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Abstract

Self-similar multifractals have a wavelet transform whose maxima define
self-similar curves in the scale-space plane. We introduce an algorithm that
recovers the affine self-similarity parameters through a voting procedure in
the corresponding parameter space. The voting approach is robust with
respect to renormalization noises and can recover the value of parameters
having random fluctuations. We describe numerical applications to Can-
tor measures, dyadique multifractals and to the study of Diffusion Limited
Aggregates.
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1 Introduction

Some important classes of multifractals are composed of functions which are
partly self-similar. The applications of Iterated Functional Systems have
shown the importance of such fractals in image processing [6]. Some phys-
ical phenomena such as fully developed turbulence [12] or diffusion limited
aggregates [1] also seem to exhibit some sort of self-similarity. The synthesis
of self-similar fractals is a relatively simple algorithmic issue but the analy-
sis of the affine self-similarities of functions or measures is a more difficult
inverse problem. For physical dynamical systems that are believed to have
some renormalization properties, it is particularly important to have pro-
cessing techniques that can estimate the renormalization parameters from
the experiments. We introduce a voting algorithm that can recover such
renormalization parameters from noisy data.

A multifractal might have different renormalization properties at differ-
ent scales. The necessity to decouple the multiscale components of signals
motivates the use of a wavelet transform to analyze their renormalization
parameters. The renormalization properties of a function appears through
self-similarities of its wavelet transform, in the scale-space plane. For many
types of problems, it is easier to analyze the properties of the wavelet trans-
form local maxima rather than the values of the transform at all locations.
In particular, we proved that these local maxima locate and characterize
the singularities of functions [11]. The wavelet transform maxima define
geometrical curves in the scale-space plane. The self-similarities of a func-
tion appear as geometrical self-similarities of the wavelet transform maxima,
curves. We thus concentrate on these local maxima to analyze the renor-
malization properties of multifractals.

The multiplicative properties of the wavelet transform maxima is directly
related to the parameters of affine self-similar multifractals. This was proved
by Bacry et. al. [4] in the case of Cantor measures. For more general class of
multifractals, they conjectured that these multiplicative properties is related
to the fractal dimension of the singular support. We verify this result for
fractional Brownian motions. Most multifractals encountered in physics
or image processing are not exactly self-similar. The deviations from self-
similarity can be interpreted as a renormalization noise. Voting procedures
such as the Hough transform [5], have been particularly successful to recover
parameterized curves from noisy data. We introduce such a voting scheme to
estimate the renormalization parameters of the wavelet transform maxima
curves. Section 4 gives numerical results for a Cantor measure, a dyadique



multifractal function, and a fractional Brownian motion. An application to
Diffusion Limited Aggregates is described in Section 5.

2 Self-Similar Multifractals

An interesting class of multifractal functions is solution of dilation functional
equations of the type
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The solution might not be a function but a distribution, possibly a positive
measure. Throughout the article, functions and measures do not need to
be differentiated beyond few details of notations that are left to the reader.
If the solution f(z) has a finite non-zero integral, integrating both sides of
this equation yields

n
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If each affine renormalization operation is locally separable, which means
that for 1 <4 < n there exists an open set D; such that for all z € D;

f(z) = pili f (li(z — 13)), (2)

the function is locally self-similar. For number of recurrence equations, f(z)
is only approximatively equal to the renormalized version on the right hand-
side of equation (2), which introduces what we call a renormalization noise.

Multifractal Cantor measures satisfy a recurrence equation (1) with two
separable renormalization components:

f(z) = prly f(li(z — 1)) + palof(lo(z — r2)). (3)

The renormalization parameters satisfy
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p1+p2=1, p1 >0, py >0.

A Cantor measure has a support included in the interval [—%, %] It can be
constructed recursively as follows. We define a uniform measure on [—%, %]

and divide it into three pieces: a uniform measure of probability p; on the
interval [—1, —3 + %], a zero measure on the interval [—3 + %, : - %], and
a uniform measure of probability py on the interval [% — g, %] The left and
right pieces of the resulting measure are then subdivided recursively with the
same renormalization operations. The separability property (2) is satisfied
for the domains Dy =] — 1, —3 + %[ and Dy =|% — %, 5[

The global singular properties of a multifractal is characterized by the
spectrum of singularity f(«), which is the Hausdorff dimension of the set of
points where the multifractal has singularities of strength «. For a Cantor,
the support of f () is an interval [a1, as], with ay = —llzgg’l’ll and ag = —llzgg’l’j
[9]. If @« = a1 = g, then all singularities have the same strength and the
Cantor is a uniform fractal of dimension a.

If a multifractal is self-similar with respect to affine transformations as
in equation (2), then it is also self-similar with respect to any combination
of these affine transforms and their inverse. The composition of n affine
transforms whose parameters are (p1,11,71) with m transforms of parameters
(p2,12,72), is an affine transform with parameters (p7p5*, (715, 7 m), Where
Tn,m depends upon [y, Iy, r1, r2, and the order in which the affine transforms
have been applied. If we combine as well the inverse of these transforms,
we obtain the same result for n € Z and m € Z. Our goal is to recover the
basic affine transforms that renormalize any given multifractal and which
yields by recombinations all other affine transforms that renormalize this
multifractal.

3 Wavelet Transform Maxima of Multifractals

The wavelet transform is a natural tool to analyze the multifractal prop-
erties of signals since it separates their multiscale components. Arneodo,
Bacry and Muzy [2] have studied its application to several types of physical
multifractals. A wavelet is a function % (x) such that
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The wavelet transform of a function at the abscissa z and scale s is defined
by
+0oo 1 z—u
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)du. (5)

The wavelet transform of a measure dy is defined by replacing f(u)du by
du(u). Dilations and translations of functions yield simple modifications of
their wavelet transform. Let g(x) = plf(l(x — r)), we derive from (5) that

Wg(s,z) = plW f(ls,l(x —T)). (6)

Let us suppose that our wavelet has compact support included in the interval
[-K, K]. If a function satisfies the self-similarity property

Vz E]aa b[a f($) = plf(l(.’E - T))a (7)
then for any s such that s < (’77“,
Vz e€la+ Ks,b— Ks|, Wf(s,z)=plWf(ls,l(x —1)). (8)

The self-similarity of f(z) implies a self-similarity of its wavelet transform
in the scale-space plane. However the converse is not true. If the wavelet
has n vanishing moments, then a self-similarity of the wavelet transform
implies a self-similarity of f(x) up to a polynomial of degree n. Indeed,
for such wavelets, the wavelet transform ignores polynomial components of
degree n. Moreover, the wavelet transform might be self-similar on a lim-
ited range of scales, which does not imply a self-similarity of f(z), but still
proves the existence of a partial affine self-similarity. Hence, the wavelet
transform self-similarities provide a finer description of the signal renormal-
ization properties.
The wavelet transform is a two dimensional function and thus represents
a large amount of data to process. To characterize the singular behavior of
functions, it is sufficient to process the values and position of the wavelet
transform modulus maxima [11]. These modulus maxima have been used
by Bacry et al. [4] to compute the spectrum of singularities of multifractals.
Let us remind that a wavelet modulus maxima is a point (sg, zo) of the scale-
space plane, where |W f(sg, z)| is locally maximum for z in a neighborhood
of zg. These maxima are located along curves in the scale-space plane (s, ).
Let M f(s,z) be the maxima map defined by M f(s,z) = W f(s, ) if (s, z)
is a modulus maximum, and M f(s,z) = 0 otherwise. Equation (8) implies
that
V€ [a+ Ks,b— Ks], Mf(s,z) =plMf(ls,l(z —T)). (9)



The geometry of the maxima curves are thus self-similar in the scale-space
plane. Fig. 1(b) shows the wavelet transform of a devil staircase. This
function is the primitive of a Cantor measure built with parameters p; = %,
Py = %, l1 =2 and Il = 4. Fig. 1(c) displays the position of the modulus
maxima in the same scale-space plane. The self-similarities of the wavelet
transform and of the maxima map corresponds to the self-similarities of the
underlined Cantor measure. The wavelet used to compute this transform
is shown in Fig. 2(a). The choice of wavelets to detect and characterize
singularities is further discussed in [11].

As a consequence of equation (9), we can expect that the number of
modulus maxima increases when the scale decreases. Let f(x) be a Cantor
measure with dilation scales /; and l. Let N(s) be the number of modulus
maxima of the wavelet transform. We suppose that 1(z) is such that the
number of maxima is bounded at any scale:

Vso > 0,3Ky,Vs > s9, N(s) < Kp. (10)

Bacry, Muzy and Arneodo proved that [4] the decay of N(s) satisfies

log N
Jim 98 N(G) _ 5 (11)
5—0 logs
where f is given by
Pl =1. (12)

For all wavelets used in practice, the constraint on the finite upper bound
(10) is always satisfied. Equation (11) proves that for Cantor measures the
decay of the number of maxima depends upon the multiplicative properties
of the measure characterized by the dilation scales l; and l,. When the Can-
tor measure is uniform, which means that all singularities have a strength
equal to a = —11?)3711 = —llzgg’l’j, since p1 +p2 = 1, we can derive that 8 = —a.
For uniform Cantors, the decay rate of the number of maxima is thus equal
to their fractal dimension. For general Cantors, —f is the fractal dimension
of the support of the measure.

Fig. 3 gives the number of maxima across scales corresponding to the
wavelet maxima map shown in Fig. 1(c). If we ignore constant factors, the
devil staircase has the same renormalization properties as the underlined
Cantor measure. A linear regression on the number of maxima in Fig. 1(c)

yields 8 = —0.70 and indeed

28 + 48 = 0.99.
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Figure 2: (a) Graph of a wavelet 1(z) with compact support and one van-
ishing moment. It is a quadratic spline. (b) Graph of the Primitive 6(z)
with compact support. It is a cubic spline.

ab
log N(s)

log(s)

Figure 3: This curve gives the decay of log N(s) as a function of log s, where
N(s) is the number of wavelet transform modulus maxima at the scale s of
the Devil Staircase shown in Fig. 1(a).



For more general multifractals, Bacry et. al. [4] conjectured that the
number of maxima N(s) decays like s~ where d is the fractal dimension
of the singular support of the multifractal. The next theorem verifies this
results for fractional Brownian motions. Fractional Brownian motions are
Gaussian processes that are self-similar in a stochastic sense, with a power
spectrum proportional to W%“’ for some exponent 1 > H > 0. Their

realizations are not affine self-similar functions but fractal curves.

Theorem 1 The ezpected density D(s) of modulus mazima of the wavelet
transform of a fractional Brownian motion satisfies

where C is a constant that depends only upon the wavelet ¥ (x) and the
fractional exponent H.

The proof of the theorem and the value of the constant C are given in
the Appendix. The decay of the number of maxima, for fractional Brownian
motions is thus inversely proportional to the scale. Since fractional Brown-
ian motions are almost everywhere singular, the fractal dimension of their
singular support is d = 1, so this theorem verifies the conjecture of Bacry
et. al. [4].

4 YVote for Renormalization Parameters

Since the self-similarities of a function implies geometrical self-similarities of
the wavelet transform maxima, we concentrate on these maxima, to find the
values of the renormalization parameters. We can analyze the geometrical
properties of the maxima lines in the scale-space plane. This approach was
also studied independently by Arneodo, Bacry and Muzy [3], who devel-
oped an algorithm based on the bifurcation points of the wavelet transform
maxima, in order to detect and characterize renormalization maps. In most
cases, multifractals are approximatively self-similar, which means that we
must take into account renormalization errors. Many algorithms that esti-
mate the parameters of noisy curves in an image plane are voting procedures
in the corresponding parameter space [5]. We describe such a voting algo-
rithm that can recovers non-exact renormalization properties in multifractals
by using the information provided by all the wavelet transform maxima.



Affine renormalizations are characterized by the three parameters (p, [, )
of equation (7). We introduce a voting scheme in the three dimensional pa-
rameter space (p,l,r). Renormalization parameters are then identified as
points of high votes in the space (p,/,7). As mentioned in the previous sec-
tion, if the multifractal is invariant under two affine transformations specified
by (p1,l1,71) and (p9,l2,72), it is also invariant with respect to a family of
affine transforms specified by (p{p5*, (115", 7n,m), where n and m are inte-
gers. This produces spurious high vote peaks at the corresponding locations
of the parameter space. To obtain a regular distribution of these peaks, we
use a logarithmic scale for p and [. In the remaining of the paper, logx is a
logarithm base 2 of . The parameter space is thus represented by a three
dimensional array indexed by (log p, logl,r), called accumulator array. Each
bin of this array corresponds to a cube in the space (logp,logl,r) of size
Alogp x Alogl x Ar. The values of Alogp, Alogl and Ar depend upon
the desired precision when measuring the renormalization parameters.

Equation (6) proves that a renormalization by (p,[,r) maps any wavelet
maxima located at (s1, 1) to a maxima located at (so = ls1, 29 = l(z1 —1)).
If f(z) is invariant with respect to the affine transform of parameters (p, [, ),
equation (8) proves that

p= Wf(31,.731)

- l Wf(SQ,.TQ). (13)

Any maxima in the neighborhood of (s1,z1) is also mapped to a maxima
in the neighborhood of (s9,z2) with the same affine transformation. Let
(s1,21 4+ A1) be the location of the closest maxima to (s1,z1), with A; > 0.
This maxima is mapped to (s2,z2 + Ay) with

Bz _ 52 (14)
Ay s

For any pair of wavelet transform maxima (s1,21) and (s2,x2), if the closest
left maxima of (s1, 1) and (s9, z2), located respectively at (s1,z1+ A1) and
(82, 2+ Ag) satisfy the constraint (14), we then vote for the renormalization
parameters

log ! = log( %), (15)
W f(s1,21)
1 =log(————"—~ 1
ng Og(l Wf(SQ,.'L‘Q) 7 ( 6)
7‘:.131—.7,‘22—;. (17)



The voting algorithm proceeds as follow. The bins of the parameter space
array are first initialized to 0. For each pair of wavelet transform maxima
(s1,21) and (s2,x2), with s1 < s9, if their closest right maxima satisfy equa-
tion (14), we add 1 to the bin (logp,logl,r) defined by equations (15-17).
This algorithm yields high votes in the bins corresponding to the renormal-
ization parameters of the multifractal. The renormalization noise can spread
the votes for a given set of renormalization parameters across several bins of
the accumulator array. The bin size Alogp, Alogl, Ar of the accumulator
array must therefore be adapted to the amount of renormalization noise in
order to avoid splitting votes. Once the vote is done, we select the parame-
ter indexes with high votes, where the value of the vote is locally maximum
in a three-dimensional neighborhood of the accumulator array. If the algo-
rithm is successful, the peaks of highest votes provide the renormalization
parameters of the multifractal. Instructions to obtain a copy of the software
implementing this algorithm are available through anonymous ftp at the ad-
dress cs.nyu.edu, in the file README of the directory /pub/wave/software.

We first illustrate the results of this algorithm for the devil staircase
with I = 2,1, =4, p1 = %, py = % and r; = —i, o = %, shown in Fig.
1(a). The voting is based on the wavelet transform maxima displayed in
Fig. 1(c). The highest votes in the three dimensional accumulator array are
at (logpi,logli,r1) and (logpa,logla,r2). Since a Cantor set is also invari-
ant by affine transforms of parameters (pPpJ, IHT, n.m) for (n,m) € Z2,
the algorithm also yields peaks of votes at (nlog(p1) + mlog(p2),nlog(l1) +
mlog(l2), Tnm). In the plane (logp,logl) these votes are located on a uni-
form grid whose interval is specified by (logp,logli) and (log po,logis). It
allows us to verify that the multifractal only has two sets of renormalization
parameters whose values are specified by the locations of the two highest
votes in the parameter space. Fig. 4(a) and Fig. 4(b) show the votes in
the planes of coordinates r = —0.26 and r = 0.38, in the three dimensional
parameter space (logp,logl,r). The two high peaks are the highest votes in
the three dimensional parameter space.

Dyadique renormalization equations also define interesting multifractals
studied by Deslauriers and Dubuc [7], as well as Daubechies and Lagarias
[10]. The function shown in Fig. 5 is the solution of the functional equation

1

f() = 372 - 3)) + f(20) + 3720+ 3), (18)

analyzed by Daubechies. When applying the voting procedure to the max-
ima of the wavelet transform of f(xz), surprisingly there are 4 peaks that

10
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Figure 4: Votes based on the wavelet modulus maxima, for the Devil Stair-
case of Fig. 1(b). These figures give the number of votes in the two planes
of the parameter space (log p,logl,r), where the highest number of votes are
concentrated. The plane (a) corresponds to r = —0.26 and the plane (b) to
r = 0.38. The location of the two high peaks provide the renormalization
parameters of the underlined Cantor measure.
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Figure 5: Solution of the functional equation f(z) = 1/3f(2(z — 1/2)) +
f(2z) + 2/3f(2(z + 1/2)).

emerge strongly from the accumulator array, for parameters (p, , [, r) respec-
tively equal to (%,2,0), (%,2,0), (%,2,%) and (%,2,—%). Fig. 6(a-c) show
the votes in the planes corresponding respectively to r = —%, r = 0 and
r = % Beyond the four peaks, we can see other local peaks of smaller
amplitude that correspond to recombinations of the four main affine renor-
malizations. It is surprising to see four different affine self-similarities since
the recurrence equation (18) has only three terms and the parameters can
not be derived directly from the coefficients of the equation. However, a
more careful analysis of the solution f(z) reveals that these affine trans-
forms are indeed the true renormalization parameters. Let us decompose
f(z) into f(z) = g(z) + h(z), where the support of h(z) and g(z) are re-
spectively [—1,0] and [0,1]. One can prove that h(z) is the primitive of a
positive Cantor measure centered at —% with parameters I; = 2, [ = 2,
p1 = 1/3 and ps = 2/3, and ¢(z) is the primitive of a negative Cantor mea-
sure centered at % with parameters [y = 2, lo =2, p; = 1/3 and p2 = 2/3.
In this case, the voting algorithm did indeed reveal non-trivial self-similar
structures of the function f(z).

As a last example, we describe the results of this voting algorithm, when
applied to a fractional Brownian motion. The realizations of these stochastic
multifractals do not have affine self-similarities, and indeed do not yield any
dominating peak in the parameter space. To visualize better the distribution
of votes in the parameter space, for any given r we sum the votes for all
values of p and [. The resulting number of votes as a function of r is given
in Fig. 7(a). As expected, this distribution is uniform, which indicates that

12
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2
log(l)

log(l) 15

vote

log(l) 15

Figure 6: Votes based on the wavelet transform modulus maxima of the
dyadique multifractal shown in Fig. 5. These figures give the number of
votes in the three planes of the parameter space (logp,logl,r), where the
highest number of votes are concentrated. The planes (a),(b) and (c) cor-
respond respectively to r = —%, r=0andr = % The location of the four

high peaks provide the renormalization parameters of this multifractal.
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-0.4 o 0.4

log(l)

Figure 7: Distribution of votes for a fractional Brownian motion with
H = 0.2. (a) Repartition of votes as a function of 7, after summing over all
values of log! and log p. (b) Repartion of the votes in the plane (log p,log!),
after summing over all values of r. Brighter pixels correspond to larger
votes. There is no high peak in (a) and (b).
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there is no remarkable translation parameter. For any given (logp,logl),
we also sum the votes for all r values in the accumulator array and obtain
a distribution in the (logp,logl) plane, shown in Fig. 7(b). Higher votes
correspond to brighter points in the image plane. No particular peak emerges
from this plane, but the vote has a clear distribution around a straight line
whose equation is logp = Blogl, with § = —1.2. The slope [ is related
to the fractal parameter H = 0.2 of this fractional Brownian motion, by
B = —1 — H. This can be justified with the following intuitive argument.
The algorithm votes for a parameters p in equation (13) which is equal to
the ratio of the wavelet transform at two maxima locations, divided by .
Flandrin [8] proved that at any point (si,z1), the variance of the wavelet
transform of a fractional Brownian motion satisfies

E(|WB(31,:1;1)|2) = 0512H,

where C' is a constant independent of (21, s1). Hence the ratio of the wavelet
transform at two maxima, locations at the scales s; and sg is on average close
to (z—;)H = [7H. The value of logp will thus on average be of the order of
(—H — 1)logl. This explains the higher density of votes around the line
of equation logp = (—1 — H)logl. In this example, the voting algorithm
indicates that this fractal has no affine renormalization but we can still

measure the fractional exponent H from the repartition of the votes in the
(log p,log!) plane.

5 Diffusion Limited Aggregates

The analysis of the properties of fractal growth phenomena remains mostly
an open problem in physics. Diffusion Limited Aggregates can be modeled as
a growth obtained by successive accretion of random walker at the periphery
of the cluster. Arneodo et. al. [1] have recently introduced techniques based
on the wavelet transform modulus maxima to analyze the fractal properties
of these DLA. Fig. 8(a) shows the center region of a DLA cluster that
contains a total of 10® particles. To analyze the properties of such clusters,
Arneodo et. al. [1] have constructed a measure that indicates the location
of intersection points of such a cluster with a circle of fixed radius. At
intersection points, the measure is equal to 1 and 0 at other locations. Fig.
8(b) such a measure built at the intersection of a circle and a DLA cluster.

The wavelet transform is normally defined with respect to a wavelet
function whose integral is zero. However, to analyze positive measures of
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compact support, one can use a wavelet primitive whose integral is non-zero,
and obtain the same properties as a standard wavelet transform. Let 1! (x)
be the primitive of compact support of a wavelet 1(z) of compact support.
The function %' (z) might have a non-zero integral and thus might not be
a wavelet. Let f(z) be a positive measure of compact support and g(z) be
its primitive of compact support. Let us denote W!f(s,z) the “pseudo”
wavelet transform of f(z) computed with 1! (z) by using the same formula
(5) as a wavelet transform. Let Wg(s,z) be the wavelet transform of g(z)
computed with the wavelet 1(z). An integration by part of equation (5)
yields

Wlf(s,z) = %Wg(s,m).

Hence, the pseudo wavelet transform of f(z) computed with ¢! (z) has the
same properties as the wavelet transform of its primitive computed with
respect to 1(z). To analyze the properties of DLA measures, we use the
wavelet primitive !(z) shown in Fig. 2(b). Arneodo et. al. [1] showed
that the number of maxima of DLA measures at scales 2.2" is a Fibonacci
sequence. One interpretation is that each branch of the DLA splits into two
branches, one larger than the other, which then splits recursively with the
same procedure. It is however not clear how to relate precisely results on one-
dimensional DLA measures to the properties of two-dimensional aggregates.
In this section, we analyze the properties of DLA measures from the results
of the voting algorithm described in section 4. The experiments are done on
50 DLA measures provided by Arneodo. Fig. 9 gives the number of wavelet
modulus maxima N (s), computed with 50 DLA measures, for s € [22,28].
A linear regression yields

log N (s)

= —0.63 £ 0.01. (19)
log s

To relate this result to Fibonnacci sequences, let us recall that a Fibonacci
sequence (up),ecN satisfies

n—+oo n

= log(¢), (20)

where ¢ = % Equation (19) and (20) implies that the number of maxima
N (s) may be a Fibonacci sequence along the scales s = o™, if a = }%g%, which
yields a = 2.13. This result is consistent with the fact that Arneodo et. al.
found that the number of maxima at scales 2.2" vary almost like Fibonacci
sequences.
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Let us now study the renormalization properties of these DLA with the
voting algorithm. To simplify the analysis we shall concentrate on the pa-
rameters p and [ and eliminate the translation parameter r. We make a
vote for the parameters (logp,logl) from the wavelet transform maxima
computed with the 50 DLA measures. Fig. 10(a) shows the distribution of
the highest votes in the plane (logp,logl). The votes are distributed along
a line of equation logp = —alogl, with

a=0.63 £ 0.01.

This indicates that the singularities of strength o = 0.63 strongly dominate
all other singularities. It is interesting to observe that this exponent is the
same as the one measured in equation (19) from the decay of the number
of maxima. We saw in section 3 that such a situation occurs for uniform
Cantor measures. For example, a uniform Cantor with parameters [; = 2.13,
Iy = (2.13)2, p; = 0.618 and py = 0.382 does satisfy this property and the
number of maxima at the scales a” for a = l; = 2.13 is a Fibonacci sequence.
This Fibonacci Cantor is built by recursively dividing a uniform measure into
two uniform measures. One has a support [; times smaller and the other
one a support Iy = I? times smaller. When the branches of a DLA splits,
Arneodo observed that the larger branch has one chance out of 2 to be on
the right or on the left of the smaller branch. To take into account this
fact, one can build a simple stochastic Fibonacci Cantor model where the
sub-component of size [; is located randomly on the left or on the right
of the component of size lo, when recursively building the measure. Fig.
10(b) displays in the (logp,logl) plane the distribution of votes computed
from the wavelet transform maxima of several realizations of this stochastic
Fibonacci Cantor. As expected, the votes are distributed around a line of
equation logp = —alogl, with a = 0.63.

For any fixed log !, Fig. 11(a) and 11(b) show the distributions of votes as
a function of log! when summing the votes along all log p for DLA measures
and for stochastic Fibonacci Cantors. The vote distribution of stochastic Fi-
bonacci Cantor has three clear peaks at logl = 1.1, logl = 2.2 and log ! = 3.3
which are multiples of the basic renormalization parameters logl; = 1.1 and
logly = 2.2. For the DLA measures, there are two peaks at log/ = 1.0 and
log! = 2.1 which are much weaker and a third rebound at logl! = 3.3, which
indicates that this simple stochastic Fibonacci Cantor model do not reflect
precisely all structures of the DLA. One can refine the Cantor model by let-
ting the left and right components of the measure have positions that vary
randomly when building it recursively, but it is also likely that the multi-
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plication process involved in DLA has a more complicated structure than a
Cantor subdivision. A more precise analysis of the distribution of the votes
of DLA measures that includes the translation component r, can help specify
this initial Fibonacci model, but a detailed analysis of the physics of DLA
is beyond the scope of this paper. Let us however emphasize that although
DLA do not have exact affine self-similarity properties, our maxima voting
algorithm recovers enough statistical information about the renormalization
parameters, to test physical models of these aggregates. We believe that
such robust voting schemes can be used to test a large class of renormaliza-
tion models for physical multifractals.
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Figure 8: (a) Center region of a DLA cluster of 10® particles, which is in-
cluded in a circle of fixed radius. (b) measure showing the intersection points
of a DLA cluster and a circle of fixed radius (data provided by Arneodo).

12 1

log(N(s)) 1

11 1

10 1

1 2 3 a 5 6 7 8
log(s)

Figure 9: This curve gives the decay of log N (s) as a function of log s, where

N(s) is the number of wavelet transform modulus maxima at the scale s for
50 DLA measures.
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Figure 10: (a) Distribution of votes in the plane (logp, log!) of the parameter
space, for 50 DLA measures. The votes are distributed along a straight line
of equation logp = 0.63log!. (b) Distribution computed for 50 stochastic
Fibonacci Cantors.
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Figure 11: Distribution of votes as a function of logl obtained from Fig.
10 by summing along all values of logp. (a) Result obtained for 50 DLA
measures. (b) Result obtained for 50 stochastic Fibonacci Cantors.
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Appendix: proof of Theorem 1

The wavelet transform given in equation (5) can be rewritten a convolution
product

W(s,z) = f*vs(z), (21)

where 9,(z) = 1¢(Z). The wavelet transform of a fractional Brownian
motion is a stationary Gaussian process [8] with a power spectrum P(w)
equal to

_ P (sw)?

P(w) = WA (22)

where 9(w) is the Fourier transform of 4(z). The density of m of modulus
maxima of a function is related to the density e of local extrema and its
density z of zero-crossings by

m:e;z. (23)

The density of zero-crossings of a differentiable Gaussian process whose au-

tocorrelation is R(7) is [13]
—R®)(0)
=4 —— 24
“=\"2R0) " (24)

where R(™(7) is the n'* derivative of R(7). The density of extrema of a
differentiable process is equal to the density of zero-crossings of the derivative
of the process. If the autocorrelation of a process is R(7), the autocorrelation
of its derivative is —R® (7). We thus derive from equation (24) that for a
stationary Gaussian process that is twice continuously differentiable, the
density of extrema is

R(®)(0)
—72 R(2)(0)

The derivatives of the autocorrelation function in zero is related to the power

(25)

e =

spectrum by

R(0) = /_ ;OO P(w)dw, (26)
~ R®(0) = / " 2P (w)dw, (27)

and oo
R®(0) = / W' P(w)dw. (28)
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If the wavelet is twice continuously differentiable, the convolution of a Frac-
tional Brownian motion with a dilated wavelet is a stationary Gaussian pro-
cess that is twice differentiable. Inserting equation (22) in equations (26-28)
yields

+o0 R
R(0) = 0% [ w72 ) dos (29)
+oo o
- RO = %2 [ ol () do, (30)
+o0 .
RO©0) = 0?14 [ P () do. (31)

As a consequence of equation (23), the average density of modulus maxima
of a wavelet transform is given by the average density of its zero-crossings
and of its extrema. From equations (24-25) and (29-31), we derive that the
average density of modulus maxima of the wavelet transform at the scale s
of a fractional Brownian motion is

1 VB VP

D) = = (V4 V), (52
with oo

Po= [ el ) P do, (33)

Po= [ el ) d, 34
and oo

Po= [ P )P do. (35)

This finishes the proof of Theorem 1.
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