The interval analysis of multilinear expressions

C. Laneve, T.A. Lascu, V. Sordoni

Università di Bologna
TAPAS 2010
The problem

Interval analysis

Input:
- a polynomial arithmetic expression E
- the range of every variable $x_i \in E$

Output:
- the range of expression E

Context:
- static analysis of source code
Example instance

Example

Compute the range of:

\[E = x \times (y - z) + z \]

knowing that:

\[\begin{align*}
 x & \in X = [\underline{X}, \overline{X}] = [0, 1] \\
 y & \in Y = [\underline{Y}, \overline{Y}] = [0, 2000] \\
 z & \in Z = [\underline{Z}, \overline{Z}] = [0, 2000]
\end{align*} \]
Historic technique

Standard Interval Arithmetics (SIA) - [Moore ’66]

Example

\[X \times (Y - Z) + Z = [0, 1] \times ([0, 2000] - [0, 2000]) + [0, 2000] = \]
\[= [0, 1] \times [0 - 2000, 2000 - 0] + [0, 2000] = \]
\[= [0, 1] \times [-2000, 2000] + [0, 2000] = \]
\[= [-2000, 2000] + [0, 2000] = \]
\[= [-2000, 4000] \]
Drawback: expressions with *multiple occurrences of the same variable*

Example

\[
\text{range}_{SIA}(E) = [-2000, 4000] \supseteq [0, 2000] = \text{range}(E)
\]

Dependency Problem: different occurrences of the same variable are abstracted by independent intervals
Multilinear expressions

Expressions that are linear w.r.t. every variable.

Example

\[E = x \times (y - z) + z \]

Meaningful class because all expressions in it share an interesting property . . .
Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a multilinear function. If f has a local minimum or a local maximum then f is constant.

Corollary

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a multilinear function. The lower and upper bounds of f in the hypercube

$$H = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$$

occur at the vertices of H.
Vertex Evaluation Technique (VE)

VertexEvaluation:

1. find the hypercube’s vertices
2. evaluate the expression in each of these points
3. keep the minimum and maximum values: $min(E)$ and $max(E)$
4. set $range_{VE}(E) := [min(E), max(E)]$

Computational complexity: $O(n \cdot 2^{2n})$

Gaganov, *Computational complexity of the range of a polynomial in several variables*, [‘85] shows that this problem is NP-hard.
Vertex Evaluation Technique (VE)

VertexEvaluation:

1. find the hypercube’s vertices
2. evaluate the expression in each of these points
3. keep the minimum and maximum values: $\min(E)$ and $\max(E)$
4. set $\text{range}_{\text{VE}}(E) := [\min(E), \max(E)]$

Computational complexity: $O(n \cdot 2^{2n})$

Gaganov, *Computational complexity of the range of a polynomial in several variables*, ['85] shows that this problem is NP-hard.
Generalization

Two steps:
1. reduce a generic expression to a multilinear one
2. apply VertexEvaluation

Example

\[E = x^5 - x^3z + xy - xz + z \]

1st step: \(u \) replaces \(x^3 \) (\(u \in U = X^3 \))

\[E' = ux^2 - uz + xy - xz + z \]

2nd step: \(v \) replaces \(x^2 \) (\(v \in V = X^2 \))

\[E'' = uv - uz + xy - xz + z \]

N.B. reduction strategy is not unique!
Proposition

In the general case:

\[
\text{range}(E) \subseteq \text{range}_{VE}(E)
\]

because we lose some information on dependence.

Example

\[
ux^2 - uz + xy - xz + z \leadsto uv - uz + xy - xz + z
\]

in the right-hand side there is no dependence between \(x\) and \(v\)!
Computational complexity: \(O(n(1 + d/2) \cdot 2^{2n(1+d/2)}) \)

Pros:
- multilinear case → exact range
- we pay an exponential cost at compile time

Cons:
- no guarantee that it returns a sharper range
Two possible sources of imprecision:

- over-approximating the range of exponential terms as x^n
- poor handling of dependence

Tradeoff between these two aspects.

Example expression:

$$E = x^3 - x^2y + y$$
Miné’s method gives:

\[x^3 - x^2 y + y \mapsto [a, b]^3 + (-[a, b]^2 + [1, 1])y \]

our technique gives:

\[x^3 - x^2 y + y \mapsto ux - uy + y \text{ with } u \in U = X^2 \]

<table>
<thead>
<tr>
<th>Instance</th>
<th>Miné</th>
<th>Our technique</th>
<th>Exact range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \in [-2, 4])</td>
<td>([-23, 64])</td>
<td>([-47, 64])</td>
<td>([-11, 64])</td>
</tr>
<tr>
<td>(x \in [-2, 2])</td>
<td>([-1, 7])</td>
<td>([-1, 7])</td>
<td>([1, 7])</td>
</tr>
<tr>
<td>(x \in [0, 2])</td>
<td>([-3, 9])</td>
<td>([-4, 4])</td>
<td>([0, 4])</td>
</tr>
</tbody>
</table>
Comparison with Miné’s symbolic methods - 2

Miné’s method gives:

\[x^3 - x^2 y + y \leadsto [a, b]^3 + (-[a, b]^2 + [1, 1])y \]

our technique gives:

\[x^3 - x^2 y + y \leadsto ux - uy + y \text{ with } u \in U = X^2 \]

<table>
<thead>
<tr>
<th>Instance</th>
<th>Miné</th>
<th>Our technique</th>
<th>Exact range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \in [-2, 4])</td>
<td>([-23, 64])</td>
<td>([-47, 64])</td>
<td>([-11, 64])</td>
</tr>
<tr>
<td>(x \in [-2, 2])</td>
<td>([-1, 7])</td>
<td>([-1, 7])</td>
<td>([1, 7])</td>
</tr>
<tr>
<td>(x \in [0, 2])</td>
<td>([-3, 9])</td>
<td>([-4, 4])</td>
<td>([0, 4])</td>
</tr>
</tbody>
</table>
Conjecture

In the case of positive intervals our technique attains a sharper range.

...still to be proven ...for the moment we can show that the following result holds:

Proposition

When all variables’ ranges are positive:

\[\text{range}_{VE}(E) \subseteq \text{range}_{Miné}(E) \]
Conclusions

Contribution:

- an alternative technique:
 - multilinear case \rightarrow exact range
 - general case \rightarrow over-approximation
 - soundness proof

- tool:
 - to be used @ Magneti Marelli
 - static analysis of C code

For the future:

1. impact of different reduction strategies
2. estimate of the error introduced by the chosen strategy
3. classification of expressions w.r.t. precision
Conclusions

Contribution:
- an alternative technique:
 - multilinear case \rightarrow exact range
 - general case \rightarrow over-approximation
 - soundness proof
- tool:
 - to be used @ Magneti Marelli
 - static analysis of C code

For the future:
1. impact of different reduction strategies
2. estimate of the error introduced by the chosen strategy
3. classification of expressions w.r.t. precision