8/16 rue Paul Vaillant-Couturier — 92240 Malakoff — FRANCE

e.mail : info@Iletitwave.fr — Web : www letitwave.com

Super-Resolution Bandlet Upconversion for
HDTV

Stéphane Mallat

1 Upconversion is Highly Needed but Extremely Difficult

Let’s face it, it is extremely difficult to upconvert Standard Definition (SD) television
images into good quality High Definition (HD) images. It involves deep image processing,
mathematical and real time processing problems. Yet, upconversion is now a central issue
for broadcast and television industries. High Definition broadcast channel need to convert
existing Standard Definition archives, films, advertising in an HD format to broadcast
them over their HD channel, while maintaining high quality images. The proportion of SD
upconverted programs is often over 80% during the first years of an HD broadcast channel.
Moreover, HD flat LCD or Plasma screens are now invading the consumer market and these
screens must display progressive HD images whatever the format of the incoming source,
which is most often interlaced standard television images. The television set must therefore
perform the upconversion from SD to HD before the image display. Given the important
cost of these large screen televisions, consumers expect high quality images which they do
not get from existing upconversion technologies embedded in televisions.

The tremendous challenge of upconversion is to compute missing pixels of HD images
from pixels of input SD images, in order to produce HD video sequences that are sharp
and detailed. This is called a “super-resolution” process because the resolution of images
are apparently increased with an appropriate recombination of the information available.
Another source of difficulty is the presence of distortions in the input SD images. These
images may be contaminated by the camera noise. This noise is sometime attenuated by
the camera electronics with a local averaging, which then introduces a blur. However, the
worst distortions are often introduced by MPEG video compression. Because of bandwidth
limitations, the quality of SD compressed images delivered in the homes is often barely
acceptable. The last challenge of HD upconversion is to find a computational architecture
that is fast enough to output 50 or 60 HD images per second. For an 1080p HD image
format, this means outputting over 200 mega bytes of good quality HD color images per
second from degraded SD input images. This is probably one of the most difficult image
processing problem nowadays.

From a mathematical point of view, SD to HD upconversion is an ill-defined inverse
problem of the worst kind. You must recover good quality missing pixels from low resolution
input pixels that are degraded by complex distortions such as multiplicative camera noise,
compression distortions and unknown blurring. Creative engineers and image processing
researchers have come out with elegant ideas providing simple solutions that resulted in
products available for the television industry. Yet, these solutions do not provide the image
quality that consumers are expecting from HD images.

Existing technologies do not take advantage of the recent advances of applied mathe-
matics to image processing. Efficient solutions of such a complex problem can come from a
close interaction of high level mathematics, image processing and parallel hardware com-
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putational architectures. Let It Wave’s upconversion solution was developed in this spirit,
and is implemented in a medium size Altera FPGA chip. This white paper describes the
evolution of important ideas and techniques for upconversion, which gives the background
to explain the principles of Let It Wave’s algorithms.

Section 2 begins by describing in further details the different video formats and the
resulting difficulties of upconversion. The evolution of solutions was first driven by the
increase of computational power. Section 3 explains the resulting motion adaptive techno-
logies currently used by the industry. Most engineers and researchers view motion compen-
sation techniques as the future of upconversion. I will explain why I disagree, despite the
considerable research and development efforts devoted to this approach. Avoiding unstable
motion measurements, Section 3.3 describes a super-resolution procedure that computes
missing pixels by minimizing a total variation norm. The resulting images are sharp with
nearly no oscillation in space (jaggies) and in time (flickers).

Upconversion must also be robust to the distortions of the input SD source. Section 4
reviews traditional linear and adaptive filtering to remove noise and distortions. Wavelet
thresholding algorithms provide efficient solutions to adaptive estimation which also restore
sharp image structures. Section 4.3 explains how Let It Wave’s bandlet technology improves
wavelet denoising by taking advantage of spatial and time geometrical structures in videos.

2 Multiple Format Conversion

The number of video formats is increasing beyond reason, with various flavors corres-
ponding to different image sizes (number of rows and columns), different time sampling
rate (number of images per second) and different space-time sampling pattern (interla-
cing or not). Next section begins by explaining these different formats and their possible
combinations, to understand the requirements of an upconversion process.

2.1 Upconversion of Interlaced Videos

1080p (1920x1080)

Fi1G. 1 — Sizes in rows x columns of Standard Definition and High Definition television
formats

Let me begin with interlacing which is a major source of complexity. The FEuropean
PAL and the American and Japanese NTSC standard television formats are interlaced.
An interlaced video is a succession of 50 or 60 fields per second, where each field carries
only half of the total image rows. One field at a time ¢ includes only the even rows and
the next field at ¢ + 1/50 or ¢ + 1/60 includes only the odd rows and so on. This is an
elementary form of compression that takes advantage of the quick time response of the
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Fi1G. 2 — Left : Interlaced video with 3 fields including respectively even and odd pixel rows.
Right : Deinterlaced sequence with calculated missing pixels shown as white circles.

CRT screen technology and the persistence of human vision. NTSC interlaced videos have
60 fields per second with 486 rows total (even and odd) and 720 columns. PAL/SECAM
interlaced videos have 50 fields per second with 576 rows total (even and odd) and 720
columns. These images are displayed on a screen with a 4/3 ratio, with a sampling interval
that is not equal along rows and columns.

Flat LCD and plasma screens mostly display progressive images. A progressive image,
also called frame, includes all rows, the even and odd rows. High definition television
progressive video sequence have 50 or 60 frames per second where as a progressive film
format has 24 frames per second.

Deinterlacing is a process that computes the missing even or odd rows of each field of
an input interlaced video to output a progressive video sequence, as illustrated in Figure
2. Deinterlacing is necessarily included in all flat screen televisions. Getting high quality
images requires a super-resolution process that computes missing pixels from available ones,
with the best possible resolution.

Besides deinterlacing, a scaling is necessary to increase the image size from SD to HD
formats. HD images have a 16/9 ratio, with 720 rows and 1280 columns for the 720p format
and 1080 rows and 1920 columns for the 1080p format, as shown by Figure 1. If the scaling
adjusts the number of rows, since the 4/3 ratio of SD images is smaller than the 16/9 ratio
of HD images, the scaling does not produce enough columns. Missing columns are then
shown as black vertical bands (pillar box). One can also adjust the scaling factor to match
the number of columns in which case there are too many rows. Top and bottom image rows
then do not appear in the 16/9 format.

2.2 Video/Film Cadence

Interlaced videos often have a more complex time structure than the succession of even
and odd fields previously described. This happens when films are converted into interlaced
videos or when computer graphics elements such as crawling text or logos are inserted in
images. This creates complex cadences that must be taken into account by the deinterlacing
process.

A digital film is a progressive video with 24 frames per second that may be converted
in an NTSC format with 60 fields per second, for television broadcast. Each frame is first
divided in two fields that respectively carry the even and odd rows, which results in 48
fields per second. To obtain 60 fields per second, an extra field is added every 4 fields. Two
successive frames (A : B) in the original film are thus first converted in 4 fields (A-odd,
A-even : B-odd, B-even) and a new field is added to output (A-even, A-odd, A-even : B-
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odd, B-even) which is called a 3 : 2 cadence because it includes 3 fields of 1 frame followed
by 2 fields of the next one. The same pattern then repeats. In this 3 : 2 cadence, the first
3 fields correspond to rows of the same original frame (same time) and the next two also
correspond to the same frame, whereas for an interlaced video, each field gives the even
or odd rows of a different frame at a different time. The deinterlacing must to take into
account these properties when computing the missing rows of each field.

Other cadences than 3 : 2 may be created by other post-processing. To accelerate a
film and fit it with a time lot, one technique is to drop 1 every 12 fields, which is barely
noticed by a viewer. The resulting cadence is 3 : 2 : 3 : 2 : 2 which means that like in a 3 : 2
cadence there are 3 fields of the first frame then 2 of the next then 3 of the following one
then again 2 and afterward we drop one field and hence instead of 3 there are 2 fields. This
pattern is repeated afterward. With the diversification of video sources such as camcorders
of animation fields, the variety of cadences gets more and more complex. Moreover bad
editing of videos may modify periodic cadences.

Another source of complexity comes from post-processing that can mix video materials
corresponding to different cadences. A crawling text or a portion of film can be inserted
in the fields of an interlaced video. As a result, some pixels correspond to an interlaced
video and some other to a converted film that may have a 3 : 2 or a more complex cadence.
Taking these edits into account, requires a per pizel cadence detection. which computes a
potentially different cadence for each pixel. Finding stable estimates of per pixel cadence
parameters is yet another challenge of video conversion.

2.3 Real-Time Parallel Computations

A fundamental specificity of video over fixed image processing is the real-time com-
putational constraint. It often drives the elaboration of video processing algorithms. One
may think that it is just a matter of hardware implementation once the algorithms are well
optimized. It is not the case because computational complexity issues are not the same for
a von Neumann architecture of a sequential computer and a parallel implementation in a
hardware chip such as an FPGA or an ASIC.

For computer scientists, the complexity of an algorithm such as a Fast Fourier Transform
or a Fast Wavelet Transform is typically the number of additions and multiplications and
the memory size for the storage of intermediate calculations. For real-time video processing,
the data rate is huge, over 200 mega bytes/second for 1080p HDTV. As a result, memory
bandwidth is often more crucial than the number of arithmetic operations.

To accelerate standard sequential algorithms, one can use an interconnected array of
processors that operate in parallel. A sequential algorithm is divided it into multiple pa-
rallel sequential computations that communicate their intermediate results. This strategy
simplifies the algorithmic effort to accelerate a sequential algorithm but the hardware is
not used efficiently. As a result, advanced upconversion algorithms that are implemented
on programmable parallel array architectures require large size chips having an important
power consumption.

Hardware processing can be viewed as a flow of particles that move, communicate in
parallel, aggregate the results and continue their multiple paths. For complex problems
such as real-time video upconversion, it is important to take advantage of the full flexibi-
lity offered by parallel calculations. Our experience at Let It Wave is that exploring the
flexibility of parallel computations has transformed the nature of our algorithms. This is
how we were able to implement sophisticated non-linear real-time HD video processing on a
single medium size FPGA such as an Altera Cyclone II-70, with a low power consumption.
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F1G. 3 — Left : A line doubling computes missing rows by reproducing (doubling) the even
and odd rows. Right : A time weaving gets each missing from the corresponding row of the
previous field.

3 Deinterlacing and Scaling

3.1 Motion Adaptive Deinterlacing

Although deinterlacing and scaling can be viewed as a single super-resolution process
that compute missing pixels, they are often calculated in two separate stages for flexibility
and computational efficiency reasons. The output image quality depends mostly upon the
efficiency of deinterlacing, which is the most difficult process. I will thus concentrate on
deinterlacing before considering scaling. Problems related to film and complex cadences
will be described afterward.

Deinterlacing was already studied in the 1970’s and there is a large body of elegant
ideas and solutions with their limitations [2]|. In the 1980’s and 1990’s, the first challenge
of deinterlacing was real-time digital video processing at a minimum cost. Minimizing the
number of operations and memory requirements was thus necessary, which first lead to two
simple methods : spatial line doubling or time weaving.

Spatial line doubling simply copies each even or odd row of a field in respectively the
next odd or previous even row, to recover missing rows, as shown by Figure 3 Left. This
gives a good result wherever the image intensity varies smoothly, but for sharp transitions it
reduces the vertical resolution and produces artifacts such as jaggies along diagonal edges.
These jaggies appear in the examples of deinterlaced images shown in the Upper Left of
Figures 6, 7, 8, 9.

Time weaving is another simple deinterlacing technique which copies the even rows of
an image field into the missing even rows of the next field and the odd rows of a field in the
missing odd rows of the next field. This is illustrated by Figure 3 Right. Time weaving gives
a perfect result if nothing moves in the video. In presence of motion, a time weaving mixes
odd and even rows that are shifted, which produces “comb” or “mouth teeth” artifacts. This
appears in the examples of deinterlaced images shown in the Upper Middle of Figures 6, 7,
8, 9.

With more processing available these basic spatial line doubling and time weaving tech-
niques have been replaced by linear spatial interpolations and linear time interpolations.
The copy of a spatial line doubling is then replaced by an average between the top and
bottom pixel as illustrated by Figure 4 Left. The jaggy artifacts in the Lower Left of Fi-
gures 6, 7, 8, 9, are reduced but remain very strong. This 2-tap linear interpolation can
be replaced by an interpolation using more spatial neighbors, but it does not improve the
result. Since one row out of two is missing, the images are spatially undersampled with
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Fi1G. 4 — Left : Missing pixel are computed by averaging top and bottom pixels. Right :
Missing pixel are computed by averaging same position pixels before and after.
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Fi1G. 5 — Fields of interlaced SD videos.

respect to their frequency content. Interpolating such signals produces all types of aliasing
artifacts including jaggies and Moiré effects on periodic patterns.

Similarly, the time copy of a time weaving can be replaced by a time linear interpolation
that computes each missing pixel as an average of the next and previous pixel at the same
location. This is illustrated by Figure 4 Right. It improves the quality of time-weaving
deinterlacing but comb artefacts remains as shown in the Lower Middle of Figures 6, 7, 8,
9. This is also due to an aliasing phenomenon in time. For fast motions, the time sampling
rate is smaller than the maximum time frequency content of the video. As a consequence,
any time linear interpolation produces aliasing artifacts.

Time interpolations gives good results when there is no or little motion even along
sharp spatial transitions whereas spatial interpolations give good results in smooth spatial
regions even when there are fast motions. A natural improvement of these techniques is
to mix them to get the best of both, which corresponds to motion adaptive algorithms.
A motion detector finds if there is a strong movement by calculating the energy of the
differences of odd rows in time and of even rows in time. If the movement is “strong” then
a missing pixel is calculated with a spatial interpolation otherwise it is calculated with a
time interpolation. For quick movements of sharp structures such as edges or textures, this
technique uses a spatial interpolation which reduces the spatial resolution and produces
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FiG. 6 — Deinterlaced zoom on upper left of Figure 5. Upper left : line doubling. Lower
left : spatial interpolation. Upper middle : time weaving. Lower middle : time interpolation.
Upper right : motion adaptive. Lower right : Let It Wave’s deinterlacing.

aliasing artifacts such as jaggies. The improvement and typical remaining artifacts are
shown in the Upper Right of Figures 6, 7, 8, 9.

Up to this point, innovations came essentially from hardware architecture allowing
more computational power rather than creative new algorithmic ideas. To reduce artifacts
of spatial interpolations an important algorithmic innovation came from edge adaptive in-
terpolations, among which the Directional Correlation De-interlacer (DCDi) algorithm [6]
that locally adapts spatial interpolations to the directions of local image structures. If there
exists a spatial direction along which the signal is locally regular then a precise estimate
of the missing pixel value is obtained with an interpolation along this direction. In the
neighborhood of an edge, the interpolation should be performed parallel to the edge and
not across the edge. The main difficulty is then to estimate a direction in which the signal
has smooth variations in the neighborhood of a missing pixel. Many possible criteria may
be used among which correlation measurements. Such adaptive directional interpolators
reduce the artifacts introduced by fixed spatial interpolators but not completely because
not enough data is available in a single field to perform a precise directional interpola-
tion of missing pixels. As a result, deinterlaced video can have a time flicker (oscillatory
artifacts), when the directional interpolations performed on even and odd fields do not
give coherent information. However, this improvement is at the core of nearly all motion
adaptive deinterlacing procedures used by the television industry.

Image artifacts have two negative impacts : they produce visible errors that degrade
the image quality and they increase the cost of compressing these images with MPEG.
Indeed, artifacts are irregular structures that require many bits to be coded. For broadcast
channels that upconvert their SD content in HD before compressing the video, the bit rate
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FiG. 7 — Deinterlaced zoom on upper right of Figure 5. Upper left : line doubling. Lower
left : spatial interpolation. Upper middle : time weaving. Lower middle : time interpolation.
Upper right : motion adaptive. Lower right : Let It Wave’s deinterlacing.

reservees

FiG. 8 — Deinterlaced zoom on lower left of Figure 5. Upper left : line doubling. Lower left :
spatial interpolation. Upper middle : time weaving. Lower middle : time interpolation.
Upper right : motion adaptive. Lower right : Let It Wave’s deinterlacing.
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Fic. 9 — Deinterlaced zoom on lower right of Figure 5. Upper left : line doubling. Lower
left : spatial interpolation. Upper middle : time weaving. Lower middle : time interpolation.
Upper right : motion adaptive. Lower right : Let It Wave’s deinterlacing.

is fixed and deinterlacing artifacts are therefore amplified by MPEG image compression.
To reduce flickering, upconverters often include an averaging in time, which blurs images
and reduces their resolution.

Scaling After deinterlacing a sequence of fields is converted into a sequence of full frames
that include both even and odd rows. For HD upconversion, Section 2.1 explains that a sca-
ling is needed to adjust the number of rows and columns. Upconversion and downconversion
correspond respectively to factors that are larger and smaller than 1. After an appropriate
deinterlacing, the sampling density is not quite sufficient to reproduce the highest image
frequencies, but optimized linear filters produce relatively little aliasing compared to the
result obtained when applying these filters for deinterlacing. Linear filters are typically
implemented with separable convolutions along the deinterlaced frame rows and columns.
For downconversion, a linear scaling is perfectly appropriate. For upconverting, a linear
scaling produces a blurred image when the scaling factors are above 1.5.

3.2 Motion Compensated Deinterlacing

Motion adaptive techniques are not sophisticated enough when sharp image structures
move. The industry and image processing research community often views motion compen-
sation as the next generation technology [2]. The idea is indeed simple and appealing. First
we compute the motion of each pixel and then for missing pixels we perform the interpo-
lation in time in a direction that follows the time displacements. The interpolation is thus
performed in a time direction that compensates for the motion. Developing a robust “mo-
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tion compensation” deinterlacing technology was the Graal search of the video conversion
industry during the last 10 years. Nearly all companies had or have engineers developing
motion compensation deinterlacing algorithms. This was encouraged by thousands of re-
search papers with various flavors of motion compensation algorithms. An Internet search
on “motion compensation conversion” brings over 3 million hits! Spectacular demonstra-
tions are available with sophisticated techniques. Yet after all this time and effort, no motion
compensation algorithm product is available with the expected quality improvement with
respect to motion adaptive techniques. Motion compensation techniques do not seem to
be sufficiently robust, and when they fail they produce artifacts that are more visible than
motion adaptive artifacts. At a deeper level, I believe that motion is the wrong concept to
understand complex image transformations in time for deinterlacing and upconversion in
general.

Motion compensation is based on the assumptions that a single motion can be associa-
ted to each image pixel, and that this motion can be computed reliably. Since the 1980’s,
computing the motion of image pixels, also called optical flow, is a major image processing
research topic, with tens of thousands of papers published. Optical flow research has shown
that unicity and robustness assumptions are wrong. First, one cannot always associate a
single motion to a pixel. For example, at an occlusion boundary between an object that
moves over a background, pixels have two motions : the object motion and the background
motion. In presence of transparencies, several motions are also associated to a single pixel.
They correspond to the motions of the superposed structures that are being visualized. It
may be a smoke over a background or a scene viewed across a window. Second, optical flow
estimation is intrinsically unreliable and is known as an “ill posed problem” [13]. It requires
making regularity assumption on the flow, for example that it is locally regular over a spa-
tial neighborhood. Even the human visual system “regularizes” motion estimation, which
explains the “mistakes” that are revealed by optical illusions. It does not mean that motion
can never be measured accurately but that it cannot be always measured accurately.

For video compression, one may then wonder why motion compensation techniques are
highly efficient and used by MPEG standards. When the motion is accurate it reduces
the bit rate and when it is wrong it increases the bit rate. On average the balance is
positive and motion compensation brings an important improvement to video compression.
For deinterlacing, if a wrong motion is used, a wrong pixel value is calculated by the
interpolation, which degrades the image quality. Pixels of different colors may be introduced
in uniform color regions that are moving, which is highly visible. As a consequence, motion
compensation algorithms measure the reliability of their motion calculation and when not
sufficiently reliable a spatial interpolation is performed. To obtain robust results requires
to be very conservative and hence perform many spatial interpolations. It thus often leads
to the same type of artifacts as motion adaptive algorithms, with much more operations.
Given the creativity of engineers and researchers working in this area, I am sure that motion
compensation will end up being more efficient than motion adaptive algorithms, but at a
considerable computational cost. I thus believe that it is not the best approach.

3.3 Let It Wave’s Super-Resolution with Total Variation

Motion adaptive algorithms have a limited performance because a missing pixel is
computed from a small set of available pixels, either in the same field or at the same position
in the the next or previous fields. Motion compensated algorithms have the advantage of
using information in a full three-dimensional space-time neighborhood but are less robust
because of motion estimation errors. Let It Wave’s procedure replaces motion calculations
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Fi1G. 10 — Left : Motion adaptive algorithms computes a missing pixel with a spatial in-
terpolation or a time interpolation from the previous and next pixels of same location.
Right : Let It Wave’s super-resolution searches over a full space-time neighborhood for a
directional interpolation that minimizes the resulting total variation.

by a minimization of a total variation norm while taking advantage of available pixel values
in a whole space-time neighborhood.

Missing image pixels can be computed by minimizing a global regularity criteria on the
resulting image. Classical Tykonov regularizations compute an image that is as smooth as
possible, by minimizing a Sobolev norm, which measures the energy of the image gradient.
The reconstructed image is maximally regular and hence blurred. In the early 1990’s, it was
observed that Sobolev norm are not appropriate to model the regularity of sharp images,
because they typically have discontinuous edges. As a consequence their derivatives do not
have a finite energy. A total variation norm is more appropriate because it measures the
amplitude of oscillations and variations of the image, without penalizing discontinuities
[12]. Formally, the total variation is the integral of the absolute value of the modulus of
the gradient of an image, as opposed to the squared modulus which gives a Sobolev norm.
One can prove that the total variation of an image is essentially proportional to the total
length of edges, whether these edges are discontinuous or smooth transitions. Computing
images of minimum total variation under constraints can be obtained with an iterative non-
linear diffusion [8]. For two-dimensional images, impressive super-resolution interpolations
results have since then been obtained by minimizing this total variation or a similar criteria.
For video super-resolution, motion compensation algorithms with a two-dimensional total
variation minimization have been proposed and can produce very good results [5], but they
suffer from motion computation instabilities previously discussed.

Jaggies and flickers are spatio-temporal oscillatory artifacts. To reconstruct sharp images
without such artifacts, one may think of minimizing a three-dimensional total variation
norm. However, total variation minimizations are iterative algorithms that are computa-
tionally expensive, because they produces long range interactions between image pixels.
For fast parallel calculations, missing pixels must therefore be computed with a localized
total variation minimization.

Suppose that the value of a missing pixel is estimated with several directional inter-
polations from available pixels in a three-dimensional space-time neighborhood. The best
interpolation may be defined as the one that minimizes the resulting total variation norm.
This process can also be interpreted as a maximum likelihood estimation. Each directional
interpolation estimates the missing pixel value from the available data and the best esti-
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mation is defined as the one that minimizes a negative log likelihood defined from a local
total variation norm.

A directional interpolation computes a missing pixel by interpolating one or more avai-
lable pixels located close to a line going through the missing pixel with a particular spatio-
temporal direction, as illustrated by Figure 10 Right. Any directional interpolation may
be used a priori. An order 0 interpolation is a simple copy of one pixel located before or
after the missing pixel along the spatio-temporal direction. Line doubling and time wea-
ving algorithms are such copies respectively along the vertical spatial direction and along
the time direction. A first order interpolation may be computed between two pixels along
the specified spatio-temporal direction, or a higher order polynomial interpolation may use
more than two pixels along this direction. Different interpolations produce different esti-
mations. The set of all possible estimations is therefore the result of a choice of a family
of spatio-temporal directions and a set of different interpolations along these directions.

The best directional interpolation is computed by minimizing a total variation norm
that measures the oscillations introduced by the interpolated missing pixel in its three-
dimensional neighborhood. To incorporate the interaction between neighborhood missing
pixel values, the minimization is not performed on a single missing pixel but over a neigh-
borhood of missing pixels. The total variation minimization is thus regularized locally.

When the search for a best directional interpolation is limited to a spatio-temporal
neighborhood that is too small, the best estimator may not be ideal. A spatio-temporal
bandlet thresholding regularizes the estimation with a spatio-temporal geometric flow that
is derived from the directions of the computed best interpolators, as explained in Section
4.3.

Scaling Upconverting SD to HD includes a deinterlacing and scaling. Both can be perfor-
med together since it amounts to finding a grid of missing pixels, but it is computationally
more efficient to perform the deinterlacing first and then compute a scaling. After deinter-
lacing, a linear scaling with interpolation filters produces few artifacts but sharper images
can be obtained with a non-linear scaling. As previously explained, the deinterlacing op-
timizes for each missing pixel the spatio-temporal interpolation. In its neighborhood, the
scaling can be computed with an appropriate modification of this spatio-temporal interpo-
lator. This directional interpolation avoids blurring across sharp transitions and producing
oscillatory artifacts.

Per Pixel Cadence Section 2.2 explains that standard television videos may be a mix
of interlaced videos and films converted to videos by dividing its frames in even and odd
fields. Instead of trying to identify complex cadences, that may depend upon the pixel when
there is an insertion of films or computer graphics, we search directly for the appropriate
deinterlacing solution. A film frame is divided into two or three fields corresponding to
even or odd rows. The deinterlacing should replace each field by the corresponding full
frame. Let us consider a field where locally the pixels correspond to the even rows of a
film frame. The odd rows are either in the field just before or just after. The missing pixels
(odd rows) are thus obtained with a copy from the previous or next frame. This copy is a
particular spatio-temporal interpolation of order 0, along time. The deinterlacing of films
in video thus requires identifying an appropriate space-time interpolation. From our point
of view, this is not different from deinterlacing any other interlaced video content. It is
thus performed by minimizing the same type of local total variation measure, which finds
the appropriate spatio-temporal interpolation.
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4 Camera Noise, Compression Distortions and Blur

Deinterlacing and scaling for upconversion requires taking into account the degradations
introduced by the camera noises, compression distortions and blurs. Camera noises can be
modeled as a mix of additive and multiplicative Gaussian and Poisson noises. Some camera
reduce this noise with a spatio-temporal averaging that introduces a slight blur. More blur
may be introduced by out-of-focus or poor optics. However, the worst degradations often
come from MPEG 2 and MPEG 4 compression. Upconverting such videos while removing
the distortions, without adding worst artifacts, are difficult problems. Next section briefly
reviews the state of the art linear and adaptive filtering techniques. The following sections
explains the improvements obtained by wavelet and Let It Wave’s bandelet thresholding
algorithms.

4.1 Linear and Adaptive Filtering

Noise removal is a huge research area in statistical signal processing. Up to now, HDTV
upconverters have mostly taken advantage of standard linear and adaptive filtering tech-
niques. This section briefly reviews the state of the art.

Linear Wiener filtering is a basic but powerful signal processing tool to remove noise.
The noise produces random gray level fluctuations that are typically more irregular than the
original image content. It is thus attenuated by averaging the noisy image with a predefined
linear filter, which is optimized depending upon global noise and image statistics. For video
image sequences, the averaging can be performed in space and time to take advantage of
spatial and time redundancy. The noise is attenuated but the averaging blurs sharp images
structures such as edges.

Figure 11 shows an example of white noise removal on a fixed image. The image in
Figure 11(c) was obtained with a linear spatial filter. The trade-off resulting from the
filter optimization leaves some lower frequency noise in the regular regions such as Lena’s
shoulder and the removal of high frequencies produces a slight blur. Other simple non-linear
filters such as median filters preserve better the edges but also blur irregular textures and
do not remove as well the noise in regular regions.

Adaptive filtering techniques have been introduced to locally adjust the averaging in
the neighborhood of each pixel. The idea is simple : the averaging should be extensive
only where the original image has smooth variations. This averaging removes the noise
fluctuations without degrading the image information since it varies smoothly. However,
the averaging should be reduced and even removed at pixels near edges or in irregular
texture regions. Despite important research in statistics and signal processing over this ap-
proach, the resulting algorithms are often ad-hoc with instabilities or heavy computational
requirements. Indeed, finding if the original image is locally smooth is a difficult estima-
tion problem in presence of noise. Adapting the filtering to this estimation is yet another
difficult issue.

In time, linear filtering procedures are often based on autoregressive filters of order
1 or 2. These recursive filters have the advantage of being computationally efficient and
causal, which introduces no computational delay. Adaptive recursive filterings modify the
autoregressive parameters according to the difference of values between successive video
frames. Despite some good results, this adaptivity is often ad-hoc and it is often necessary to
limit the adaptivity to few frames. This means that important distortions are not removed.
Moreover, there is no good mathematical framework to adjust simultaneously the spatial
and time adaptivity.
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4.2 Wavelet Thresholding

An important improvement over adaptive linear filtering came from mathematical sta-
tistics and harmonic analysis, through wavelet thresholding. The starting point of wavelet
techniques is completely different from adaptive filtering. First you try to find a basis in
which the image is represented mostly by nearly zero coefficients and few large amplitude
coefficients that concentrate the image energy. If the image is contaminated by a noise, this
noise typically adds a small amplitude component which is distributed over many coeffi-
cients. The noise can thus be suppressed with a thresholding that sets to zero all coefficients
below a threshold value. This threshold can be set to be the expected maximum amplitude
of the noise coefficients. All coefficients above this threshold are kept as is.

FiG. 11 - (a) : Original image. (b) : Image contaminated by a white noise. (c¢) : Noise
removal with a linear filter. (d) : Wavelet coefficient of the noisy image. (e) : Black points
correspond to wavelet coefficients above a threshold. (f) : Image reconstructed from thre-
sholded wavelet coefficients.

Wavelets are bases introduced in harmonic analysis [11], which have close connections
with filter bank algorithms [10]. Wavelet coefficients measure local image variations at
different scales and locations and are computed with a fast algorithm that requires less
operations than a fast Fourier transform [9]. Wavelet coefficients are nearly zero where the
image is regular and have a large amplitude near edges and in irregular texture regions.
Figure 11(d) shows the wavelet coefficients of a noisy image. Setting to zero wavelet co-
efficients with a thresholding removes images fluctuations at multiple scales and is thus
equivalent to averaging the image at a scale that is locally adapted to the image content.
It is proved that wavelet thresholding algorithms have optimal adaptivity properties for
large classes of images [4, 10] including edges. Wavelet coefficients above threshold in Fi-
gure 11(e) correspond to sharp textures and edges. In regular regions, wavelet coefficients
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are mostly dominated by the noise and are set to zero. The image reconstructed in Figure
11(f) from thresholded wavelet coefficients is sharp while the noise is nearly completely re-
moved. Setting wavelet coefficients to zero in regular zones makes an extensive averaging,
and sharp structures corresponding to large wavelet coefficients are well preserved.

When the noise has a large amplitude, setting to zero some coefficients close to an
edge can create small oscillations such as Gibbs phenomena. More recently, number of
researchers realized that many artifacts introduced by wavelets come from their inability
to adapt to the directions of geometrical image structures. Wavelets have square support
of various sizes which does not capture the directional regularity of edges and textures.
One can improve wavelet representations with basis functions that are elongated in the
direction of edges. This research lead to new constructions among which curvlets [1] and
other geometrical representations [3].

4.3 Let It Wave’s Bandlet Noise Removal and Quality Enhancement

Bandlets bases are geometrical wavelet bases that are adapted to capture and restore
the geometrical image regularity where it exists. They are the result of a research carried
in the applied mathematics department at Ecole Polytechnique, Paris [7]. Let It Wave fur-
ther developed and patented the resulting procedures, and industrializes image processing
products based on this technology.

Spatial Bandlets Bandlet coefficients are constructed over wavelet coefficients from
a geometric flow that indicates the local direction of image structures [7], as illustrated
in Figure 12. This geometrical flow is the spatial equivalent of an optical flow in time.
A geometrical flow points in the direction in which the gray level image values “moves”
in space. Along an edge, the geometrical flow is typically parallel to the edge. Bandlet
coefficients are calculated with orthogonal transformations of wavelet coefficients along
the flow. Bandlets are multiscale elongated functions that oscillates along a band that is
parallel to the geometric flow. The energy of wavelet coefficients is concentrated over fewer
bandlet coeflicients.

Fi1G. 12 — Ezample of geometric flow computed on a textured region

For noisy images, thresholding bandlet coefficients performs a multiscale adaptive ave-
raging along the geometric flow. It regularizes image values along edges but not across
edges, which restores their sharpness and geometric regularity. When the image is noisy,
the flow can be obtained through a penalized estimation procedure that optimizes the re-
sulting bandelet basis for image denoising, as explained in [7]. Figure 13 compares results
obtained with a wavelet thresholding and a bandelet thresholding. Bandlets reproduce an
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Wavelets Bandlets

Fi1G. 13 — Left : zoom on Lena’s hat with high noise. Middle : denoising by wavelet thre-
sholding. Right : denoising by bandelet thresholding.

Fic. 14 — Left : zoom on Lena’s hat texture. Middle : noisy image. Right : denoising by
bandelet thresholding.

image whose geometry is better restored and most Gibbs type oscillations have been re-
moved. Figure 14 gives another example of denoising with bandelets, which is particularly
difficult because the texture to be restored has high frequency oscillations. Such textures
are typically destroyed by any averaging that does not adapt to the texture direction. A
bandelet thresholding reproduces such fine textures because it does not perform any ave-
raging in the oscillatory direction. These spatial bandelet filtering techniques are used by
Let It Wave to improve the quality of satellite and seismic imaging.

Spatio-Temporal Bandlets To remove noises and distortions from videos we can also
use their time geometry corresponding to movements. The geometric flow then becomes a
space-time flow that indicates the regularity directions in time and space. For computatio-
nal efficiency, to regularize videos that have been deinterlaced, the geometric flow can be
derived from the spatio-temporal directions of the interpolators that have been optimized
to compute missing pixels.

Three dimensional bandlets look like elongated snakes in time, which follow the com-
puted spatio-temporal directions. Thresholding such bandlet coefficients performs a simul-
taneous regularization in space and time whenever the video has no sharp transitions along
the space-time flow. The threshold value is a parameter that is typically proportional to
the estimated standard deviation of the noise. This is a powerful technique to suppress
camera noise. Figure 15 Left shows an upconverted noisy frame computed from a noisy
interlaced video. Figure 15 Right shows the resulting noise removal with an upconversion
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Fi1G. 15 — Left : Upconverted frame computed from an interlaced video corrupted by a
camera noise. Right : Upconversion including a bandlet thresholding for noise removal.

including a bandelet thresholding.

When the telecommunication bandwidth is not sufficient, MPEG 2 and MPEG 4 com-
pression standard introduce “blocking artifacts” and “mosquito noise” that are highly vi-
sible. The square blocks that appear in compressed images result from the block calculations
of the discrete cosine transform used by MPEG. Mosquito noise are random fluctuations
around edges, resulting from the Gibbs oscillations introduced by the quantization of dis-
crete cosine coefficients. These errors are highly non stationary, with varying spatial and
temporal correlations. Thresholding space-time bandelet coefficients attenuate considerably
the blocking and mosquito noise artifacts. Figure 16 shows an example on a film degraded
by an MPEG-2 compression. The bandelet thresholding removes most of the compression
distortions while keeping sharp image structures such as the shirt stripes.

Thresholding in a bandlet basis can be interpreted as “motion compensated noise re-
moval”. Spatio-temporal geometric flow cannot always be measured reliably, specially with
noise and distortions. When this flow is not sufficiently precise, a bandelet thresholding
does not take advantage of geometric correlations and the results are similar to a wave-
let thresholding. Like in motion compensated compression, this can degrade the estimation
precision but it does not introduce visible artifacts as in motion compensated deinterlacing.
This is why bandelet thresholding is robust to geometric flow errors.

Details Enhancement An image blur reduces the amplitude of wavelet and bandlet
coefficients, which measure image variations in space and time. Suppressing a blur requires
amplifying the signal high frequencies, which often amplifies the noise as well. One can re-
duce the blur and the noise at the same time by thresholding to zero the smallest bandlet
coefficients which are mostly dominated by the noise, and by amplifying the largest coeffi-
cients. If the amplification is too strong, it may produce Gibbs type oscillations near sharp
transitions such as edges. To avoid such oscillations, the amplification can be controlled by
a total variation measurement that limits the amplification factor when oscillations begin
to appear. The resulting bandelet detail enhancement simultaneously removes the noise
and sharpens the image without introducing oscillatory artifacts.
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)

Fic. 16 — Left : Decompressed film frame corrupted by mosquito noise and blocking arti-
facts. Right : Distortion removal with bandlet thresholding.

5 Conclusion

SD to HD upconversion is extremely difficult because it requires computing missing
pixels from noisy and distorted input images, at a considerable data rate. Developing
more efficient procedures requires to innovate along the whole range from mathematics to
image processing and fast parallel algorithms, back and forth. Let It Wave’s upconverter
is based on several key mathematical and algorithmic tools. The reduction of artifacts is
obtained through the minimization of a total variation norm that measures oscillations
in time and space. This process is further stabilized and distortions are removed with
an adaptive spatio-temporal bandlet thresholding process. Despite the complexity of full
spatio-temporal processing, these computations are implemented in a mid-size FPGA with
parallel algorithms designed with a data flow approach.
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