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This paper studies classes of nonstationary processes, such as warped processes and
frequency-modulated processes, that result from the deformation of stationary processes. Es-
timating deformations can often provide important information about an underlying physical
phenomenon. A computational harmonic analysis viewpoint shows that the deformed auto-
covariance satisfies a transport equation at small scales, with a velocity proportional to a
deformation gradient. We derive an estimator of the deformation from a single realization of

the deformed process, with a proof of consistency under appropriate assumptions.

1. Introduction When a nonstationary process X results from the deformation of a station-
ary process Y, estimating the deformation can provide important information about an underlying
physical process of interest. From one realization of X = DY, we wish to recover the deformation
operator D, which is assumed to belong to a specific transformation group D. For example, a Doppler
effect produces a warping deformation in time X (x) = Y (6(z)), where 6'(x) depends upon veloc-
ity. The deformation of a stationary texture by perspective in an image also produces a warping,
where © € R? is a spatial variable; recovering the Jacobian matrix of f(z) characterizes the shape of
the three-dimensional surface which is being viewed [9]. The frequency modulation of a stationary
process X(z) = Y(x)exp(if(z)) corresponds to another class of deformations encountered in signal
processing, in transmissions by frequency modulation, where the message is carried by 6'(x).

Estimating the deformation D € D from X = DY is an inverse problem. As we suppose no
prior knowledge about the stationary process Y, the deformation D can only be recovered up to
the subgroup G of D which leaves the set of stationary processes globally invariant. Rather than
the deformation itself, we therefore seek to estimate the equivalence class of D in D/G. We consider
cases where G is a finite-dimensional Lie group. Under appropriate assumptions, this equivalence
class can be represented by a vector field on G, which corresponds to a deformation gradient. A

local analysis of the deformation is performed by decomposing the autocovariance of X over an
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appropriate family of localized functions, which are called atoms in the harmonic analysis literature.
The deformation gradient is shown to appear as a velocity vector in a transport equation satisfied by
a localized autocovariance. This general result is applied to one-dimensional warping and frequency
modulation, where the atoms are classical wavelets, and multidimensional warping, where the atoms
are called warplets.

Computing the deformation gradient requires estimating the autocovariance of X projected over
a family of localized atoms, from a single realization. Under certain conditions on the autocovariance
of the stationary process Y, one can obtain consistent estimators for one-dimensional warping and
frequency modulation. Numerical examples illustrate these results. Let us mention that the station-
arity hypothesis on Y can be relaxed by supposing only that Y has stationary increments, in which
case our estimation of the deformation gradient remains consistent.

The paper is organized in three main sections: after discussing the well-posedness of the inverse
problem in Section 2, we establish in Section 3 a transport equation for the localized autocovariance

of a deformed process; Section 4 introduces estimators and proves their consistency.

2. Inverse Problem We want to estimate a deformation operator D which belongs to a known
group D, from a single realization of X = DY. The process Y, which is not known a priori, is assumed
wide-sense stationary. Since we are limited to a single realization, we concentrate on second-order

moments. For this reason, stationarity will always be understood in the wide-sense, meaning that

E{Y(z)} = E{Y(0)}
and E{Y(z)Y*(y)} = cv(z —y) with cy(0) < 400 ,

where 2* denotes the complex conjugate of z € C. We shall further suppose that Y (z) is stochastically
continuous, which means that its covariance cy (z) is continuous at = 0. The deformation operators
D that we shall consider are defined over distributions but for simplicity we restrict their domain to
functions of R?. An operator D acts on a stochastic process Y realization by realization. We shall thus
consider processes Y whose realizations are functions of R¢. For example, if Y is a Gaussian process
and |cy (z) — ¢y (0)] = O(|log ||z||| =1 %) for some & > 0, then one can prove that its realizations are

continuous with probability one [2]. This hypothesis will be satisfied by our estimation theorems.

2.1. Class of Solutions Since we only know that the process Y is stationary, the set of solutions
to the inverse problem is the set of all operators D € D such that D~1X is stationary. In general,
this set is larger than {D}. Let G be the set of all operators G € D such that if ¥ is a wide-sense
stationary process, then GY is also wide-sense stationary. One can verify that G is a subgroup of
D, which we call stationarity invariant group. Clearly, if D is a solution of the inverse problem, any

operator D = D G with G € G is also a solution. The set of solutions of the inverse problem therefore
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contains the equivalence class of D in the quotient group D/G. In order for the set of solutions to
the inverse problem to be exactly equal to the equivalence class of D in D/G, we need to impose a
condition on the stationary process Y, so that any deformation D € D such that DY is wide-sense
stationary necessarily belongs to G. This is not true for all stationary processes Y, but we give
sufficient conditions on the covariance of Y to guarantee this form of uniqueness. In this paper we

concentrate on three deformation groups.

Example 1 The frequency modulation group modifies signal frequency:
(1) D= {D : D f(z) =e%® f(z) where 6(z) is real and C4} .

In transmissions with frequency modulation, §'(z) is proportional to the signal to be transmitted,
and the stationary process Y, which is in this case assumed to have zero mean, is the carrier. The

stationarity invariant group is

G ={Goe) : Gpe flz) =) f(2) with (6,6) R} .

Two operators D; and Dy such that D f(z) = €1(*) f(z) and Dyf(z) = €2(*) f(x) are in the
same equivalence class in D/G if and only if 8;(z) = ¢ + £&x + O2(x) and hence

(2) 01 (z) = 05 () -
The following proposition gives a sufficient condition on the covariance cy (x) to identify 6" (x) from
the covariance of X = DY. The proof is in Appendix A.1.
PROPOSITION 2.1. Let X = DY, whereY is a stationary process, and D belongs to the frequency
modulation group D in (1). If there exists an € > 0 such that
Vee[—e el , cy(z)>0

then the equivalence class of D in D/G is uniquely characterized by the covariance of X .

Example 2 The one-dimensional warping group is defined by
(3) D={D : D f(z)= f(6(x)) where f(z) is C* and ¢'(z) >0} .

Such time warping appears in many physical phenomena, such as the Doppler effect. We easily verify

that the stationarity invariant group is the affine group:
G={Gus) : Gus [(x) = f(u+sz) with (u,s) € Rx RM*} .

Note that operators in the stationarity invariant group G are not time-invariant: they do not

commute with translations.
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Two warping operators D; and D, are in the same equivalence class in D/G if and only if there
exists (u, s) such that 6;(x) = u + s 02(x), or equivalently
(@) bi(z) _ 65(z)
01(z)  O5(x)

The following proposition, whose proof is in Appendix A.2, gives a sufficient condition on Y to

characterize the equivalence class of D uniquely. Perrin and Senoussi [13] provide a similar result.

PROPOSITION 2.2. Let X = DY, whereY is stationary, and D € D, where D 1is the warping
group (8). If there exists an € > 0 such that cy is C' on (0,¢] and

(5) Vz e (0,e] , cy(x)<0,

then the equivalence class of D in D/G is uniquely characterized by the covariance of X.

Condition (5) is met by a very wide range of stationary processes, including Poisson pulse processes,

and Ornstein-Uhlenbeck processes [16]. White noise, however, violates (5) since ¢y (z) = 0 for x # 0.

Example 3 The warping problem in two dimensions has an important application in image analy-
sis, particularly in recovering a three-dimensional surface shape by analyzing texture deformations.
Warping deformations are also used in geostatistics [12, 15], to model nonstationary phenomena.
Stationarizing the data is suggested as an initial step before applying classical geostatistical meth-
ods such as kriging. We study a d-dimensional warping problem, specified by an invertible function
6(z) from R? to R? with

0(.%‘1, ,.’Ed) = <91($1, ...,xd), ,Hd(xl, ...,$d)) .
The Jacobian matrix of 6 at position z € R? is written

If the Jacobian determinant det Jp(x) does not vanish, it corresponds to a change of metric and 8(x)

is invertible. We consider a group of regular warping operators
(7) D={D : D f(z)= f(6(x)) where (z) is in C3(R?) and det Jo(z) > 0} .

Let GLt(R?) be the group of linear operators in R? with a strictly positive determinant. We easily

verify that the stationarity invariant group is the affine group:
G={Guys) : Gus) f(x)=f(u+Sz) with (u,S) € R* x GLT(RY)} .

Two operators D and D such that Df(x) = f(6(x)) and Df(x) = f(A(x)) are in the same equivalence
class in D/G if and only if

(8) I(u,8) e RY x GLT(RY) , O(z) =u+ SH(x) .
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The partial derivative of the Jacobian matrix in a fixed direction xj is again a matrix:

dJg(z) (8291(33))
3$k - a.’L'k 6wj 1<4,j<d )

We will use the notation VJs(z) to denote the set of matrices {%(:)} .
k=1,...,d

Condition (8) is equivalent to the following matrix equalities, which generalize (4):

(9) VEe{l,...d} Jf?l(”’)age—x(? - J51(”%‘

Proof for this equivalence can be found at the end of Appendix A.3.

There are cases for which the inverse warping problem cannot be solved. For example, consider a
stationary process Y (z) = Yi(x1) which only depends on the first variable, and a warping deforma-

tion which leaves 1 invariant: 8(x1, ..., z4) = (21, 61(z2, ..., 24)). In this case
(10) X(z) =Y (x1,01(x2,....;2q)) = Yi(21) =Y () .

Hence 6 cannot be recovered. The following proposition, whose proof is in Appendix A.3, gives a

sufficient condition on ey (z) to guarantee that the inverse warping problem has a unique solution
in D/G.

PROPOSITION 2.3.  Let X = DY, where Y is stationary, and D € D, where D is the multidi-

mensional warping group (7). If the covariance of Y satisfies
(11) ey (0) — ey (z) = |z|" n(x) with h > 0 and n(0) >0,

where n(x) is C? in a neighborhood of 0, then the equivalence class of D in D/G is uniquely charac-

terized by the autocovariance of X.

The inverse warping problem has been applied to the reconstruction of three-dimensional surfaces
from deformations of textures in images [6]. One can model the image of a textured three-dimensional

surface as

The stationary process Y depends upon the textured reflectance of the surface, and 6(z) is the two-
dimensional warping due to the imaging process, which projects the surface onto the image plane [5].
We showed in (9) that solving the inverse warping problem is equivalent to computing normalized
partial derivatives of the Jacobian matrix Jp:

8J9(a:)
8%‘1

an(l')

(12) 7 (@) o

and J, ()
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Differential geometry derivations by Garding [9] have proved that these matrices specify the local
orientation and curvature of the three-dimensional surface in the scene. Knowing these surface pa-
rameters, it is then possible to recover the three-dimensional coordinates of the surface, up to a
constant scaling factor. We will see in Section 3.4 that the Jacobian matrices (12) appear as velocity

vectors in a transport equation satisfied by the autocovariance of X.

2.2. Stationarity Invariant Group The stationarity invariant group G specifies the class of solu-
tions of the inverse problem X = DY, and Section 3 will show that it is also an important tool to
identify the equivalence class of D in D/G. This section examines the properties of operators that
belong to such a group. Recall that an operator G is said to be stationarity invariant if, for any wide-
sense stationary and stochastically continuous process Y the process X = GY is also wide-sense
stationary.

The following theorem characterizes this class of operators. We denote by z - y the inner product

between two vectors z and y of R?.

THEOREM 2.1.  An operator G is stationarity invariant if and only if there exists p(w) from R?
to C with esssup,,cra |p(w)] < 00, and ANw) from R? to R, such that

(13) G e — ﬁ(w) ei)\(w)-z

The proof is in Appendix A.4. This theorem proves that a stationarity invariant operator acts
on a sinusoid by transposing its frequency and modifying its amplitude. The examples given in the
previous section correspond to specific classes of such operators, where A(w) is affine in w. Suppose
that M(w) = Sw + & with £ € R? and where S is an invertible linear operator in R?, whose adjoint

is denoted S. In this case, the operator G in (13) satisfies
(14) Gf(z) = €= [ p(Sa) |

where p(z) is the inverse Fourier transform of p(w). If p(x) = €*® §(z—v) then the operator G defined
in (14) consists of both a frequency modulation and a warping.

Let us define the translation operator T, for v € R? by
T.f(z) = f(z —v) .
The following proposition proves that linear operators of the form (14) are characterized by a weak
form of commutativity with T;,.
PROPOSITION 2.4. A linear operator G which is bounded in LZ(R?) is stationarity invariant and
satisfies (14) if and only if it satisfies

(15) JeeRY, 3S € GLY(RY), Vv e RY, GTs, =e“T, G .
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This result, which can be viewed as a transport property, is proved in Appendix A.5. In the rest
of the paper, we concentrate on deformations for which the stationarity invariant operators satisfy
(15).

3. Conservation and Transport The stationarity of a random process Y is a conserva-
tion property of its autocovariance through translation. After deforming Y, one obtains a process
X(xz) = DY (z) which is no longer stationary and whose autocovariance thus does not satisfy the
same conservation property. Yet, we show that the stationarity of Y implies a conservation of the
autocovariance of X, along characteristic curves in an appropriate parameter space. These character-
istic curves, which identify the equivalence class of D in D/G, are computed by locally approximating
D! by a “tangential” operator Gp(v) € G. Assuming that the stationary invariant operators satisfy
the transport property (15), the conservation equation can be rewritten as a transport equation
whose velocity term, called deformation gradient, is related to V,3(v). This deformation gradient
characterizes the equivalence class of D in D/G. Section 3.1 gives the general transport equation,
and Sections 3.2, 3.3 and 3.4 apply this result to one-dimensional warping, frequency modulation,

and multidimensional warping.

3.1. Transport in Groups We consider a stationarity invariant group G whose elements satisfy

the transport property (15) and can be written under a parametric form

Gpf(x) = Gpe,s0 f(x) = E") fup(Sz—v),

where p is a tempered distribution. With this assumption, the stationarity invariant group G is a
finite-dimensional Lie group. The translation parameter v is isolated because of its particular role,

and since the phase ¢ has no influence on the autocovariance, we also set it apart, and write
Gp=e“F,T,
with
Fof(z) =e* fxp(Sz) and a=(£5S).
The group product and inverse are denoted
Fo Foy=Fapsa, and F;' =F, 1.

To identify the tangential deformation G, € G which approximates D! for functions supported
in a neighborhood of v € R?, we use a family of test functions constructed from a single function 9 (z)
whose support is in [—1,1]¢. For o > 0, ¥, (z) = ¢ (z/o) has its support in [—a,a]¢. Let F, be the
adjoint of F,,. An atomic decomposition of a process X (z) is obtained by applying its autocovariance

operator to a family of deformed and translated test functions, which are called atoms:

A% (u, @) = E{{X, Tu Fa ¥5)|*} -
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This atomic decomposition only depends on X through its autocovariance.

Let us now explain how to identify the tangential deformation G (,) from a conservation property
of atomic decompositions. If YV is a stationary process, then A{ (u,a) does not depend upon wu,
therefore ﬁuAg,(u,a) = 0. This is not the case for the atomic decomposition of the deformed
process X = DY:

Ag((uva) = E{|<X7Tuﬁa 7»b<7)|2} = E{KYvETuFa %)lZ} .

However, we now show that this atomic decomposition satisfies a conservation property along charac-
teristic lines that depend upon D. The following proposition proves that if D=1 can be approximated
by a certain éﬂ(v), for functions having a support in a neighborhood of v, then there exists a function

~ such that for all 4 and «,
Vud% (u, o xy(u)) ~ 0 for o small.

Before stating the proposition, let us set some notation: if f(x) and g(x) are two functions defined in
R¢, then ﬁzg is a vector with d components, and (f, ﬁzg) is also a vector, whose d components are
the inner products < , aaTi>' We denote Re(f, V,g) the real part of this vector. We write ¢(c) = O(c)
if there exists a constant C' such that for o small, |¢(c)| < C o, without specifying the sign. We define

the covariance operator of X by
Kxf(@) = [ EX@X )} ) dy

PROPOSITION 3.1. Let X = DY, with Y stationary. Suppose that for each v € R, there exists
B(v) such that for each a, the function ¥ a0 = GauyToFaths satisfies

(16) |Re(K xWu,0,0 » DLV + Vo) DPya,0)| = O(0) |RE(K x Vo005 Volusaso)] -
If there exists a differentiable invertible map u(v), and two functions ¢(u) and v(u) such that
(17) Go(n To = €OV Ty Fouay)

then for each (u,a), we have at t = u:

— —

(18) Vo5 (w05 7(1) + Vi (u, a2 1(8)| = 0(0) [V A% (, 5 7(1))

The norms in (18) are Euclidean norms of d-dimensional vectors. The proof of Proposition 3.1
can be found in Appendix B.1.

We have assumed that the stationarity invariant group G is composed of elements of the form
Gg = e“F,T,.

In order to shed some light on the meaning of (16) and the role of the function 3(v), we examine

the case when the deformation operator D itself is a stationarity invariant operator. In this case, a
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function 3 such that Gg(,)TvFats satisfies (16) can be chosen independently of v. Indeed, Gg(,) =
D-1yields Dy o0 = T,Fat,. For any function f(z), (ﬁv + ﬁm) T, f(z) = 0 therefore

(ﬁv + ﬁz)ﬁqyb'u,oz,a = (ﬁv + 61) T‘uFoﬂpa =0 )

and the left-hand side of (16) vanishes. When D is not stationarity invariant, §(v) must be chosen so
that (16) holds when o — 0. This imposes a form of tangency between ég(v) and D—1, when applied
to functions supported in a neighborhood of v. In the following three sections, we will identify the
[ which are appropriate for each type of deformation considered.

The partial differential equation (18) which results from the above proposition can be written as

a transport equation in the (u; @) domain, by expanding the gradient with respect to ¢:

Vid% (w,ax (1) = Vi(axy(t) - Vadg (u,a x4(t)
where ﬁaA}(u, ) is a vector of partial derivatives with respect to each component of parameter a.
Replacing the free variable a by a * v~ 1(u) in (18) gives, at t = u,
(19) V.l (u,0) + Vala £y () £ 9(8) - Va Ak (w,0)| = O(0) |Vud (v, 0)
When ¢ is sufficiently small, the right-hand side can be neglected, yielding a transport partial
differential equation. This is illustrated in the next three sections, in which we apply this proposition
to the warping deformation and the frequency modulation problems. Section 4 will afterwards show

how, from a single realization of X, we can estimate the partial derivatives of A% (u,a) and compute

the deformation gradient.

3.2. Scale Transport. If D is a one-dimensional warping deformation D f(z) = f(6(z)) with
z € R, then D-1f(z) = 0'(x) f(6(x)). The stationarity invariant subgroup is the affine group, whose
elements are Gz f(z) = f(u + sx) with 8 = (u, s). The adjoint of G is
Gpf(z)=s7" f((x —u)/s) = TuFsf(z) with F,f(z)=s""f(a/s) .

Let ¢ be a function whose integral vanishes: [9(z)dz = 0. The function ¥ is called a wavelet
[11]. Using the above expression of the adjoint operator F, the atomic decomposition A% (u,s) =
E{|(X, T, F;1,)|*} can be written

A3e(w) = E{[(X @), 570 (s0) @ = )|}

We reduce the number of parameters by dividing A% (u, s) by 2, and replacing the product so by

a single scale parameter s. The resulting atomic decomposition

(20) Ax(u,5) = E{[(X(@), 5719 (s7 @ —w)) [} -

is called a scalogram, and can be interpreted as the expected value of a squared wavelet transform.

Figure 1(a) shows the scalogram Ay (u, s) of a stationary process Y. As expected, its value does not
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(a) (b)

Fi1G. 1. (a) Scalogram Ay (u,s) of a stationary process Y. The horizontal and vertical azes respectively represent u
and log s. Darkness of a point is proportional to the value of Ay (u,s). (b) Scalogram Ax(u,s) of a warped process
X.

depend upon u. Figure 1(b) gives Ax(u,s) for a warped process X(z) = DY (z) = Y (6(z)). The
warping causes the values of the scalogram of Y to migrate in the (u;logs) plane.

Let us now give the expression of 3(u) corresponding to the tangential approximation of Propo-
sition 3.1. A tangential approximation of D=1 can be found by noting that, for a regular function f

supported in a neighborhood of v = 6(u),

(21) D-1f(x) = 0'(u) f (v +0'(u)(z —u)) .

The right-hand side of (21) can be written as Eﬁ(v)f(a:), and operators D—! and Eg(v) both translate
the support of f from a neighborhood of v to a neighborhood of u(v).

In order to derive a transport equation from Proposition 3.1, we must make some assumptions
on the autocovariance of Y, which will guarantee the uniqueness of the inverse warping problem
at the same time. Proposition 2.2 shows that it is necessary to specify the behavior of the autoco-

variance kernel cy () in a neighborhood of 0. The following theorem supposes that cy (z) is nearly

h-homogeneous in a neighborhood of 0. We denote 2 80. = 0.f, and Oiogs f = alogs = sg’;

THEOREM 3.1 SCALE TRANSPORT. LetY be a stationary process whose covariance satisfies
(22) ey (0) — ey (z) = [a|" n(z) with h > 0, n(0) > 0,
and where 1 is C in a neighborhood of 0. Let ¥(z) be a C' function supported in [—1,1], such that

(23) /w dr =0 and Re/ |z —y|" * () Y(y) dedy #0 .
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If

where 6(x) is C* and 0'(x) > 0, then for each u € R such that 8" (u) # 0, when s tends to zero

(24) OuAx (u,s) — (log0") (u) Biog s Ax (u, 8) = O(s) Oy Ax (u, s) .

The proof is in Appendix B.2. The conditions imposed on ¢y and v in this theorem guarantee
that Glog s Ax (u, s) does not vanish for s > 0. The deformation gradient (log6’)’(u), which specifies
the equivalence class of D in D/G, can thus be computed from (24) by letting s go to zero. It is
therefore not surprising that (22) imposes a stronger condition on ¢y than the uniqueness condition
(5) of Proposition 2.2. The estimation of (logé')'(u) from a single realization of X will be studied

in Section 4.1.

REMARK 3.1. Since ¥ (zx) has a zero integral, one can verify that Ax(u, s) can be expressed from
the covariance of the increments of X(x), which itself depend upon the covariance of the increments
of Y(z). It is therefore possible to extend this theorem by supposing only that Y (x) has stationary
increments and by replacing (22) by a similar condition on the autocovariance of the increments.
Fractional Brownian motions [1, 7] are ezamples of processes Y (x) with stationary increments whose

deformations by warping satisfy (24).

3.3. Frequency Transport If the deformation operator D is a frequency modulation, Df(z) =

() f (2), the stationarity invariant subgroup G is composed of operators Gg such that
Guf(x) = e+ f(z) .

In this case Fy f(z) = e f(z). Let us choose an even, positive window function ¥ (z) > 0, with a

support equal to [—1,1]. The atomic decomposition of process X is the well-known spectrogram:
A% (u,€) = E{[(X (@), Yo (z —uw)e ™)’} = E{[(X(2) , $o(z — u)e ")} .

Figure 2(a) shows a spectrogram A% (u,&), whose values do not depend upon w because Y is
stationary. Figure 2(b) depicts A% (u,&) for X (z) = DY (z) = €*) Y (z), with 8(z) = A\ cos(\z z)
where \; and Ay are two constants. The frequency modulation translates the spectrogram of Y
non-uniformly along the frequency axis.

Let us now give the expression of 3(v) corresponding to the tangential approximation of Propo-
sition 3.1, when D is a frequency modulation. A tangential approximation of D=1 can be found by

noting that if f is supported in a neighborhood of v,

D 1f(z) = @) f(z) v e OIHO()=0) £(y)
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FiG. 2. (a) Spectrogram A% (u,§) of a stationary process Y. The horizontal and vertical ares respectively represent
position u, and frequency §. The darkness of a point is proportional to the value of AY (u,€). (b) Spectrogram
A% (u, &) of a frequency modulated process X.

and one can define a stationarity invariant approximation of D~=! by G, such that
(25) Gp(o) f(z) = OO WN=) f(g)

The following theorem uses this tangential approximation to derive from Proposition 3.1 a trans-
port equation, satisfied by the spectrogram A% (u,&) in the (u; &) plane, when the window width o
decreases to 0. The frequency ¢ is chosen large enough so that the period of €*® is smaller than the
support size o of ¥,. We set & = §y/o and select & so that @(w) and its first [h] + 2 derivatives

vanish at w = &, where [h] denotes the smallest integer larger or equal to h.

THEOREM 3.2 FREQUENCY TRANSPORT. Let Y be a stationary process such that there exists
h > 0 with

(26) ey (0) = ey (z) = |a|" n(z)

where 1 is continuous in a neighborhood of 0, and n(0) > 0. Let v be an even, positive, C* function
supported in [—1,1] and let & be such that P(w) and its first [k] + 2 derivatives vanish at w = & but

/ & — [ (& — y) sinléo(z — )] $(x) P(y) de dy £0 .
I

X(z) = eif() Y(z) where 8(z) is CIP1+4,
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then for each u € R such that 8" (u) # 0 and for £ =&y /o, when ¢ — 0
(27) 8y A% (u,€) = 0" (u) O A% (u, §) = O(0?) B, A% (u,€) .
The proof is in Appendix B.3. To satisfy the theorem hypothesis, one may choose ¥ (z) to be

a box-spline obtained by convolving the indicator function 1[_;/2m, 1/2m) With itself m times: let
m > [h] + 3 and

(28) o) = (LB o (22

where ¢ = 1 if m is odd and ¢ = 0 if m is even. With £, = 2m 7, 1 satisfies the theorem hypotheses.

The deformation gradient 6”(u) can be characterized from equation (27) by letting o go to zero,
and we proved in (2) that 6" (u) specifies the equivalence class of D in D/G. Section 4.2 will impose
additional conditions on cy and € to obtain a consistent estimation of 8”(u) from one realization of

the frequency modulated process X.

3.4. Multidimensional scale transport TFor a multidimensional warping where D f(z) = f(6(x))
with z € R?, the adjoint of D~' is D=1 f(x) = det Jy(x) f(6(x)). The matrix Jy(x) is the Jacobian
matrix of @ at position z, as defined in (6). The stationarity invariant group G is the affine group,
composed of operators G with 8 = (u,S) € R? x GLT(R?), such that

Gpf(z) = f(u+ Sz) .
The adjoint of G is
Gsf(z) = det S~ f(s*(x . u)) =T, Fsf(z)
where Fgf(z) = det S~ f(S~'z) and

S = (SI,m) .
1<l,m<d

Similarly to (21), we find a tangential approximation to D~1 by noting that for a regular function

f supported in a neighborhood of v = (u),

(29) DT (x) ~ det Jo(u) £ (6(u) + Jo(u) (= v)) = G f(2) -

The operators D—! and @g(v) both translate the support of f from a neighborhood of v to a
neighborhood of u(v) = 8~1(v).
Let ¢ be a function such that [;,9(x)dz = 0. A multidimensional extension of the scalogram is
given by
A% (u, §) = E{[{X (2), det S~ 95 (S7'(z —u)) )"}

=E{(X(z),det S' ¢ (¢ 'S (z —u)) )|’} .
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As in the one-dimensional case, we divide A% (u,s) by 02¢ and replace the product ¢S by a matrix

which we still denote S. The resulting atomic decomposition

(30) Ax(u, 8) = E{|(X(2), det S ¢ (57" (z —w)) )[*}

is similar to the scalogram (20) but since the scale parameter s is replaced by a warping matrix S,
we call it a warpogram.

For a one-dimensional warping, the velocity term of transport equation (24) is (log’)' (u) =
0"(u)/0'(u). In two dimensions it becomes a set of matrices, indexed by the direction k of spatial

differentiation:

9Jo(u) _ ( &
dup (’Yl’m(u))gl,mgd )

This set of matrices has been shown in (9) to specify the equivalence class of D in D/G. For each

(31) for 1 <k<d, J,'(u)

(I,m) we introduce the vector

Fim (W) = (Vm (W))1<k<a -

The partial derivative Giog s Ax (u, s) = s ds Ax (u, s) which appears in the one-dimensional transport
equation (24) now becomes a matrix product, between a matrix composed of partial derivatives with

respect to the scale parameters, and the transpose S* of S:

A
(8 x(u,S)) St: (G/LJ(’IL,S)) o .
9si,j 1<i,j<d 1<i,j<d

The following theorem isolates ¢ = (det S)'/¢ by writing S = ¢ S with det S = 1, and gives a

(32)

d-dimensional transport equation when o goes to zero.

THEOREM 3.3.  Suppose that X (z) = Y (8(x)), whereY is stationary, §(x) is C* and det Jo(z) >

0. Suppose that the autocovariance kernel cy of Y satisfies
(33) ey (0) — ey (x) = |a|" n(z) ,

with 7(0) > 0 and n € C? in a neighborhood of 0. For each u € R* and for each S with det S = 1, if
there exists C(u S) > 0 such that, for S = ¢ 8 and o small enough,

(34) ‘Re // Vey (S(z — )VJg(u)ng(u)S(x —y)w*(x)w(y)d:cdy‘ > C(u,S) o,

then when o goes to zero

(35) Vudx(u,8) = Y G () atm(u, 5)| = O(0) [Vuddx(u,5)| .
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The proof of this Theorem is in Appendix B.4.

The purpose of condition (34) is to ensure that ‘ﬁuAX(u, S)‘ on the right-hand side of (35) is not
too small. If 6(z) is a separable warping function of the form 6(z1, ...,zq) = (61(21), ...,0a(24)),
then one can verify (see Appendix B.5) that (34) holds, for all functions 6; such that 67 does not

vanish, if
(30) re [[18@ - )" @t dsdy £0.

The above condition is similar to the second part of condition (23) in Theorem 3.1. Condition (34)
is more involved however, because in general, coupling occurs between different directions.

For o sufficiently small, neglecting the right-hand side of (35) yields d scalar equations:

d
for1<k<d, 0, Ax(u,S)— Z 'yl]fm(u)al,m(u,S) =0.
l,m=1

For any (u, S), the values 9, Ax (u, S) and ai,m(u, S) defined in (32) depend upon the autocovariance
of X, and have to be estimated. For each direction k, there are a total of d?> unknown coefficients
'yl’fm(u), equal to the d matrix components of J; ' (u) 9y, Jo(u). To compute them we need to select

d? warping matrices {S;};—1 42 and invert the linear system:

()
al,l(u, Sl) al’g(lh Sl) e ad,d(u, Sl) 2,1 aukAx(U, Sl)
. . . . 2 (w) .
(37) : : : : . =
al,l(u,Sdz) al,g(u,5d2) - ad,d(u,Sdz) & BukAx(u,S(p)
’Yd,d(u)

Changing the direction index & only modifies the right-hand side of (37). Note that in order for the
system to be invertible, the matrix on the left-hand side of (37) must have full rank. The matrices
Sk must therefore be appropriately chosen, and the inverse warping problem must have a unique

solution. This is not always the case, as shown by the example in (10).

Fi1G. 3. Shape-from-texture: examples of objects whose shape is inferred by analyzing texture (i.e. pattern) variations.



16 M. CLERC AND S. MALLAT

The system (37) has been used in Computer Vision, for relief reconstruction from photographs of
surfaces with regular patterns, a problem called shape-from-texture [6]. Examples of such “textured
surfaces” are provided in Figure 3. Perceptually, by analyzing the variations of size, shape and density
of the patterns within the 2D images, we can infer the 3D shape of the objects. This cue to 3D shape
is monocular (i.e. it uses a single image), unlike stereo vision, in which two images of a scene taken
from a different viewing point are compared. Mathematically, one can model the pattern variations

across the image by the two deformation gradient vectors

711,1(“) 7%,1(“)
711,2(“) and 72,2(“)
72,1(“) 72,1(“)
721,2(U) 7’22,2(“)

These two vectors represent the elements of the two matrices defined in (12), and as mentioned in
Section 2.1, one can recover from them the normal vector field of the surface being viewed, and hence

its shape.

4. Estimation of Deformations The deformation gradient appears as a velocity vector in
the transport (19). To recover it from a single realization of X, the derivatives V,A% (u,a) and
ﬁaAg((u,a) of the atomic decomposition of X have to be estimated. With a single realization, a
sample mean estimator has a variance of the same order of magnitude as the term it estimates. This
variance can be reduced with a spatial smoothing, while the bias, which is proportional to the width
of the smoothing kernel, is controlled. The next two sections study the consistency of such smoothed
estimators for the one-dimensional warping problem and the frequency modulation problem. Lastly,

Section 4.3 discusses multidimensional warping estimation.
4.1. Warping in one dimension The scalogram of X is an expected value
Ax(u, ) = E{{X , ¢us)|"}
with ¥y s(2) = s7'((x —u)/s). If X(z) = Y(6(x)) then Theorem 3.1 proves that
(38) OuAx (u,8) — (log8") (u)dog s Ax (u, s) = O(s) OuAx(u,s) .

From X (z) approximated at a resolution N, one can compute the empirical scalogram [{X, 1y, s)|?
at scales s > N~! and locations u = k/N with k € Z [11]. We introduce a kernel estimator Ax (u, s),

using the averaging the kernel

(39) 9(@) = {A_l(l ~la/Al)if [2] < A

0 if 2| > A
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Let

(40) 8. Ax(u,s) =2N"1 ST g(u—k/N)Re [(X,%/n.6) (X, 0uthi/n,s) "]
|k/N—u|<A

(41)  OugaAx(u,s)=2N"" 3" g(u—k/N)Re [(X,9/n,5) (X, Oog sthi/n.0)"] -
|k/N—u|<A

In view of equation (38), we suggest the following estimator for (log6") (u):

— 8§, Ax(u,N7)

log 60" = — .
(log 6’ (u) A N 1)

One must guarantee that when s = N~! and N increases, QZA\X(u, s) and Blo/gs\AX (u, s) are close to
OuAx (u,s) and Giog sAx (u, s), respectively. For this, we introduce a Gaussianity assumption on the
underlying stationary process Y. This assumption allows to derive the consistency of the estimators
from the fast spatial decorrelation (in k) of (X,%y/n,s) and (X, Olog s%k/n,s)- Fast decorrelation of
these two random variables will be ensured by adjusting the choice of wavelet ¢ to the behavior of
the autocovariance function ¢y in a neighborhood of 0.

The following theorem proves the weak consistency of the proposed estimator (lgg\e')’ (u) of
(log#")'(u), by selecting the averaging interval A according to the scale s = N~1. A wavelet ¢(z) is

said to have p vanishing moments if

/a:kw(m)dx:O for0<k<p.

THEOREM 4.1 CONSISTENCY, WARPING. Let X (z) =Y (0(x)), whereY is a stationary Gaussian

process whose covariance satisfies
(42) cy (0) — ¢y (x) = |z|" n(z) with h > 0and n(0) >0 .
Let ¢ be a C? wavelet supported in [—1,1] with p vanishing moments, such that
2p—h>1/2 and // lz —y|" ¢v*(2)d(y)dzdy #0 .
Let A = N=Y5_ If n(z) is C? in a neighborhood of 0, and if §(x) € C* N C??, then for each u € R
such that 6" (u) # 0

(43) Prob { |(log @) (u) - (log ') (u)| < 2 (10g N) N7} —— 1.

N—oo

The proofis in Appendix C.1. Since all estimations are based on wavelet coefficients, one can easily
verify that the results still hold if Y is not stationary but has stationary increments. In particular,
it applies to fractional Brownian motion [1, 7], for which n(z) = 1.

Figure 4 displays a numerical experiment conducted on a single realization of a warped process.

The signal X in Figure 4(b) is obtained by warping a stationary signal Y, depicted in Figure 4(a).
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FIG. 4. (a) Stationary signal Y and its empirical scalogram |(Y, %y s)|2. (b) Warped signal X(z) = Y (0(z)) and its
empirical scalogram. (c) log6'(z) = M + A2sign(1/2 — z) |z — 1/2|2, where A1 and A2 are two constants (full line)

and its estimation from X (dashed line). (d) Stationarized signal and its empirical scalogram.

Figure 4(c) shows in dotted line the estimate 1@ of log#' obtained by integrating the estimate
(lo/g—\O’)’ (u), and choosing the additive integration constant so that fol exp(logf) = fol 0'. An estimate
g for the warping function can be obtained up to an additive constant by integrating exp 165\0'. It
is then possible to stationarize the deformed signal X by computing X o (5)_1. Figure 4(d) displays
such a stationarized signal. We refer the reader to [6] for details on the numerical implementation

of this method.

4.2. Frequency Modulation For a frequency modulated process, X (z) = Y (2)e*®(*), Theorem 3.2

shows that the deformation gradient #”(u) can be computed from the spectrogram

A% (u,6) = E{[{X (2) , ¥o(z —u)e’ ") 7}
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with the equation
(44) BuA% (u, &) — 0" (u) B A% (u, &) = O(0”) 8u A% (u, €)

evaluated at a frequency & = /0.
To compute an estimator of the smoothed partial derivatives of the spectrogram, we relate the

spectrogram coefficients to a particular wavelet transform. Observe that

Lrx—u) _ g (r—u
(45) ol =) oxp (16 1) =0t (220
where
(46) Yl (z) = o(z) o™ .
Since 1) is real, 1(w) is even, and if ¢(w) has a zero of order [h] + 3 at w = &, then

/ack Y (x)dr = (—i)* ‘pr,: (=&) =0 fork<[h]+2.

This means that ' is a wavelet with [h] 4+ 3 vanishing moments [11]. We write ¢}, ,(z) =
o1 9Yl(c7'(x — u)). The scalogram associated to this wavelet is defined by Ax(u,0) =
E{|(X, ¢ ,)[°}. It results from (45) that

A% (u,&ofo) = E{ (X (@), (o @ - w))[*} = 0> Ax(u,0) ,
and hence
0uA% (u,&/0) = 0 0, Ax (u,0) .

Let m(u, o) be the estimator calculated in (40) at a scale ¢ = N~! for a certain averaging width

A from a single realization of X (z) sampled at a resolution N. We introduce the estimator
8,A% (u,0/0) = 02 9y Ax (u, o) .
To compute an empirical estimator of the other partial derivative, 9¢ A% (u,&y/0), observe that

e A% (u,€) = 2 Re[E{(X () , vo (& — w)e™ ™)) (X(2) , D¢ [tho (& — w)e™ = ])"}] .
Introducing a new wavelet
(47) P (x) = 29 (2) = vp(z) e,
and ¢2 ,(z) = o " 9*(c~ ' (z —u)), this partial derivative can be rewritten, for { = & /0:

0eA% (u,0/0) = 20° IM[E{(X, 9, ) (X, 05 )"} -

Similarly to (41), for 0 = N~! we define the averaging kernel estimator

(48)  BeAL(u&o/o) =20°N"" S glu—k/N)Im [(X,0}n ) (X020 ,0)"] -
|k/N—u|<A
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The following theorem proves that for ¢ = N1 and an appropriate choice of the averaging interval A
_ O0uA% (u, N&o)
0 A% (u, N&)

is a weakly consistent estimator of 8" (u) when N — oo. The proof resides in the spatial decorrelation

g’ﬁ(u

of wavelet coefficients of X, and for the same reasons as in Theorem 4.1, we introduce a Gaussianity

assumption on the underlying stationary process Y.

THEOREM 4.2 CONSISTENCY, FREQUENCY MODULATION. Let X (z) = Y (x)e*®), where Y is a
stationary Gaussian process such that there exists h > 0 with
(49) ey (0) —cy(z) = |z|" n(x) and 5(0) >0.

Suppose that Y (x) = (x)e¥0® is a compactly supported wavelet with p > [h]+3 vanishing moments,
such that

J[12 =4l @ =) sinfea(z ~ ) 6() ) dody £ 0.
Let A = N~V/5. If n € C?7 in a neighborhood of 0 and if @ € C?®, then for each u € R

(50) Prob {

07 (u) — 0" (u)| < 2 (1ogN)N—1/5} — 1.

N—oo

The proof is in Appendix C.2. The numerical example in Figure 5 shows the estimation of a
frequency modulation, with a box spline window ¥(x) defined in (28). We explained that the em-
pirical estimator @(u) is in fact computed from wavelet coefficients associated to the two wavelets
! and 9? defined in (46) and (47). Figure 5(a) shows a realization of a stationary signal Y (x)
and the corresponding empirical scalogram Ay (u,s) = |(Y, ¥, )|>. The frequency modulated signal
X(x) = X(z) exp(if(z)) and its empirical scalogram are in Figure 5(b). The derivative 6’ of the
frequency modulation is plotted in Figure 5(c) (full line). An estimate @' of ¢’ is obtained by inte-
grating 8, and choosing the additive integration constant so that fol o = fol ¢'. Figure 5(c) plots 6/
(dashed line), superposed on the theoretical function 6’ (full line). Lastly, Figure 5(d) represents the

~

stationarized process X (x) exp(—i6(x)) and its empirical scalogram.

4.3. Warping in higher dimension For a multidimensional warping, at each position u, the de-
formation gradient corresponds to a set of d matrices ¥ m(u) = (%k,m(u))lgksd defined in (31).
Theorem 3.3 shows that these coefficients appear in the velocity term of the transport equation (35)

satisfied by the warpogram of X:

Ax (u, ) = E{|{X, ¥u,s)I*}
with

Yu,s(z) = (det ST P(S™ (& —u)) -
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F1G. 5. (a) Stationary signal Y and its empirical scalogram |(Y,®} [)|2. (b) Frequency modulated signal X(z) =
Y (z)exp(i6(z)) and its empirical scalogram. (c) Frequency modulation 6'(z) (full line), and its estimation from X

(dashed line). (d) Stationarized signal and its empirical scalogram.

At a sufficiently small scale o, the error on the right-hand side of the transport equation (35) can

be neglected. The vector transport equation can then be written as a linear system

a1 (u,S1) a12(u,81) .. aqa(u,81)\ [¥51(u) Ou, Ax (u, S1)
a1,1(w, Sq2) a1,2(w, Sq2) - .. aga(u, Sg2) 'yfi“,d(u) Ou, Ax (u, Sqz)
(51)
where
(al,m(u, S))1<z = (3si'ij(u,S))1§i’j§d St.
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If the process X is measured at a resolution N, we compute the warpogram with functions
1,5 whose support in any direction is larger than N 1. We therefore require that S = o S where
o > KN1, and all the eigenvalues of S are greater than K !. The position parameter is also
restricted to a uniform grid v = N~k with k € Z% For a = u or s;;, we have 9,Ax(u,S) =
2 ReE{(X, y,s){X, 041u,5)"}, and we introduce the kernel estimator

OuAx(w,8)=2N"¢ 37 gau—N"'K) Re{(X, -1, sHX, Bathn-11,5)}
IN=1k—u|<A
where go(u1, us) = g(u1) g(uz) is the separable product of two window functions defined in (39).
We also define

<a/l,7n(u7 5)) . Ax(u,9) st

The k** component of the deformation gradient, (W{fm(u)), can be then estimated by

= ( Si.j ) .
1<i,m<d 1<4,5<d

— -1 ——

75,1(“) m(uvsl) a/d:i(uvsl) aﬂkAX(uasl)
(52) : = :

) \amiw Se) ... i, Se))  \Om Ax(u, Sa2)

Extending the consistency Theorem 4.1 to more than one dimension is possible, but requires technical
hypotheses that are not yet well understood.

In Section 2.1, we mentioned that the warping of textures in images specify the three-dimensional
shapes of the textured objects appearing in the scene. The estimator defined in (52) is used in [5, 6]
to compute shape from texture, and provides a good estimation of three-dimensional surfaces from

two-dimensional images.
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A. Proofs of Section 2

A.1. Proof of Proposition 2.1 Let Y be a stationary process, and suppose that there exists an
e > 0 such that cy(2) > 0 for |2| < e. Let Y be another stationary process. We want to show that

if the autocovariance kernels of Y (z) exp[if(z)] and of ¥ (z) exp[if(x)] are equal, i.e. if

(53) ey (@ —y) exp(i[f(z) — 6(y)]) = ¢y (& — y) exp(ilf(x) — 6(y)]),

then " (z) = 6" (x). The functions # and § are assumed C*, therefore y = 6 — 6 is also C*. Let us
fix z € R; our goal is to prove that u" () = 0. We choose y € R such that |z — y| < e. After dividing
both sides of (53) by cy (z —y) > 0, it appears that e!l#(*)=#(¥)] ig a function of & — . Therefore
w(z) — p(y) is also a function of z — y, and in particular for all z,

@) — p(y) = px +2) — ply + 2) -

Differentiating this expression with respect to = shows that p(z) = p'(x + z), thus p’(z) = 0.

A.2. Proof of Proposition 2.2 Let Y be a stationary process and let ¢ > 0 such that cy (z) is C!
for 0 < || < &, with ¢} (z) < 0. Let Y denote another stationary process, and let us suppose that
the autocovariance kernels of Y'(8(z)) and of ¥ (A(x)) are equal. The functions 6 and 6 are assumed
C3, therefore u = 006~ is also C3. Proving the proposition amounts to proving that p is linear, or

equivalently, that p” vanishes everywhere. By definition of p,

(54) cy(z—y) = ey (u(@) — u(y)) -

Let us fix ¢ € R, and choose y # z, but sufficiently close to  so that |u(z)—p(y)| < e. Differentiating
(54) with respect to z and y shows that

/

ey (u(z) — p)) W' (y) = ey (u(z) — u(y)) w'(z) -
Since ¢} (u(z) — pu(y)) < 0, we obtain p'(z) = p'(y), therefore p"(z) = 0.

A.3. Proof of Proposition 2.3 Let Y be a stationary process such that ¢y satisfies (11). Let Y
denote another stationary process, and suppose that the autocovariance kernels of Y (6(z)) and of
Y (6(z)) are equal. Let = 6 0 =1 by definition of p,

ey (u(@) — w(y)) = cp(z —y) .

Differentiating this expression with respect to z and y, for x # y, shows that

(55) Vey (u(@) — 1(y)) Ju(y) = Vey (u(@) — u(y)) Ju (@) .
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Let us fix 2 € R?, and prove that ﬁJﬂ(x) = 0. Let ¢ > 0 such that n(z) is C? for |z| < ¢. Let us
choose y € R? such that 0 < |u(z) — p(y)| < € and let z = p(x) — p(y):

Vey(2) = =[2" 2 (hn(2) 2 + 2P Vn(2)) -
Replacing this expression in (55) and dividing both sides by —h |z|*~2 n(z) proves that
(= + 71 |2PV logn(2)) Ju(y) = (= + h™ Y2V logn(2)) Ju(u (= + u(y))) ,
0
(2 + h72?V1ogn(2)) T () I (™ (2 + 1)) = 2 + h™2]*V og n(z) -

Introducing a function f such that
(56) i(z) = Ju(y) (2 + u(y)) ,
this can be rewritten
(2 + h72[*Viogn(2)) Ja(2) = (2 + A7 |2*V logn(2)) -
Noticing that z J;(Az) = %ﬂ()\ z), we have, for A > 0,
%ﬁ()\ 2) =2+ b7 z2 AV 1ogn(A 2)(Id — Ja(A2)) ,
which, when integrated between A = 0 and A =1, gives
i(z) — ji(0) = 2 + b1 /01 ¥ log n(A\2)(Id — Ja(Az)) d .
After replacing i with (56), and noticing that fi(0) = J.(y) y, we obtain
(67 T GHe®) =T W)y + T R /O1 AV logn(Az)(Id — Ja(Az)) dA .

Since cy is even, Vn(0) = 0 and so Vlogn(0) = 0. Let us denote Vlogn(z) = |z|@(z). Recalling
that 7 is twice continuously differentiable in a neighborhood of z for 0 < |z| < &, the function d(z)
is differentiable for 0 < |z| < e, and its gradient (the matrix (9;a;)s;) is uniformly bounded for
0 < |z| < e. Differentiating (57) with respect to z shows that

(58) T Wz + u(y) = I ()T + |2 A2))
where A(z) is a matrix defined by
(59) A(z) = |22 % (h_1|z|2/O AAzl@(Az)(Id — Jﬁ()\z))d)\) .

Let us calculate A(z) explicitly: |2|> A(z) is the sum of three terms:

(% <h1|z|2/0 MAz|@(\z)(Id — Jﬁ()\z))d)\) = (1) + (II) + (III) .
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If a and b are two vectors, we denote a ® b the matrix whose elements are (a; b;);;. Then
(1) = 21~ ( JEAN @A) (Td = Tp(A2) d>\) ®
_ 1 o - S
(60) (I) = A=t |22 [ A (a()\z) ® &+ )\|z|Va()\z)) (Id — Jy(A2)) dA
(1) = =" |23 [ AB@(A2) V. Jz(A2) dA
More precisely for (III), the 4,7 element of @(\z) §ZJ,1()\2) is Y, ar(A z)a%j(Jﬁ)ki()\ z). Because ji
is in C2, and because @(\z) as well as V@(\z) are uniformly bounded for 0 < [\z| < &, the matrix

A(z) resulting from the division of (I) + (II) + (III) by |z|? is uniformly bounded for 0 < |z| < .
Replacing z by p(z) — p(y) in (58) gives

T @) = T (y) (Td + (@) — ()] A(p(e) - u(y))

therefore for any unit-length vector z, € R?,

N e € ) I €))
Gy S (@) = lim X
T @ ) () — (4 Aa) P
= lim == 3 (1(z) = w(z + Azy))

This proves that ﬁJyf () = 0, and therefore V.J,(2) = 0. As a consequence, for each direction zy,
%Ju(é(x)) = 0. Since J,(z) = Ja(é_l(.’li))Jg-_l(é_l(.’IJ)), we obtain

(@) T @) = 0,

and expanding the above differential expression then gives

8J§(x) J:l(x) =0 ,

9Jo(x) TN (@) = Jo(x) T3 (2) d o
),

dzr, 0 é

which is equivalent to (9).

Let us prove the equivalence between (8) and (9).

If § and @ satisfy (8), then Jy(z) = S J;(x), which implies that J() Jé_l(x) is independent of z.
The preceding calculations then prove (9).

Conversely, assuming that 6 and 6 satisfy (9), then for each direction zy, a%k(‘h(x) ng(x)) =0,
which proves that Jy(z) Jé_l(x) is a constant matrix, belonging to GL*(R?) as the product of two
elements of GL*(R%). The partial differential system Jp(z) = S J;(z) can be integrated to prove

that 8(z) = u + S 8(z).
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A.4. Proof of Theorem 2.1 Let us consider a specific family of zero-mean wide-sense stationary
processes defined by

Y, (z) =Y e
where Y is a zero-mean random variable with variance o2. Then
E{Y.(2) Y] (y)} = 0® exp(iw - (z — y)) = cv, (z — ) -
Let G be a stationarity invariant operator. If X, (xz) = GY, (x) then
E{X.(2) XJ(y)} = 0® fu(@) £3(y)

where f,(z) = Ge™®. But since G is stationarity invariant, X, is stationary, therefore

E{X.,(z) X}(y)} is a function of z — y. This implies that for any (z,y) the product f,(z) f.(y)* is
a function of # — y. Therefore there exists p(w) € C and A(w) € R? such that

ey fula) = G = pli) )

Let us now prove that an operator which satisfies (61) is indeed stationarity invariant if and only
if esssup,cpa|f(w)| < 0o0. Let Y be a zero-mean, stochastically continuous wide-sense stationary

process. It therefore admits a spectral representation:
Y(z) = / 7 47 (w) |
Rd
where Z(w) is an orthogonal process [14]. Let dH (w) = E{|dZ(w)|?}, we have

cy(0) = dH(w) < +0 .
R4
Since ess sup,,cpa |p(w)| < o0,
/ XN@)T 5(00) dZ(w)
R4
is convergent in the mean-squared sense. Therefore GY(z) = G [p.e™"dZ(w) is equal to

Jra M@ () dZ(w). This shows that GY is wide-sense stationary, since
EGY(0)GY (1)} = [ X ) dH ()
is a function of  —y and E{|GY (z)|?} < oo. Folf any wide-sense stationary process Y, one can write
GY (z) = GE{Y (0)} + G (Y (z) — E{Y(0)}) .

Since Y (z) — E{Y(0)} is zero-mean and wide-sense stationary, G (Y (z) — E{Y(0)}) is wide-sense

stationary, therefore so is GY ().

In order for G to be stationary invariant, for any positive integrable measure dH (w) one must
have [, |p(w)|? dH(w) < 4o00. One can verify that a necessary and sufficient condition is that

esssup,,cpd |p(w)| < 0o.
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A.5. Proof of Proposition 2.4/ The autocovariance operator of a process Z is defined by

K, f(z) = / E{Z()Z* (1)} f(y) dy

Let Y be a stationary process, let G be a bounded linear operator satisfying (15) and let X = GY.

The autocovariance operators of X and Y satisfy
x=GKyG .

Since Y is stationary, Ky commutes with the translation operator T, for any v € R%. We derive
from (15) that Kx also commutes with T}, and hence X is wide-sense stationary. The operator G is

therefore stationarity invariant and Theorem 2.1 proves that
(62) Geiw-z — ﬁ(w) ei)\(w)-z .
Inserting this expression in the equality GTs, f(z) = e*T, Gf(z) for f(z) = e*® implies

ﬁ(w)eik(w)-z e—iSv-w — ﬁ(W) eiA(w).(z_v) e_if'v

)

from which we derive that A(w) = Sw + £ for all w where j(w) # 0. For w such that p(w) = 0, (62)
clearly holds with A(w) = Sw + . So G can indeed be written as in (14).
Conversely, if G satisfies (14) then a direct calculation shows that (15) holds.

B. Proofs of Section 3

B.1. Proof of Proposition 3.1 (Transport) The autocovariance operator of X = DY satisfies
Kx = D Ky D, therefore

<K’X wv,a,a ) ¢v,a,a) = <KYE1pv,a,a ) va,a,a') .

Let us compute

<KX¢va0'7wvaa'> —2R6<KY Dwvaaaﬁv ,(p'uao)
=2Re <I{Y va,a,a'a ( + z) Dwv a a —2Re (KY bwv,a,aa ﬁzb,(p'u,a,a) .

Since Y is stationary, for any g we have (Kyg, 29) =0, s0

=

ﬁ'u(I(X ¢v,o¢,a 5 ’va,a,a) =2Re (KX wv,a,a ) D_l (vv + ﬁz) E¢v,a,a) -

Hypothesis (16) thus implies that

(63) 6,0 <KX ¢v,a,a ) wv,a,a) = O(U)

‘Re{K’X "vb‘v,oz,a ) ﬁz wv,a,a>

Since Yu,a,0 = Gg(o)ToFato, the transport property (17) shows that

1ﬂv,oz,cr = equ(u(v)) T'u.(v) F'y(u(v))FawU = ez¢(u(v)) Tu(v) Foz*’y(u(v))"pa .
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The phase e'*(“(*)) disappears from (K x9y o0, Vv a,0)- Indeed,
(Kx%v,0,0, Vv,0,0) = (KxTu()F asr(u(@))> Tu@) Fasy(u())
= A% (u(v), a*y(u(v)))
by definition of A%. Since V,f = V., f J; ! (u),
Vil KX Poa,0:Vv,a,0) = Vo A% (u(v), 0 # Y(u(v))) = VA% (u(v), 0 xy(u(v)) J; " (u) -
This implies that

)

VA (w(w), a1 (w(0)| < W@ [FolKx boar s Yruao)

where ||.J,(u)|| is the operator sup norm of J,(u). Using (63) shows that for u fixed

(64) VA% (w05 9(w)]| = 0(0) |Re(Kx o s Ve Yoao)

Note that the gradient with respect to u on the left-hand side of the above expression involves partial
derivatives of A% with respect to w and « since the variable u appears in a * y(u).

Since ﬁuTuf(a:) = —ﬁzTuf(m), using the symmetry of Kx we get
(65) 2Re (Kx Pya0 s Velboao) = —Vudl(u,ax~(t)) att=u.
Inserting (65) in (64) finally proves that

VA% (u, *’y(u))‘ = 0(0) |€uAg((u,a s1(1)] att=u,
which implies (18).

B.2. Proof of Theorem 3.1 (Scale Transport). This theorem is proved as a consequence of Propo-

sition 3.1. Operator Gg(,) is given by (21)
G f(@) =0'(u) f(v +6'(u)(z —u))
where u = §~!(v) is a differentiable invertible map. Notice that
Gp)To = Tuw) Faut)) »

with a(u) = 1/60'(u), therefore transport property (17) holds.

Let us now verify hypothesis (16) concerning

1ﬂ'u,s,o’ = Eﬂ(v)Tst wa

with Fsf(z) = 1/s f(z/s). The scalogram renormalization (20) is equivalent to dividing %, (z) by
o, which yields ¥, (x) = 1/01¢(z/0), and replacing os by s which gives
o' (u 0'(u
buna) = pra(o) = Ly (Ha )

S S
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If we can prove that
(66) |Re(K x ¢u,s, D71 (0y + aw)E‘Pv,SH = 0(s) |[Re{K x Pu,s, Ocpu,s)|
then Proposition 3.1 can be applied: we obtain a transport equation (19) with a = s, v(u) = 1/6'(u)
and a * v(t) = s/60'(t):
oy 970
MWAx(u,8) —s0'(u) ——= CIOE OsAx(u,s)| = O(s) |OuAx(u,s)| att=u,
which proves (24). There now only remains to prove (66).

Let us compute
v,s = F(av + 5$)E<Pv,s .
Since Df(z) = (0'(0~*(x)))~* f(6~'(x)) and D-1f(x) = &'(z) f(A(x)), a direct calculation gives

0 - L (P ) 0 (4

and

therefore

o) = s (#0) = (56) ")) (12— )

+ 2 (P80 - o) - w00 @) v (126 - w) -

Since 9 is supported in [—1,1], ¢, is supported in [u — s/6'(u),u + s/6'(u)]. Since 6 € C3, Taylor

series expansions of §'(x) and of 8" (x) around position u prove that, for = close to position u,

" 2 " ! _ ,
onste) = (B = ) * [T (M2 =)
+g (FAEZU) g (20— )
The autocovariance kernel of X (z) is ex(z,y) = cy(6(z) — 6(y)), hence

<KX901) ER) ¢v s //CY )90:,5(‘7;> ¢U,S(y) da:dy N
Since [ ¢y s(z)dz = [(z)dz =0,

(Kxpuss dush = [ [ (ex(0) = ex6@) = 0wD) ¢1.0(2) buslw) didy

‘:O(x—u).
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The supports of ¢, s and ¢, s are in [u — s/0'(u),u + s/0'(u)] and for z in a neighborhood of 0,
the continuity of n implies that cy (0) — ¢y (2) = n(0) |z|* + o(|z|*). Since #’ is continuous at u, a
Taylor series expansion of § around « combined with a change of variables 2’ = (x — u)6’(u)/s and

!

y' = (y —u)f'(u)/s yield, for s sufficiently small,

(67) Uxpnes oue) + [[ 10l =@ (2508 - 20

x [y ) + 50/ ()] G da' dy’ = ofs" )

s
0" (u)
and therefore
(68) |Re{Kx 0,5 $u,s)| = O(s"*1).
Let us now compute
(Kxpus Dupn) = [[ v (60) = 00) ¢1.0(0) o0l dodly
With an integration by parts,
(Kxpues 0upns) = [ [ 00) 6 600) = 60) ¢1,0(0) ely)didy

and since ¢}-(z) is antisymmetric

Re (Kxpue, dupns) = =3 [[(010) = 0/0)) ¢ 6(x) = 00)) Re (24,.(0) 00,0)) dody

A change of variable 2’ = (z — u)8'(u)/s and y' = (y — w)8'(u)/s gives
Re(Kx@ys. 0pus) = // (6/Cu+ 2/ /() = 0 (u + 5/ 0/ ()
cy (6u+ 50/ /6'(w)) = B(u + sy /8'(w))) Re (" (a') ¥(y')) da’ dy’ .

Because of assumption (22), since n is C! in a neighborhood of 0, ¢ (z) = hn(0)sign(z) |2|*~1 +
o(|z|"~1). With a Taylor expansion for §, we get, for s small enough,

0”
L) [ ha0)sh 1o = o Re @) vi0) dody = o)

Since Re [[ |z — y|"¢*(x) ¢¥(y) dz dy # 0 and 6" (u) # 0, there exists a(u) > 0 such that

(69) Re <KX991),5 ) az@v,s) +

|Re (KX‘pv,s ) achv,5>| > a(u) s" + O(Sh) )
and (68) implies that
|Re <KX‘pv,s ¢v,5>| = O(s) | Re <KX90v,s > az‘pv,sn .

We have therefore proved (66).
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B.3. Proof of Theorem 3.2 (Frequency Transport). This theorem is proved as a consequence of

Proposition 3.1. The operator G,y is defined in (25) by:

(70) Ty (@) = OO OE=) f(g)

Let u(v) = v, which is clearly a differentiable and invertible map. We have
G T = €D Ty Faguiwy)

with F,, f(z) = e *® f(x) and a(u) = —6'(u), therefore transport property (17) holds.
Let us now verify hypothesis (16):
= 0(0)

)

(1) |Re(Kxtueq DT (0, +0:) Dibugr)

15]
Re <Kx¢u,5,m %¢v,£,a>

with

(72) 'wv,f,o(x) = éﬂ(v)TvFﬂba(m) =

expli(A(v) + ' (v)(z — v))] exp[—i&(z —v)] ¥ (a? ; v) :

A direct calculation shows that

(Kxtueo DT (D +0:) Dibeo) =

/ / ey ( — ) expli(8(z) — 6(y) — 6 () (x — )] explit(x — y)]x

<0 ) = o)+ 00~ 0 )0 (T2 w (L2 ) dvay

and with a change of variables 2’ = (x —v)/o and y' = (y — v) /o, introducing & = o &,

(73)  (Kxtuea D7 (9 +0,) D) =
o / / ey (o(a' — ¥')) expli(B(v + 02') — 6(v + oy’) — 08 (v) (' — '))]x
X (0" (v + ay') — 8'(v) — 0" (v)ay )o@ V) (" p(y') da’ dy' .

The function 1 is real, therefore 1& is even, and since it vanishes at &, it also vanishes at —&.

Therefore

(74) o / / ey (0)i(8' (v + oy) — ' (0) — 8" (0)oy)e 0@ V) (a)(y) dady = O .
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After subtracting (74) from (73),
(75)  (Kxtueo: D7 (90 +02) Dibueo ) =
7 [ [ eviote = ) (explith(v + 0) - 60 + o) = 08/ (0) & = )] = 1) x
X i(8'(v -+ 0y) = /() = 0" (W)oy) <O Ya)(y) do dy+

+ o / / ey (o(z — 9)) — ey (0)) (6 (v + 0y) — 8'(v) — 6" (W)oy) €0 h()(y) dz dy .

Since # € C*tI"1, we can perform the following Taylor expansions, where ax, by and ¢; are real

parameters which depend on the derivatives (%) (v), for (z,y) € [0, 1]?:

(76)  expli(0(v + oz) — 6(v + oy) — 08 (v)(z — y))] =

24 [h] 24+ [h]
144 Z aro®(z —y)* + z be—20" (x — y)k + O(a3+")
k=2 k=4

2+[h]
(77) 0'(v+oy)—6(v) = z chproty® + Oy |
k=1

In particular, ay = 6”(v)/2 and ¢, = 8% (v)/(k —1)! .

Replacing these Taylor expansions in (75), we obtain

(Kxthogo DT (0, +02) Do) =

24 h] 24 [h]
—a° // eyv(o(z —y)) [i z aro®(z —y)* + Z br_o0"(z — y)* | x
k=2 k=4
2+ [h] ‘
X Z cry10*y* Y () (y) do dy
k=2

24[h]

~io® [[ oM~ ylatoa~u) [ > ckﬂakyk] 40 () (y) o dy

+o(a®FIry

In the first of these two integrals, one can replace cy (a(x — y)) by cy (0) — 0|z — y|"n(c(z — ¥)).
Since 7 and its first [A] + 2 derivatives vanish at &, we derive that €0 (¢) is a function with
[h] + 3 vanishing moments [11], so the first integral is of the order of O(a5t").

Consider the real part of the second integral: because 7 is even, exchanging x and y shows that

/ & — y*n(o(e — )y sin(éoly — 2)Wb(e) w(y) dedy = 0 .
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Since 2 + [h] > 3, the real part of the second integral is equal to
a5 thy( //sm &z —v)) |z —y|"y? ¥(2) Y (y) de dy + o(c®+h) .
As a consequence,
(78)  Re(Kxthuer D1 (9 +05) Dibugo) =
5+h ‘9(4)(7)) . h, 3 5+h
o (0)—— [ [ sin(éo(z =) |z —yI"y" (@) P(y) dz dy + o(c”") .
Let us now compute the leading term of |Re (K x %y ¢,0,0:%v,¢,0)|- After a change of variables,
(KX% £,09 wwv L€, a =
7 [[ ev(o@ ) explito(v +o0) - 60 +09) 08’ () ~ )] x
x expliéo(x — y)]4(6' (v) + &o /o) Y(2)(y) dx dy +
+0* [[ eviots ~ v)expli®(o + o) - (0 + 03) ~ a8/ (0)(o - )]
. 1
x explio(z — ()4 (y) dady

Using Taylor expansions (76) and (77), we obtain

(79) <KX¢v,€,Uaazwv,§,0> =
2+[h] 2+[h]
X

o2 // cy(o(z —v)) [1 +1 Z akak(x — y)’C + Z bk_gak(x — y)’C
k=2 k=4

x explifo(z — y)]i(0' (v) + &o/0) Y(2)Y(y) dz dy
2+[h] 2+[h]
+ 02 // cy(o(z—y)) |1+ Z aro®(x —y)F + Z br_ao®(z —y)* | x
k=2 k=4

x explito(x — y)}(x) =/ (y) dedy + O(o**1M)
Exchanging z and y shows that
[[ evtota—u)sintéaty - 2)v@) vl0) dody = 0
and since 9 is even and 1’ is odd, changing x to —x and y to —y shows that

/ / ey (0 — ) cosléo(y — 2)(z) ' (y) dwdy = 0 .
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Writing ¢y (o(z —y)) = ¢y (0) — " |z —y|"n(c(z —y)), and noticing that e®0? (t) is a function with
[h] 4+ 3 vanishing moments, the first integral in (79) has a real part equal to

0//
o 00) [ [ e =y costeoty - ) 60 vl do dy + ol
Because 1 is even, the second integral in (79) has a real part equal to
—o*t E 0 0) [ [ o = yP** sinleo(y — )] 00a) () di dy + o)

An integration by parts with respect to y shows that
/ |z — y**" sin[éo(y — )] ¢(2) ¥ (y) dw dy =
~o [[ 1o -+ coslenty — D) w(a) (o) do dy+

+@2+h) / / & — [ sign(z — y) sinléo(y — 2)] 9(x) $(y) da dy -

Summing up the two contributions, we see that

(80) Re(Kx%u,,0,0:00,6,0) =
7 0) (14 5/2)6" ) [[ 1o =91 = 9) sinfea(a — )] 9(0) b(0) drdy + oo™
Because of the hypothesis that
[[ 12 =4l @ =) sinleo(o = 96 v0) dedy £ 0.

comparing (80) and (78) proves a result which is stronger than (16), because the right-hand side has
an O(0?) instead of O(0):

|R€ <Kva,E,07D71 (0 + 92) 5¢v,5,0> | = 0(0'2) |R€ (I{X¢v,f,ovazwv,£,0> | .

Adapting Proposition 3.1 to account for the O(c?) term, we obtain a transport equation (19) with
a=¢§, v(u) = —0'(u) and a1 * as = a1 + az: for u such that 6”(u) # 0,

|0uA% (u, &) — 0" (u) O A% (u,€)| = O(0?) [0uA% (u, )]
which proves (27).
B.4. Proof of Theorem 3.3 (Multidimensional Scale Transport). The proof of this theorem follows
the same lines as the proof of Theorem 3.1. The hypotheses of Proposition 3.1 are verified in order

to apply (19) in d dimensions.
Let us verify hypothesis (16) concerning

wv,s,o’ = aﬁ(v)TvFS¢a
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with Fgf(z) = det S~! f(S~'z) and where Gg(, has been defined in (29). Note that the transport
property (17) clearly holds. The warpogram renormalization (30) is equivalent to dividing ¥, (z) by
o¢ and replacing ¢S by S. We replace 9, s,,(z) by

(81) u,s(x) = det(S™ o (u)p(S™ o (u)(z — u)) .
Let us define the vector of functions

b5 =D 1(Vy+ V) Doys .
We now prove that for any fixed v and S such that det $ =1, if S = ¢ S then
(82) R6<KX(pv,Sa($v,S)‘ = 0(0) ‘Re(Kx%,s, 61@1},5)‘ .
Let us first compute an upper bound for ‘Re(Kx(pU’s , $’u,S>|- Since

D~1f(x) = det(Jo())f(6(z))

and
Df(x) = det(J, 161 (2))f(0~"(2)) ,
we have
1V, Dy, s(z) =04 [—%6 det Jo(x)J,  (2) (S Jp(u)(z — u))
+ det Jp(u)Vp(S™ g (u)(x — u) S~ T (u) Iy 1(w>]
and

DV, Dy, s(z) =0 ¢ [ﬁ det Jp(u)p(S ™" Jo(u)(x — u)) Ty (u)
+det Jp(u) V(S Jp(u)(z — u))S™H(V Jo (u) (2 — u) — Jg(u))J(;l(u)] .

After summing these two expressions, a Taylor expansion of det Jy, J, 1 and of VdetJy in the

vicinity of position u shows that for § = ¢S and ¢ small, there exists C(u, 5) such that
(83) |6v,s| < Clu, §) o'
By definition of Kx,

(Kxpusibus) = [ [ ex6(@) =0t s(@)ds) dody

The wavelet ¢ has one vanishing moment, so [ ¢, s(z)dz = 0, and therefore

(Kxu,5,60,5) / [ey (6 (1)) = ev (0)] @5 5(2)Bo,5(y) da dy |
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which implies that

(K x 0,5, Bu,5)| < / ley (8(z) — 8(y)) — ey (0)] |u,5()| |fo,5(y)| dz dy .

Substituting (83) and (81) in the above inequality, and using condition (33) on cy, after a change

of variable and a Taylor expansion of 8 around u, we obtain
(K x5, u,5)| = O(a"F1) .
To prove (82), we now show that there exists C’(u, S) > 0 such that
(84) |Re(Kxpn,s, Vaiu,s)| > C'(u, §) 0" .
With an integration by parts,
(Kxpos, Fupns) = [ [ Fer6la) = 00) 2ot s(0)es(0) de dy
and using the fact that Vey (z) is antisymmetric,

(Kx@u,5, Vaipn,s) = —%/ Vey (6(z) — 0(y))(Ja(x) — Jo(y)) Re (¢}, 5(2)p0,5(y)) dzdy .

Therefore
Re(K x¢u,5,Vapo,s) + 1 / Vey (S(z =)V Jo(u)J; " (w)S(z — y) Re (" ()9 (y)) dw dy

= =1 [ Fer O+ 757 )52) — b+ I @50) — Fev (S — 1)
X (ot Ty )S2) = T+ T ()50)) Re (4" (2) 6(0) dady
-3 / Vey (S(z —y))(Jo(u+ Ty () Sz) — Jo(u + Ty (u)Sy) — VIg(u)J; ™ (u)S(z — y))x

X Re(¢*(z)¥(y)) d dy

Because Vey is C! in a neighborhood of 0 excluding 0, for small ¢, second-order Taylor series

expansions for 8 and for Jy around position u prove that

Re(K x0v.5,Vaipu.s) //ch 2 — 9o (u) Ty () S (& — y) Re (" (2)i(y)) do dy = o(c™)

Hypothesis (34) guarantees that (84) holds, and therefore (82) is satisfied. Now that conditions (16)
and (17) of Proposition 3.1 have been verified, the resulting transport equation (19) can be applied,
with a =5, v(u) = Jo_l(u) and S; * Sy = S5 S1. This yields:

[Vl (u, 8) + [Jo(w) ™ Fudo(u) 5] - Vsx (u, )| = O(0) | Vudx(u, 5) -
The final result (35) is derived from this equation by noting that

[Je_l(u) Voo (u) s] VsAx(u,8) = [J;l(u)ﬁujg(u)] : WSAX(u,S) st] .
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B.5. Proof that (36) implies (34) for a separable warping function Using the fact that 6 is
assumed separable, we obtain that J(u) 1 V,Js(u) S (z —y) is a diagonal matrix whose ith element
along the diagonal is

0i (us)
0;(us)
Using (33), the leading term of Vey (S(z — y)) when o — 0 is

o (S(@ =) -
n(0) ko™t S(a —y)|S(x —y)[* 2.
Therefore, when ¢ — 0, the ith component of
Re [[ Fer(S(o = )P (@) @S (o~ )4 (@) b(w) dody
is equivalent to
w0 S Re [ [ 1360 = I 250 - )0 @) ) ddy

Using the fact that (320, |kl| )1/2 > 1 E, 1 |ki|, we obtain

Re [[[Ser(sta = )T )75 0)S( =)0 (@) v(o) do dy\ >

n©h . |6(u

Vd ‘9'

3 re [[ 136G -l v @ v deay

This shows that if
Re / 15z — 9)|"* (2)d(y) do dy # 0

and if none of the 6 vanish, then (34) is satisfied with C(u,S) >0

C. Proofs of Section 4

C.1. Proof of Theorem 4.1 With a slight modification of the proof of Theorem 3.1, one can prove

a stronger result than (24), which is stated in the following lemma:

LemMmaA C.1.  Under the hypotheses of Theorem 3.1,
(85) OuAx(u,8) — (log0") (u)dog s Ax (u, s) = s(C(u) + o(1)) OuAx (u, s) ,

where C' is continuous.

Let a be a generic variable denoting either u or log s, and let us introduce

(86) 0, Ax (u,s) = /g(u —v) 9 Ax (v,8)dv .
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If w is such that 8”(u) # 0, and A small enough, then 9, Ax(v,s) keeps a constant sign over

[u — A, u + A]. Therefore, by continuity of C, convolving the right-hand side of (85) with g gives
0(5)9,Ax (u,s) .
Convolving the left-hand side of (85) with g gives:
B (w:5) = [ gl ) (1080') (0) g (0, do

The hypotheses of Theorem 3.1 imply that OJiogsAx(u,s) does not vanish. By continuity,
Olog s Ax (v, s) therefore keeps a constant sign for v in [u — A, u + A]. Because (log#')” is bounded
over [u — A, u+ A,

[ 96 =) 1088 (0) g A (0. 5) do = (1080"Y () Do A (1) + O(A) D Ax (1, 5)
Regrouping the left and right-hand sides we obtain
(87) Oy Ax (u,8) — (log8") (u) + Dlog s Ax (1, 8) = O(8) Iy Ax (u, ) + O(A) Biog s Ax (u, ) ,

which can be viewed as an averaged transport equation.
The following lemma, whose proof is in Appendix C.4, shows that the two estimators GjA\X(u, s)

- .
and Olog s Ax (u, s) are consistent.

LemMA C.2.  Let X, Y and ¢ satisfy the hypotheses of Theorem 4.1. For each w, for s small

enough,

(88) Prob { |O1ag s Ax (1, 5) = Drog s Ax (1,5)] > C [og, Ax (u,5)|} <1
(89) Prob {|afA\X(u, s) — Budx(u,s)| > C 0. Ax(u, s)|} <es,
where C = S8R o) = (OLIDS and ey = 6 (IVA)~1/(202(),

The parameters Cy(u) and C2(u), which are defined in the proof of the lemma, are both positive.
The weak consistency of
9uAx(u,N7")
Blog s Ax (u, N1

as an estimator of (log#')'(u) then results from the following lemma, whose proof is straightforward:

LemMA C.3.  If X1 and X2 are two random variables, and C < 1 a constant such that
PI‘Ob{le — E{Xl}l S ClE{Xl}l} 2 1-— €1,
PI‘Ob{'XQ — E{X2}| S C |E{X2}|} Z 1-— ga ,
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then

X, E{Xi}

P | 2 - £

20 |E{X,})
~1-C ‘E{Xl}

)21—61—82.

In view of Lemma C.2, one can apply Lemma C.3 to X; = &@X (u, N"1)and Xy = m(u, N7

with C = % yielding
} >1—e1—es.

Prob 8. Ax(w,N"Y) B Ax(u, N
&;;Ex(u, N_l) alog SAX(U7 Nﬁl)

2log(NA) OuAx(u, N71)
= AVNA —1og(NA) | Giog s Ax (u, N-1)
Because of the averaged transport equation (87),
FuAx(u,N71)
Arog s Ax (u, N71)
Since A > N~1 and (log#’)'(u) is bounded, we derive

OuAx(u, N71)
alog SAX(U7 Nﬁl)

(log€') (u) = O(A) + (1+O(N"Y).

(log#")'(u) = O(A) +

8, Ax (u, N=1)
Olog s Ax (1, N-1)

therefore
2log(NA
Prob — (log ') (u)| < 0p(NA)
AVNA —log(NA)
We choose A such that A~'(NA)~1/2 = A, ie. A = N~Y/3 When N — o0, £; and &5, whose

expressions are given in Lemma C.2, both tend to 0. Moreover, for N large enough,

g8 (1] et 2()N 5

|(log 6')"(w)| + O(A)> >1-c1—e2.

+0(A) < 2(log N)N~/5

Therefore
B Ax (u, N~!
lim Prob [ |-2AXNT) o0 0y ()
N—oo alog SAX (U, Nﬁl)

C.2. Proof of Theorem 4.2

< 2(10gN)N_1/5> =1.

LEMMA C.4. Under the hypotheses of Theorem 3.2,
(90) 8uA% (u, éo/a) — 0" (u) B A% (u, &0 /o) = 0*(C(u) + 0(1))8uA% (u, & /o) ,

where C' is continuous.

ProOOF OF LEMMA C.4. The proof mimicks the proof of Lemma C.1. In the proof of Theorem
3.2, we showed in (78) that

(91) Re (Kxthue,0, D71 (8 +0:) Dibnyeo ) = 0*H(A(v) + (1)) ,
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and in (80) that
(92) Re (K xtu g0, 0uthog,0) = 0T (B(v) + (1))
with B(v) continuous. Comparing (91) and (92) shows that
Re (Kxthucas D (90 +8:) Dibne,o ) = 0*(C(0) + 0(1) Re (Kxthu g, datvess)

with C'(v) continuous. This implies, by repeating the argument of Lemma C.1, that (90) is satisfied.

Using Lemma C.4 it is easy to see that
(93) auAg((ua 60/0—) - ang((uv 50/0—) = 0(02) auAg( (’Lb, 50/0—) + O(A) aﬁAg( (U, €O/U> .

As in the proof of Theorem 4.1, one can combine the following lemma with Lemma C.3 to prove

the weak consistency result (50).

LemMMA C.5. Let X, Y and 9 satisfy the hypotheses of Theorem 4.2. Then for each w, for N

large enough,
Prob { 8¢ A% (u, Néo) — T A% (u, Néo)| > CIOAT (u, N&o) |} < ,
Prob { 18,4 (u, Néo) = 9 A% (u, Néo)| > ClOA% (u, No)|} <2,

where €1 and 2 are defined in Lemma C.2.

The proof of Lemma, C.5 is almost identical to the one of Lemma C.2; the only difference is that
1? has p— 1 vanishing moments instead of p, so that Lemma, C.7 must be replaced with the following

lemma, which is proved by using the same method.

LEMMA C.6. LetY(z) = X(z)e?®), let W), = <X7¢11c/N,o> and Z, = (X, ¢£/N,U)*. Under the
hypotheses of Lemma C.5, for o small enough, there exist two continuous functions My and My such
that
for |k =1 <2,

[E{WiW}| < Mi(ok)o" ,
[E{WeZi}| < Mi(ok)o"

|E{ZkZl*}| S Ml(O'k‘)O'h s
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and for |k —1] > 2,

o?r
1 <
|E{Wle }l = MQ(Uk) (U(lk — ll — 2)>2p—h ’
0.2p—1
E 7Y < M
| {Wk I }l = Q(Uk) (U(lk _ ll _ 2))2;,,1,}-,{ ’
0.2;172

|E{Z}ch*}| < M2(0k) (0’(|k _ l| — 2))2P—2—h )

Since p > [h] + 3, we have 2(2p — 2 — h) > 1, therefore the variance term
E{|5£A§( (U, 6) - aﬁAg((uv 5)'2}
can be controlled as in the proof of Lemma C.2 (¢f Appendix C.4).

C.3. Proof of Lemma C.1 In one dimension, the proof of Proposition 3.1 can be adapted to show
that, if (16) is replaced by

(94) Re(Kx¥, 5, D71 (0, +8:) D, 5 ,) = ¢(u,0) Re{Kx¥, 5, , 8, 5,) »
and if (17) holds, then the resulting transport equation (19) is replaced by

Ou A% (u, ) + O (a* v~ (u) * () 0a A% (u, @) = c(u, 0)0u A% (u, @) .
Recall that in the proof of Theorem 3.1, (67) proves that
(95) Re(K xpu,5,$v,s) = 8" (B(u) + 0o(1)) ,

where B is continuous. On the other hand, (69) proves that

GII(U)

— 1
(96) Re(Kngv,s, 5x99v,s> -2 gl(u)

$"(1 + o(1))hn(0) / & — [P (@ )b(y) der dy |

where 6" (u)/6'(u) is continuous in w.

Comparing (95) and (96), and recalling that

@U,S = ¢U7ﬁ~5‘7
¢'u,s D_l (81) +6z)ﬁ¢v”é,o

we see that (94) holds, with
c(u,0) = 5(C(u) +o(1))

and C continuous. This proves that (85) is indeed satisfied.



42 M. CLERC AND S. MALLAT

C.4. Proof of Lemma C.2 We start by proving (88). Let n = NA and let us choose u = 0

without loss of generality. We seek an upper bound for the variance of a@x(o, s)

Viogs = E{l&@X(O7 5) - 6logsAX(075)|2} .

One can see that
9 s = o)
dudlogs 7T

and a Riemann series approximation shows that

/ () Bog s Ax (v, 8) dv — N1 Z (k/N)Blog s Ax (k/N,s) = O(s" /N) .
k=—n
Replacing 3@ x(0,s) by its expression (41), and noticing that the real part is smaller than the
modulus, we obtain

2

4
Viog s < 775 E > aWiZi — lE{Wi Zi}| o + O(s*/N?)
|kI<n

where gp, Wi and Zy respectively denote g(k/n),(X,vy/n,s) and (X,0g¥/n,s) . Expanding

‘Z\k\gn ’ into (Elklsn) ' (EU\S“)*’

4 %
Viogs < 75 E{ > (Wi Ze — g E{WiZi}) Y [aWiZi — gE{WiZi}]"} + O(s>" /N?)
[k|<n ll|<n

4
<Nz > g E{WeZLWi Z}'} — grgiE{ Wi ZiYE{W} Z; }] + O(s*" /N?) .
[k|<n
||[<n

Since Y is Gaussian, so is X, as well as the random variables W}, and Z;. Hence
E{W,Z W Z]} = E{W Z,} E{W;Z} + E{W W[} E{Z,Z[} + E{W. Z[ Y E{Z, W[} .

Therefore

(97) Viog s S

% > gkgE{WeW YE{Z, 2} + E{W, Z; }E{Z, W} }] + O(s*" /N?)
e
< % S IE{WEWHIE{ZeZi ] + [E{Wr 2} [E{ZeW/ "} ] + O(s*" /N?) .

[k|<n.
[l]<n

Each of the terms appearing in the sum above is now bounded thanks to the following decorrelation

lemmas:
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LEMMA C.7.  Let X(z) = Y(0(2)), let Wy, = (X, ¢y n,s) and Zp = (X, Bog s¥i/n,s) - Under
the hypotheses of Theorem 4.1, for s small enough, there exist continuous functions My and My such
that, for |k —1] < 2,

(98a) [E{WiW}| < Mi(sk)s" ,
(98b) [E{WiZ/}| < Mi(sk)s" ,
(98c) |E{ZxZ;}| < My(sk)s" ,

and for |k —1] > 2,

s2P
(99a) [E{WW '} < Ma(sk) (s(|k — 1] — 2))2p=h ~
(99b) [E{WrZ}| < M2(3k)(3(|k — 1] —2))=h "
(99¢) E{ZeZ7} < Ma(sh) ———

(s(|k — 1] =2))%~"

The proof of the above lemma is in Appendix C.5.
Replacing (98) and (99) in (97), we see that, since My and M, are continuous and since k/N =

A — 0 when N — oo,

4 4 2(M2(0)2 + o(1)) s*?
100)  Viegs < — 2(M;(0)? 1))s?h + = O(s*h/N?) .
( ) logs > n2 k;l<2 ( 1( ) +O( ))5 + 2 k;|>2 (S('k—” _2))4p—2h + (S / )
|| ,[2/<n k][] <n

Since 4p — 2h > 1,
101 k—1| -2 =K,n .
(101) > »

|k—1]|>2

k][] <n
Replacing (101) in (100), we obtain

2h

(102) Viegs < 80237(3 Mi(0)? + K,M»(0)?) + o(s2" /n) .

In the proof of Theorem 3.1, (69) proves that there exists a(u) > 0 such that
|0 Ax (u, 8)| > a(u)s" + o(s") .
For A small enough, d,Ax (v, s) does not change sign for |v| < A thus, after convolution with g,
|0.Ax(0,5) > As" + o(s") .
Because of (87), the same applies to Giog s Ax (0, 8), therefore there exists a constant C; such that

|7alogsAx<o,s>|r |

‘/logsscl [ \/ﬁ
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Applying Chebyshev’s Lemma [4] then proves that, for all £ > 0,

\/C_l |alogsAX(075)| } < 52

Prob {|5b/gs\Ax(0, 3) - alog SAX(Oa 5)| >

evn
and (88) follows by choosing ¢ = ‘{gﬂA and g; = (l(élgﬁ;.
Let us now prove (89). We denote D,, = |m(0, 8) — 9, Ax(0,s)|. Recall that
A
0uAx (0, ) =/ g(—v) Oy Ax (v, s)ds .
-A

An integration by parts shows that

1

auAX(O, S) = F

/0A Ax (v, 5)dv — /_0A Ax(v,5) dv]

and since [0, Ax (u, s)| = O(s"), with a Riemann series approximation,

A2 /OA Ax(v,8)dv— A"t zn:AX(k/N,s) = 0(s"/n) .

k=1
On the other hand, an integration by parts also shows that m(o, s) defined in (40) satisfies
— 1 1 h
PAX0,9) = x> Xl - 2 (Kb +0("/N)

NA?
0<k/N—u<A —A<k/N—u<0

Therefore, using once again the notation Wy = (X, ¥y /n,s),
0

Du= IS (Wil (WP = 3 (Wal> = E(IWL?))] + O(s" /)
k=1 k=—n+1

Denoting W~ = S it [Wi]? and W+ =37, [Wi|?, we have

1/~ — — —
(103) D.<— (|W+ CE(WHY + W — E{W*}|) +O(s"/n) .
We are now going to prove that there exists a strictly positive constant Cs such that
h
s
104 Vy, Prob{D,>yCy——=}<6e ¥/?
(104) y, Prob{ >y2A\/ﬁ}_e

and since [0, Ax (0,5)| > As" + o(s") with A > 0, choosing y = logn/Cs will then imply (89).
Let us consider the random vector W = (W1, Wa, ..., W,,), let Ky denote the covariance operator of
W, and (e;)j=1,...,n its Karhunen-Loéve basis. If (c;)=1,... » are the eigenvalues of Ky corresponding

to the eigenvectors (e;);j=1,...,n, then
n
W = Z V&5 Wj €;
j=1
where W; are independent random variables with variance 1. As a consequence,

W= W= o;W?.
Jj=1
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The following lemma, which is proved in [8], relies on a theorem by Bakirov [3].
LEmma C.8. If W = > ﬂij where W, are independent Gaussian random wvariables with
variance one, and y y 5]2 =1, then

Vy, Prob{[W —E{W} >y} <6e ¥/2.

— —-1/2 _
The random variable W+ = (Z ; a?) W satisfies the requirements of Lemma C.8, therefore

Vy, Prob{[W+ —E{W*} >y (D" a?)"/2} <6e ¥/
J
but 3 a7 is equal to the Hilbert-Schmidt norm of K :

doof=) E{W; Wi},
J Jsk
which is bounded by Bs*'n because of (98a) and (99a). Hence
Vy, Prob{|Wt —E{W*} >yVBs"y/n} <6e¥/?.

The same applies to W, and by combining the two and using (103) we obtain (104).

C.5. Proof of Lemma C.7 The three terms E{W,, W/}, E{W,Z;} and E{Z,Z} can be written

as
1= [[ ev@(u+ s) = 600+ s0))i(0) b(w) dody

where (u,v) = (sk, sl), and 9 and 9 are two wavelets with p vanishing moments. Clearly,

(105) I= / ey (B(u + 57) = 0(v + sy)) — ey (0)] (2)d(y) da dy -

For |[u —v| <A, |z| €1 and |y| < 1, we have

|0(u + sz) — O(v + sy)| < (A + 2s) sup  [0'(2)] < (A +28)Cy
|e—u|<A42s

because 6 is continuously differentiable. For A small enough, |8(u + sz) — 8(v + sy)| is therefore in

a neighborhood of 0. Since 7 is assumed continuous in a neighborhood of 0,
In(6(u + sz) — 0(v + sy))| < B

for lu—v| <A, |z <1land |yl <1

Hence
1] < / 6(u -+ 52) — 6(v + s)|" B [(@)] [$(v) da dy

< C(u)s"
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where C(u) is continuous. This proves (98a), (98b) and (98c¢).
Let us now prove (99). Since ¥ and ¢ in (105) are compactly supported and have p vanishing
moments, there exist two compactly supported functions 3 and 3 such that ¥(z) = ) (z) and

¥(y) = BP)(y). Integrating (105) by parts p times with respect to z and to y gives

I= // %;—; {|0(u +sx) —0(v + sy)|h77(0(u +sx) —0(v + sy))} ﬂ(w)ﬁ(y)dwdy .

But for |u — v| > 2s, one can show that

or op
‘%6—1;1’{'0(

u+sz)—0(v+ sy)|hn(0(u +sz) —0(v+ sy))} < ( _MTU_) ;2;},11 )

where M(u) depends on h, on derivatives of # up to order 2p in a neighborhood of u, and on
derivatives of  up to order 2p in a neighborhood of 0. Therefore there exists a continuous Ma(u)
such that

5P
(s(|k — 1] —2))2p=h "

[T| < Ma(u)

which proves (99a), (99b), and (99c¢).
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