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and
Py i (t,z)
Py a;(t — 2Atr,x
T I (112)
ijfL[(t — 2p+1At[, x)
Since the solution @;(¢,z) € V, we have
P
E];U?(t, ac) = E];PVIU?(L x) = Z EZIDPW/I_IC U}Q(t, x) + EZIDPVI_pU?(t, x) (113)

k=1

The operators involved in ) are diagonal in the Fourier domain, each component of the vector
p 1 g 9 p

EpPW _ UP(t,z) remains in W;_; whereas the components of the vector EpPV _ UP(t,z) remains
I I—k 2 IT\™ p I T—pY I\

in Vi_,. Recall that the scheme

UP(t+ At,z) = BUR(t, 2), (114)

is stable if all the components of the vector U7(¢, ) have an L?(R) norm smaller than the maximum
L%*(R) norm of the components of the initial condition U7(0,z). The spaces Wj_; and Vj_, are
orthogonal to one-another. Hence, the stability of the scheme

UP(t+ 2P Aty ) = BEJUR (L, o), (115)
is equivalent to the stability of the p + 1 schemes defined by
UP(t+2°Aty, o) = ETPy,_ UT(1,2), (116)

and for 0 <k <p-1
UP(t+ 2P Aty ) = EfPw, ., UY(t,2). (117)

Let us study the stability of the scheme (117). As a consequences of the properties (97) to (100)
and from the expression of K} and PWJ_k+1 given in (106) and (111) we have

EPy, .., - (( ) ((( (EE) ML) MT}_HI)

2 2
+2’“At1T7}_k+Mf—_k) +M7}_k_1) +...

+M7§_p_1)2 + M?_p) Pw, ... (118)

2

One can verify that the scheme (118) is merely a complicated way to express the scalar Adams-
Bashforth scheme over the frequency intervals [—2/=*+12x _2l=k+ig]| J[2I-k+1r 21=k+197] The
scheme (117) is thus equivalent to the nonadaptive in time Adams-Bashforth scheme (110). We
saw at the beginning of this appendix that (110) is stable on the same range of Aty as (109), so
(117) is stable for the same Aty as (109). We can prove similarly that the scheme (116) is stable for
the same range of Aty as (109). Since the stability of the time adaptive Adams-Bashforth scheme
is equivalent to the stability of (116) and (117), we see that for the Shannon wavelet the time
adaptive scheme is stable for the same range of At; as the nonadaptive in time scheme (109).
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(From the expression of T; and K; in the Fourier domain, for any A¢; and k£ < p, one can show
that

||Pn/1_k —|—4kAt[T[_k|| <1l ||PVI_p + 4pAt[K[_p|| <1l ||I+ At[K[H <1. (104)

We thus obtain
IE7]] < 1= [T+ AyKq|| < 1. (105)

Appendix 2: Stabilily of the linear advection time-adaptive scheme for the Shannon wavelet.

In this Appendix we prove that the time adaptive scheme defined by the operator

2 2 2
B - (...((I+At1T7}+M7}) +2an Ty + My, ) +...+2p—1AtIT§_p_1+M§_p_1)

+2r ALKy + MY, (106)
is stable over the same range of time steps Af; as the non time adaptive scheme. Let us first
state a few properties of the usual Adams-Bashforth scheme. For the operator K = Ers the

x

Adams-Bashforth scheme is defined by
u(t + At,z) = u(t,z) + At (aKu(t,z) + bKu(t — At,z) + cKu(t — 2At, z)), (107)

with @ = 23/12, b = —16/12, ¢ = 5/12 . If the initial condition ug(z) has a Fourier transform
included in an interval [—wy,,w,,], the scheme is stable if and only if

wn At < C, (108)

where C' is a constant independent of w,,. For the Shannon wavelet the operator Ky is a restriction
of K to the space V which corresponds to the frequency interval [—2!7,2/x]. Thus, the numerical
scheme

fL[(t + Aty, 35) = fL[(t, 35) + Aty (aK[ﬂ[(t, w) + bK[ﬂ[(t — Aly, x) + CK[’LNL[(t — 2Aty, x)) (109)

is stable if and only if Aty < (C/?T)Q_I. Similarly, the operator Tj_j is a restriction of K to the
frequency intervals [—2/=F+12r —2I=k+1g] |2/ ~F+1x 2/=F+127] Thus, the numerical scheme

Py, ir(t+ 28 At 0) = 2FAL (0T giir(t,2) + 6T g (1 — 2° A1, @) + €Ty _gig (1 — 24 Aty o))

+PWI-k+1 ﬂ](t, ‘r)

is stable if and only if At; < (C/7)271. As we shall see, the stability of E} is based on these
properties.

We decompose each component of Uj(¢,2) into the different spaces W; which correspond to
disjoint frequency intervals. We define the operators

ijﬂ[(t, .f)
ij ﬂ](t — 2Adty, 37)

Pw,U0(t,2) = (111)

ij ﬂ[(t — 2p+1At[, .r)
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Appendix 1: Stability of the time adaptive scheme for the heat equation with Shannon wavelets.

In this Appendix we prove that the operator EY of the wavelet time adaptive scheme for the heat
equation (42) satisfies
[[Efll <1 <= |[I+AyK [ <1 (94)

for Shannon wavelets. The proof is easy because all the operators involved are diagonalized by
the Fourier transform. Let us first characterize the spaces V; and W; as well as the operators
K; and T; for a Shannon wavelet. One can easily prove that the space V; of the corresponding
multiresolution approximation is the space of all functions whose Fourier transforms have support
in the interval [~2/7,2/7]. The space W; is the set of functions whose Fourier transforms have
support in the intervals [—2727, —2/7](J[2/7,2727]. For any f € L2?(R), the Fourier transform
of Py, f(z) is f(w)X?(w), where x%(w) is the indicator function of the interval [-2/7,2/7]. The
Fourier transform of Py, f(z) is f(w)x}(w), where x} is the indicator function of the interval

[—-2727, —27| J[277,2727]. For the heat equation, K f(z) = Of(f) Hence, the Fourier transform
T
of K; f(z) is —w?x%(w)f(w). The Fourier transform of T; f(z) is —w?x}(w)f(w).
The identity operator I that appears in the expression of EY given in (42) can be replaced by

Py, since the initial solution belongs to V; and then remains in V. Since
I-1
PVI = Z PWj + PVI—p7 (95)
Jj=I-p
the operator E} becomes
-1
El = (.(( Y] Pw,+Pv,_ + AT +4AG T ) 4. 447 AT,y ) +4P ALK . (96)
j=I-p

For the Shannon wavelet, one can verify that for any f(z) € L%(R), T;f(z) € W;. We thus have
the following properties
V(j,l) e %*, j#1,T;T =0, (97

V(j,l)e Z*,j > 1, T;K; =0, (98

V(j,l)eZ?j#1+1,Py, T =0, (99

V(j,1) € Z*,j > I,Pw,K; = 0. (100

As a consequence, since all the operators in equation (96) commute, the operator E} simplifies to
E} = (Pw,, + AUT)Y + (Pw,_, + 40T )Y 4. 4 (P, + 477 AGT )
+Pvy,_, + APAU K. (101)

Since for different k, the operators Py,_, |, + 4R At T and PVI_p +4PAt; K, act on mutually
orthogonal spaces, ||EY|| < 1 if and only if for any k < p

[Pw,_, +4"At; T ]| < 1, (102)
and

[[Pv,_, + 4"PALK || < 1. (103)
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nonadaptive in time algorithm. We see that the increase of low-frequency errors is not enough to
increase substantially the high frequency errors through the exchange of energy across frequencies.
Moreover, Table 4 shows that for this new adaptive scheme the value of the slope computed at the
location of the shock is as accurate as the result obtained with the space adaptive algorithm. In
this case the computational complexity of the time adaptive scheme is approximately half that of
the nonadaptive in time algorithm. These results show that by adapting the time ratio between
the different spatial resolutions we can keep the same accuracy while decreasing the numerical
complexity. The time ratio must not be determined on stability considerations alone. We must
also take into account the nonlinear properties of the PDE to maintain a balance between the
sources of error.

6 Conclusions.

In this paper we present a wavelet based numerical scheme that adapts the space and time resolu-
tions to the properties of the PDE and the local structure of the solution. We showed numerically
for the heat equation and the linear advection equation that our time-adaptive scheme is stable
for time dilations equal to 4 and 2, respectively. We have no general mathematical proof of this
stability although it appears to depend on the multiresolution structure that is behind the wavelet
orthonormal bases. One can adapt the time factors in order to keep good accuracy while main-
taining stability. For Burgers equation, numerical results indicate that a time factor smaller than 2
does not increase the L., error of the solution although it decreases the numerical complexity. An
important issue is understanding how to adapt the time scaling factor depending upon properties
of the nonlinear equation.

Although the time adaptive scheme (equations (42), (71) and (88)) looks more complicated than
a nonadaptive time scheme, from a programming point of view, this increase of software complexity
is negligible compared to what is needed to implement a spatial adaptive wavelet scheme. We did
not go into the details of implementation issues related to the calculation of the different operator
K; and T; in a wavelet basis because we focused on the time adaptivity issues. However, although
the numerical complexity for applying these operators is linear in the number of nonzero wavelet
coeflicients, the constants involved are not small, especially when the operator is nonlinear. This
is one limitation of wavelet-based numerical schemes that has been studied by Beylkin [5] as well
as Madday and Ravel [12]. Another problem concerns the treatment of boundary conditions for
domains that are not cubes of R®. For cubes of R", Meyer [16] found a construction to build
wavelet orthonormal bases, that have been used by Madday and Ravel to introduce Dirichlet
boundary conditions [12]. In one dimension, Xu and Shann [19] have also introduced a simple
sheme to impose Dirichlet conditions for intervals. The treatement of boundary conditions for more
complicated domains of R™ remains an open problem for wavelet numerical schemes. Clearly, there
are technical difficulties to implement efficiently wavelet schemes to solve PDE in several dimensions.
However, we believe that these bases provide a novel approach that will be competitive for PDE
like the nonlinear Schroedinger equation [9], that generate solutions with localized structures in
space that evolve quickly in time.
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relative amplitude of low-frequencies to high frequencies is much larger than for the nonadaptive
in time algorithm. The increase of low-frequency errors is not a problem since the total error is
dominated by high frequencies. The basic idea of the algorithm is precisely to have reduction of
complexity by introducing more errors at low frequencies as long as these errors remain smaller
than the high frequency errors. However, in nonlinear equations, such as Burgers equation, the
different frequency bands are not independent. There is an exchange of energy between low and
high frequencies because of the nonlinearity of the operator K. This is one of the reasons why
an increase of errors at low frequencies also increases the errors at high frequencies. To decrease
the error in the time adaptive scheme one may simply decrease the time step At; at the finest
resolution. Numerical experiments experiments show that if the time step is reduced by a factor of
2 (i.e., Atg = 1.25 x 10™*) the L, error remains larger than 3 x 1072 and that the slope is not as
close to the exact slope as the one obtained with the space adaptive scheme.

The space-time adaptive scheme that we described has a time step which is inversely pro-
portional to the resolution 27 because of the advection term of the Burgers equation. With this
approach we obtain a scheme which is stable for the same range of time steps Ai{;. However,
we introduce more errors at high frequencies due to the exchange of energy between the different
frequency bands. Instead of decreasing the time step At; at the finest resolution 27, an alternative
is to choose a dilation factor between the time steps at different resolutions that is smaller than
2. This enables us to maintain high accuracy at the low frequencies so that we do not increase
the high frequency errors through exchange across frequencies. One can easily implement a time
adaptive algorithm where the time step increases with a factor of 2 when the resolution is decreased
by a factor of 4 (instead of 2). It is as if we had chosen a time ratio of v/2 across resolution levels.
Let us suppose that the index I is even, and that the number of octaves p is also even. We define
a scheme where the time step at the resolutions 2%/ and 2%~! is the same and equal to 2%_jAt11

UP(t + 25 Ay, z) = ESUR (L, 2) (91)

with

B = (o (T4 20T+ a0 Th, + My + Mp, ) (92)
+ 2887 T, + 2080, Ty + M7, + M§_3)2 te
2By T 428 an T+ MY+ M)
oA KY_, + M.

The number of operations is given by a formula similar to (90)

. . T
oy X (ngj(kQ%—fAtI)+n2j_1(k2§—mt1))+2—§A—U2—pzv (93)

The complexity, the L., error and the slope of the solution obtained with this new time adaptive
scheme are shown in the “Time-Spatial, ratio v/2” column of Table 4. Fig. 5(c) is the graph
of the solution computed with this other space-time adaptive scheme and Fig. 6(c) displays the
error. As expected, the high-frequency errors are smaller than those of the time adaptive scheme
(88) but the low-frequency errors are still higher than for the nonadaptive in time scheme. In
this case the amplitude of the high frequency errors remains approximately the same as for the
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Figure 6: Error curves computed by subtracting the numerical solutions displayed in Fig. 5 from
the exact solution of the Burgers equation. The error curves in (b) and (c) correspond to the
solutions 5(b) and 5(c) computed with time adaptive schemes. The time adaptive schemes increase
the relative proportion of low-frequency errors but the global L., error in (c) is approximately the
same as the error (a) of the nonadaptive in time scheme.
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Figure 5: Graph (a) is the solution of Burgers equation computed with the spatial adaptive scheme
that is not time adaptive, at time 7' = 1/x. Graph (b) is obtained with a space and time adap-
tive scheme, with a time ratio of 2 between two consecutive resolution levels: Atry, = 2"At;.
Graph (c) is also computed with a space and time adaptive scheme but with a different time ratio:
Atryon = 2"At; and Atrpo,41 = 2"At;. The grid (d) is the adaptive grid of wavelet coefficients
of the solution at 7' = 1/7. 25



FEzxact | Spatial Time-Spatial | Time-Spaltial
ratio : 2 ratio /2
Lo error | — 23x107% [ 4.2x107° [ 2.7x107?
Slope 1.975 | 1.995 1.905 1.978
Complexity | — 10° 3 x 104 6 x 104

Table 4: The first line gives the value of the L., error of the solutions computed with the spatial
but non time adaptive scheme, the space and time adaptive scheme with a time factor of 2, and the
space and time adaptive scheme with a time factor of v/2, respectively. The second line gives the
value of the slope at the location of the shock. The last line gives the computational complexity

using (89) and (90).

operations to compute the solution at time 7" with the nonadaptive in time scheme is

o .
. 97D
0 '_Z Zn](kAtI)—l—Atl_Q N|. (89)
j=I—-p+1 k=1

For the time adaptive scheme each resolution 27 has a specific time step At; = 21=iAt; and thus

.. T
2i—1 AL iterations are needed. The total complexity is given by
I

j—
I 2

I T

Atg

, T

0 (k217 At 27P _— 97PN | .

X D+ (90)
j=I-p+1 k=1

The constants for the complexity in (89) and (90) are approximately the same. In the following
numerical experiments, the complexity is computed by evaluating the summations in (89) and (90).

To compare the complexity and accuracy of the space-time adaptive scheme and the space
adaptive scheme we computed (for both schemes) the solution of Burgers equation (with ¢ =
2.5 x 1073/7) at time 7 = 1/x. In these experiments the wavelet grid has 512 coefficients. The
threshold (= 2 x 107?) has been chosen in order to keep errors comparable to those due to the
limitation of the resolution (i.e., ||ur(z) — Py, ur(®)||s where ur is the exact solution at time 77).
Moreover, the time step Aty (at the resolution 1) used by both schemes is Aty = 2.5 x 1074 it
is the largest time step for which both schemes are stable. For each scheme we measured the L.,
error, the value of the slope at the location of the shock and the complexity. These values are
displayed in the following table.

Fig. 5(a) shows the solution at time 7', computed with a spatial adaptive scheme which is not
time adaptive. Fig. 6(a) shows the difference between this computed solution with the exact one.
Fig. 5(b) shows the solution computed with the spatial and time adaptive scheme and Fig. 6(b)
shows the error. Fig. 5(d) gives the wavelet adaptive grid at time 7. Out of 512 coefficients only
128 are “active”. Table 4 shows that the time adaptive algorithm reduces the complexity by a
factor 3.3 but introduces more errors. The numerical experiments were performed with the wavelet
spline 7. We repeated these computations with other spline wavevelets and Daubechies wavelets
and the numerical results were similar. In the error of the time-adaptive algorithm (Fig. 6(b)), the

24



Non Adapt. Time | Time Adapt.
Shannon 5.37 x 1073 447 x 1073
Meyer 6.91 x 1073 5.24 x 1073
Spline 3 6.41 x 1073 4.84 x 1073
Spline 5 5.95 x 1073 4.68 x 1073
Spline 7 5.74 x 1073 4.60 x 10~3
Spline 9 5.62 x 1073 4.51 x 1073
Daubechies 10 | 7.78 x 1073 5.63 x 103
Daubechies 14 | 7.30 x 1073 5.08 x 1073
Daubechies 16 | 6.76 x 1073 4.79 x 1073
Daubechies 18 | 7.00 x 1073 5.52 X 1073

Table 3: For each orthogonal wavelet listed in the first column, the second and third columns give
the maximum time increment Af; for which the nonadaptive in time scheme and the time adaptive
scheme are stable, respectively, for Burgers equation. Stability is with the L., norm of the solution
at a given time T.

only if At; < At,a. The stability is tested with the L., norm of the solution. We know that
the solution of Burgers equation satisfies ||u(t,2)||cc < ||uo(®)||s- Thus a scheme is unstable if
after a certain time 7', the computed solution @;(7, z) satisfies ||@(T, z)||co > E||uo(2)||so (where
F is a constant greater than 1). We used a dichotomic method to compute the At,,,, for both the
time adaptive and the forward Adams-Bashforth scheme. We set € = 107%/7, p = 5 (number of
octaves, as in (88) and (89)), 7’ = 3/m and £ = 15. The time T is chosen large enough so that
derivatives of the solution reach their largest value before T. This test was repeated for several
wavelets. Table 3 compares the maximum time increment Af; for the time adaptive scheme (88)
and the corresponding non time adaptive scheme. Contrary to what happens in the case of the heat
equation and the linear advection equation, as shown in Tables 1 and 2, Table 3 shows that the
maximum time increments are different for the time-adaptive scheme and the non time adaptive
scheme. The differences are more important for the Daubechies wavelets but the maximum time
increments still remain in the same general range of values for the two schemes.

Complexity and Accuracy for Burgers equation.

If Aty is the global time step for the nonadaptive in time algorithm, we need to iterate n = T'/Aty
times in order to compute the solution at ¢ = 7. Let Ny be the total number of points that
characterize the solution at the resolution 2. At time kAt;, the number of operations at the
resolution 27 is proportional to the number of nonzero wavelet coefficients n;(kAtr) (after applying
a threshold) that characterize the projection of the solution on W;_;. Indeed, the number of
operations for the operator T](f) at each time step kAt; is still proportional to the number
of coefficients that characterize the solution in W;_;, as it is for the linear advection equation.
As mentioned in Section 3, this is because the nonlinear Burgers operator K involves differential
operators and a bilinear operation [6]. The number of wavelet coeflicients n;(kAt;) changes with
the time factor k because high frequencies are created as time increases (see Fig. 4).

Let us suppose that the wavelet decomposition is computed on p octaves. The total number of
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aTY_ ar(t, o)+ bTY_, ar(t — 25 Aty x) + cTY_, s (t — 251 ALy, 2)
+ T}_kﬂ[(t,-f)

kULt z) = 0 85)
0
0
0
LaUN(t ) = | ag(t —2FAtg, z) (86)
0
0
where the only non zero coefficient is the (£ + 3)¢ one, and
aK(}_pr[(t, x) + bK(}_pr[(t — 2PALy, x) + CK(}_pﬂ[(t — 2p+1At[, x)
+ K}_pﬂ[(t, )
];_pU?(t,.f) = 0 . (87)
0
The Burgers time adaptive scheme is then defined by
UR(t + 4P Aty z) = ELUR (¢, 2) (88)

with

9 2
B - ( (U 8T M) 280 T + M)
2
2 AGT o+ M?_p_l) + 2P ALK + M.
The operator E]; adapts the time step at each resolution.

5.2 Numerical Experiments.

We compare the stability and accuracy of the space and time adaptive scheme with the stability
of the space adaptive scheme. Comparisons between the space adaptive scheme and more classical
numerical schemes have been done by Liandrat and Tchamitchian [11] so we shall concentrate on
the consequences of the time adaptivity. The first set of experiments concerns stability.

Stability for Burgers equation.

To study the impact of the time adaptivity by itself, we do not introduce any spatial adaptivity and
do not apply a threshold to the wavelet coefficients. We choose the initial condition ug(z) = sin(7z).
The finest resolution 2! is normalized to 1 and the finest grid contains 64 coefficients on the interval
[0,1]. For each scheme there exists a maximum time step At,,,, and the scheme is stable if and
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time adaptive. We do not compare our algorithm with more classical numerical schemes, such as
spectral methods or finite elements, because this type of comparison has been done by Liandrat
and Tchamitchian [11] for the space adaptive wavelet scheme. With Burgers equation we want to
study specifically the impact of the time adaptivity on the computed solution.

5.1 Time Adaptive Algorithm.

The periodic Burgers equation with small diffusion is given by
( 2
QD — Ku(t, ), (79)

where K is the nonlinear operator

3u.(t, ) N 632?(15, x)7
Oz JOx?
and the initial solution u(z,0) = wo(z) is periodic with period 1. For the time discretization, we
use an explicit Adams-Bashforth scheme for the advection term and an explicit Euler scheme for
the diffusion. The time adaptive scheme we have implemented for the advection term is essentially
the same as the one describe in Section 4. At each resolution 27 the time step is At; = 21=I ALy,
In order for the diffusion term to remain in step with the time adaptivity of the advection term,

we use the time increment 2/=7A¢; instead of 4I_jAt1, at a resolution 27.

Ku(t,z) = —u(t, z) (80)

Let us separate the advection and the diffusion terms and define the two operators

KO/(2) = () 12 (s1)
and 52
K'f(z) = ¢ af;(f). (82)

Let K? = PVJ KOPVJ and K} = PV] KlPV]. We also define T? = K? - K?_l and T} = K} - K}_l.
An explicit forward Euler scheme is sufficient for the diffusion term K°, whereas the nonlinear
advection operator K! requires an Adams-Bashforth scheme. Both components are integrated in
a time-adaptive scheme which is similar to the linear advection, time adaptive scheme. Let 2! be
the finest resolution of computation. Let p be a positive integer and we suppose that the wavelet
transform is computed over p octaves. The advection operator K = —d/dx is replaced by K° and
we manage the memory component in the same way as in (71). The diffusion term K! does not
use any memory component. As in the linear advection scheme, the memory vector is defined by

’ﬂ,[(t,.f)
ﬂ[(t — At],.r)
UP(t,a) = | @l =2Alp,2) |, (83)

fL[(t — 2p+1At1, l‘)
The operators are given by

ﬂ[(t, ac)
ﬂ[(t, x)
Pure) = | 0 | (s4)
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is
1 I
AL > nj+27PN| . (74)
J=I-p+1
For the time adaptive scheme (70), the complexity of computing the action of each operator
T; on the solution is also O(n;). The time step associated to the operator T; is At; = 21-7 At;.
The total complexity of the scheme to compute the solution at T" = 1 is therefore

I

1 .

AL > 27l 427727 PN | ). (75)
b \jmi5m

0

The constants in (74) and (75) are approximately the same and depend on the size of the wavelet
support. If the solution has fine structures over its whole support, then there are almost no
negligible wavelet coefficients and n; ~ N2/=I=1. The complexity given by both (74) and (75) is

0(2;). (76)

We therefore realize no gain with a time adaptive scheme. This is not surprising since half of the
wavelet coefficients are at the largest resolution 2/ and the time step at this resolution is the same
for both the time adaptive and the nonadaptive in time schemes. The time adaptive scheme is
efficient only if the spatial adaptive grid has already removed many wavelet coefficients. This is the
case when the solution has only isolated singularities. If we suppose that the initial solution has
isolated sharp variations, as in Fig. 2(a), then the nonzero wavelet coefficients belong to pyramids
similar to Fig. 2(b). FEach pyramid corresponds to a particular singularity. At each resolution
level, the number of nonzero wavelet coefficients nj is approximately equal to a constant L, which
depends upon the size of the wavelet support. The complexity of the nonadaptive in time scheme
given by (50) becomes

0 (ALU(pL + z—pzv)) , (77)

whereas the complexity of the time-adaptive scheme is

0 <ALU(L + z—pz—pw)) . (78)

If the support of the signal is very large, and the number of wavelet coefficients L at each resolution
is negligible with respect to the remaining coeflicients 27PN, then the gain of the time adaptive
scheme is a factor of 2°. Otherwise (27PN ~ L), the gain is proportional to the number of octaves
p of the wavelet decomposition. Since p is generally of the order of log,(/N), the complexity gain
is approximately log,(NN). Let us emphasize here that the constants in the complexity estimates
(77) and (78) are the same so that the gain is not lost by the size of the constant factors. On the
other hand, since we use larger time steps at coarser resolutions, it is likely that we also increase
the numerical errors of the scheme. The accuracy of the time-adaptive scheme is studied in the
more interesting case of Burgers equation.

5 Burgers Equation.

In this section, we compare the stability, accuracy and numerical complexity of the wavelet based
space and time adaptive scheme with a wavelet based scheme which is space adaptive but not
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Adams Bashforth scheme | Time adaptive scheme
Shannon 3.61 x 1073 3.61 x 1073
Meyer 5.25 x 1073 5.25 x 1073
Spline 3 4.99 x 1073 4.99 x 1073
Spline 5 4.52 x 1073 4.52 x 1073
Spline 7 4.30 x 1073 4.30 x 1073
Spline 9 4.19 x 1073 419 x 1073
Daubechies 10 | 6.27 x 1073 5.48 x 1073
Daubechies 14 | 5.78 x 1073 5.39 x 1073
Daubechies 16 | 5.44 x 1073 5.21 x 1073
Daubechies 18 | 5.48 x 1073 5.37 x 1073

Table 2: For each orthogonal wavelet listed in the first column, the second and third columns give
the maximum time increment At; for which the Adams-Bashforth scheme and the time adaptive
scheme are stable, respectively.

the maximum time steps remain close. We do not know why the stability of the scheme is different
for the Daubechies wavelets. The Daubechies wavelets have compact support and they are neither
symmetric nor antisymmetric in contrast to the wavelets of Meyer and Battle-Lemarie. We note
that when the support of the Daubechies wavelet increases, the difference between the maximum
time step of both schemes decreases but it is not clear why this is happening. We emphasize,
however, that even in the Daubechies case, the schemes are stable over a comparable range of time
increments.

Complexity estimates for the advection equation.

Let us now discuss the numerical complexity of the time and space adaptive scheme as compared
to the space adaptive scheme that is not time adaptive. Since the linear advection equation just
translates the initial solution, the number of non-negligible wavelet coeflicients remains approxi-
mately constant in time. Let 2! be the finest resolution and suppose that the wavelet transform
is computed over p octaves. The solution is decomposed onto V; = @]I‘:[_p+1wj—1 @ Vi, We
denote by N the number of wavelet coeflicients that characterize the projection of the solution in Vj
(number of samples). The projection of the solution on V;_, is characterized by 27PN coefficients.
Let n; (j < I) be the number of nonzero wavelet coefficients (after applying a threshold) that
characterize the projection of the solution on W;_;. The total number of nonzero coefficients in
the grid is then equal to E]I':I—p-u n; +27PN. We thus see that the nonadaptive in time scheme
(50) requires
I
Ol > nj+27"N (73)
J=I-p+1

operations per time step. The constant depends mostly on the size of the wavelet support. To
compute the solution at time 7' = 1, we need 1/At; time steps and the total number of operations
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whose only non-zero element is the (k+ 3)d one. At the lowest resolution 2/7P we use the operator

aK[_pr[(t, z)+ bK[_pr[(t — 2PAtr,z) + CK[_pﬂ](t — 2p+1At[, z)

P P 0
T, U (tz) = : . (69)

0
At each resolution the time adaptive scheme is then defined naturally, as in (41), by
UP(t + 2P Aty z) = ERUR (1, ) (70)

with
9 2
B - ( (T MY 2an T M) (1)
2
Ay T+ My )+ 22 an K, + MY

Let us note that in order to compute the solution at time 7" we need to apply this operator T'/(2PAty)
times. {From the intial condition at { = 0 we can compute each component of the initial memory
vector UF(2PT1Aty, ¢) with an explicit forward Euler scheme.

Stability for the advection equation.

Let us now discusss the stability of this time adaptive scheme. We say that the scheme is stable
if and only if at any time ¢ and for any intial condition U7(0,z), all the components of the vector
UTt,z) have an L*(R) norm in the & variable, which is smaller than or equal to the maximum
L%(R) norm of the components of the initial condition U7(0,z). We mentioned in (51) that the
Adams-Bashforth scheme for the advection equation (50) is stable if and only if

Aty < C'271 (72)

For the Shannon wavelet (15), we show in Appendix 2 that the numerical scheme defined by EZID
remains stable over the same range of time steps Af; as the nonadaptive in time scheme (50).
For this wavelet, the proof is relatively simple because all the operators involved are diagonalized
by the Fourier transform. As in the case of the heat equation, for other wavelets we test for the
stability of the time adaptive and nonadaptive in time schemes by computing the maximum time
increments for which they remain stable. In these experiments we do not apply a threshold to the
wavelet coefficients which means that we do not introduce any spatial adaptivity.

This test was done with an initial condition ug(z) equal to the projection on Vg of the indicator
function of an interval. The intial solution is characterized by 64 wavelet coeflicients and the time
adaptive scheme is computed over 5 octaves, i.e. p =5 in equations (70) and (71). Table 2 gives the
maximum time At; for which the nonadaptive Adams-Bashforth and the time adaptive schemes
remain stable. This maximum time step is computed with less accuracy than for the heat equation
because of the necessity to compute the first few steps directly, given the initial condition at ¢ = 0.
As expected from the proof in Appendix 2, when the accuracy of the computation is fixed, the
limit of stability for the Shannon wavelet is reached at the same maximum time increment Aty for
both the Adams-Bashforth and the time adaptive scheme. For the Meyer wavelet as well as for
the spline wavelets of Battle [2] and Lemarie [10], the maximum time step is the same for the time
adaptive and the nonadaptive in time schemes, with the accuracy of our numerical computations
fixed. On the other hand, this result is not valid for the Daubechies wavelets, although the values of
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0
0
0
ur(t — 2Atr,x)

1 Ukt 2) = (63)

As in the heat equation (35), we obtain a time adaptive Adams-Bashforth scheme by updating the
higher resolution component twice as fast as the lower resolution one:

UMt + 2At;,2) = ((I1 + AT+ M})2 +2Au K+ M}_l) UMt, z). (64)

The memory component at the resolution 2/ is updated by the operator M} whereas M}_l updates
the memory component at the resolution 2/~1.

Let us now introduce the general time adaptive scheme. Let 2/ be the finest resolution of the
computation. Let p be a positive integer and we suppose that the wavelet transform is computed
over p octaves. The time adaptive scheme requires a memory vector with p + 3 components:

ﬂ/[(tv'r)
ﬂ[(t — At[,.f)
UP(t,e)= |  wll—2At,2) |, (65)

ﬂ[(t — 2p+1At[, .r)

In the same way as above, the identity plus the update of the first memory component is given by

oy, z) = : (66)
0
For any resolution 2/=%*, with k& < p, we define the operator

aT[_kﬂ[(t, x) + bT[_k{L[(t — QkAt[, :L‘) + CT[_kﬂ[(t — 2k+1At1, 37)
0
T Ur(t,2) = . . (67)
0

At the same resolution 2/=*, the memory component is updated by the operator

LUty = | ag(t - 28At,e) |, (68)
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It has the same structure as the explicit Euler scheme (23) but includes a “memory” component
which is carried by the operator Mj. To obtain a time adaptive scheme we proceed as we did with
the heat equation except for two important differences:

1. The stability condition (51) implies that the time step can increase by a factor 2 and not 4
when the resolution decreases from 2! to 2171 At;_; = 2At;.

2. We must also have a time adaptive memory component.

To introduce the time adaptive scheme, as in subsection 4.1, we compare the Adams-Bashforth
scheme at the resolutions 2! and 2/~!. At the resolution 2! and for a time step At;, the Adams-
Bashforth scheme requires the storage of @;(¢,z), a;(t — Aty,z) and a;(t — 2At;,x). At the
resolution 21! and for a time step At;_; = 2At;, it requires to keep the solution at ¢, ¢t — 2At;
and ¢t — 22At;. To make the two schemes comparable, we must therefore use a memory vector that
has four components

ﬂ[(t, x)

ﬂ[(t — Aly, x)
ﬂ[(t — 2Aty, 35)
ﬂ[(t — 22At[, x)

Ul(t,z) = (57)

Let us recall that the component of the operator K related to the projection of the solution on the
space W_q is defined
T;=K; - K/, (58)

and can also be written as in (32). We define the operator T} by

aT[fL[(t, x) + bTﬂNL[(t — Aly, x) + CT[?NL[(t — 2Aty, :L‘)
0
O ?
0

TiUHt,2) = (59)

It uses the first three components of U} to compute the part of @;(t+ At;,z) which is related to the
W_; space. At the resolution 2/~1, the Adams-Bashforth scheme is computed with the operator

Kl

aK[_lﬂ[(t, x) + bK[_lﬂ[_l(t — 2Aty, w) + CK[_lﬂ[_l(t — 22At1, x)
0
0
0

11Ukt 2) = (60)

Then, the operator I defined in (53) becomes
Toite) = | 2o ] (61)

The updates of the memory components at the resolutions 2/ and 2/~ are respectively given by

0
0

ﬂ[(t — Aly, x)
0

MU} (1, ) = (62)
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the PDE is approximated at the resolution 27 by
Juj(z,1)

T, = Kju;(t, z), (47)
where the operator K; is defined by
Kj = ijvaj. (48)
One can easily prove that '
1K, || = €24, (49)

The explicit forward Euler scheme is unstable for a linear advection, so we use instead the explicit
Adams-Bashforth scheme which is defined by

aj(t+ Aty x) = a(l, 2) + Aty (aKju;(l, 2) + bK;a; (0 — Aly, o) + cKju(t = 2485,2)), - (50)

with @ = 33/12, b = —16/12, ¢ = 5/12 . Stability results from using the past values of @;(¢,z) at
time ¢ — At; and ¢ — 2At;. We denote by ||a;(¢,z)|| the L#(R) norm of @;(¢,2) in the z variable.
One can prove that this scheme is stable in the sense that

lJa;(t + Ay, @)|| < Max (||a; (L, )], |Ja;(t — Aty )], |Ja;(t — 2485, z)[])
at any time t and for any intial condition, if and only if
At; < 279, (51)

The constant C’ depends only upon the constant C' defined by equation (49). This simple definition
of stability enables us to compare more easily the stability of the time adaptive scheme versus the
nonadaptive in time scheme. ;From the initial condition @;(0, ) = ug(z), we compute the first two
steps @;(At;,z) and @;(2At;, z) with a forward Euler scheme. If the initial condition uy(z) is four
times continuously differentiable, the error introduced by the time discretization when computing
the solution at 7' = 1is O(AL?).

The Adams-Bashforth scheme (50) can be rewritten in matrix form. Let us define

w;(t, x)
Uit,e) = | a(t - Aty ) (52)
ﬂj(t - 2At]~,x)

and the following matrix of operators

aK]"LNLj(t, z)+ bK]'fL]‘(t — At;, z)+ CK]'fL]'(t — 2At;, )

K;v;(t,z) = 0 : (53)
0
w;(t, x)
v;(t,2) = | a;(t,2) |, (54)
0
0
M,v;(t,2z) = 0 : (55)
fL]‘(t—At]',x)

The operator I plays the role of the identity, as in a forward Euler scheme (23), but it also updates
the first memory component. The memory component at time ¢ — At; is updated by the operator
M;. The Adams-Bashforth equation (50) takes the form

U]‘(t + Atj,.f) = (I + At]'1<]' + M]) U]'(t, x) (56)
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Forward Fuler scheme | Time adaptive scheme
Shannon 9.987 x 10~ 9.987 x 1073
Meyer 9.990 x 10~ 9.990 x 10~3
Spline 3 9.988 x 10~ 9.988 x 1073
Spline 5 9.988 x 10~ 9.988 x 1073
Spline 7 9.988 x 10~ 9.988 x 1073
Spline 9 9.988 x 10~ 9.988 x 1073
Daubechies 10 | 10.022 x 10~3 10.022 x 10—3
Daubechies 14 | 9.989 x 10~3 9.989 x 1073
Daubechies 16 | 9.990 x 10~ 9.990 x 1073
Daubechies 18 | 10.005 x 10~3 10.005 x 1073

Table 1: For each orthogonal wavelet listed in the first column, the second and third columns give
the maximum time increment At; for which the nonadaptive forward Euler scheme and the time
adaptive scheme are stable, respectively. These values are equal which means that both schemes
are stable over the same range of time increments.

We estimated numerically the stability of the scheme by computing the maximum Aty for which
the L*(R) norm of the solution at any time ¢ remains smaller than the norm of the initial condition
o(2). This means that the norm of the operator E7 is smaller than 1. This test was done with an
initial condition ug(z) equal to the projection on V of the indicator function of an interval, but the
results are independent of the initial condition. To check the stability, we do not adapt the spatial
resolution of the computations and thus do not apply a threshold to the wavelet coefficients. The
intial solution is characterized by 64 wavelet coefficients and the time adaptive scheme is computed
over 5 octaves, i.e. p = 5 in equations (41) and (42). Table 1 gives the maximum time Aty for
the nonadaptive in time forward Euler scheme and for the time adaptive scheme, with different
wavelets. Since the resolution 27 is the same in these experiments, the maximum value of At varies
with the constant C' of equation (43), which depends upon the particular wavelet that is chosen.
As expected from the proof in Appendix 1, for the Shannon wavelet the limit of stability is reached
at the same maximum time increment Aty for the forward Euler scheme and for the time adaptive
scheme. What is more interesting is that this result remains valid for all the other orthogonal
wavelets that we checked. For the 10 different orthogonal bases given in Table 1, the maximum
time step of the time adaptive scheme given in the last column is the same as the maximum time
step of the nonadaptive in time scheme. We verified this property by computing the eigenvalues of
the operators EZI) and I+ A¢;K; and we checked that the maximum of their absolute value reaches
1 for the same time step At;. It seems that this property is independent of the wavelet that is
chosen and is a consequence of the multiresolution structure of wavelet orthonormal bases. We
have no proof for this conjecture, which is motivated and supported by numerical results.

4.2 Time Adaptivity of the Linear Advection Equation.

Before considering Burgers equation, we introduce the space-time adaptive scheme for the linear
advection equation, K = —vd/0x, where v is the constant translation velocity. As in equation (21),
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as in (33). We then modify (36) as we did with (35) so that the time step is adapted to each
component K;_5 and T7_;. We obtain

ar(t+42At,2) = (T4 AT + 4ALT 1) + 42 A1 K ) (L, @), (38)

This time adaptivity can now be applied on as many levels as desired. The general scheme can
be formulated as follows. Let 2! be the finest resolution of computations, At; be the time step at
that resolution and let p be a positive integer. To compute the solution at a time ¢ + 4PA¢; given
the solution at time ¢, the forward Euler scheme based on the finest resolution gives

fL[(t + 4P Aty ac) = (I + At[K[)4pr[(t, 35) (39)

If the wavelet transform is computed over p “octaves” (i.e., on p resolutions), this can be rewritten
in the form

fL[(t + 4P Aty x) = (I + AT+ AT+ ...+ At[T[_p_H + At[K]_p)4p1~L[(t, w) (40)
The time adaptive scheme replaces this scheme by
ﬂ[(t—}-4pAt[,$) = E?ﬂ](t,m) (41)

with
E]; = (((I + At]T[)4 + 4At[T[_1)4 + ...+ 4p_1At[T[_p_1)4 + 4pAt[K[_p. (42)

In this scheme, (41) represents one iteration of the time adaptive operator E}. To compute the
solution at a certain time 7" we must take T'/(4PAtr) steps with the operator Ef. If p = 0, we
obtain EY = EY = (1+ At;K;)T/A% which is the forward Euler scheme.

Stability for the heat equation.

Let us now discuss the stability of this time adaptive scheme for the heat equation where K =
0%/92%. From (27) we see that the forward Euler scheme (23) is stable at resolution 27, if and only
if

2
Aty < 54—1, (43)
where the constant C' is defined by (26) and the numerical scheme (41) is stable if and only if
[E7ll < 1. (44)

For the Shannon wavelet we prove in Appendix 1 that
2
[|[EF|| < 1+<= At < 54—1. (45)

This means that the time adaptive scheme is stable for the same range of time steps Aty as the
nonadaptive forward Fuler scheme:

|ER] <1 <= ||+ At/Ky|| < 1. (46)

For the Shannon wavelet the proof of this result is simple because the operators T; are diagonal in
a Fourier basis. For other wavelets we have no mathematical proof but numerical results seem to
indicate that property (46) remains valid. We tested different wavelets that belong to the Meyer
family [15], to the polynomial spline family of Battle [2] and Lemarie [10] and to the compactly
supported family of Daubechies [8].
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At the resolution 2!, At; is four times smaller so we need 4 iterations to compute the solution at
time ¢ + At;_q:

ap(t+ Aty_y,2) = as(t + 4At, 2) = (IT+ AyK ) a(t, 2). (29)
To relate equation (28) with equation (29), we decompose the operator K;. By definition
K; = Py, KPy,. (30)
Since Py, = Py,_, + Pw,_,, we obtain

K; = Py, Ki_1Py,_ , +Pw,_K;_1Py,_, (31)
+Pyv,_K;-1Pw,_, + Pw,_ Ki_1Pw,_,.

The operator K;_; = Py,_ KPy,_, updates the components of lower resolution 21-1 to those of
lower resolution 2/~!. The operator

T; =Pw, Ki-1Pyv,_, + Py,_ K;_1Pw,_, + Pw,_ K;_1Pw,_, (32)

updates the detail components on themselves and on those of lower resolution 2/=1 as well as the
low resolution components onto the detail components. Equation (31) implies that

K =T;,+K;_ (33)
and using (33) in (29) we get
ﬂ[(t + 4Aty, x) = (I + At;T; + At[K[_1)4?~L](t, 1‘) (34)

The scheme (28) suggests that the operator K;_; can be updated with a time step At;_; = 4Aty,
instead of At;. We thus modify scheme (34) by updating K;_; with a time step 4A¢; while the
T; component is updated with a time step Aty

Wr(t+ 4807, 2) = ((T+ AT +4ALK ) (L, @), (35)

In this scheme, the components at the lower resolution 2/~1 are updated with a time step At;_; =
4Atly, but the components of the higher resolution details are updated with a time step At;. The
numerical complexity to compute Tju;(¢,2) is proportional to the number of nonzero wavelet
coefficients at the resolution 2!, whereas the complexity to compute K;_yi;(t,) is proportional
to number of nonzero wavelet coefficients at all resolutions smaller than 2/. If the solution has
isolated sharp transitions, as in Fig. 2, there are fewer wavelet coefficients at the resolution 2! than
below this resolution (see Fig. 2(b)). Equation (35) thus requires substantially fewer computations
than equation (34).

The same procedure can be repeated in order to adapt the time step to one more level of
resolution. To compute the solution at ¢ + 4°A¢; we must iterate 4 times the operator previously

defined .
ar(t+42At,2) = ((T+ AT + 481K ) (1t @), (36)

Since we know that the operator K;_, by itself can be incremented by a time step Atj_, = 42Aty,
we decompose K;_q into
K1 =T;1 +Kj_ (37)
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Figure 4: Evolution of the solution of the periodic Burgers equation. The initial condition
up(z) = sin(7z) is shown in (a). The grid of wavelet coefficients is displayed below each graph.
Crosses indicate the wavelet coefficients larger than a given threshold and the circles are along the
“borders” of the crosses.

The operator K; approximates the operator K at the resolution 27 so that the solution wj(t, )
remains in the space V;. The forward Euler discretization of (21) is

@;(t+ At z) = (I+ AIK; )i (L, o). (23)

and it is stable if and only if
I+ AtK;|| < 1. (24)

As a first example, let us study the heat equation in some detail.

4.1 Time Adaptivity for the Heat Equation.

For the heat equation
o2
= 55
Since K is a nonpositive, symmetric operator, K; is also a nonpositive operator and thus equation
(24) is equivalent to
AlIK;]| < 2. (25)

We know that there exists a family of functions (¢;.(2)), ¢z, With ¢;.(z) = V2i$(27 2 —n), which
is an orthonormal basis of V;. By expressing the operator K; in this basis, we see that there exists
a constant C' such that

|K;|| = C2% = C4/, (26)

Thus, the numerical scheme (23) is stable if and only if
2 .
At = At; < 64_]. (27)

When the spatial resolution is increased by a factor of 2, the upper bound of the time increment
is divided by 4. To compute the solution with a resolution 27 at the time 7' = 1 with a time step
of At;, the number of time steps is equal to 1/A¢;. Thus, to minimize the computations we must
use a time step At; that is as large as possible. The basic idea of the time adaptive algorithm is
to modify the time step At; at each resolution 27,

Let us explain how to implement this idea by comparing the forward Euler scheme (23) at two
successive resolutions 2/ and 2/, At the resolution 27, the solution @ (¢, z) belongs to V; and the
Euler scheme is stable only if the time step At; satisfies At; < 2C 14~ If we approximate the
solution at the lower resolution 2/=1, the time step must satisfy At;_; < 2C714~1+1 and so we may
choose a time step four times larger, At;_; = 4At;. This is because the solution remains in the
smaller space Vy_;. We can decompose the higher resolution solution @;(¢,z) into its components
in the spaces Vy_1 and Wj;_q. It is natural that the component in the space V;_; should be
computed with a time step equal to Af{;_q in a stable manner, while the component in Wj_4
should be computed with the smaller time step At;.

Let us develop this idea further. At the resolution 21-1 the solution at time ¢ + At;_q is
computed from the solution at time ¢ by applying the operator I + Aty 1Ky q:

ﬂ]_l(t + At[_l,.f) = (I + At[_lK[_l)ﬂ[_l(t, .T) (28)

11



o.=

o.s

o.a

o.=

—o.=

—o.a

—o.e

—o.=

—a

o.=

o.s

o.a

o.=

—o.=

—o.a

—o.e

—o.=

o.=

o.s

o.a

o.=

—o.=

—o.a

—o.e

—o.=

o.=

o.s

o.a

o.=

—o.=

—o.a

—o.e

—o.=

-2

—=

=

-

-10

EXeT)

=c0o

=00

oo

[=I=T=)

EXeT)

=c0o

=00

Soo

[=I=T=)

EXeT)

=c0o

=00

Soo

[=I=1=)

EXeT)

=c0o

=00

aoo

[=I=1=)

EXeT)

=c0o

=00

aoo

[=I=T=)

the caption is at thelgop

=c0o

d

=00

Soo

of the next page

[=I=1=)



i=jand [n—m|<lorj=1i+1and! <n<Il+41 (the apparent asymmetry of the last condition
is due to the fact that a wavelet is centered at 2 = 1/2 and not at = 0). In Fig. 4, the wavelet
coefficients above the threshold A are represented by crosses whereas the wavelet coefficients that
are adjacent to the crosses (i.e., the “border” of the crosses set) are represented by circles. We
denote by G; the grid of wavelet coefficients (crosses and circles) that are kept and represent the
approximate solution at time t. The numerical algorithm is a 3 step loop:

1. In the previous step we have computed the wavelet coefficients of @(¢, z) only at the positions
of the grid G;_a¢; the other coefficients are set to zero. We then adjust G;_a; by changing
into crosses the wavelet coeflicients greater than the threshold and changing into circles their
adjacent ones. This new set of circles and crosses defines the grid G;.

2. We project a(t,z) on the space corresponding to G;. This means that we put to zero all the
wavelet coefficients of @(¢, ) which do not correspond to crosses or circles of the new grid G;.

3. From equation (18) we compute the wavelet coeflicients of (¢ + At,z) corresponding to
crosses and circles of the grid G;. We then go back to step 1.

The basic hypothesis behind this algorithm is that during a time At, the domain of crosses does
not move in space and resolution beyond its border of circles. With such an algorithm the grid of
wavelet coefficients is dynamically adapted in time and follows the local structures that appear in
the solution.

The accuracy in the approximation of the adaptive grid of wavelet coeflicients depends only
upon the threshold coefficient A. Fig. 4 shows the evolution of the wavelet grid for the solution of
the periodic Burgers equation with initial condition «(0,2) = sin(rz). The solution is uniformly
smooth initially and all the wavelet coefficients are below A at resolutions larger than 277. The
border of circles corresponds to the coefficients at the resolution 27¢. When the discontinuity
develops some wavelet coefficients are no longer negligible at the resolution 27> (and then part of
the border of circles is at resolution 274). In Figs 4(c) and 4(d), we see that the pyramid builts up
progressively as the solution develops a sharper transition.

Wavelet orthonormal bases provide a simple procedure to implement spatial adaptive grids that
are updated dynamically. We now concentrate on issues related to the discretization of the time
parameter. In the next section we study first the heat equation and then the linear advection
equation. In Section 5, we extend our results to Burgers equation.

4 Time Adaptive Resolution.

As we explained at the end of Section 1, in order to have a stable and accurate numerical scheme,
the time discretization must be adapted to the spatial resolution of the computations. In this
section, we explain how to introduce time adaptivity within the wavelet scheme described above.
If we limit the computations to a resolution 2’ then the time evolution equation

% = Ku(t, z) (20)
is replaced by '
W = Kju;(t, z), (21)
where the operator K; is defined by
K; = Py, KPy,. (22)
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Figure 3: A pseudo—differentiél operator is represented by blocks of band matrices in a wavelet
basis. When applied to a function that has few non-zero wavelet coefficients (shown by the grey
area), the computational complexity is proportional to the number of non zero coefficients and the
wavelet coeflicients of the result are non zero in localized domains.




For simplicity, we discretize time by a forward FEuler scheme

a(t+ At,z) — a(t,x)
At

- Ki(t,), (17)
where @(¢, ) is the approximate solution at time {. This leads to the explicit scheme
a(t+ At,z) = (I+ AtK)a(t, z). (18)

This time discretization has poor stability properties for the linear advection and the Burgers
equation. However, as explained later, we can use an explicit scheme of higher order in time that
is stable for these equations. Let us for now suppose that (18) is stable.

The basic idea of a wavelet-based spatial adaptive scheme is to express equation (18) in a
wavelet orthonormal basis. For each ¢, the function @(¢, z) is represented by its wavelet coefficients.
The operator I + AtK is represented by a matrix in the same wavelet basis in order to compute
directly the wavelet coefficients of a(t + At, z).

Let us consider the matrix representation of a linear operator O relative to a wavelet basis. We

have
+ oo + oo

0= > > PyOPy,. (19)
j=—o0 l=—00

Beylkin, Coifman and Roklin [6] have shown that if O is a suitable pseudo-differential operator,
each component Py, OPyy; can be approximated with arbitraryly high accuracy by a band matrix.
This means that O is represented by blocks of band matrices. In actual computations the infinite
sums of (19) are finite. They are limited above by the finest resolution of the solution and below
by the coarsest resolution 27, as in equation (10). Fig. 3 shows how the operator O acts on the
wavelet coefficients of @(z,?). In this example, the finest resolution 27 is equal to 27! and the
coarsest resolution 27 is equal to 272, The width of each band depends upon the properties of the
operator O and the size of the wavelet support.

If K is a linear differential (or pseudo-differential) operator, then O = I + At¢K is represented
by band-matrices. If the solution @(¢,x) has isolated sharp transitions, as in Fig. 2(a), we can set
to zero its wavelet coefficients that are smaller than some threshold value, as in Fig. 2(b). Since O
is represented by blocks of band matrices, one can easily show that the domain where the wavelet
coefficients of @(t + At, z) is non-negligible is at most equal to the corresponding domain for (¢, z)
plus the width of the bands in the matrix that represents the operator O in the wavelet basis (see
Fig. 3). If P is the total number of nonzero wavelet coeflicients of %(¢, ), the number of operations
required to compute Ou(t, z) is O(P) [5]. For Burgers equation, the operator K is nonlinear, so the
previous result does not apply to O = I+ AtK. However, Beylkin, Coifman and Rocklin [6] have
shown that the same computational complexity is obtained if O is an n-linear operator. This is the
case for Burgers equation since K(u) = d,u*/2 can be rewritten as K(u) = 9,B(u,u)/2 where B
is the bilinear form B(wu,v) = wv. For the Burgers equation the number of operations required to
compute (I + AtK)a(t,z) is still O(P), where P is the number of nonzero wavelet coefficients of
a(t, ).

We see therefore how to take advantage of the compressed representation of @(¢, z) in a wavelet
basis in order to reduce the number of operations. Let us now describe the method suggested by
Liandrat and Tchamitchian [11] as well as by Perrier and Basdevant [17] in order to adapt in time
the spatial wavelet adaptive grid, and to follow singular structures of the solution. As we already
explained, at each time ¢ we keep the wavelet coeflicients which are larger than a given threshold
A. In order to be able to track singularities we also keep the adjacent coefficients. We say that a
wavelet coefficient < ,;, > is adjacent to another wavelet coefficient < 4,;; > if and only if



that requires O(N) operations [14]. A fast wavelet transform is thus faster than a fast Fourier
transform. It is based on a cascade of convolutions with discrete filters called quadrature mirror
filters [14]. The reconstruction of the original N-point function from the wavelet coefficients also
requires O( N ) operations. This fast wavelet transform algorithm is very effective in computationally
intensive applications.

Some examples of wavelet bases. The properties of orthogonal wavelets derived from mul-
tiresolution approximations are now well understood [15],[14]. Different types of such wavelets can
be constructed. The simplest possible wavelet is the Shannon wavelet whose Fourier transform is
the indicator function
? 1 ifr<|w| <27
¥l(w) { 0 otherwise (15)

This wavelet has compact support in the Fourier domain but has a slow decay in the spatial domain.
Meyer showed that one can build wavelets which are infinitely differentiable and rapidly decreasing
functions (Schwartz functions). These wavelets have also compact support in the Fourier domain
while in the spatial domain their asymptotic decay at infinity is O(z7?) for any p > 0. For many
applications the numerical decay of these wavelets is too slow. Battle [2] and Lemarie [10] have
constructed polynomial spline wavelets with exponential decay that have good numerical properties.
In the following, these wavelets are referred to as spline wavelets of order n, where n indicates that
it is a polynomial spline of order n. Such a wavelet is n — 1 times continuously differentiable,
has n 4+ 1 vanishing moments and decays exponentially in the spatial domain. Daubechies [8]
constructed orthogonal wavelets with compact support and an arbitrary degree of smoothness. We
call such a compactly supported wavelet with n vanishing moments Daubechies n. Because of their
compact support, the Daubechies wavelets are particularly useful in numerical applications.

3 Spatially adaptive wavelet methods for PDE’s.

The ability of the wavelet transform to compress information by taking advantage of the local
regularity of a function has many applications in signal processing and numerical analysis. Liandrat
and Tchamitchian [11] as well as Perrier and Basdevant [17] have suggested that these properties
should be used to do adaptive grid computations for PDE’s. In this section, we describe the basic
ideas of such adaptive schemes.

Suppose that we want to solve numerically an evolution equation

M = Ku(t, z)

uw(0,z) = ug(z)

(16)

where K is an operator that acts on the z variable. The three examples that we study in detail
are:

*u(t
1. Diffusion equation: Ku(t,z) = M,
0z?
du(t
2. Linear advection equation: Ku(t,z) = —%,
T
Ou(t
3. Burgers equation: Ku(t,z) = —u(tw)%.
T
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Figure 2: (a) Function which belongs to V. (b) Grid of wavelet coefficients for the function in
Fig. 2(a). Only the wavelet coefficients larger than 5 x 107 are displayed. The analyzing wavelet
is spline 5.
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Figure 1: Grid of wavelet coefficients for a function that belongs to Vo= W_1G...dW_gPHV _g.
Each cross represents a wavelet coefficient < f,%;, > (n is along the z-axis and j the y-axis).

the interval |a,b[. Let us suppose that the wavelet 1(z) is n times continuously differentiable and
has n + 1 vanishing moments:

+oco
/ ePPp(z)de =0 for 0 < p<mn. (12)

— 00

Theorem. Let 0 < @ < n be a real number that is not an integer. Let f(z) € L*(R) and [a, b] be
an interval. The function f(z) is uniformly Lipschitz of order a over the interval [a, b] if and only
if for any n € Z and j € Z such that 277n €]a, b|,

| < [0 > | = O(27(+1/2iy, (13)

The proof of this theorem can be found in Meyer’s book [15]. It shows that the decay of
the wavelet coefficients, as the resolution 27 increases, depends upon the local smoothness of the
function. The larger the Lipschitz constant «, the faster the decay of the wavelet coefficients.
Fig. 2(a) shows a function that belongs to the space Vi and has a sharp transition. Fig. 2(b)
shows the grid of wavelet coefficients whose absolute value is larger than a given threshold. We
see a pyramid of coefficients that points to the location of the sharp transition. The width of the
pyramid depends on the size of the wavelet support. The number of wavelet coeflicients at each
resolution 2/ is approximately a constant. Let us set to zero all the wavelet coeflicients below
some threshold. Out of 512 wavelet coeflicients only 80 are non-zero. Let fi(z) be the function
reconstructed from these wavelet coefficients. Then

N = Filleewy _ g6 qg1. (14)
| fllL2(r)
The function f;(z) is a good approximation of f(z) because we removed only the wavelet
coefficients of small amplitude. The pyramidal grid shown in Fig. 2(b) can be viewed as an
adaptive grid where the resolution is adapted locally near the irregularity of the function. In the
neighborhood of the abscissa 100 the function is very smooth and is thus locally approximated at
the resolution 27° whereas at the abscissa 256 the signal has a sharp transition and we need the full
resolution. If the wavelet ¢(z) has n + 1 vanishing moments, this pyramid of wavelet coefficients
corresponds to a set of nested grids using finite elements of order n.
If the original function f(z) is given at a fixed resolution 27 by N values over a uniform grid,
then all the wavelet coefficients < f,%;, >, for 5 < I can be computed with a fast algorithm



This relation indicates that an approximation at a resolution 27 can be decomposed into an ap-
proximation at a lower resolution 2/~! plus the “details” at the resolution 27 which are given by
Pw,_, f(z).

It can be shown [15],[13] that for any multiresolution approximation there exists a wavelet ¢(z)
such that the family of functions (¢);.(2)), ¢z is an orthonormal basis of W at any resolution 27,
As a consequence of (6) and of property 3 of the multiresolution definition, we have that

L*R) = J@ Wi, (8)

j=—o0

and all the spaces W; are mutually orthogonal. This implies that when the resolution index j

varies from —oo to +00, the family of functions (%‘,n(ﬂf))(n j)ex? is an orthonormal basis of L%(R).

Meyer [15] adapted multiresolution approximations and wavelet orthonormal bases of L%(R) to the
space of functions in L2([0,2]) that are 2% periodic. We just need to periodize each function Vi

with the summation
+oo

Ginle) = Y Winla —p2"). (9)
p=—00
The resolution 27 must be larger than the inverse of the period, which is equal to 2=, and the space
V_y is the sub-space of functions in L2([0,2%]) that are constant. One can show that the family
(1,7)]'771)]'2_137716% is an orthogonal basis of the orthogonal complement of V_g, in Lz([O, 21). These
periodic wavelets are particularly useful for problems with periodic boundary conditions. Wavelets
have also been adapted to deal with two-point boundary value problems by Xu and Shann [19].
In numerical computations, resolution is limited by memory constraints and computation times.
Instead of working with a function f(z) we must consider its approximation up to a given resolution
21 Py, f(z). This approximation can be decomposed into the detail spaces W for j < I, up to
some fixed coarser resolution 27:

I-1
Py, [(z) =Y Pw,[(z)+ Py, [(2). (10)
i=J
If we express these projections with an orthogonal basis for each space we obtain
I-1 4o 400
PV]f(x) = Z E < f7 Q/Jj,n > 7»b],n(m) + Z < fa Gb.],n > ¢J,n(~r) (11)
j=J n=—o0 n=-—00

Fig. 1 shows the grid of the wavelet coefficients corresponding to the decomposition of a function

1
that belongs to V. An orthogonal wavelet ¢)(z) is generally centered around the abscissa z = 3"

Each wavelet function v;,(z) is thus centered around the point z = 277n + 27771 and the size
of its support is proportional to 277. At a given resolution 2/, each cross corresponds to an inner
product < f,%;, >, called a wavelet coefficient. Its position corresponds to the center of the
wavelet function +; ,(z). Each row of crosses corresponds to a layer of detail components that are
needed to increase resolution from 27 to 2/*1. It corresponds to the projection Pw, f(z). The array
of crosses shown in Fig. 1 corresponds to the decomposition of a function that belongs to Vy.
The absolute value of the wavelet coefficient | < f,%;, > | depends upon the local regularity
of f(z) in the neighborhood of the abscissa 277n. More precisely, if 27/n €]a,b[, the decay of
| < f,%jn > | when the resolution 2/ increases depends upon the Lipschitz regularity of f(z) over



2 Multiresolution Approximations and Wavelets.

Wavelet orthonormal bases were introduced by Meyer [15] and Stromberg [18]. These bases are
built from a single function ¢ (z) which is dilated and translated on uniform grids. Let

Vi) = V2IP(2) (1)

and '
Yin(2) = ¥j(z —277n). (2)
Then, for certain functions ¥ (z), the sequence of functions (¢j7n($))(n pew? is an orthonormal basis

in L?(R). A good way to understand the construction of wavelet orthonormal bases is through the
multiresolution analysis introduced by Meyer [15] and Mallat [14]. The approximation of a function
f(z) € L%R) at the resolution 27 is defined as the orthogonal projection of f(z) on a space V; of
a multiresolution approximation.

Definition. A multiresolution approximation of L?(R) is a sequence (V) ez of closed sub-spaces

of L*(R) such that:
1.V eZ,V;_1CV;
2. N2 V;={0}

j=-—c0

3. Ul V; = LYR)

Jj=—00
4. VfeL*R),VjeZ,f(z) e V; < f(2z) € Vi1

5. There exists a function g(z) € Vg such that the sequence (g(z — n)), 5 is a Riesz basis of
V.

It can be shown that for any multiresolution approximation there exists a function ¢ € Vg, called
scaling function, such that if we denote

¢;(x) = V2ig(2'a) (3)

and 4
$jn(z) = ¢j(z — 277n), (4)

then at any resolution 27, the family of functions (¢5,n(2)), ¢z 18 an orthonormal basis of V;. Let
us denote by Py, the orthogonal projection onto V;. Let f(z) € L%(R). The approximation of

f(z) at the resolution 27 is the orthogonal projection of f(z) onto V; and thus given by

+oo

Py f(z)= Y < [i¢jn> djn(z), (5)

n=—0oo

where < , > denotes the standard inner product in L*(R). Since V;_; C V;, each space V; can
be decomposed into

V;=V,.1 8 W,_q, (6)

where W;_; is the orthogonal complement of V;_; in V;. Let us denote by Py, the orthogonal
projection onto W;. From (6) we see that

Py, f(z) = Pv,_, f(z) + Pw,_, f(2). (7)



1 Introduction.

Singularities and sharp transitions in solutions of partial differential equations model important
physical phenomena such as beam focusing in nonlinear optics, the formation of shock waves in
compressible gas flow, the formation of vortex sheets in high Reynolds number incompressible flows,
etc. A characteristic feature of such phenomena is that the complex behavior occurs in a small region
of space and intermittently in time. This makes them particularly hard to simulate numerically
by solving the partial differential equations with conventional numerical methods, prompting the
development of adaptive numerical methods. In these methods most of the computational effort
is concentrated near regions where singularities or sharp transitions occur. We will study here a
numerical method for solving partial differential equations based on the wavelet transform, which
is adaptive both in space and time.

Adaptive grids have been studied extensively in numerical analysis. Adaptive finite element
methods have been proposed by Brandt [7] for elliptic problems, and developed by Bank [1] and
others. More recently, Berger and Oliger [4] have studied and implemented an adaptive mesh
refining method for hyperbolic partial differential equations which has been successful in solving
previously intractable problems [3]. They use a sequence of nested grids in space that are progres-
sively finer. An automatic error estimation step determines locally whether the current resolution
of the numerical solution is sufficient or a finer grid is necessary. The main difficulty is finding stable
and accurate difference approximations of the differential operators at the interfaces between grids
of different sizes.

A non-orthogonal hierachical basis method has been proposed by Yserentant [20] to adapt
the numerical computations to the local regularity of the solution. Wavelets orthogonal bases are
other examples of hierachical bases. Liandrat and Tchamitchian [11] and Perrier and Basdevant [17]
have shown that the multiresolution structure of wavelet orthonormal bases is a simple and effective
framework for spatial adaptive algorithms. Instead of refining the computations through nested
grids of successively finer meshes, as in the algorithm of Berger and Oliger [4], wavelet orthonormal
bases implement adaptive refinement by successively adding layers of “details” that increase the
resolution of the approximation locally. Communication between the different layers of details is
regulated automatically by the orthogonality of the basis functions. The order of approximation of
this spatial discretization depends upon the wavelet that is used.

In Section 2, we review briefly the construction of wavelet orthonormal bases through multires-
olution approximations. In Section 3, we describe the Liandrat-Tchamitchian, Perrier-Basdevant
spatial adaptive scheme for solving partial differential equations. For many evolution problems that
are solved numerically with a space adaptive scheme, it is necessary to adapt the time discretization
to the spatial resolution. If we use a time step At, it must be adapted to the highest resolution
that is encountered over the whole spatial domain, even if this high resolution is maintained over
a very small domain. If the spatial resolution is refined locally, the time step A¢ must also be
refined to maintain the stability and accuracy of the numerical scheme. This means that a local
spatial refinement, even over a small domain, increases the global numerical complexity quite sub-
stantially. To avoid this problem, Berger and Oliger [4] have introduced local time steps that are
adapted to the local mesh refinements. For adaptive numerical methods based on wavelets, it is
also important to have a local time discretization. In this paper we present a new algorithm that
adapts the time discretization to the resolution parameter that appears in a wavelet orthonormal
basis. We describe this algorithm in Section 4, first for the heat equation and then for the linear
advection equation. We have studied numerically the stability of the algorithm in these two cases.
In Section 5 we describe how this algorithm can be applied to Burgers equation and we present
some numerical results.
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Abstract

We describe a space and time adaptive numerical method based on wavelet orthonormal bases for
solving partial differential equations. The multiresolution structure of wavelet orthonormal bases
provides a simple way to adapt computational refinements to the local regularity of the solution
[11] [17]. High resolution computations are performed only in regions where singularities or sharp
transitions occur. For many evolution equations it is necessary to adapt the time steps to the
spatial resolution in order to maintain the stability and precision of the numerical scheme. We
describe an algorithm that modifies the time discretization at each resolution, depending on the
structure of the solution. The stability of this space-time adaptive scheme is studied for the heat
equation and the linear advection equation. We also explain how this algorithm can be used to solve
the one-dimensional Burgers equation with periodic boundary conditions. We present numerical
results on the accuracy and complexity of the algorithm.
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