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Your everyday life…   

Morning music

is fueled with ML

Route planning

Email filtering

2Introduction
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Machine Learning

Definition of Machine Learning

The process of computers changing the way they carry out tasks by learning 
from new data, without a human being needing to give instructions in the 
form of a program - Cambridge Dictionary

3

Example

Classify a skin tumor as benign or cancerous => no simple rules

Introduction
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ML in healthcare?

Refs. https://www.marketresearchfuture.com/   https://www.marketsandmarkets.com/

ML in Healthcare
(2018)

ML in Marketing 
(2018)

$7.6bn
$2.2bn
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Machine Learning

Imagenet (2009)
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Moore’s Law

Machine Learning needs powerful processors and data in large quantities 

Year

Introduction
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Contextual Integrity [Nis04]

Contextual Integrity (CI)

Privacy is respected when an information flow from one individual to another 
via a dedicated channel is appropriate, with respect to the sender, the recipient, 
the person concerned, the type of information and the transmission principle.

Remarks

● Not only about one’s own information => not secrecy

● Positive definition: information flows => collaboration

● Ethical dimension

6Introduction
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Contextual Integrity [Nis04]

Example which satisfies Contextual Integrity:

A patient sends their own medical report to their doctor 
via a secure messaging system

What if you replace:
- doctor by employer ?
- secure messaging app by public communication channel ?
- their own medical report by the one of a relative ?

7Introduction
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Privacy-preserving ML through the prism of CI

Motivation: 
Explore how privacy enhancing technologies can 
provide contextual integrity to machine learning 
workflows.

Goals:

1. Data used for training should not directly be exposed 

2. ML models trained should not disclose private data

3. ML models should not be disseminated or exposed

1

2

3

3
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Privacy-preserving ML through the prism of CI

Federated Learning (and attacks on models)

Differential Privacy

Encrypted Computation

9
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2
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Federated Learning
(and attacks on models)

1
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Federated Learning [MMR+17] 

11

ML Model

Federated Learning
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Current situation

No sovereignty nor control 
on how data is used

12

Federated Learning

Important quantity of data 
to store

Federated Learning
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Federated Learning

Federated Learning

Central Server
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Federated Learning

Sovereignty over data

14

Transparency on computations

Benefits

PySyft [RTD+18]

Our contribution:

Federated Learning

Central Server
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Federated Learning <> Contextual Integrity

Personal data used for training should not be directly exposed

ML models should not disclose private training data 

ML models should not be disseminated or exposed

15Federated Learning
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1.

2. During a federated training [GBDM20]
Attack by the central server, white box setting

Threats against ML models

Example #1: Model inversion

1. On a fully trained network [FJR15]
Black box setting

Original Reconstructed

Original Reconstructed

16Attacks against ML
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Threats against ML models

Example #2: Membership Inference [SSSS17]

∈

∉

17Attacks against ML
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Threats against ML models

Our contribution: “Collateral Learning” [RPB+19]

10 output classes c0, c1 … c9
    

0 1 2 3 4 5 6 7 8 9

18Attacks against ML
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Collateral Learning [RPB+19]

1   0   4
3   1   2

Main Task

cursive georgia cursive

cursive georgia georgia

Collateral Task

A dataset with two classification tasks

19Attacks against ML
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argmax

Collateral Learning [RPB+19]

Main Task Collateral Task

Fixed Network

GLOBAL
TRAINING

20Attacks against ML
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Collateral Learning [RPB+19]

Main Task Collateral Task

Fixed Network

Plaintext 
Network

GLOBAL
TRAINING

argmax

21Attacks against ML
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Collateral Learning [RPB+19]

Keep & Freeze

the Fixed Network

Main Task Collateral Task

Fixed Network

Plaintext 
Network

FREEZED

GLOBAL
TRAINING

PARTIAL
TRAINING

argmax

22Attacks against ML
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Collateral Learning [RPB+19]

Keep & Freeze

the Fixed Network

Main Task Collateral Task

Fixed Network

Plaintext 
Network

Collateral
Plaintext 
Network

FREEZED

GLOBAL
TRAINING

PARTIAL
TRAINING

argmax argmax

23Attacks against ML
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Collateral Learning [RPB+19]

Main Task Collateral Task

Random baseline 10%

Accuracy with a CNN 99,1%

Random baseline 20%

Accuracy with a CNN 93.5%

The collateral task achieves a high accuracy

24Attacks against ML
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Implication of Collateral Learning

What solution can we propose?

25Attacks against ML
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Collateral learning [RPB+19]

Mitigation #1: reducing the fixed network output

26

Fixed Network

Plaintext 
Network

argmax

Attacks against ML
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Collateral learning [RPB+19]

Mitigation #2: Adversarial learning [DDSV04] against a simulated adversary

Ljoint = Lmain-  α ・ Lcollateral

Perform a joint optimisation using the loss that we imagine an adversary 
would try to optimize:

27Attacks against ML
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Collateral learning [RPB+19]

Mitigation #2: Adversarial learning against a simulated adversary
Accuracy of an attacker to distinguish between 2 fonts, using different classifiers.

(Baseline: 50%)

28Attacks against ML
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Differential Privacy

2

29
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Intuition

Objective: to ensure that statistical analysis does 
not compromise the privacy of individualsSalaries

Alice: 1700
Bob: 1300
Charlie: 1400
Dan: 1600
Eva: 1900
Flora: 1500

Analyse: function(data)      example : mean of salaries

Perfect confidentiality: the result of the query is 
indistinguishable if you add or remove a single 
individual in the dataset

If you add noise to the calculation, it becomes difficult to 
determine Bob's salary or even if Bob is part of the datasetMean with bob: 1567

Mean without bob: 1620
Deduction of bob's salary: 1567 * 6 - 1620 * 5 = 1300

30Differential Privacy
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(𝜺,𝜹)-Differential Privacy [DMNS06]

31

A randomized algorithm       satisfies (𝜺,𝜹)-differential privacy if for any 
datasets      and       only differing in one item, we have:

Privacy budget (𝜺,𝜹) “small” => increased privacy

𝜺

Differential Privacy
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Differential Privacy

+

Differentially Private Stochastic Gradient Descent (DP-SGD) [BST14]

● Works by adding Gaussian noise on the model updates

● Limited access to data for a given privacy budget

● More noise: better privacy budget but worse model 
utility => trade-off

AI Inc.

32Differential Privacy
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Stochastic Gradient Langevin Dynamics [RBP22]

Our working hypothesis: DP-SGD assumes that the model is public at each 
iteration. If we can hide the model during training and only disclose it at the 
end, less information should leak.

t0 t1 t2 t3 t4

33Differential Privacy
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Stochastic Gradient Langevin Dynamics [RBP22]

Extension of [CYS21] which leverages Langevin diffusion to achieve:

● Exponentially fast convergence of the privacy (instead of √K)

● Under smooth and strongly convex objectives

● For full gradient descent

Our contribution: a stochastic version more practical for ML users [RBP22]

34Differential Privacy
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Differential Privacy <> Contextual Integrity

Personal data used for training should not be directly exposed

ML models should not disclose private training data 
The model is sanitized to prevent attacks like model inversion or 
membership attack

ML models should not be disseminated or exposed
The model is still shared directly to the data owners => IP issue

35Differential Privacy
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Differential Privacy <> Contextual Integrity

Example of risk on the model: Airport X-ray security scan

36Differential Privacy
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Encrypted Computation

3
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Overview of available methods

The ML model should be “encrypted”, meaning usable but not visible

Several methods:

● Homomorphic Encryption

● Functional Encryption

● Secure Multi-Party Computation

38Encrypted Computation
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Homomorphic Encryption

39

Non-encrypted space Encrypted space

=>

Yes/No

Encrypted Computation
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Functional Encryption

Functional key

Example of application: spam filtering

=>

/

40Encrypted Computation
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A Quadratic Functional Encryption Scheme

Our contribution: Extension of [DGP18], the 
functional scheme can be viewed as a neural 
network with one hidden layer and a square 
activation. [RPB+19]

41Encrypted Computation
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Secure Multi-Party Computation

Definition
The set of methods for parties to jointly compute a function over 
their inputs while keeping those inputs private.

Focus on additive secret-sharing:

42Encrypted Computation
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7

43

Additive Secret Sharing

3 4 1 2

3

Encrypted Computation
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3

44

Additive Secret Sharing

1 2

44

1

Encrypted Computation
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3 4

45

Additive Secret Sharing

1 2
++

4 6
== 10

Encrypted Computation
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Additive Secret Sharing

Secret sharing: no single party can reconstruct sensitive data alone

Shared governance: data can only be used or decrypted if everyone 
agrees  

Encrypted Computation
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Data and models can be secret shared in the same way

47

Additive Secret Sharing

Operations needed for ML models

- Addition (already seen)

- Multiplication & matrix multiplication (not very difficult)

- Comparisons

Encrypted Computation
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Additive Secret Sharing

Example  f : x ↦ x ≥ 0

48Encrypted Computation
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Function Secret Sharing [BGI15]

П

A different perspective

49Encrypted Computation
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Additive Secret Sharing

П

П

50
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Additive Secret Sharing

П

П
Σ

51
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Function Secret Sharing

A different perspective

52Encrypted Computation
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Function Secret Sharing

A different perspective

Σ

Example  f : x ↦ x ≥ 𝛼
53Encrypted Computation
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Function Secret Sharing

A different perspective

Σ

x ≥ 𝛼  ⇒ y ≥ 0
54

Σ

Encrypted Computation

with  x = y + 𝛼
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Secure Comparison with Function Secret Sharing

Reminder on the binary notation:

x = x1 x2 … xn = ∑ 2n-k
⋅xk

Example:

n = 3,     x = 0102 = 4⋅0 + 2⋅1 + 1⋅0 = 
2

55

Using the bit notation, x and 𝛼 write:

x = x1 x2 … xn,  𝛼 = 𝛼1 𝛼2 … 𝛼n

 [RTPB22]

Encrypted Computation
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Example with              of   x ≤ 𝛼n = 3

56

Bit per bit private comparison

For each      from     to

● if                 , then             is false

● if                 , then             is true

● if                 , then we need to 

compare the bit              to decide 

k 1     n
xk  > 
𝛼k 

x ≤ 𝛼
xk  < 
𝛼k 

x ≤ 𝛼

k + 1
xk  = 
𝛼k 

Secure Comparison with Function Secret Sharing

 [RTPB22]

Encrypted Computation
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Secure Comparison with Function Secret Sharing

Correctness & Security of our protocol [RTPB22]

- Honest but curious, 2 party computation with trusted dealer

- Small error rate (that can be avoided with extra computation) => [BCG+21]  

57Encrypted Computation
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Why FSS is promising for private ML
Pros

● Enjoys the efficiency of MPC protocols (only light cryptographic primitives)
● Can be run on GPUs
● Considerably reduces the number of communication rounds compared to 

other MPC protocols: 1 for private comparison

Cons
● Requires big preprocessing keys (correlated random strings)

size of key of a 32 bits integer comparison ~ 32 λ bits

Example: 224x224 image through ResNet-18
3311620 comparisons =>  ~1.7 Go per key

58

Secure Comparison with Function Secret Sharing [RTPB22]

Encrypted Computation
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Machine Learning with Function Secret Sharing

AriaNN - Private training using Function Secret Sharing [RTPB22]

1

Dataset Model Accuracy (%) Time / epoch (h)

28x28 MNIST Linear 98.0 0.8

28x28 MNIST LeNet 99.2 4.2

github.com/OpenMined/sycret

59Encrypted Computation

https://github.com/OpenMined/sycret
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1

Dataset Model Time over LAN
using CPU (s)

32x32 CIFAR10 AlexNet 0.15

32x32 CIFAR10 VGG16 1.75

224x224 Imagenet ResNet18 19.9

Time over LAN
using GPU (s)

0.078

1.55

13.9

github.com/OpenMined/sycret

AriaNN - Private evaluation using Function Secret Sharing [RTPB22]

60

Machine Learning with Function Secret Sharing

Encrypted Computation

https://github.com/OpenMined/sycret
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Study using AriaNN for private evaluation [KZPR+21]

Viral

Bacteria

Normal

End-to-end privacy preserving deep learning on 
multi-institutional medical imaging

Function Secret Sharing used for Secure 
inference-as-a-service, a scenario where latency matters

To evaluate privately a neural network at expert level 
accuracy

61

Machine Learning with Function Secret Sharing

Encrypted Computation



Cryptography for Privacy-Preserving Machine LearningThéo Ryffel

Function Secret Sharing <> Contextual Integrity

Personal data used for training should not be directly exposed

ML models should not disclose private training data 
If differential privacy is used

ML models should not be disseminated or exposed

Additional remarks
● Only honest but curious security 

● Model not visible during training: condition for the DP methods exposed 
=> allows powerful combinations

62Encrypted Computation
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Conclusion

4
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Conclusions & Perspectives

● Impact on the run-time or accuracy: the use of PETs depends on the 
context, hence the concept of contextual integrity

● Cross domain research: a challenge and an opportunity

● Need for user-friendly open-source implementations to accelerate 
awareness

● Real life data needs intensive cleaning and structuration to be useable, this 
can’t be done once data is encrypted

● Also a social, political, legal and economic challenge

64Conclusion
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