{\lambda}^{\mathtt{ls}}}{n}$$

Conclusion

Thank you for your attention !
Poster 175