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Abstract

A rigid-motion scattering computes adaptive invariants along translations and rotations, with a deep convolutional network. Con-

volutions are calculated on the rigid-motion group, with wavelets defined on the translation and rotation variables. It preserves

joint rotation and translation information, while providing global invariants at any desired scale. Texture classification is studied,

through the characterization of stationary processes from a single realization. State-of-the-art results are obtained on multiple

texture databases, with important rotation and scaling variabilities.
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1. Introduction

Image classification requires to find representations which reduce non-informative intra-class variability, and

hence which are partly invariant, while preserving discriminative information across classes. Deep neural networks

build hierarchical invariant representations by applying a succession of linear and non-linear operators which are

learned from training data. They provide state of the art results for complex image classifications tasks [1, 2, 4, 5, 6].

A major issue is to understand the properties of these networks, what needs to be learned and what is generic and

common to most image classification problems. Translations, rotations and scaling are common sources of variability

for most images, because of changes of view points and perspective projections of three dimensional surfaces. Build-

ing adaptive invariants to such transformation is usually considered as a first necessary steps for classification [3]. We

concentrate on this generic part, which is adapted to the physical properties of the imaging environment, as opposed

to the specific content of images which needs to be learned.

This paper defines deep convolution scattering networks which can provide invariant to translations and rotations,

and hence to rigid motions in R2. The level of invariance is adapted to the classification task. Scattering transforms

have been introduced to build translation invariant representations, which are stable to deformations [8], with appli-

cations to image classification [7]. They are implemented as a convolutional network, with successive spatial wavelet

convolutions at each layer. Translations is a simple commutative group, parameterized by the location of the input

pixels. Rigid-motions is a non-commutative group whose parameters are not explicitly given by the input image,

which raises new issues. The first one is to understand how to represent the joint information between translations
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and rotations. We shall explain why separating both variables leads to important loss of information and yields repre-

sentations which are not sufficiently discriminative. This leads to the construction of a scattering transform on the full

rigid-motion group, with rigid-motion convolutions on the joint rotation and translation variables. Rotations variables

are explicitly introduced in the second network layer, where convolutions are performed on the rigid-motion group

along the joint translation and rotation variables. As opposed to translation scattering where linear transforms are

performed along spatial variables only, rigid-motion scattering recombines the new variables created at the second

network layer, which is usually done in deep neural networks. However, a rigid-motion scattering involves no learn-

ing since convolutions are computed with predefined wavelets along spatial and rotation variables. The stability is

guaranteed by its contraction properties, which are explained.

We study applications of rigid-motion scattering to texture classification, where translations, rotations and scal-

ing are major sources of variability. Image textures can be modeled as stationary processes, which are typically non

Gaussian and non Markovian, with long range dependencies. Texture recognition is a fundamental problem of visual

perception, with applications to medical, satellite imaging, material recognition [20, 25, 26], object or scene recogni-

tion [33]. Recognition is performed from a single image, and hence can not involve high order moments, because their

estimators have a variance which is too large. Finding a low-variance ergodic representation, which can discriminate

these non-Gaussian stationary processes, is a fundamental probability and statistical issue.

Translation invariant scattering representation of stationary processes have been studied to discriminate texture

which do not involve important rotation or scaling variability [7, 11]. These results are extended to joint translation

and rotation invariance. Invariance to scaling variability is incorporated through linear projectors. It provides effective

invariants, which yield state of the art classification results on a large range of texture data bases.

Section 2 reviews the construction of translation invariant scattering transforms. Section 2.4 explains why invari-

ants to rigid motion can not be computed by separating the translation and rotation variables, without losing important

information. Joint translation and rotation operators defines a rigid motion group, also called special Euclidean group.

Rigid-motion scattering transforms are studied in Section 3. Convolutions on the rigid-motion group are introduced in

Section 3.1 in order to define wavelet tranforms over this group. Their properties are described in Section 3.2. A rigid-

motion scattering iteratively computes the modulus of such wavelet transforms. The wavelet transforms jointly process

translations and rotations, but can be computed with separable convolutions along spatial and rotation variables. A

fast filter bank implementation is described in Section 4, with a cascade of spatial convolutions and downsampling.

Invariant scattering representations are applied to image texture classification in Section 5. State of the art results on

four texture datasets containing different types and ranges of variability [34, 35, 36, 37]. All numerical experiments

are reproducible with the ScatNet [38] MATLAB toolbox.

2. Invariance to Translations, Rotations and Deformations

Section 2.1 reviews the property of translation invariant representations and their stability relatively to defor-

mations. The use of wavelet transform is justified because of their stability to deformations. Their properties are

summarized in Section 2.2. Section 2.3 describes translation scattering transforms, implemented with a deep convo-

lutional network. Separable extensions to translation and rotation invariance is discussed in Section 2.4. It is shown

that this simple strategy leads to an important loss of information.

2.1. Translation Invariance and Deformation Stability

Building invariants to translations and small deformations is a prototypical representation issue for classification,

which carries major ingredients that makes this problem difficult. Translation invariance is simple to compute. There

are many possible strategies that we briefly review. The main difficulty is to build a representation Φ(x) which is also

stable to deformations.

A representation Φ(x) is said to be translation invariant if xv(u) = x(u− v) has the same representation

∀v ∈ R
2 , Φ(x) = Φ(xv) .

Besides translation invariance, it is often necessary to build invariants to any specific class of deformations through

linear projectors. Invariant to translation can be computed with a registration Φx(u) = x(u− a(x)) where a(x) is an

anchor point which is translated when x is translated. It means that if xv(u) = x(u− v) then a(xv) = a(x)+ v. For
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Figure 1: Two images of the same texture (left) from the UIUCTex dataset [35] and the log of their modulus of Fourier

transform (right). The periodic patterns of the texture corresponds to fine grained dots on the Fourier plane. When the

texture is deformed, the dots spread on the Fourier plane, which illustrates the fact that modulus of Fourier transform

is unstable to elastic deformation.

example, a(x) = argmaxu |x⋆h(u)|, for some filter h(u). These invariants are simple and preserve as much information

as possible. The Fourier transform modulus |x̂(ω)| is also invariant to translation.

Invariance to translations is often not enough. Suppose that x is not just translated but also deformed to give

xτ(u) = x(u− τ(u)) with |∇τ(u)| < 1. Deformations belong to the infinite dimensional group of diffeomorphisms.

Computing invariants to deformations would mean losing too much information. In a digit classification problem,

a deformation invariant representation would confuse a 1 with a 7. We then do not want to be invariant to any

deformations, but only to the specific deformations within the digit class, while preserving information to discriminate

different classes. Such deformation invariants need to be learned as an optimized linear combinations.

Constructing such linear invariants requires the representation to be stable to deformations. A representation Φ(x)
is stable to deformations if ‖Φ(x)−Φ(xτ )‖ is small when the deformation is small. The deformation size is measured

by ‖∇τ‖∞ = supu |∇τ(u)|. If this quantity vanishes then τ is a “pure” translation without deformation. Stability is

formally defined as Lipschitz continuity relatively to this metric. It means that there exists C > 0 such that for all x(u)
and τ(u) with ‖∇τ‖∞ < 1

‖Φ(x)−Φ(xτ)‖ ≤C‖∇τ‖∞ ‖x‖ . (1)

This Lipschitz continuity property implies that deformations are locally linearized by the representation Φ. Indeed,

Lipschitz continuous operators are almost everywhere differentiable in the sense of Gateau. It results that Φ(x)−
Φ(xτ) can be approximated by a linear operator of ∇τ if ‖∇τ‖∞ is small. A family of small deformations thus

generates a linear space spanτ (Φ(xτ)). In the transformed space, an invariant to these deformations can then be

computed with a linear projector on the orthogonal complement spanτ(Φ(xτ ))
⊥.

Registration invariants are not stable to deformations. If x(u) = 1[0,1]2(u)+1[α ,α+1]2(u) then for τ(u) = εu one can

verify that ‖x−xτ‖ ≥ 1 if |α|> ε−1. It results that (1) is not valid. One can similarly prove that the Fourier transform

modulus Φ(x) = |x̂| is not stable to deformations because high frequencies move too much with deformations as can

be seen on figure 1.
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Figure 2: The gaussian window φJ (left) and oriented and dilated Morlet wavelets ψθ , j (right). Saturation corresponds

to amplitude while color corresponds to complex phase.

Translation invariance often needs to be computed locally. Translation invariant descriptors which are stable to

deformations can be obtained by averaging. If translation invariant is only needed within a limited range smaller than

2J then it is sufficient to average x with a smooth window φJ(u) = 2−2Jφ(2−Ju) of width 2J:

x⋆φJ(u) =

∫
x(v)φJ(u− v)dv. (2)

It is proved in [8] that if ‖∇φ‖1 <+∞ and ‖|u|∇φ(u)‖1 <+∞ and ‖∇τ‖∞ ≤ 1−ε with ε > 0 then there exists C such

that

‖xτ ⋆φJ − x⋆φJ‖ ≤C‖x‖
(

2−J‖τ‖∞ + ‖∇τ‖∞

)
. (3)

Averaging operators lose all high frequencies, and hence eliminate most signal information. These high frequen-

cies can be recovered with a wavelet transform.

2.2. Wavelet Transform Invariants

Contrarily to sinusoidal waves, wavelets are localized functions which are stable to deformations. They are thus

well adapted to construct translation invariants which are stable to deformations. We briefly review wavelet transforms

and their applications in computer vision. Wavelet transform has been used to analyze stationary processes and image

textures. They provide a set of coefficients closely related to the power spectrum.

A directional wavelet transform extracts the signal high-frequencies within different frequency bands and ori-

entations. Two-dimensional directional wavelets are obtained by scaling and rotating a single band-pass filter ψ .

Multiscale directional wavelet filters are defined for any j ∈ Z and rotation rθ of angle θ ∈ [0,2π ] by

ψθ , j(u) = 2−2 jψ(2− jr−θ u) . (4)

If the Fourier transform ψ̂(ω) is centered at a frequency η then ψ̂θ , j(ω) = ψ̂(2 jr−θ ω) has a support centered at

2− jrθ η , with a bandwidth proportional to 2− j. We consider a group G of rotations rθ which is either a finite subgroup

of SO(2) or which is equal to SO(2). A finite rotation group is indexed by Θ= {2kπ/K : 0≤ k <K} and if G= SO(2)
then Θ = [0,2π). The wavelet transform at a scale 2J is defined by

Wx =
{

x⋆φJ(u) , x⋆ψθ , j(u)
}

u∈R2,θ∈Θ, j<J
. (5)

It decomposes x along different orientations θ and scales 2 j in the neighborhood of each location u.
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The choice of wavelet ψ depends upon the desired angular resolution. In the following we shall concentrate on

Morlet wavelets. A Morlet wavelet is defined by

ψ(u1,u2) = exp

(
−u2

1 + u2
2/ζ 2

2

)
(exp(iξ u1)−K) (6)

The slant ζ of the envelope control the angular sensitivity of ψ . The second factor is an horizontal sine wave of

frequency ξ . The constant K > 0 is adjusted so that
∫

ψ = 0. Morlet wavelets for π ≤ θ < 2π are not computed since

they verified ψθ+π , j = ψ∗
θ , j, where z∗ denotes the complex conjugate of z. The averaging function is chosen to be a

Gaussian window

φ(u) = (2πσ2)−1 exp(−u2/(2πσ2)) (7)

Figure 2 shows such window and Morlet wavelets.

To simplify notations, we shall write ∑θ∈Θ h(θ ) a summation over Θ even when Θ = [0,2π) in which case this

discrete sum represents the integral
∫ 2π

0 h(θ )dθ . We consider wavelets which satisfy the following Littlewood-Paley

condition, for ε > 0 and almost all ω ∈ R2

1− ε ≤ |φ̂ (ω)|2 + ∑
j<0

∑
θ∈Θ

|ψ̂(2 jrθ ω)|2 ≤ 1 . (8)

Applying the Plancherel formula proves that if x is real then W x = {x⋆φ2J , x⋆ψθ , j}θ , j satisfies

(1− ε)‖x‖2 ≤ ‖Wx‖2 ≤ ‖x‖2 , (9)

with

‖Wx‖2 = ‖x⋆φJ‖2 + ∑
j<J

∑
θ∈Θ

‖x⋆ψθ , j‖2 .

In the following we suppose that ε < 1 and hence that the wavelet transform is a nonexpansive and invertible operator,

with a stable inverse. If ε = 0 then W is unitary.

The Morlet wavelet ψ shown in Figure 2 together with φ(u) = exp(−|u|2/(2σ2))/(2πσ2) for σ = 0.7 satisfy (8)

with ε = 0.25. These functions are used in all classification applications.

Unlike Fourier waveforms, Morlet wavelets ψθ , j are smooth and localized which makes them stable to deforma-

tion. Figure 3 shows that the responses of the same wavelet for two highly deformed images are comparable but

displaced. Indeed, wavelet coefficients x⋆ψθ , j(u) are computed with convolutions. They are therefore translation co-

variant, which means that if x is translated then x⋆ψθ , j(u) is translated. Removing the complex phase like in a Fourier

transform defines a positive envelope |x⋆ψθ , j(u)| which is still covariant to translation, not invariant. Averaging this

positive envelope defines locally translation invariant coefficients which depends upon (u,θ , j):

S1x(u,θ , j) = |x⋆ψθ , j|⋆φJ(u) .

Such averaged wavelet coefficients are used under various forms in computer vision. Global histograms of quan-

tized filter responses have been used for texture recognition in Leung & Malik [17]. SIFT[19] and DAISY[22]

descriptors computes local histogram of orientation. This is similar to S1x definition, but with different wavelets and

non-linearity. Due to their stability properties, SIFT-like descriptors have been used extensively for a wide range of

applications where stability to deformation is important, such as key point matching in pair of images from different

view points, and generic object recognition.

2.3. Transation Invariant Scattering

The convolution by φJ provides a local translation invariance but also loses spatial variability of the wavelet

transform. A scattering successively recovers the information lost by the averaging which computes the invariants.

Scattering consists in a cascade of wavelet modulus transforms, which can be interpreted as a deep neural network.

A scattering transform is computed by iterating on wavelet transforms and modulus operators. To simplify nota-

tions, we shall write λ = (θ , j) and Λ = {(θ , j) : θ ∈ [0,2π ]}. The wavelet transform and modulus operations are

combined in a single wavelet modulus operator defined by:

|W |x =
{

x⋆φJ , |x⋆ψλ |
}

λ∈Λ
. (10)
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Figure 3: Two images of the same texture (left) and their convolution with the same Morlet wavelet (right). Even

though the texture is highly deformed, the wavelet responds to roughly the same oriented pattern in both images,

which illustrates its stability to deformation.

x |W | |W | |W | |W |
U1x U2x

S0x S1x S2x

. . .
Umx Um+1x

Smx

Figure 4: Translation scattering can be seen as a neural network which iterates over wavelet modulus operators |W |.
Each layer m outputs averaged invariant Smx and covariant coefficients Um+1x.

This operator averages coefficients with φJ to produce invariants to translations and computes higher frequency

wavelet transform envelopes which carry the lost information. A scattering transform can be interpreted as a neural

network illustrated in Figure 4 which propagates a signal x across multiple layers of the network and which outputs at

each layer m scattering invariant coefficients Smx.

The input of the network is the original signal U0x = x. The scattering transform is then defined by induction. For

any m ≥ 0, applying the wavelet modulus operator |W | on Umx outputs the scattering coefficients Smx and computes

the next layer of coefficients Um+1x:

|W |Umx = (Smx ,Um+1x) , (11)

with

Smx(u,λ1, . . . ,λm) = Umx(.,λ1, . . . ,λm)⋆φJ(u)

= | ||x⋆ψλ1
|⋆ . . . |⋆ψλm

|⋆φJ(u)

and

Um+1x(u,λ1, . . . ,λm,λm+1) = |Umx(.,λ1, . . . ,λm)⋆ψλm+1
(u)|

= | ||x⋆ψλ1
|⋆ . . . |⋆ψλm

|⋆ψλm+1
(u)|
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(a) (b)

Figure 5: (a): Two images where each row of the second image is translated by a different amount v(u1). A separable

translation invariant that would start by computing a translation invariant for each row would output the same value,

which illustrates the fact that such separable invariants are too strong. (b) Two textures whose first internal layer

is translated by different values for different orientations. In this example, vertical orientations are not translated

while horizontal orientations are translated by 1/2(1,1). Translation scattering and other separable invariants cannot

distinguish these two textures because it does not connect vertical and horizontal nodes.

This scattering transform is illustrated in Figure 4. The final scattering vector concatenates all scattering coefficients

for 0 ≤ m ≤ M:

Sx = (Smx)0≤m≤M. (12)

A scattering tranform is a non-expansive operator, which is stable to deformations. Let ‖Sx‖= ∑m ‖Smx‖2, one can

prove that

‖Sx− Sy‖≤ ‖x− y‖ . (13)

Because wavelets are localized and separate scale we can also prove [8] that if x has a compact support then there

exists C > 0 such that

‖Sxτ − Sx‖ ≤C‖x‖
(

2−J‖τ‖∞ + ‖∇τ‖∞+ ‖Hτ‖∞

)
. (14)

Most of the energy of scattering coefficients is concentrated on the first two layers m = 1,2. As a result, applica-

tions thus typically concentrate on these two layers. Among second layer scattering coefficients

S2x(u,λ1,λ2) = ||x⋆ψλ1
|⋆ψλ2

|⋆φJ(u)

coefficients λ2 = 2 j2rθ2
with 2 j2 ≤ 2 j1 have a small energy. Indeed, |x ⋆ψλ1

| has an energy concentrated in a lower

frequency band. As a result, we only compute scattering coefficients for increasing scales 2 j2 > 2 j1 .

2.4. Separable Versus Joint Rigid Motion Invariants

An invariant to a group which is a product of two sub-groups can be implemented as a separable product of

two invariant operators on each subgroup. However, this separable invariant is often too strong, and loses important

information. This is shown for translations and rotations.

To understand the loss of information produced by separable invariants let us first consider the two-dimensional

translation group over R2. A two-dimensional translation invariant operator applied to x(u1,u2) can be computed by

applying first a translation invariant operator Φ1 which transforms x(u1,u2) along u1 for u2 fixed. Then a second

translation invariant operator Φ2 is applied along u2. The product Φ2Φ1 is thus invariant to any two-dimensional

translation. However, if xv(u1,u2) = x(u1 − v(u2),u2) then Φ1xv = Φ1x for all v(u2), although xv is not a translation

of x because v(u2) is not constant. It results that Φx = Φxv. This separable operator is invariant to a much larger set

of operators than two-dimensional translations and can thus confuse two images which are not translations of one-

another, as in Figure 5a. To avoid this information loss, it is necessary to build a translation invariant operator which

takes into account the structure of the two-dimensional group. This is why translation invariant scattering operators

in R2 are not computed as products of scattering operators along horizontal and vertical variables.

7
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The same phenomena appears for invariants along translations and rotations, although it is more subtle because

translations and rotations interfere. Suppose that we apply a translation invariant operator Φ1, such as a scattering

transform, which separate image components along different orientations indexed by an orientation parameter θ ∈
[0,2π). Applying a second rotation invariant operator Φ2 which acts along θ produces a translation and rotation

invariant operator.

Locally Binary Pattern [27] follows this approach. It first builds translation invariance with an histogram of

oriented pattern. Then, it builds rotation invariance on top, by either pooling all patterns that are rotated versions of

one another, or by computing modulus of Fourier transform on the angular difference that relates rotated patterns.

Such separable invariant operators have the advantage of simplicity and have thus been used in several computer

vision applications. However, as in the separable translation case, separable products of translation and rotation

invariants can confuse very different images. Consider a first image, which is the sum of arrays of oscillatory patterns

along two orthogonal directions, with same locations. If the two arrays of oriented patterns are shifted as in Figure

5b we get very different textures, which are not globally translated or rotated one relatively to the other. However, an

operator Φ1 which first separates different orientation components and computes a translation invariant representation

independently for each component will output the same values for both images because it does not take into account

the joint location and orientation structure of the image. This is the case of separable scattering transforms [9] or any

of the separable translation and rotation invariant in used in [25, 27].

Taking into account the joint structure of the rigid-motion group of rotations and translations in R
2 was proposed

by several researchers [13, 15, 14], to preserve image structures in applications such as noise removal or image en-

hancement with directional diffusion operators [16]. Similarly, a joint scattering invariant to translations and rotations

is constructed directly on the rigid-motion group in order to take into account the joint information between positions

and orientations.

3. Rigid-motion Scattering

Translation invariant scattering operators are extended to define invariant representations over any Lie group, by

calculating wavelet transforms on this group. Such wavelet transforms are well defined with weak conditions on

the Lie group. We concentrate on invariance to the action of rotations and translations, which belong to the special

Euclidean group. Next section briefly reviews the properties of the special Euclidean group. A scattering operator

[8] computes an invariant image representation relatively to the action of a group by applying wavelet transforms to

functions defined on the group.

3.1. Rigid-Motion Group

The set of rigid-motions is called the special Euclidean group SE(2). We briefly review its properties. A rigid-

motion in R2 is parameterized by a translation v ∈ R2 and a rotation rθ ∈ SO(2) of angle θ ∈ [0,2π). We write

g = (v,θ ). Such a rigid-motion g maps u ∈ R2 to

gu = v+ rθ u . (15)

A rigid-motion g applied to an image x(u) translates and rotates the image accordingly:

g.x(u) = x(g−1u) = x(r−θ (u− v)) . (16)

The group action (15) must be compatible with the product g′.(gu) = (g′.g)u, so that successive applications of

two rigid-motions g and g′ are equivalent to the application of a single product rigid-motion g′.g. This combined to

(15) implies that

g′.g = (v′+ rθ ′v, θ +θ ′) . (17)

This group product is not commutative. The neutral element is (0,0), and the inverse of g is

g−1 = (−r−θ v,−θ ). (18)

8
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v1

v2

θ

x̃(v1,v2,θ ) ⋆y(r−θ .) ⋆̄ ȳ x̃ ⋆̃ ỹ

Figure 6: A rigid-motion convolution (20) with a separable filter ỹ(v,θ ) = y(v)ȳ(θ ) in SE(2) can be factorized into a

two dimensional convolution with rotated filters y(r−θ v) and a one dimensional convolution with ȳ(θ ).

The product (17) of SE(2) is the definition of the semidirect product of the translation group R2 and the rotation

group SO(2):
SE(2) = R

2
⋊ SO(2) .

It is a Lie group, and the left invariant Haar measure of SE(2) is dg = dvdθ , obtained as a product of the Haar

measures on R
2 and SO(2).

The space L2(SE(2)) of finite energy measurable functions x̃(v,θ ) is a Hilbert space

L2(SE(2)) =
{

x̃ :

∫

R2

∫ 2π

0
|x̃(v,θ )|2 dθdv < ∞

}
.

The left-invariant convolution of two functions x̃(g) and ỹ(g) is defined by

x̃ ⋆̃ ỹ(g) =

∫

SE(2)
x̃(g′) ỹ(g′−1g)dg′ .

Since (v′,θ ′)−1 = (−r−θ ′v′,−θ ′)

x̃ ⋆̃ ỹ(v,θ ) =

∫

R2

∫ 2π

0
x̃(v′,θ ′) ỹ(r−θ ′(v− v′), θ −θ ′)dv′dθ ′ . (19)

For separable filters ỹ(v,θ ) = y(v) ȳ(θ ), this convolution can be factorized into a spatial convolution with rotated filters

y(r−θ v) followed by convolution with ȳ(θ ):

x̃ ⋆̃ ỹ(v,θ ) =

∫ 2π

0

(∫

R2
x̃(v′,θ ′)y(r−θ ′(v− v′))dv′

)
ȳ(θ −θ ′)dθ ′ . (20)

This is illustrated in Figure 6.

3.2. Wavelet Transform on the Rigid-Motion Group

A wavelet transform W̃ in L2(SE(2)) is defined as convolutions with averaging window and wavelets in L2(SE(2)).
The wavelets are constructed as separable products of wavelets in L2(R2) and in L2(SO(2)).

A spatial wavelet transform in L2(R2) is defined from L mother wavelets ψl(u) which are dilated ψl, j(u) =
2−2 jψl(2

− ju), and a rotationally symmetric averaging function φJ(u) = 2−2Jφ(2−Ju) at the maximum scale 2J:

Wx =
{

x⋆φJ(u) , x⋆ψl, j(u)
}

u∈R2,0≤l<L, j<J
.

9
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Since rotations inR2 parametrized by an angle in [0,2π), the space L2(SO(2)) is equivalent to the space L2([0,2π)).
We denote by x̄(θ ) functions which are 2π periodic and belong to L2(SO(2)). Circular convolutions of such functions

are written

x̄ ⋆̄ ȳ(θ ) =

∫ 2π

0
x̄(θ ′) ȳ(θ −θ ′)dθ ′ .

Periodic wavelets are obtained by periodizing a one-dimensional scaling function φ1
K(θ ) = 2−Kφ1(2−Kθ ) and one-

dimensional wavelets ψ1
k (θ ) = 2−kψ1(2−kθ )

φK(θ ) = ∑
m∈Z

φ1
K(θ − 2πm) (21)

ψk(θ ) = ∑
m∈Z

ψ1
k (θ − 2πm) . (22)

The resulting one-dimensional periodic wavelet tranform applied to a function x̄ ∈ L2([0,2π)) is calculated with

circular convolutions on [0,2π):

W x̄ =
{

x̄ ⋆̄φK , x̄ ⋆̄ψk}k<K . (23)

A separable wavelet family in L2(SE(2)) is constructed as a separable product of wavelets in L2(R2) and wavelets

in L2(SO(2))

φ̃J,K(v,θ ) = φJ(v)φ K(θ ) (24)

and for all 0 ≤ l < L

ψ̃l, j,k(v,θ ),





ψl, j(v) ψk(θ ) if j < J and k < K

ψl, j(v) φ K(θ ) if j < J and k = K

φJ(v) ψk(θ ) if j = J and k < K

. (25)

The resulting wavelet transform is defined by

W̃ x̃ =
{

x̃ ⋆̃ φ̃J,K(v,θ ) , x̃ ⋆̃ψ̃l, j,k(v,θ )
}

l, j,k
.

Its energy is defined as the sum of the squared L2(SE(2)) norm of each of its component

‖W̃ x̃‖2 , ‖x̃ ⋆̃ φ̃J,K‖2 + ∑
l, j,k

‖x̃ ⋆̃ ψ̃l, j,k‖2 . (26)

The following theorem gives conditions on the one and two-dimensional wavelets so that W̃ is a bounded linear

operator which satisfies an energy conservation.

Theorem 1. If there exists ε1 > 0 and ε2 > 0 such that

∀ω ∈R, 1− ε1 ≤ |φ̂1(ω)|2 + ∑
k<0

|ψ̂1(2kω)|2 ≤ 1 , (27)

∀ω ∈ R
2, 1− ε2 ≤ |φ̂ (ω)|2 + ∑

0≤l<L
j<0

|ψ̂l(2
jω)|2 ≤ 1 , (28)

then

(1− ε1)(1− ε2)‖x̃‖2 ≤ ‖W̃ x̃‖2 ≤ ‖x̃‖2 . (29)

Proof: we denote W x(u,J) = x⋆φJ(u), W x(u, l, j) = x⋆ψl, j(u), W x̄(θ ,K) = x̄ ⋆̄φK(θ ), Wx̄(θ ,k) = x̄ ⋆̄ψk(θ ). For

j < J and k < K, applying the separable convolution formula (20) to ψ̃l, j,k(v,θ ) = ψl, j(v)ψk(θ ) proves that

x̃ ⋆̃ ψ̃l, j,k(v,θ ) =

∫∫
x̃(v′,θ ′)ψl, j(r−θ ′(v− v′))dv′ ψk(θ −θ ′)dθ ′

=

∫∫
x̃(rθ ′w,θ ′)ψl, j(r−θ ′v−w)dwψk(θ −θ ′)dθ ′.

(30)

10
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x |W | |W̃ | |W̃ | |W̃ |Ũ1x Ũ2x

S̃0x S̃1x S̃2x

. . .
Ũmx Ũm+1x

S̃mx

Figure 7: Rigid-motion scattering is similar to translation scattering of Figure 4, but deep wavelet modulus operators

|W | are replaced with rigid-motion wavelet modulus operators |W̃ | where convolutions are applied along the rigid-

motion group.

A similar result is obtained for all other ψ̃l, j,k(v,θ ). It proves that

W̃ x̃ =W R−1WRx̃ (31)

where Rx̃(v,θ ) = x̃(rθ v,θ ) and Wx̃ computes Wxθ (v, l, j) from each xθ (v) = x̃(v,θ ). We saw in (9) that for all x,

(1− ε1)‖x‖ ≤ ‖Wx‖ ≤ ‖x‖. The rotation operator R is unitary ‖Rx‖= ‖x‖. We are now going to prove that for all x̄,

(1− ε2)‖x̄‖ ≤ ‖Wx̄‖ ≤ ‖x̄‖. Since W̃ =WR−1WR this last inequality will prove (29).

Let x0(θ ) = x(θ ) for θ ∈ [0,2π) and x0(θ ) = 0 otherwise. Observe that

Wx̄(θ ,k) =

∫ ∞

−∞
x0(θ

′)ψ1
k (θ −θ ′)dθ ′ = x0 ⋆ψ1

k (θ )

and

W x̄(θ ,K) =

∫ ∞

−∞
x0(θ

′)φ1
K(θ −θ ′)dθ ′ = x0 ⋆φ1

K(θ ) ,

so that

‖Wx̄‖2 = ‖x0 ⋆φ1
K‖2 + ∑

k<K

‖x0 ⋆ψ1
k ‖2

where the norms on the right are norms in L2(R). By applying the Plancherel formula together with (27) we verify

that

(1− ε2)‖x0‖2 ≤ ‖Wx̄‖2 ≤ ‖x0‖2

and since ‖x0‖2 =
∫ 2π

0 |x(θ )|2dθ = ‖x̄‖2we conclude that (1− ε2)‖x̄‖ ≤ ‖Wx̄‖ ≤ ‖x̄‖ over L2([0,2π)). �.

3.3. Rigid-Motion Invariant Scattering Transform

A rigid-motion invariant scattering has the same architecture as the translation invariant scattering of Section 2.3.

It is illustrated in Figure 7. It computes a first spatial wavelet modulus operator |W | and then iterates on rigid-motion

wavelet modulus operators |W̃ |. To simplify notations, we denote λ = (ł, j,k) and Λ̃ = {(ł, j,k)}. The rigid-motion

wavelet modulus operator can be applied to any function of the rigid-motion group x̃(g) for g = (u,θ ):

|W̃ |x̃(g) =
(

x̃ ⋆̃ φ̃J,K(g) , |x̃ ⋆̃ψ̃λ (g)|
)

λ∈Λ̃
.

Its norm is defined by

‖W̃ x̃‖2 = ‖x̃ ⋆̃ φ̃J,K‖2 + ∑
λ∈Λ̃

‖x̃ ⋆̃ ψ̃λ‖2 .

The rigid-motion scattering begins with applying a spatial wavelet modulus operator (32) to x(u),

|W |x =
{

x⋆φ2J , |x⋆ψθ , j|
}
(θ , j)∈Λ

. (32)

It computes the first scattering network layer

Ũ1x(u,θ , j) = |x⋆ψθ , j(u)| .
11
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Ũ1x is considered as a function of g = (u,θ ), for each j fixed. The scattering transform is then defined by induction,

with successive applications of rigid-motion wavelet modulus transforms along the g variable. For any m≥ 1, applying

the wavelet modulus operator |W̃ | on Ũmx outputs the scattering coefficients S̃mx and computes the next layer of

coefficients Ũm+1x:

|W̃ |Ũmx = (S̃mx , Ũm+1x) , (33)

with

S̃mx(g, j1,λ2, . . . ,λm) = Ũmx(., j1,λ2, . . . ,λm) ⋆̃ φ̃J,K(g)

= | ||x⋆ψ., j1 | ⋆̃ ψ̃λ2
. . . ⋆̃ψ̃λm

| ⋆̃ φ̃J,K(g)

and

Ũm+1x(g, j1,λ2, . . . ,λm,λm+1) = |Ũmx(., j1,λ2, . . . ,λm) ⋆̃ ψ̃λm+1
(g)|

= | ||x⋆ψ., j1 |⋆ ψ̃λ2
. . . |⋆ ψ̃λm

|⋆ ψ̃λm+1
(g)|

(34)

This rigid-motion scattering transform is illustrated in Figure 7.

The final scattering vector concatenates all scattering coefficients for 0 ≤ m ≤ M:

S̃x = (S̃mx)0≤m≤M. (35)

The following theorem proves that a scattering transform is a non-expansive operator.

Theorem 2. For any M ∈N and any (x,y) ∈ L2(R2)

‖S̃x− S̃y‖ ≤ ‖x− y‖ . (36)

Proof: A modulus is non-expansive in the sense that for any (a,b) ∈ C2, ||a|− |b|| ≤ |a− b|. Since W̃ is a linear

non-expansive operator, it results that the wavelet modulus operator |W̃ | is also non-expansive

‖|W̃ |x−|W̃ |y‖ ≤ ‖x− y‖ .

Since W̃ is non-expansive, it results from (33) that

‖|W̃ |Ũmx−|W̃ |Ũmy‖
= ‖S̃mx− S̃my‖2 + ‖Ũm+1x−Ũm+1y‖2

≤ ‖Ũmx−Ũmy‖2 .

(37)

Summing this equation from m = 1 to M gives

M

∑
m=1

‖S̃mx− S̃my‖2 + ‖ŨM+1x−ŨM+1y‖2

≤ ‖Ũ1x−Ũ1y‖2 .

(38)

Since |W |x = (S0x,Ũ1x) which is also non-expansive, we get

‖S0x− S0y‖2 + ‖Ũ1x−Ũ1y‖2 ≤ ‖x− y‖2 . (39)

Inserting (39) in (38) proves (36). �

4. Fast Rigid-Motion Scattering

For texture classification applications, first and second layers of scattering are sufficient for achieving state-of-the-

art results. This section describes a fast implementation of rigid-motion scattering based on a filter bank implementa-

tion of the wavelet transform.

12



L. Sifre, S. Mallat / Applied and Computational Harmonic Analysis 00 (2014) 1–20 13

x h ↓ 2h ↓ 2h ↓ 2

g0g0g0

g1g1g1

A1x A2x
A3x

B0,0x

B1,0x

B0,1x

B1,1x

B0,2x

B1,2x

Figure 8: Filter bank implementation of the wavelet transform W with J = 3 scales and C = 2 orientations. A cascade

of low pass filter h and downsampling computes low frequencies A jx = x⋆φ j and filters gθ compute high frequencies

Bθ , jx = x⋆ψθ , j. This cascade results in a tree whose internal nodes are intermediate computations and whose leaves

are the output of the downsampled wavelet transform.

4.1. Wavelet Filter Bank Implementation

Rigid-motion scattering coefficients are computed by applying a spatial wavelet tranform W and then a rigid-

motion wavelet tranform W̃ . This section describes filter bank implementations of the spatial wavelet transform.

A wavelet tranform

Wx =
{

x⋆φJ(u) , x⋆ψθ , j(u)
}

u∈R,θ∈Θ, j<J
(40)

is computed with a filter bank algorithm, also called “algorithm à trous”. This assumes that the Fourier transform of

the window φ(u) and each wavelet ψθ (u) = ψ(r−θ u) can be written as a product of Fourier transforms of discrete

dilated filters h and g:

φ̂ (ω) =
∞

∏
j<0

ĥ(2 jω) (41)

and for all θ ∈ Θ
ψ̂θ (ω) = ĝθ (ω)φ̂ (ω) . (42)

Let us initialize A0x = x ⋆ φ and denote A jx(n) = x ⋆ φ j(2
jn) and Bθ , jx(n) = x ⋆ψθ , j(2

jn) for n ∈ Z2 It results from

(41) and (42) that

A j+1x(n) = ∑
p

A jx(2p)h(n− 2p)

Bθ , jx(n) = ∑
p

A jx(p)gθ (n− p) .

Thus, the subsampled wavelet transform operator can be implemented as a cascade of convolution and downsampling.

The convolutions are done with filters h and gθ whose support do not change with the scale of the wavelet transform.

This allows to use spatial convolutions in the regime where they are faster than FFT-based convolutions. This is

compactly expressed as

A j+1x = (A jx⋆ h) ↓ 2

Bθ , jx = A jx⋆ gθ

This filter bank cascade is illustrated in Figure 8. Let N be the size of the input image x and P be the size of the

filters h and gθ . A convolution at the finest resolution requires NP operations and N memory. The cascade computes

1+C convolutions at each resolution 2− j. The resulting time complexity is thus (1+C)∑ j 2−2 jNP = O(CNP) and

the required memory is O(CN) where C is the number of orientations, N is the size of the input image, and P is the

size of the filters h and g.

13
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x̃ h ↓ 2h ↓ 2

g0,0g0,0

g0,1g0,1

g1,0g1,0

g1,1g1,1

h̄ ↓ 2h̄ ↓ 2h̄ ↓ 2h̄ ↓ 2

h̄ ↓ 2h̄ ↓ 2

h̄ ↓ 2h̄ ↓ 2h̄ ↓ 2h̄ ↓ 2

ḡḡḡḡ

ḡḡ

ḡḡḡḡ

A1x̃ A2x̃

B0,0x̃ B0,1x̃

B1,0x̃ B1,1x̃

C2,2x̃

D2,1x̃

E0,0,2x̃ E0,1,2x̃

E1,0,2x̃ E1,2,1x̃

F0,0,2x̃ F0,2,1x̃

F1,0,2x̃ F1,2,1x̃

Figure 9: Filter bank implementation of the rigid-motion wavelet transform W̃ with J = 2 spatial scales, C = 2

orientations, L = 2 spatial wavelets, K = 2 orientation scales . A first cascade computes spatial downsampling and

filtering with h and gl,θ . The first cascade is a tree whose leaves are AJ x̃ and Bl, j x̃. Each leaf is retransformed

with a second cascade of downsampling and filtering with h̄ and ḡ along the orientation variable. The leaves of

the second cascade are CJ,K x̃, DJ,k x̃ (whose ancestor is AJ x̃) and El, j,K x̃, Fl, j,kx̃ (whose ancestors are the Bl, j x̃).

These leaves constitute the output of the downsampled rigid-motion wavelet transform. They correspond to signals

x̃ ⋆̃ φ̃J,K x̃, x̃ ⋆̃ ψ̃J,k, x̃ ⋆̃ψ̃l, j,K , x̃ ⋆̃ ψ̃l, j,k appropriately downsampled along the spatial and the orientation variable.

4.2. Rigid Motion Wavelet Filter Bank Implementation

Rigid motion wavelet transform W̃ takes as input a discretized signal x̃(n,θ ) indexed by position n and orientation

θ and computes a set of convolutions with wavelet W̃ x̃ = {x̃ ⋆̃ φ̃J,K , x̃ ⋆̃ ψ̃λ}λ . Similarly to Section 4.1, it is computed

with two successive cascades of convolution and downsampling along the spatial and orientation variable. Figure 9

illustrates this algorithm. We start with the spatial cascade. As previously we initialize A0x̃ = x̃ and compute

A j+1x̃ = (A j x̃⋆ h) ↓ 2

Bl, j x̃ = A jx̃⋆ gl,θ

The computation of Bl, j x̃(n,θ ) = (A j x̃)(.,θ )⋆ gl,θ (n) involves rotated filters gl,θ (n) = gl(r−θ n) that naturally appear

in the factorization (20). There are LC such filters. In our classification experiments, we have chosen to use ori-

ented filters for gl , so that gl,θ = gl+θ and there are only L = C such filters. The spatial convolution is followed by

convolutions along the orientation. Let us denote the subsampled rigid-motion wavelet transform coefficients:

CJ,K x̃(n,θ ) = x̃ ⋆̃ φ̃J,K(2
Jn,2Kθ )

DJ,k x̃(n,θ ) = x̃ ⋆̃ ψ̃J,k(2
Jn,2kθ )

El, j,K x̃(n,θ ) = x̃ ⋆̃ ψ̃l, j,K(2
jn,2Kθ )

Fl, j,kx̃(n,θ ) = x̃ ⋆̃ ψ̃l, j,k(2
jn,2kθ ) .

14
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These subsampled coefficients are initialized from A and B with CJ,0x̃ = AJ x̃ and El, j,0x̃ = Bl, j x̃. We compute them by

induction

CJ,k+1x̃ = (CJ,k x̃ ⋆̄ h̄)↓2

DJ,k x̃ = CJ,k x̃ ⋆̄ ḡ

El, j,k+1x̃ = (E j,l,k x̃ ⋆̄ h̄)↓2

Fl, j,kx̃ = E j,l,kx̃ ⋆̄ ḡ

where ⋆̄ , ↓, h̄, ḡ are the discrete convolution, downsampling, low pass and high pass filters along the orientation

variable θ .

The first spatial cascade computes CL convolutions at each spatial resolution, which requires O(CLNP) operations

and O(CLN) memory. Each leaf is then retransformed by a cascade along the orientation variable θ of cardinality

C. Convolutions along the orientations are periodic and since the size of the filter h̄, ḡ is of the same order as C,

we use FFT-based convolutions. One such convolution requires O(C logC) operations. One cascade of filtering and

downsampling along orientations requires ∑k C2−k log(C2−k) =O(C logC) time and O(C) memory. There are O(LN)
such cascades so that the total cost for processing along orientation is O(CLN logC) operations and O(CLN) memory.

Thus, the total cost for the full rigid-motion wavelet transform W̃ is O(CLN(P + logC)) operations and O(CLN)
memory where C is the number of orientations of the input signal, L is the number of spatial wavelets, N is the size of

the input image, P is the size of the spatial filters.

5. Image Texture Classification

Image Texture classification has many applications including satellite, medical and material imaging. It is a

relatively well posed problem of computer vision, since the different sources of variability contained in texture images

can be accurately modeled. This section presents application of rigid-motion scattering on four texture datasets

containing different types and ranges of variability: [34, 35, 36] texture datasets, and the more challenging FMD

[28, 37] materials dataset. Results are compared with state-of-the-art algorithms in table 1, 2, 3 and 4. All classification

experiments are reproducible with the ScatNet [38] toolbox for MATLAB.

5.1. Dilation, Shear and Deformation Invariance with a PCA Classifier

Rigid-motion scattering builds invariance to the rigid-motion group. Yet, texture images also undergo other geo-

metric transformations such as dilations, shears or elastic deformations. Dilations and shears, combined with rotations

and translations, generates the group of affine transforms. One can define wavelets [31] and a scattering transform

on the affine group to build affine invariance. However this group is much larger and it would involve heavy and un-

necessary computations. A limited range of dilations and shears is available for finite resolution images which allows

one to linearizes these variations. Invariance to dilations, shears and deformations are obtained with linear projectors

implemented at the classifier level, by taking advantage of the scattering’s stability to small deformation. In texture

application there is typically a small number of training examples per class, in which case PCA generative classifiers

can perform better than linear SVM discriminative classifiers [7].

Let Xc be a stationary process representing a texture class c. Its rigid-motion scattering transform S̃Xc typically has

a power law behavior as a function of its scale parameters. It is partially linearized by a logarithm which thus improves

linear classifiers. The random process log S̃Xc has an energy which is essentially concentrated in a low-dimensional

affine space

Ac = E(log S̃Xc)+Vc

where Vc is the principal component linear space, generated by the eigenvalues of the covariance of log S̃Xc having

non-negligible eigenvalues.

The expected value E(log S̃Xc) is estimated by the empirical average µc of the log S̃Xc,i for all training examples

Xc,i of the class c. To guarantee that the scattering moments are partially invariant to scaling, we augment the training

set by dilating each Xc,i by typically 4 scaling factors {1,
√

2, 2, 2
√

2}. In the following, we consider {Xc,i}i as

15



L. Sifre, S. Mallat / Applied and Computational Harmonic Analysis 00 (2014) 1–20 16

Train size 5 20 40

COX [23] 80.2± 2.2 92.4± 1.1 95.7± 0.5
BIF [24] - - 98.5
SRP [26] - - 99.3
Translation scattering 69.1± 3.5 94.8± 1.3 98.0± 0.8
Rigid-motion scattering 69.5± 3.6 94.9± 1.4 98.3± 0.9
+ log & scale invariance 84.3± 3.1 98.3± 0.9 99.4± 0.4

Table 1: Classification accuracy with standard deviations on [34] database. Columns correspond to different training

sizes per class. The first few rows give the best published results. The last rows give results obtained with progressively

refined scattering invariants. Best results are bolded.

Training size 5 10 20

Lazebnik [20] - 92.6 96.0
WMFS [25] 93.4 97.0 98.6
BIF [24] - - 98.8± 0.5
Translation scattering 50.0± 2.1 65.2± 1.9 79.8± 1.8
Rigid-motion scattering 77.1± 2.7 90.2± 1.4 96.7± 0.8
+ log & scale invariance 93.3± 1.4 97.8± 0.6 99.4± 0.4

Table 2: Classification accuracy on [35] database.

the set of training examples augmented by dilation, which are incorporated in the empirical average estimation µc of

E(log S̃Xc).
The principal components space Vc is estimated from the singular value decomposition (SVD) of the matrix of

centered training example log S̃Xi,c − µc. The number of non-zero eigenvectors which can be computed is equal to the

total number of training examples. We define Vc as the space generated by all eigenvectors. In texture discrimination

applications, it is not necessary to regularize the estimation by reducing the dimension of this space because there is

a small number of training examples.

Given a test image X , we abusively denote by log S̃X the average of the log scattering transform of X and its dilated

versions. It is therefore a scaled averaged scattering tranform, which provides a partial scaling invariance. We denote

by PVc log S̃X the orthogonal projection of log S̃X in the scattering space Vc of a given class c. The PCA classification

computes the class ĉ(X) which minimizes the distance ‖(Id −PVc)(log S̃X − µc)‖ between S̃X and the affine space

µc +Vc:

ĉ(X) = argmin
c

‖(Id−PVc)(log S̃X − µc)‖2 (43)

The translation and rotation invariance of a rigid-motion scattering S̃X results from the spatial and angle averaging

implemented by the convolution with φ̃J,K . It is nearly translation invariant over spatial domains of size 2J and

rotations of angles at most 2K . The parameters J and K can be adjusted by cross-validation. One can also avoid

performing any such averaging and let the linear supervised classifier optimize directly the averaging. This last

approach is possible only if there are enough supervised training examples to learn the appropriate averaging kernel.

This is not the case in the texture experiments of Section 5.2 where few training examples are available, but where the

classification task is known to be fully translation and rotation invariant. The values of J and K are thus maximum.

5.2. Texture Classification Experiments

This sections details classification results on image texture datasets KTH-TIPS [34], UIUC [20, 35] and UMD

[36]. Those datasets contains images with different range of variability for each different geometric transformation

type. We give results for progressively more invariant versions of the scattering and compare with state-of-the-art

approaches for all datasets.
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Figure 10: Each row shows images from the same texture class in the UIUC database [20], with important rotation,

scaling and deformation variability.

Training size 5 10 20

WMFS [25] 93.4 97.0 98.7
SRP [26] - - 99.3
Translation scattering 80.2± 1.9 91.8± 1.4 97.4± 0.9
Rigid-motion scattering 87.5± 2.2 96.5± 1.1 99.2± 0.5
+ log & scale invariance 96.6± 1.0 98.9± 0.6 99.7± 0.3

Table 3: Classification accuracy on [36] database.
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Training size 50

SRP [26] 48.2
Best single feature (SIFT) in [29] 41.2
Rigid-motion scattering + log on grey images 51.22

Rigid-motion scattering + log on YUV images 53.28

Table 4: Classification accuracy on [37] database.

Most state of the art algorithms use separable invariants to define a translation and rotation invariant algorithms,

and thus lose joint information on positions and orientations. This is the case of [20] where rotation invariance

is obtained through histograms along concentric circles, as well as Log Gaussian Cox processes (COX) [23] and

Basic Image Features (BIF) [24] which use rotation invariant patch descriptors calculated from small filter responses.

Sorted Random Projection (SRP) [26] replaces histogram with a similar sorting algorithm and adds fine scale joint

information between orientations and spatial positions by calculating radial and angular differences before sorting.

Wavelet Multifractal Spectrum (WMFS) [25] computes wavelet descriptors which are averaged in space and rotations,

and are similar to first order scattering coefficients S1x.

We compare the best published results [20, 23, 24, 25, 26] and scattering invariants on KTH-TIPS (table 1), UIUC

(table 2) and UMD (table 3) texture databases. For the KTH-TIPS, UIUC and UMD database, Tables 1,2,3 give the

mean classification accuracy and standard deviation over 200 random splits between training and testing for different

training sizes. Classification accuracy is computed with scattering representations implemented with progressively

more invariants, and with the PCA classifier of Section 5.1. As the training sets are small for each class c, the

dimension D of the high variability space Vc is set to the training size. The space Vc is thus generated by the D

scattering vectors of the training set. For larger training databases, it must be adjusted with a cross validation as in [7].

Classification accuracy in Tables 1,2,3 are given for different scattering representations. The rows “Translation

scattering” correspond to the scattering described in Section 2.3 and initially introduced in [7]. The rows “Rigid-

motion scattering” replace the translation invariant scattering by the rigid-motion scattering of Section 3.3. Finally,

the rows “+ log & scale invariance” corresponds to the rigid-motion scattering, with a logarithm non-linearity to

linearize scaling, and with the partial scale invariance described in Section 5.1, with augmentation at training and

averaging at testing along a limited range of dilation.

[34] contains 10 classes of 81 samples with controlled scaling, shear and illumination variations but no rotation.

The Rigid-motion scattering does not degrade results but the scale invariant provides significant improvement.

[35] and [36] both contains 25 classes of 40 samples with uncontrolled deformations including shear, perspectivity

effects and non-rigid deformations. For both these databases, rigid-motion scattering and the scale invariance provide

considerable improvements over translation scattering. The overall approach achieves and often exceeds state-of-the-

art results on all these databases.

[37] contains 10 classes of 100 samples. Each class contains images of the same material manually extracted from

Flickr. Unlike the three previous databases, images within a class are not taken from a single physical sample object

but comes with variety of material sub-types which can be very different. Therefore, the PCA classifier of Section 5.1

can not linearize deformation and discriminative classifiers tend to give better results. The scattering results reported

in table 4 are obtained with a one versus all linear SVM. Rigid-motion log scattering applied to each channel of YUV

image and concatenated achieves 52.2 % accuracy which is to our knowledge the best for a single feature. Better

results can be obtained using multiple features and a feature selection framework [29].

6. Conclusion

Rigid motion scattering provides stable translation and rotation invariants through a cascade of wavelet transform

along the spatial and orientation variables. We have shown that such joint operators provide tighter invariants than

separable operators, which tends to be too strong and thus lose too much information. A wavelet transform on the

rigid-motion group has been introduced, with a fast implementation based on two downsampling and filtering cascade.

Rigid-motion scattering has been applied to texture classification in presence of large geometric transformations and

provide state-of-the-art classification results on most texture datasets.
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Recent work [12] has shown that rigid-motion scattering, with extension to dilation, could also be used for more

generic vision task such as object recognition, with promising results on the CalTech 101 and 256 datasets. For large

scale deep networks, group convolution might also be useful to learn more structured and meaningful multidimen-

sional filters.
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