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ABSTRACT

A multiresolution approximation is a sequence of embedded vector spaces

EV J- E]member ,for approximating LZ(R) functions. We study the proper-
ties of a multiresolution approximation and prove that it is characterized by a
21t periodic function which is further described. From any multiresolution

approximation, we can derive a function (x) caled a wavelet such that
O 150 - 0 . : 2 :
0’2 w2 x-k) Dk j)member z2 1S @0 orthonormal basis of L°(R) . This pro-
vides a new approach for understanding and computing wavelet orthonormal

bases. Finally, we characterize the asymptotic decay rate of multiresolution

approximation errors for functions in a Sobolev space H° .
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1. Introduction

In this article, we study the properties of the multiresolution approximations of LZ(R) :
We show how they relate to wavelet orthonormal bases of LZ(R) . Wavelets have been intro-
duced by A. Grossmann and J. Morlet hardy functions as functions whaose trandations and dila
tions could be used for expansions of LZ(R) . J. Stromberg stromberg and Y. Meyer meyer

bourbaki have proved independently that there exists some particular wavelets Y(x) such that

E@ P(2 x—k) Eh‘ Kmember zz 1S @n orthonormal basis of LZ(R) . these bases generalize the
Haar basis. If (x) isregular enough, a remarkable property of these bases is to provide an
unconditional basis of most classica functional spaces such as the Sobolev spaces, Hardy
spaces , L p(R) spaces and others ondelettes et bases hilbertiennes Wavelet orthonormal bases
have aready found many applications in mathematics meyer bourbaki tchamitchian calcul sym-
bolique theoretical physics federbush quantum field and signal processing kronland-martinet

sound patterns mallat multiresolution signal

Notation

Z and R respectively denote the set of integers and real numbers.

LZ(R) denotes the space of measurable, square-integrable functions f(x) .

The inner product of two functions f (x) member LZ(R) and g(x) member LZ(R) is writ-
ten<g(u), f(u)>.

The norm of f (x) member LZ(R) iswritten OOf OO .

The Fourier transform of any function f (x) member LZ(R) is written f (w) .

Id is the identity operator in LZ(R) .

|2(Z) is the vector space of sguare-summable sequences:

IZ(Z) = { (@) member z EDaiD2<oo}

i =—00



Definition
. . . . 2 . 1l 0
A multiresolution approximation of L°(R) is a sequence V; Oremberz ©f Closed
subspaces of LZ(R) such that the following hold :
Ojmember Z , V; OVy (1)
OV, isdensein L’R)  and AV, ={o ©)
j:—oo j:—oo
Oj memberZ,  f(x) member V; <===>  f(2x) member V,,; (3)
Ok memberZ ,  f(x) member V;  ===>  f(x-27k) member V, (4)
There exists an isomorphism | from V, onto |2(Z)
which commutes with the action of Z . ©)

In property (5), the action of Z over V,, is the trandation of functions by integers
whereas the action of Z over |2(Z) is the usual translation. The approximation of a function

f (X) member LZ(R) a aresolution 2/ is defined as the orthogonal projection of f(x) on

\V2

j - To compute this orthogonal projection we show that there exists a unique function
2 . D\/—- ; 0 .

@x) member L°(R) such that, for any j member Z, 2 @2 x-K) Guemmerz IS an ortho-

normal basis of V j - The main theorem of this article proves that the Fourier transform of

@(x) is characterized by a 2mt periodic function H(w) . As an example we describe a mul-

tiresolution approximation based on cubic splines.

The additional information available in an approximation at a resolution 2/*! as com-
pared with the resolution 2/ | is given by an orthogonal projection on the orthogonal comple-

ment of V; in Vj,;. Let O; be thisorthogonal complement. We show that there exists
. D5 o 0 . :
afunction @(x) suchthat V2 P(2'X-K) Gremerz 1S an orthonormal basis of OJ- . The

. . 07 - 0 . . 2
family of functions 2 @w(2'x-k) D jymember z2 1S @ Wavelet orthonormal basis of L°(R).
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An important problem in approximation theory approximation of continuous functions is
to measure the decay of the approximation error when the resolution increases, given an a
priori knowledge on the function smoothness. We estimate this decay for functions in Sobolev

spaces H® . This result is a characterization of Sobolev spaces.

2. Orthonormal bases of multiresolution approximations
. . . . . 2
In this section, we prove that there exists a unique function @(x) member L°(R) such

that for any j member Z , B@ o2 x—k) g(rnemberz is a wavelet orthonormal basis of VJ- .
This result is proved for j = 0. The extension for any j member Z is a consequence of pro-
perty (3).

Let us first detail property (5) of a multiresolution approximation. The operator | is an

isomorphism from V, onto |2(Z). Hence, there exists a function g(x) satisfying

if n=0
g(x) member V, and 1(g(x)) =¢(n) , where e(n):[D if nzo ° (6)

Since | commutes with trandations of integers:
1(g(x—k)) = e(n-k) .

The sequence #(nk) o, isabassof I°(2), hence fh(x-k) g, isabass

O

of Vy. Let f(x) member V, and I(f (X)) = Ckmermber 7

. Since | is an isomorphism,

[ +e0 RE
00f 00 and OY Oo,0? 0  are two equivalent norms on V. Let us express the
g

=—00

consequence of this equivalence on g(x) . The function f (x) can be decomposed as:

fx) = 3 oy g(x-k) . @)

k=—co

The Fourier transform of this equation yields



f(w = M §(@ where M(w) = f oy e ke (8)

k=—00

The norm of f (x) isgiven by:

+00 ~ 21 +o0 .

00f 00 = [ Of(wW@Pdw = [ M) 3 Og(w+2km) P do .
—00 0 k=—c0
[ +oo EE

Since 0Of OO0 and O Doy 0?0 are two equivalent norms on Vg , it follows that
O

=—00

O+o Bg
OppE C;>0 , OppE C,>0 suchthat Owmember R, C; < OY Og(w+2km 1?°0(F C, .
O

=—00

We are looking for a function ¢@(x) such that %p(x—k) DD o7 is an orthonormal

basis of V. To compute @(x) we orthogonalize the basis Eg(x—k) Ekmberz . We can
use two methods for this purpose, both useful.

The first method is based on the Fourier transform. Let fp(oo) be the Fourier transform

of @x) . With the Poisson formula, we can express the orthogonality of the family

O O
ﬁ[(x-k) Ckmember Z a

+z°° Op(er+2km 0% = 1 . (10)

k=—00

Since @x) member V , equation (8) shows that there exists a 2m periodic function M ()

such that
Pw) = Myw) §(w) . (12)

By inserting equation (11) into (10) we obtain

|:|+oo A ETVZ
My = 0¥ Og(w+2kmo . (12)
[k=—o0 O

Equation (9) proves that (12) defines a function M ,(w) member L2([O,2T[]) L Uf o x) s
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given by (11), one can aso derive from (9) that g(x) can be decomposed on the correspond-

ing orthogonal family %p(x—k) Ekmemberz . This implies that %p(x—k) Ei(mem generates

ber Z

V,.
The second approach for building the function @(x) is based on the general algorithm

for orthogonalizing an unconditional basis AE\MHA of a Hilbert space H . This

approach was suggested by Y. Meyer. Let us recall that a sequence is a nor-

O
A Chmermber A

malized unconditional basis if there exist two positive constants A and B such that for any

sequence of numbers %xA E\membem,

AB S mamgz < 00 3 one 00< BE S mamgz . (13
[jmember A 0 Amember A [jmember A 0

We first compute the Gram matrix G , indexed by A x A , whose coefficients are

<e,; , €)»> . Equation (13) is equivalent to
A’ld < G < B2?Id . (14)

This equation shows that we can calculate G™ , whose coefficients are written y (ALAy) .

Let us define the vectors f, = 5> y(@AA) ey . It is well known that the family
Amember A

Sf -,\E\membem is an orthonormal basis of H . This agorithm has the advantage with

respect to the usua Gram-Schmidt procedure, of preserving any supplementary structure

(invariance under the action of a group , symmetries) which might exist in the sequence

O

G . In our particular case we verify immediately that both methods lead to the
member A

same result. The second one is more general and can be used when the multiresolution
approximation is defined on a Hilbert space where the Fourier transform does not exist jaffard

ouverts
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In the following, we impose a regularity condition on the multiresolution approximations
of LZ(R) that we study. We shall say that a function f (x) member LZ(R) is regular if and

only if it is continuously differentiable and satisfies:

OppE C >0 , Oxmember R , Of(x)O<C (1+x9)™? and Of' (x)O<C (1+xq1h)

A multiresolution approximation E\/ is said to be regular if and only if @Xx) is

i []merrberz
regular.
3. Propertiesof @(x)
In this section, we study the functions ¢(x) such that for al | member Z

0’2" ®2'X = N) Guemerz 1S @ orthonormal family, and if V; is the vector space gen-

erated by this family of functions, then E\/ is a regular multiresolution approxi-

i []merrberz
mation of LZ(R) . We show that the Fourier transform of @(x) can be computed from a 21t

periodic function H (w) whose properties are further described.

Property (2) of a multiresolution approximation implies that

%(p(;) member V_, 0V, .

The function % (p(g) can thus be decomposed in the orthonormal basis E(p(x—k) DD o7
of Vy

1

W) = S h x+k) where h = %f WP FxH) X . (19)
k=—co —00

X
2
Since the multiresolution approximation is regular, the asymptotic decay of h, satisfies

Oh, O0=0( +k?™. The Fourier transform of equation (16) yields

®20) = H(w) @) where H(@) = 3 h e™*® . (17)

k=—00
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The following theorem gives a necessary condition on H (w) .

Theorem 1

The function H(w) as defined above satisfies :
OH(@W)?+ OH@@+mO%°=1 (18)

OHO)O = 1 . (19)

Proof : We saw in equation (10) that the Fourier transform () must satisfy

+00

S Opw+2km)? = 1, (20)
Kk=—c0
and therefore
S O@2w+2km) 2 = 1 . (21)
k=—0c0

Since P2w) = H (w) @(w) , this summation can be rewritten

+z°° OH (0 + k) 07 Dok 02 =1 . (22)

k=—c0

The function H(w) is 2m periodic. Regrouping the terms for k member 2Z and

k member 2Z+1 and inserting equation (20) yields
OH(w) ¥ + OH(w+mO? = 1 .
In order to prove that [OH(0) 0 =1, we show that

Op0)0=1 . (23)
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Let us prove that this equation is a consequence of property (2) of a multiresolution approxi-
ions. Let P, be the orthogonal projecti V.. s V7 o2 5
mations. Let P, be the orthogonal projection on V; . Since [] A2 X = N) Gimember 2

is an orthonormal basis of Vj , the kernel of PVJ_ can be written:

2 K@2x,2ly) , where K(xy)= ¥ ox-k)@y-k) . (24)
k=—c0
Property (2) implies that the sequence of operators y E] - tendsto Id in the sense
! mem

of strong convergence for operators. The next lemma shows that the kernel K(x,y) must

satisfy [ K(xy)dy =1.

Lemma 1

Let g(x) bearegular function (satisfying (15)) and A(x.,y) = % g(x—-k) g(y-k) .

k=-co
The following two properties are equivalent :

+o00

| Axy)dy = 1 foramostalx . (25)

The sequence of operators ST whose kernelsare 2/ A(2x , 2y) ,

0
! Qmemberz

tendsto Id in the sense of strong convergence for operators. (26)

Proof : Let usfirst prove that (25) implies (26). Since g(x) isregular, oppE C >0

such that
OA(x,y)O<C 1+ Ox-yDO)2 . (27)

Hence, the sequence of operators ET is bounded over LZ(R) . For proving that

0
! []merrberz
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Oj member Zz , Of men1|oerL2(R) im 00Of -T;(f)00 = 0, (28)

I
j )
we can thus restrict ourselves to indicator functions of intervals. Indeed, finite linear combina-

tions of these indicator functions are dense in LZ(R) . Let f(x) be the indicator function of

aninterva [a,b] ,

51 if a<x<b
f(x) = O
otherwise
Let us first prove that T;f (x) converges amost everywhereto f (x) .
T,(F)x) = [ 2 A@x,2y)dy . (29)
a
Equation (27) implies that

b c

OT. (F)x)0 < C2 [ 1+2 Ox-yD)2dy < 30
i (F)(x) J;( y )= dy 177 ds (D)) (30)
If x isnot member of [a, b], thisinequality implies that
jlerm Ti(f)x) = 0.
Let us now suppose that x member ]a,b[ ,
2b _
T (F)x) = [ A@xy)dy . (31)
2'a
By applying property (25), we obtain
2ia . +00 -
Ti(F)x) =1 - [ A@xy)dy - [ A@xy)dy . (32)
—00 2ip

Since x member ]a,b[ , inserting (27) in the previous equation yields

lim T;(F)x) = 1 . (33)

j_>+oo
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Equation (30) shows that for j > 0, there exists C" > 0 such that

C”
1+ x2

OT;f ()0 <

We can therefore apply the theorem of dominated convergence on the sequence of functions

0 .
EJTJ-f(x) Drmember 2 and prove that it converges strongly to f (x) .

Conversely let us show that (26) implies (25). Let us define
ax) = [ Axy) dy . (34)

The function «a(x) is periodic of period 1 and equation (27) implies that

o(x) member L°°(R) . Let f(x) be theindicator function of [-1, 1]. Property (26) implies

that T;f(x) convergesto f(x) in L2(R) norm.Let 1>r >0 and x member [-r ,r],
1

Ti(F)x) = [2 A@x,2y)dy .
-1

Similarly to equation (32), we show that
T;(f)x) = a@x) + 0@27) . (35)

Since a(2'x) is 27 periodic and converges strongly to 1 in L2([-rr]), a(x) must there-
fore beequal to 1.

(end of Lemma 1 proof)

Since v, O . tends to Id in the sense of strong convergence for operators, this

lemma shows that the kernel K (x,y) must satisfy J' K(x,y) dy =1. Hence, we have

—00

0

[Kxy)dy = ¥ yox-k) = 1 ,with (36)

k=—00
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<
1

[ey)dy = ¢0) . (37)

By integrating equation (36) in x on [0, 1] , we obtain Dfp(O) [0° = 1 . From equation (17),
we can now concludethat TH(0)O =1.

(end of Theorem 1 proof)

The next theorem gives a sufficiency condition on H(w) in order to compute the Fourier

transform of a function @(x) which generates a multiresolution approximation.

Theorem 2

Let Hw)= 5 h, e e such that

k=-c0
Oh,O = O@+kH)T | (38)
OHO)O = 1, (39)
H@W D + OH@@+mO? = 1, (40)
Tt Tt
H(@) #0 on [—? , ?] . (41)
Let us define
W) = HE ) . “2)
k=1

The function @w) is the Fourier transform of a function @(x) such that

B(p(x—k) Ekmemberz is an orthonormal basis of a closed subspace V, of LZ(R). If

defined from V, by

' O
@(x) isregular, then the sequence of vector spaces E\/J- Dmember 7

(3), is aregular multiresolution approximation of LZ(R) .
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Proof : Let us first prove that @(w) member LZ(R) . To smplify notations we denote

M (w) = OH (w) 0? and denote by M, (w) (k = 1) the continuous function defined by

0
0o if Dwd>2%n
M@ = £
O, ® 0 w, if Owds<2n
M) M) (50)

Lemma 2

For dl k member N,k #0,

n c i2nTw %T[ it n=0
W = [M(w)e dw = 0 if n#0 (43)

Proof : Let us divide the integral |} into two parts :
0 _ 2n ‘
K= [ M@ "™ dw + [ M(w) "™ dw .
—2k 0
Since MQJw+2Tm =M@ w) for 0<j <k and M@2*wW) + M2 w+m =1, by

changing variables ' = w + 21t in the first integral, we obtain

2m
W W
= [ M(=) M(Ek__l) e gy
0
Since M (w) is 2m periodic, this equation implies
2m W W\
K= [ M) - M) @™ dw = 1
-2
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Hence, we derive that

m if n=0
Ikn = ||?_1 = = |T = . .
M ifnz0
(end of Lemma 2 proof)
Let us now consider the infinite product
Mo(w) = lim Mc(@) = [] MQ27w) = Opw) P . (44)

=1

Since 0 £ M(w) < 1, this product converges. From Fatou’'s lemma we derive that

}oMm(w)dco < I(Iijrgo}oMk(w)dw = 21 . (45)

Equation (42) thus defines a function fp(co) which is in LZ(R) . Let @Xx) be its inverse
Fourier transform. We must show that %p(x—k) ama 5 is an orthonormal family. For

this purpose, we want to use Lemma 2 and apply the theorem of dominated convergence on the

sequence of functions a\llk(oo) gl2nmw E‘mmberz . The function M (w) can be rewritten
—i Log (M (27 w))
Mo(w) =e '™ . (46)

Since H(w) satisfies both conditions (38) and (39), it follows that Log(M (w)) = O(w) in

the neighborhood of 0, and therefore

Iing) Mo(@ = M, 0) = 1 . (47)

As a consequence of (38), H(w) is a continuous function. From property (41) together with

(47), we derive that
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OppE C >0 suchthat O w member [-TT, T M (w) =C . (48)
For OwO< 21 , we have

M () = My () Mm(z%) .

Hence, equation (48) yields

0 < M(w < %Mw(w). (49)

Since My (w) =0 for Ow0O> 2% 1, inequality (48) is satisfied for all w member R . We

proved in (45) that M, (w) member Ll(R) , SO we can apply the dominated convergence

theorem on the sequence of functions a\/lk(w) eizn"‘*’amemberz . From Lemma 2 , we abtain
f M (w) e 2" ™d e = mitn=0 (50)
o M ifnz0 -

With the Parseval theorem applied to the inner products < @(x) , @x-k) >, we conclude from

(50) that Efp(x —k) Ekmemberz is orthonormal.

Let uscal V, the vector space generated by this orthonormal family. We suppose now

-

that the function @) is regular. Let BVJ Olmermber 2

be the sequence of vector spaces

0= : O
derived from V, with property (3) . For any j member Z , D\@ M2 XK) Gemember z 1S

0

[ P— is a multiresolution

an orthonormal basis of Vj . We must prove that EV

approximation of LZ(R) . We only detail properties (1) and (2) since the other ones are

straightforward.

To prove (1), it is sufficient to show that V_; O V,. The vector spaces V, and

V_, are respectively the set of al the functions whose Fourier transform can be written
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M(w) @w) and M(2w) 2w) , where M(w) is any 2m periodic function such that
M (w) member L2([0 , 21]) . Since fp(oo) is defined by (42), it satisfies
¢2w) = H () ¢) (52)
with  OH(w)O< 1. The function M((2w) H(w) is 2m periodic and is a member of
L2([O , 21) . From equation (51), we can therefore derive that any function of V_; isin
V,.
Let PVJ_ be the orthogonal projection operator on V j - To prove (2), we must verify

that

limPy, =Id and IimP, =0 . (52
VJ VJ

ja+oo ja—oo

: O o O : : o
since /2 @2xk) Ckmemperz 1S @0 orthonormal basis of V/; , the kernel of Py, isgiven
by

2l E P2 x—k) p2y-k) =2 K@ x,2ly) . (53)

k=—co

Since B(p(x—k) Ekrmmber 5 is an orthogonal family, we have

+o00 ~
S Opw+2km % = 1 .

—00

We showed in (47) that O@O)0 =1, so for any k # O, the previous equation implies that
@®2km) = 0. The Poisson formula yields

S Qx-k) = [ @u)du = §(0) . (54)

k=-00

We can therefore derive that

+00

[ Kxy)dy = Og0)0? = 1 for dmost al x .
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Lemma 1 enables us to conclude that lim PVJ_ =Id. Since @x) is regular, similarly to

j - +oo

(27), we have

c2

020 K(2x,2y)0 < .
( Y) (1+2 Ox-y0)?

(55)

From this inequality, we easily derive that  lim ij =0.

] »—

(end of Theorem 2 proof)
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Remarks
1. The necessary conditions on H(w) stated in Theorem 1 are not sufficient to define a

function @(x) such that %p(x—k) DD o7 is an orthonormal family. A counter-example is

given by H(w) = cos(37w) . The function @(x) whose Fourier transform is defined by (42) is

equa to % in [—% , %] and 0 elsewhere. It does not generate an orthogona family. A.

Cohen cohen miroirs showed that the sufficient condition (41) is too strong to be necessary. He

gave a weaker condition which is necessary and sufficient.

2. It is possible to control the smoothness of fp(oo) from H(w) . One can show that if

H (w) member C*  then @) member C*  and

d"H(O) _ < . 9"90)

R 903 =0 for 1<n<qg .(56)

I. Daubechies daubechies compact and P. Tchamitchian biorthogonalite showed that we can

also obtain a lower bound for the decay rate of fp(oo) a infinity. As a consequence of (40),

d"H(0) _

n

0 for 1sn<q
dw

implies that

d"H (k+1)m) _
dw"

0, for 0sn<g-1 and k member Z .
Hence, we can decompose H (w) into
O 0 cH
H(w) = Ltos(—) U My(w) , (57)
o 2°0

where My(w) isa 2m periodic function whose amplitude is bounded by A >0 . One can

then show that
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oo _ Log(A)
[T OMy27w) 0 = O(DwO9@) (58)
j=-1
at infinity. Since
LW
+0o ) Sn(7)
cos(2? ) = ,
jI:_I_l ( 2) W
2
it follows that
R _q+Log(A)
Op(w) 0= O(Owd 9@ a infinity . (59)
Example

We describe briefly an example of multiresolution approximation from cubic splines

found independently by P. Lemarie lemarie localisation exponential and G. Battle battle spin

The vector space V, is the set of functions which are C? and equal to a cubic polyno-
mia on each interval [k , k+1] , k member Z . It is well known that there exists a unique

cubic spline g (x) member V such that

E‘Lif k=0
Ok member Z g(k)=Eoif K#0

The Fourier transform of g(x) is given by

Dsinw #
0= 0O
- 2 2 . o,W,
=0 = 0@1a-= — . 60
6@ = D= 0 (-5 sr) (60)
a 2 O

Any function f (x) member V can thus be decomposed in a unique way

(0= 3 109Kk .
k=—co
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Hence, for a cubic spline multiresolution approximation, the isomorphism | of property (5)

can be defined as the restriction to Z of the functions f (x) member V, . One can easily

-0

i Omember 2 built with property (3) is a regular

show that the sequence of vector spaces BV
multiresolution approximation of LZ(R) . Let us define

Zg(w) = E 1

& (@+2km)® (61)

It follows from equations (60), (12) and (17) that

~o 1 _ / Zg(W)
cp(w)—m and H(w)= m. (62)

We calculate Zg(w) by computing the 6" derivative of the formula

1

209 = 5w

Fig. 1 shows the graph of @(x) and its Fourier transform. It is an exponentially decreasing

function. Fig. 2 shows H(w) on [-Tt, 17 .

khkkhkkkhkkhkkkhkkhkhkhkkhkhkhkhkhhkhkhkhhhhhkhkhkhhhhkhkhhhkhhkhkhkhhhhhkhhhkhhkhkhkhhhhkhkhhkhkkhkhkhkkkkhkdk,xxx*x

Insert Figure 1 about here.

kkhkkkkkkkkhkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhhkhkhkhhkhhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkhkkkkkkkkkx*%
Fig. 1. (a) : Graph of the function ¢(x) derived from a cubic spline multiresolution approxi-

mation. It decreases exponentially. (b) : Graph of (}J(w) . It decreases like i4 at infinity.
W
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khkkhkkhkkhkkhkkkhkhkhkhhkhkhhkhkhhkhhhkhkhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhddhhhhdhdhhdxhddhxxx*x

Insert Figure 2 about here.

hhkkhkkhhhkhkhkhhhhhkhkhhhhhhhdhhhhhdhhhhhhdhhhhdhdhhhhhhdhhhhhhdhhdhdhdhkhhrdhdhdhhdxdddhhxx*x

Fig. 2. Graph of the function H(w) derived from a cubic spline multiresolution approxima-

tion.

4. The wavelet orthonormal basis

The approximation of a function at a resolution 2/ is equal to its orthogonal projection
on V j - The additional precision of the approximation when the resolution increases from 2l
to 21*1 is thus given by the orthogonal projection on the orthogonal complement of Vj in
Vj+l . Let us call this vector space Oj . In this section, we describe an algorithm, which is

now classic meyer ondelettes et fonctions splines in order to find a wavelet (x) such that
D\/—- - U ) )
Y2 W@ XK) Gremperz 1S @n orthonormal basis of O .
We are looking for a function (x) such that LIJ(%) member O_, OV, . Its Fourier
transform can thus be written
P(2w) = G (W) ) | (63)

where G(w) is a 2m periodic function in LZ([O,ZTI]) . Since V,=V_; ciplus O_,,

the Fourier transform of any function f (x) member V, can be decomposed as
fw) = a(@ o) = b(w) ®2w) + c(w) PRw) , (64)

where a(w) is 2m periodic and a member of L2([O ,21) and b(w), c(w) are both Tt

periodic and members of L2([O , ) . By inserting (17) and (63) in the previous eguation, it
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follows that
a(w) =b(w) H(w) + c(w) G(w) .

The orthogonality of the decomposition is equivalent to

21 T T
[ Da(w) P dw=[ Ob(w) FPdw+[ Oc(w)Fdw .
0 0 0

It is satisfied for any a(w) if and only if

EDH (WO? + O0G(w)? = 1
O

H(w G&) + H(wm) G@H) = 0

These equations are necessary and sufficient conditions on G(w) to build (x) .

tions b(w) and c(w) are respectively given by

() =a(w) A + alwn) AGHD
U

(@) =a(w) G&) + a(wHn) Ge)

Condition (66) together with (40) can also be expressed by writing that

SH® G 3
tH (@) G (w0

is a unitary matrix. A possible choice for G(w) is

G(w) = e ®H{GH) .

Any vector spaces V; can be decomposed as

J-1

V; =ciplus O;

J =—00

(65)

(66)

The func-

(67)

(68)

(69)

(70)
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+o00

+00
Since ]V, isdensein LZ(R) , the direct sum ciplus O; isalso denseiin LZ(R). The

j:—m ] =~

. : 075 - 0 . . 2
family of functions V2! (2 x—k) i jymember z2 1S therefore an orthonormal basis of L (R).

Multiresolution approximations provide a general approach to build wavelet orthonormal
bases. We first define a function H(w) which satisfy the hypothesis of Theorem 2 and com-
pute the corresponding function @) with equation (42). From equations (63) and (69), we
can aso derive the Fourier transform of a wavelet ((x) which generates an orthonormal
basis. Fig. 3 is the graph of the wavelet derived from the cubic spline multiresolution approxi-

mation described in the previous section.

khkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhhkhhhkhkhhhkhhkhkhhkhhhkhkhhhhhkhhhhhhhkhhhhdhhhhhhhdhhhhdhkhhhkkhdhdhxxx*x

Insert Figure 3 about here.

khkkkkkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkhkhkhkhhkhhkhhkhhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkkhkkhkkhkkhkkkk,x*%
Fig. 3. (a) : Graph of the function Y(x) derived from a cubic spline multiresolution approxi-

mation. It decreases exponentially. (b) : Graph of O@(w) O . It decreases like i4 at infin-
()

ity.

The Haar basis is a particular case of wavelet orthonormal basis with

O .

ol if 0sx<7%
Px) = O-1 if <x<1

BO otherwise .

The corresponding function @(x) is the indicator function of [0, 1] , so the Haar multiresolu-

. W
-

tion approximation is not regular. It is characterized by the function H(w) = e 2 cos(%)
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. With some other choice of H (w) , we can build wavelets which are much more regular than

the Haar wavelet.

The smoothness and the asymptotic decay rate of a wavelet (x) defined by (63) and
(69) is controlled by the behavior of H(w) . The asymptotic decay rate of (x) is estimated
by observing that if H (c) member C° | then ®(w) member C*  and

0
Hd"G(0) _
0 2 =
0 dw
for 1sns<q <=== B (71)
n
04O _,

0 dw"”
O

n
d"H(O) _,
do"

oo 0s<n<g-1

We can also aobtain a lower bound of the asymptotic decay rate of (Q(w) from the lower

bound (59) on the decay rate of (o) :

_qeLoa®)

OP(w) 0 = O(Owd 9@ a infinity . (72)

Outside the Haar basis, the first classes of wavelet orthonormal bases were found
independently by Y. Meyer meyer bourbaki and J. Stromberg stromberg Y. Meyer's bases are
given by the class of functions H(w) satisfying the hypothesis of Theorem 2, equal to 1 on

-1

3 g] and continuously differentiable at any order. The Fourier transform of Y. Meyer's

wavelets are in C” , SO Y(X) has a decay faster than any power. We can also easily derive

8 81

that (w) has a support contained in [—T , T] so Y(x) isin C”.

By using a multiresolution approach, 1. Daubechies daubechies compact has recently
proved that for any n =1, we could find some wavelets (x) member c" having a com-

pact support. Indeed, she showed that we can find trigonometrical polynomials

N .
H@ = 5 hoe™
k=-N
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_Log(A)

such that the constant
g Log(2)

of equation (72) is as large as desired. The correspond-

ing wavelet (x) has a support contained in [-2N-1, 2N+1] and its differentiability is

estimated from (72).

If Q(x) isregular enough, Y. Meyer and P. Lemarie showed that wavelet orthonormal
bases provide unconditional bases for most usual functional spaces ondelettes et bases hilberti-
ennes We can thus find whether a function f(x) is inside Lp(R) (1 <p <), a Sobolev
space or a Hardy space from its decomposition coefficients in the wavelet basis. As an exam-

ple, one can prove that if awavelet Y(x) satisfies

oppE C 20 , Op(x)O<C (1+ OxO) 9 | (73)
+00
[ x"yx)dx=0 for 1snsgq , (74)
n
oppE C' =0 , Dddwf,x) O<C 1+ xO)*  for n<gq, (75)
X

L= - H
then for any s < q , the family of functions g@ P(2 x-k) [ kmember 2 is an uncondi-
tional basis of the Sobolev space H®. As a consequence, for any f (x) member LZ(R) , if
a(k,j) = <f (x), V2 w@x-k)> then

s 040 O 4w o, o O
f member H <====> OY O( 3 Oak,j)O?)* 2 00 < +o . (76)
Oj=—c0 [0 k=—o0 oo

Remarks

1. The couples of functions H(w) and G(w) which satisfy (69), were first studied in

signal processing for multiplexing and demultiplexing a signal on a transmission line galand

barnwell Let A = %ln am be a discrete time sequence and a(w) the corresponding

ber Z
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Fourier series. The goal is to decompose A in two sequences B and C each having haf as
many samples per time unit and such that B and C contain respectively the low and the high
frequency components of A . Equations (67) enables us to achieve such a decomposition
where b(w) and c(w) are respectively the Fourier series of B and C . In signa processing,
H(w) and G(w) are interpreted respectively as the transfer functions of a discrete low-pass
filter H and a discrete high-pass filter G . They are called quadrature mirror filters. The
sequences B and C are respectively computed by convolving A with the filters H and G

and keeping one element out of two of the resulting sequences.

2. If afunction is characterized by N samples uniformly distributed, its decomposition
in a wavelet orthonormal basis can be computed with an agorithm of complexity N . This
algorithm is based on discrete convolutions with the quadrature mirror filters H and G mallat

multiresolution signal

3. We proved that we can derive a wavelet orthonormal basis from any multiresolution
approximation. It is however not true that we can build a multiresolution approximation from

any wavelet orthonormal basis. The function W(x) whose Fourier transform is given by

O
Bl if 47ns OwO<T1 Or 41m< D(.ODS4T[+47T[
O
dw = g (77)
BO otherwise

is a counter-example due to Y. Meyer. The trandates and dilates

V7 p@x—k) g f this functi stitut thonormal basis of LR
V2 Y2'x )Etk,j)memberzz of this function constitute an orthonormal basis o (R) .

Let V; be the vector space generated by the family of functions

37 @

x—k) Ckmember Z,~oo<j <J
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O

One can verify that the sequence of vector spaces BV 3 Dirember 7

does not satisfy property

(5) of a multiresolution approximation. Hence, this wavelet is not related to a multiresolution
approximation. It might however be sufficient to impose a regularity condition on {(x) in

order to always generate a multiresolution approximation

4. Multiresolution approximations have been extended by S. Jaffard and Y.Meyer to
LZ(Q) where Q inan open set of R" meyer ondelettes et fonctions splines This enables us

to build wavelet orthonormal basesin L 2(Q) :

5. Approximation error

When approximating a function at the resolution 2/, the error is given by
g =00f - P\,j(f) 002 . Property (2) of a multiresolution approximation implies that

lim ¢ =(0". A classica problem in approximation theory is to estimate the convergence rate

j - +oo J

of & given an a priori knowledge on the smoothness of f(x) or derive the smoothness of

i

f(x) from the convergence rate of €; approximation of continuous functions
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Theorem 3

Let DV be a multiresolution approximation such that the associated

J []memberz

function @(x) satisfies

OppE C =20 , Op(x)O<C (1+ Ox0O)=>™ (78)
[ x"@x)dx =0 for ls<nsqg+l (79)
n
OppE C' 20 mdd“’fj‘) O0<C @+ OxO)y*  for n<q . (80)
X

Let €

= 0of —ij(f) O0. Fordl f member LZ(R) , if 0<s<q then

f (x) member H®  <=====> T e < 4w (81)

Proof : Let POj denote the orthogonal projection on the vector space OJ- and Y(x)

be the wavelet defined by (63) and (69) . Let f(x) be in LZ(R) and

ak,j) =<f(x), Vol (2 x—k)> . The approximation error is given by

|:| 2|j/ D+oo +00 > 2
g, =00f -P, (f) O0= Dz DOPo(f) DP 0 =03 ¥ Dak,j)* 0 (82
0 0j=J k= 0

In order to prove the theorem we show that if the function @) satisfies conditions (78) ,
(79) and (80) then W(x) satisfies conditions (73) , (74) and (75) . We then apply property

(76) to finish the proof.

+00 .
It follows from (78) that the function H(w) = ¥ h, e ¢ satisfies
k=—0c0

he = O(1+ OkO)=>19) . (83)
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The function G(w) defined in (69) can be written

G = Y ge™ @, with g = h, ()™,

FUF) = T N ek

With the above expression and equations (78) , (80) and (83) we can derive that

Op(x)0 = O((L+ Ox O)™9) and

Dd:j”’(x) 0= 0@+ xD)™) for n<q .

Xn
Equations (78) and (79) imply that @(w) member C*™ and

dl’]
d

ﬁ)

0)

n

=0 for 1<n<qg+l.

e

n
From (56) and (71) it thus follows that ddlpﬁo) =0 for 0O<n<q andtherefore
o

+00
[ x"y(x)dx=0 for Osns<gq .

We can now finish the proof of this theorem by applying property (76). Let

B = f Da(k,j) 0? , equation (82) yields

k=—c0
2B = &f .
j=
Thisimpliesthat B; = &2 - €2, . The right hand-side of property (76) is therefore given by
Z BJ 22jS — (l _ 2—25) Z st 225]
j=—00 j=—c0

The right-hand side statement of property (76) is thus equivalent to the right-hand side



-30-

statement of (81) . This concludes the proof of Theorem 3.
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