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Abstract. A crucial problem in image analysis is to construct efficient
low-level representations of an image, providing precise characterization
of features wich compose it, such as edges and texture components.

An image usually contains very different types of features, which
have been successfully modelled by the very redundant family of 2D Gabor
oriented wavelets, describing the local properties of the image: localiza-
tion, scale, preferred orientation, amplitude and phase of the discontinuity.

However, this model generates representations of very large size.
Instead of decomposing a given image over this whole set of Gabor func-
tions, we use an adaptative algorithm ( called Matching Pursuit) to select
the Gabor elements wich approximate at best the image, corresponding
to the main features of the image .

This produces compact representation in terms of few features that
reveal the local image properties. Results proved that the elements are
precisely localized on the edges of the images, and give a local decompo-
sition as linear combinations of “textons” in the textured regions.

We introduce a fast algorithm to compute the Matching Pursuit
decomposition for images with a complexity of O(N log® N) per iteration
for an image of N? pixels.
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§1 Introduction

The complexity of image structures including different types of textures and
edges requires flexible image representations. Although an image is entirely
characterized by its decomposition in a basis, any such basis is not rich enough
to represent efficiently all potentially interesting low-level structures. Some im-
age components are diffused across many bases elements and are then difficult
to analyze from the basis representation. This is like trying to express oneself in
a language including a small dictionary. Non available words must be replaced
by long awkward sentences. To provide explicit information on important local
properties, the image is represented as a sum of waveforms selected from an
extremely redundant dictionary of oriented Gabor functions. As opposed to
previous approaches, we do not decompose the image over the whole dictionary,
but like in a sentence formation, we select the most appropriate Gabor wave-
forms to represent the image. Instead of increasing the representation by a large
factor as in typical multiscale Gabor representations ([14]), the adaptive choice
of dictionary vectors defines a compact representation that takes advantage of
the flexibility offered by the dictionary redundancy.

There is an infinite number of ways to decompose an image over a redundant
dictionary of waveforms. The selection of appropriate waveforms to construct
the image representation is obtained by constructing efficient image approxima-
tions from few dictionary vectors. The optimization of the approximation is not
intended for data compression but as a criteria for feature selection. If most of
the image is recovered as a sum of few dictionary vectors, these vectors must
closely match the local image properties. One can however prove that finding
optimal approximations in redundant dictionaries is an NP complete problem.
The redundancy opens a combinatorial explosion. This explosion is avoided by
the matching pursuit algorithm that uses a non optimal greedy strategy to se-
lect each dictionary elements. For a dictionary of Gabor functions, the greedy
optimization of the image approximation leads to an efficient image represen-
tation where each Gabor waveform reflects the orientation, scale and phase of
local image variations. For textures, the selected Gabor elements can be inter-
preted as textons where as along edges, the multiscale properties of these Gabor
elements reflect the edge properties. When the image is translated or rotated,
the selected Gabor elements are translated and rotated. A fast implementation
of this algorithm and numerical examples are presented.

§2 The 2D Gabor wavelet dictionary

Image decompositions in families of Gabor functions characterize the local scale,
orientation and phase of the image variations. Gabor functions are constructed
from a window b(z, y), modulated by sinusoidal waves of fixed frequency wp that
propagate along different direction 8 with different phases ¢

bo,¢(2,y) = b(x,y) cos(wo(z cos b + ysinb) + ). (2.1)
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Each of these modulated windows can be interpreted as wavelets having differ-
ent orientation selectivities. Figure (1) shows the surface of such a 2D Gabor
wavelet for ¢ = § = 0. The window b(x,y) is not chosen to be a Gaussian
but is a compactly supported box spline that is adjusted so that the average of
bg,4(x,y) is zero for all orientations and phases. The phase modifies the profile of
the window oscillations. When ¢ = 0, the oscillations are symmetrical and the
window can be interpreted as the second order derivative of a two-dimensional
window, along the direction §. When ¢ = 7/2, the oscillations are antisymmet-
rical and the corresponding wavelet rather behaves as a first order derivative
along the direction 8. The figure (2) shows the cross-section of an element of
the dictionary for different values of the phase (¢ = -5, =0,¢=F, 0= 7).

These oriented wavelets are then scaled by s and translated to define a whole
family of Gabor wavelets {g,},er with:

1 T—u Yy—v
9y(@,y) = —bos("—, L) (2:2)

where the multi-index parameter v = (6, @, s, u,v) carries the orientation, phase,scale
and position of the corresponding Gabor function.
The Gabor transform of an image f(x,y) is defined by the inner product

Gf(v) =< f,g9y >= //R f(z,9)9,(z,y) dz dy.

The orientation parameter 6 allows to match the different orientation of image
structures. The scaling factor s allows to zoom into singularities at fine scales
but also to recover large scale image variations. The phase is a convenient
parameter to modify the number of vanishing moments of the wavelet. When
¢ = 0, the Gabor transform provides a second order partial derivative along 6
of the image that is smoothed by a dilated window. When ¢ = /2, the Gabor
transform can be interpreted as a first order partial derivative and thus responds
particularly to discontinuities and edges.

The Fourier transform of a Gabor function is a waveform whose energy is
well concentrated in the Fourier plane. In numerical computations, the scale is
restricted to powers of two {27},cz and the angles are discretized. The Gabor
dictionary used in this paper includes 8 orientations ( cf. figure (3)). To define
a complete representation, we guaranty that the whole Fourier plane is covered
by dilations of the 8 elementary Gabor wavelets.

Besides engineering and mathematical motivations, families of Gabor wave-
forms have been used as models for the receptive fields of simple cells. The
representation of the visual information is described as moving from the retina
to the primary visual cortex: at the retina level, the receptive fields are ho-
mogenous and provide a broad bandwidth for the visual information received
from the photoreceptors. In the cortex, the receptive fields are narrow-band
and direction-oriented. The cortex has multiple representations, generated by
distinct neural populations.
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Figure 1. The surface of the 2D Gabor function

The properties of simple cells of the V1 area of the cortex suggests some
requirements for the image representation: they perform a linear spatial sum-
mation of their inputs. They are local in space and frequency and cover the
entire spectral visual field. They are divided among several types, each of which
being selective to the orientation ( with a maximum range of 45°, which sug-
gests a minimum of 4 orientations), and having a limited frequency bandpass
(1.5 octave), which requires self similarity among the different V1 cells class.
The receptive fields profile of simple cells, which appears to be the descriptors
of the features have been shown to be strikingly similar to the two-dimensional
Gabor functions ( [13]).

The decomposition of images in a Gabor dictionary defines a very redundant
representation. For an image of 512 by 512 pixels, 8 orientations, 6 octaves and
a two phases (¢ = 0 and ¢ = T) representation would correspond to 96 images
of 512 by 512 pixels. These images could be subsampled but we then lose the
translation invariance of the representation. Instead of decomposing the image
over the whole dictionary, we select specific Gabor waveforms that provide an
efficient image approximation.

83 Matching Pursuit

We consider the general problem of decomposing a signal f over a dictionary of
unit vectors {g, }yer whose linear combinations are dense in the signal space H.
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The smallest possible dictionary is a basis of H; general dictionaries are redun-
dant families of vectors. When the dictionary is redundant, unlike the case of
a basis, we have some degree of freedom in choosing a signal’s particular repre-
sentation. This freedom allows us to choose few dictionary vectors, whose linear
combinations approximate efficiently the signal. The chosen vectors highlights
the predominant signal features. For any fixed approximation error €, when
the dictionary is redundant, we can show that finding the minimum number of
dictionary elements that approximates the image with an error smaller than €
is an NP hard problem.

Because of the difficulty of finding optimal solutions, we use a greedy match-
ing pursuit algorithm that has previously been tested on a one-dimensional sig-
nal. The matching pursuit ([10]) uses a greedy strategy that computes a good
suboptimal approximation. It successively approximates a signal f with orthog-
onal projections onto dictionary elements. The first step is to approximate f
by projecting it on a vector g,, € D:

f =< fa 9vo > Gy T+ Rf; (31)

Since the residue Rf is orthogonal to g,

IFI? = 1< f.97 >I* + |IRfI*. (3.2)
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Figure 3. Discretization of the angle 8
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We minimize |Rf| by choosing g, which maximizes | < f,g, >|. We choose
g+, such that

|<fag’yO >|:sup|<fag’y>|a (33)
~yeTl’

The pursuit iterates this procedure by sub-decomposing the residue. Let R°f =
f. Suppose that we have already computed the residue R* f.
We choose g,, € D such that:

|<ka’g'”“>|=SI£|<ka’g'7>|' (34)
v

and project R* f on g,
RFFLf = RFf— < R"kf, gy, > gr,- (3.5)

which defines the residue at the order k+1. The orthogonality of R¥*!f and
g, implies

[R* P = |REfI? = | < R* f, 90 > 1. (3.6)
By summing (3.5) for k£ between 0 and n — 1, we obtain
n—1
f=> <R'f g, > gy +R"f. (3.7)
k=0

Similarly, summing (3.6) for k between 0 and n — 1 yields

n—1
1F17 =D 1< B*f, 95 > * + R (3.8)
n=0
The residue R™f is the approximation error of f after choosing n vectors in the
dictionary and the energy of this error is given by (3.8).
In infinite dimensional spaces, the convergence of the error to zero is shown
([10]) to be a consequence of a theorem proved by Jones ([7]):

om BT f]=0. (3.9)
Hence
+oo
f=) <E'f.97. > gr.; (3.10)
n=0
and we obtain an energy conservation
+oo
1fIP =Y I<R"f, gy, > (3.11)
n=0

In finite dimensional signal spaces, the convergence is proved to be exponential

([10])-
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84 Fast calculation

Despite the apparent brute force strategy of a matching pursuit, this algorithm
can be implemented in an efficient way that requires on average O(N log® N)
operations per iteration in a Gabor dictionary, for an image of N? pixels.

The fast algorithm is based on three major points: as the search for the
maximal coefficient ( scalar product of the residue with a dictionary vector) is
very time-consuming, we first make all the computations on a much smaller dic-
tionary D' C D. It is constructed such that the maximal coefficient in D' gives
a good estimation of the maximal coefficient in the whole dictionary. We then
use a local Newton search of complexity O(1) to find the best local coefficient
of D in the neighborhood of the element selected in D'.

As we want to find the maximal coefficient in D’ in an quick and efficient way,
we sort and store the scalar products of the current residue with the elements
of D' in a Hash table. The maximal coefficient is always at the top of the table,
so that we don’t need to search for it.

The coarse dictionary D' = (g,),crv is obtained by subsampling the posi-
tion of the elements of the dictionary by a factor of 4 at each scale. It is nearly
a tight frame of H and thus complete, because we only remove the excess of
redundancy from the initial dictionary. The size of such a coarse dictionary goes
down to & N? (instead of 16 N? log N for the whole dictionary D).

Once we have an estimation of the best vector g,, such that:

|<R”f,g%>|:s1éIF)|<R"f,g7>| (4.1)
v

we compute the inner product of the new residue R"*!f with any g, € D,
with a linear updating formula derived from equation (3.5)

<R™'f, 9y >=<R"f,gy >— < R"f, gy, > < gy, g > -
(4.2)

This updating equation can be interpreted as an inhibition of < R"f,g, >
by the cross correlation of g,, and g,. The only coeflicients < R"f, g, >
of the Hash table wich are modified are such that < g,,,g, > is non zero.
As we use compact supported Gabor wavelets, this set is indeed very sparse,
and the updating formula only apply to few coefficients (O(N log® N) in the
average), compared to the size of the table (O(N?)) . We store the set of all
non null inner products < g,, g, >. Since the Gabor Wavelets used in these
numerical experiments are separable, we only need to compute and store the set
of inner products of 1D Gabor functions, thus requiring an order of magnitude
less memory.
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§5 Results

The matching pursuit algorithm applied to a Gabor dictionary selects iteratively
the Gabor waveforms, also called atoms, whose scales, phases, orientations and
positions best match the local image variations.

The distribution of Gabor functions at the scales 27 for 1 < j < 4 is shown
in fig. (4, 5). For the lady image (256 x 256), light atoms correspond to high
amplitude inner products. As clearly shown by these images, the fine scale atoms
are distributed along the edges and the texture regions and their orientation
indicate the local orientation of the image transitions.

In order to display the edge information (localization, orientation, scale,
amplitude), we adopt the following convention: each selected Gabor vector g,
for v, = (6, $,27,u,v) is symbolized by an elongated Gaussian function of width
proportional to the scale 27, centered at (u,v), of orientation . The mean gray
level of each symbol is proportional to | < R"f, g4, >|.

Figure (6) displays the reconstruction of the Lena image with the 2500 and
5000 first Gabor waveforms selected by the algorithm. The image reconstruction
is simply obtained with the truncated sum of the infinite serie decomposition
(3.10). With 2500 atoms, we already recover a good image quality and with 5000
atoms the reconstructed image has no visual degradation. The latter image is
constructed without using any compression method, and achieves a 1.5 bit/pixel
ratio with a perfect visual quality. This shows clearly that, while specifying
precisely the important information such as the local scale and orientation, this
representation is very compact and can be used as the input to a high level
processing. Moreover, the degradation of the image quality is very small when
using 2500 atoms instead of 5000 atoms, which suggests that the most relevant
features of the image lie in a very small set of atoms.

The fig. 7 illustrate the texture discrimination properties of the representa-
tion: a straw texture image is inserted into a paper texture image. The paper
texture has no orientation specificity. On the other hand, the straw texture
has horizontal and vertical structures. At fine scales, most structures are verti-
cal because the horizontal variations are relatively smooth. At the intermediate
scale 22 we clearly see the horizontal and vertical image structures. At the larger
scale 23, the vertical structures dominate again because the vertical straw are
of larger sizes.

The symbolic representations at scale 2!, 22, 23, 24, show the distinct be-
haviour of the two textures relative to the scale: although the paper texture
shows a scale-invariant uniform distribution, the straw texture representation
points out the vertical features of the straw at finer and larger scale, and the
horizontal and vertical structures of the straw at medium scale. Moreover, at
scale 2!, we clearly distinguish the texture edge as the boundary between the
two textures.

As noticed by Turner in ([14]), the time-frequency analysis performed using
Gabor functions corresponds to a tiling of the 4-dimentional space ( 2D for
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Figure 4. Symbolic representation of the Gabor vectors: each vector is symbolized
by an elongated Gaussian of width proportional to the scale 27, oriented along the
modulation direction, of gray level proportional to the amplitude | < R"f, gy, > |.
Light atoms correspond to high amplitude. The left figure corresponds to the scale 2*
and the right figure to the scale 22.

spatial position, 2D for the frequency position) called “information hyperspace”.
Each element of the dictionary occupies a particular “volume” or cell in this
space, and combine information in space and frequency related to the structural
description of the texture: the response to the spatially large Gabor filters and
small spatial frequency extent give a precise information on the periodicity of
the texture. On the other hand, the response to the spatially small filters and
large spatially frequency extent distinguish texture elements and provide a mean
to characterize the density of elements. The intermediate Gabor filters allow
simultaneous measurements of textons and their distribution.

The fundamental idea, introduced in previous work by Julesz ([9]) and Beck
([1]), and stated by Malik and Perona in ([11]) is that “in preattentive vision,
precise positional relationships between textons are not important; only densi-
ties matter”. The discrimination between textures will consist in averaging over
the response of the dictionary elements.

In the example of the straw texture inserted into a paper texture, the discrim-
ination is achieved using the information concerning the textons, and mainly on
the energy density relative to the orientation and the scale. Indeed, the energy
distribution of the paper is nearly constant at a given scale for different orien-
tations, and is concentrated in the vertical “cells” at low and high scales and in
the vertical and horizontal “cells” at intermediate scales.
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Figure 5. Symbolic representation of the Gabor vectors: the left and right figures
corresponds respectively to the scales 2% and 2%.

Figure 6. Reconstruction of the Lena image with 2500 (left figure) and 5000 atoms
(right figure). The reconstruction is obtained as a truncated sum of the decomposition.
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Figure 7. Original paper and straw texture mosaic ( 256 x 256, left image) and
reconstructions with 5000 atoms (right image).

Figure 8. Symbolic representation of the Gabor vectors for the texture mosaic: scale
2! (left image) and 22 (right image).
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Figure 9. Symbolic representation of the Gabor vectors for the texture mosaic: scale
23 (left image) and 2* (right image).

§6 Vision applications

We introduced here a method to construct a decomposition of images into its
main features. We showed that this transform provides a precise and complete
characterization of the edges and texture components in terms of localization,
orientation, scale and amplitude. By reconstructing high-visual quality images
with very few atoms, we also showed that this representation is compact.

Another advantage of Matching Pursuit is the flexibility of the dictionary
choice allowing to explicitely introduce a priori knowledge on the features of
object classes into the dictionary to solve specific vision problems.

First experiments on image denoising suggest the use of a higher level infor-
mation on edges obtained by atom linking to discriminate image features from
noise.

A promising aspect of this method is its aptitude to model some early vi-
sion mechanisms in the visual cortex and especially those involved in texture
discrimination. The Matching Pursuit with a Gabor dictionary acts as a linear
filtering followed by a non-linearity ( selection of the maximal coefficient) and
some local inhibitions in the representation (update), which is very similar to
the recent model of early vision mechanisms involved in texture discrimination
and introduced by Malik and Perona ([11]).

As intrinsic steps of the Matching Pursuit, these two fundamental operations
appears here in a very natural way as a consequence of the redundancy of the
dictionary. First, the selection of the best matching element of the dictionary




14 F. Bergeaud, S. Mallat

yields the amplitude of the vector, including its sign through the phase informa-
tion. This corresponds to a full wave rectification, but contrary to some other
work in the same field, is combined with the phase extraction and thus keeps
the essential information (we still can discriminate the two symetrical textures,
one composed of the repetition of a micro-pattern M, and the other of the rep-
etition of the opposite micro-pattern -M). It is also biologically plausible since
Pollen and Ronner ([13]) suggested the existence of cells pairs in quadrature
phase in the cortex. Second, the update of the representation at each step lo-
cally removes the coefficients of the Gabor functions which do not correspond
to an optimal match with the selected image feature. This mechanism appears
to be very similar to the interactions among the neurons in the primary visual
cortex, as described in ([11]). This model introduce the inhibition among the
neurons as a simple consequence of the selection of the best responding neuron
( the dictionary element in our model): once a predominant neuron is selected,
all the spurious responses in its neighbourhood are removed, preventing the
choice of neurons wich are not optimally tuned to the visual stimulus. This
local enhancement of the best responding neuron is a variant of the winner-
take-all mechanism previously introduced in the neural network litterature and
hypothetized by Barlow: “ Our perception are caused by the activity of a rather
small number of neurons selected from a very large population of predominantly
silent cells”. Moreover, the intrinsic inhibition law of the matching pursuit gives
an explicit formula for the interactions among neurons as the inner product of
the dictionary elements, which does not depends on any parameter.

The decomposition of textured images proved the efficient discrimination
properties of the method and suggests the computation of a texture gradient by
an appropriate pooling of the gradient responses for each scale and orientation.
However, instead of using a gradient computed with a smoothed version of the
matching pursuit representation (cf. [11]), which assumes an arbitrarily fixed
smoothness parameter, we are studying some clustering techniques based on the
uniformity of the atom density, the predominant orientation and the amplitude.
We then compute a gradient between these regions, without making any a priori
assumption on their size.
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