
Math. Program., Ser. A
DOI 10.1007/s10107-013-0738-9

FULL LENGTH PAPER

Phase recovery, MaxCut and complex semidefinite
programming

Irène Waldspurger · Alexandre d’Aspremont ·
Stéphane Mallat

Received: 14 November 2012 / Accepted: 13 December 2013
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Abstract Phase retrieval seeks to recover a signal x ∈ C
p from the amplitude |Ax | of

linear measurements Ax ∈ C
n . We cast the phase retrieval problem as a non-convex

quadratic program over a complex phase vector and formulate a tractable relaxation
(called PhaseCut) similar to the classical MaxCut semidefinite program. We solve
this problem using a provably convergent block coordinate descent algorithm whose
structure is similar to that of the original greedy algorithm in Gerchberg and Saxton
(Optik 35:237–246, 1972), where each iteration is a matrix vector product. Numerical
results show the performance of this approach over three different phase retrieval
problems, in comparison with greedy phase retrieval algorithms and matrix completion
formulations.

Mathematics Subject Classification (2000) 94A12 · 90C22 · 90C27

1 Introduction

The phase recovery problem, i.e. the problem of reconstructing a complex phase vector
given only the magnitude of linear measurements, appears in a wide range of engineer-
ing and physical applications. It is needed for example in X-ray and crystallography

I. Waldspurger · S. Mallat
D.I., École Normale Supérieure, Paris, France
e-mail: waldspur@clipper.ens.fr

S. Mallat
e-mail: mallat@cmap.polytechnique.fr

A. d’Aspremont (B)
CNRS & D.I., UMR 8548, École Normale Supérieure, Paris, France
e-mail: alexandre.daspremont@m4x.org; aspremon@ens.fr

123

I. Waldspurger et al.

imaging [27], diffraction imaging [9] or microscopy [34]. In these applications, the
detectors cannot measure the phase of the incoming wave and only record its ampli-
tude. Recovering the complex phase of wavelet transforms from their amplitude also
has applications in audio signal processing [26].

In all these problems, complex measurements of a signal x ∈ C
p are obtained

from a linear injective operator A, but we can only measure the magnitude vector
|Ax |. Depending on the properties of A, the phase of Ax may or may not be uniquely
characterized by the magnitude vector |Ax |, up to an additive constant, and it may
or may not be stable. For example, if A is a one-dimensional Fourier transform, then
the recovery is not unique but it becomes unique almost everywhere for an oversam-
pled two-dimensional Fourier transform, although it is not stable. Uniqueness is also
obtained with an oversampled wavelet transform operator A, and the recovery of x
from |Ax | is then continuous [51]. If A consists in random Gaussian measurements
then uniqueness can be proved, together with stability results [11,13].

Recovering the phase of Ax from |Ax | is a nonconvex optimization problem. Until
recently, this problem was solved using various greedy algorithms [22,23,26], which
alternate projections on the range of A and on the nonconvex set of vectors y such
that |y| = |Ax |. However, these algorithms often stall in local minima. A convex
relaxation called PhaseLift was introduced in [14] and [13] by observing that |Ax |2 is
a linear function of X = xx∗ which is a rank one Hermitian matrix. The recovery of x
is thus expressed as a rank minimization problem over positive semidefinite Hermitian
matrices X satisfying some linear conditions. This last problem is approximated by
a semidefinite program (SDP). It has been shown that this program recovers x with
high probability when A has gaussian independant entries [10,13]. Numerically, the
same result seems to hold for several classes of linear operators A.

Our main contribution here is to formulate phase recovery as a quadratic optimiza-
tion problem over the unit complex torus. We then write a convex relaxation to phase
recovery very similar to the MaxCut SDP (we call this relaxation PhaseCut in what
follows). While the resulting SDP is typically larger than the PhaseLift relaxation,
its simple structure (the constraint matrices are singletons) allows us to solve it very
efficiently. In particular, this allows us to use a provably convergent block coordinate
descent algorithm whose iteration complexity is similar to that of the original greedy
algorithm in [23] (each iteration is a matrix vector product, which can be computed
efficiently). We also show that tightness of PhaseLift implies tightness of a modified
version of PhaseCut. Furthermore, under the condition that A is injective and b has
no zero coordinate, we derive an equivalence result between PhaseLift and a modified
version of PhaseCut, in the noiseless setting. This result implies that both algorithms
are simultaneously tight (an earlier version of this paper showed PhaseLift tightness
implies PhaseCut tightness and the reverse direction was then proved in [50] under
mild additional assumptions). In a noisy setting, one can show that PhaseCut is at
least as stable as a variant of PhaseLift, while PhaseCut empirically appears to be
more stable in some cases, e.g. when b is sparse.

Seeing the MaxCut relaxation emerge in a phase recovery problem is not entirely
surprising: it appears, for example, in an angular synchronization problem where one
seeks to reconstruct a sequence of angles θi (up to a global phase), given information
on pairwise differences θi − θ j mod. 2π , for (i, j) ∈ S (see [42]), the key differ-

123

Phase recovery

ence between this last problem and the phase recovery problem in (1) is that the sign
information is lost in the input to (1). Complex MaxCut-like relaxations of decod-
ing problems also appear in maximum-likelihood channel detection [30,33,43]. From
a combinatorial optimization perspective, showing the equivalence between phase
recovery and MaxCut allows us to expose a new class of nontrivial problem instances
where the semidefinite relaxation for a MaxCut-like problem is tight, together with
explicit conditions for tightness directly imported from the matrix completion formu-
lation of these problems (these conditions are of course also hard to check, but hold
with high probability for some classes of random experiments).

The paper is organized as follows. Section 2 explains how to factorize away the
magnitude information to form a nonconvex quadratic program on the phase vector
u ∈ C

n satisfying |ui | = 1 for i = 1, . . . , n, and a greedy algorithm is derived
in Sect. 2.3. We then derive a tractable relaxation of the phase recovery problem,
written as a SDP similar to the classical MaxCut relaxation in [25], and detail sev-
eral algorithms for solving this problem in Sect. 3. Section 4 proves that a variant
of PhaseCut and PhaseLift are equivalent in the noiseless case and thus simultane-
ously tight. We also prove that PhaseCut is as stable as a weak version of PhaseLift
and discuss the relative complexity of both algorithms. Finally, Sect. 5 performs a
numerical comparison between the greedy, PhaseLift and PhaseCut phase recovery
algorithms for three phase recovery problems, in the noisy and noiseless case. In the
noisy case, these results suggest that if b is sparse, then PhaseCut may be more stable
than PhaseLift.

1.1 Notations

We write Sp (resp. Hp) the cone of symmetric (resp. Hermitian) matrices of dimension
p ; S+

p (resp. H+
p) denotes the set of positive symmetric (resp. Hermitian) matrices.

We write ‖ · ‖p the Schatten p-norm of a matrix, that is the p-norm of the vector of its
eigenvalues (in particular,‖·‖∞ is the spectral norm). We write A† the (Moore-Penrose)
pseudoinverse of a matrix A and ‖A‖�1 the sum of the modulus of the coefficients of
A. For x ∈ R

p, we write diag(x) the matrix with diagonal x . When X ∈ Hp however,
diag(X) is the vector containing the diagonal elements of X . For X ∈ Hp, X∗ is
the Hermitian transpose of X , with X∗ = (X̄)T . Finally, we write b2 the vector with
components b2

i , i = 1, . . . , n.

2 Phase recovery

The phase recovery problem seeks to retrieve a signal x ∈ C
p from the amplitude

b = |Ax | of n linear measurements, solving

find x
such that |Ax | = b,

(1)

in the variable x ∈ C
p, where A ∈ C

n×p and b ∈ R
n .

123

I. Waldspurger et al.

2.1 Greedy optimization in the signal

Approximate solutions x of the recovery problem in (1) are usually computed from
b = |Ax | using algorithms inspired from the alternating projection method in [23].
These algorithms compute iterates yk in the set F of vectors y ∈ C

n such that |y| =
b = |Ax |, which are getting progressively closer to the image of A. The Gerchberg–
Saxton algorithm projects the current iterate yk on the image of A using the orthogonal
projector AA† and adjusts to bi the amplitude of each coordinate. We describe this
method explicitly below.

Algorithm 1 Gerchberg–Saxton.

Input: An initial y1 ∈ F, i.e. such that |y1| = b.
1: for k = 1, . . . , N − 1 do
2: Set

yk+1
i = bi

(AA† yk)i

|(AA† yk)i |
, i = 1, . . . , n. (Gerchberg-Saxton)

3: end for
Output: yN ∈ F.

Because F is not convex however, this alternating projection method usually con-
verges to a stationary point y∞ which does not belong to the intersection of F with
the image of A, and hence |AA† y∞| �= b. Several modifications proposed in [22]
improve the convergence rate but do not eliminate the existence of multiple stationary
points. To guarantee convergence to a unique solution, which hopefully belongs to
the intersection of F and the image of A, this non-convex optimization problem has
recently been relaxed as a SDP [13,14], where phase recovery is formulated as a matrix
completion problem (described in Sect. 4). Although the computational complexity of
this relaxation is much higher than that of the Gerchberg–Saxton algorithm, it is able
to recover x from |Ax | (up to a multiplicative constant) in a number of cases [13,14].

2.2 Splitting phase and amplitude variables

As opposed to these strategies, we solve the phase recovery problem by explicitly
separating the amplitude and phase variables, and by only optimizing the values of
the phase variables. In the noiseless case, we can write Ax = diag(b)u where u ∈ C

n

is a phase vector, satisfying |ui | = 1 for i = 1, . . . , n. Given b = |Ax |, the phase
recovery problem can thus be written as

min
u∈Cn , |ui |=1,

x∈Cp

‖Ax − diag(b)u‖2
2,

where we optimize over both variables u ∈ C
n and x ∈ C

p. In this format, the inner
minimization problem in x is a standard least squares and can be solved explicitly by
setting

123

Phase recovery

x = A†diag(b)u,

which means that problem (1) is equivalent to the reduced problem

min|ui |=1
u∈Cn

‖AA†diag(b)u − diag(b)u‖2
2.

The objective of this last problem can be rewritten as follows

‖AA†diag(b)u − diag(b)u‖2
2 = ‖(AA† − I)diag(b)u‖2

2

= u∗diag(bT)M̃diag(b)u.

where M̃ = (AA† − I)∗(AA† − I) = I − AA†. Finally, the phase recovery problem
(1) becomes

minimize u∗Mu
subject to |ui | = 1, i = 1, . . . n,

(2)

in the variable u ∈ C
n , where the Hermitian matrix

M = diag(b)(I − AA†)diag(b)

is positive semidefinite. The intuition behind this last formulation is simple, (I− AA†)

is the orthogonal projector on the orthogonal complement of the image of A (the kernel
of A∗), so this last problem simply minimizes in the phase vector u the norm of the
component of diag(b)u which is not in the image of A.

2.3 Greedy optimization in phase

Having transformed the phase recovery problem (1) in the quadratic minimization
problem (2), suppose that we are given an initial vector u ∈ C

n , and focus on opti-
mizing over a single component ui for i = 1, . . . , n. The problem is equivalent to
solving

minimize ūi Mii ui + 2 Re

⎛
⎝ ∑

j �=i

ū j M ji ui

⎞
⎠

subject to |ui | = 1, i = 1, . . . n,

in the variable ui ∈ C where all the other phase coefficients u j remain constant.
Because |ui | = 1 this then amounts to solving

min|ui |=1
Re

⎛
⎝ui

∑
j �=i

M ji ū j

⎞
⎠

123

I. Waldspurger et al.

which means

ui = −∑
j �=i M ji ū j∣∣∣∑ j �=i M ji ū j

∣∣∣
(3)

for each i = 1, . . . , n, when u is the optimum solution to problem (2). We can use
this fact to derive Algorithm 2, a greedy algorithm for optimizing the phase problem.

Algorithm 2 Greedy algorithm in phase.
Input: An initial u ∈ C

n such that |ui | = 1, i = 1, . . . , n. An integer N > 1.
1: for k = 1, . . . , N do
2: for i = 1, . . . n do
3: Set

ui = −∑
j �=i M ji ū j∣∣∣∑ j �=i M ji ū j

∣∣∣

4: end for
5: end for
Output: u ∈ C

n such that |ui | = 1, i = 1, . . . , n.

This greedy algorithm converges to a stationary point u∞, but it is generally not a
global solution of problem (2), and hence |AA†diag(u∞)b| �= b. It has often nearly
the same stationary points as the Gerchberg–Saxton algorithm. One can indeed verify
that if u∞ is a stationary point then y∞ = diag(u∞)b is a stationary point of the
Gerchberg–Saxton algorithm. Conversely if b has no zero coordinate and y∞ is a stable
stationary point of the Gerchberg–Saxton algorithm then u∞

i = y∞
i /|y∞

i | defines a
stationary point of the greedy algorithm in phase.

If Ax can be computed with a fast algorithm using O(n log n) operations, which is
the case for Fourier or wavelets transform operators for example, then each Gerchberg–
Saxton iteration is computed with O(n log n) operations. The greedy phase algorithm
above does not take advantage of this fast algorithm and requires O(n2) operations to
update all coordinates ui for each iteration k. However, we will see in Sect. 3.6 that a
small modification of the algorithm allows for O(n log n) iteration complexity.

2.4 Complex MaxCut

Following the classical relaxation argument in [25,32,37,41], we first write U =
uu∗ ∈ Hn . Problem (2), written

QP(M) � min. u∗Mu
subject to |ui | = 1, i = 1, . . . n,

in the variable u ∈ C
n , is equivalent to

123

Phase recovery

min. Tr(U M)
subject to diag(U) = 1

U � 0, Rank(U) = 1,

in the variable U ∈ Hn . After dropping the (nonconvex) rank constraint, we obtain
the following convex relaxation

SDP(M) � min. Tr(U M)
subject to diag(U) = 1, U � 0,

(PhaseCut)

which is a SDP in the matrix U ∈ Hn and can be solved efficiently. When the solution
of problem PhaseCut has rank one, the relaxation is tight and the vector u such that
U = uu∗ is an optimal solution of the phase recovery problem (2). If the solution has
rank larger than one, a normalized leading eigenvector v of U is used as an approximate
solution, and diag(U −vvT) gives a measure of the uncertainty around the coefficients
of v.

In practice, semidefinite programming solvers are rarely designed to directly han-
dle problems written over Hermitian matrices and start by reformulating complex
programs in Hn as real SDPs over S2n based on the simple facts that follow. For
Z ,Y ∈ Hn , we define T (Z) ∈ S2n as in [24]

T (Z) =
(

Re(Z) − Im(Z)
Im(Z) Re(Z)

)
(4)

so that Tr(T (Z)T (Y)) = 2Tr(ZY). By construction, Z ∈ Hn iff T (Z) ∈ S2n . One
can also check that z = x + iy is an eigenvector of Z with eigenvalue λ if and only if

(
x
y

)
and

(−y
x

)

are eigenvectors of T (Z), both with eigenvalue λ (depending on the normalization of
z, one corresponds to (Re(z), Im(z)), the other one to (Re(i z), Im(i z)). This means
in particular that Z � 0 if and only if T (Z) � 0.

We can use these facts to formulate an equivalent SDP over real symmetric matrices,
written

minimize Tr(T (M)X)
subject to Xi,i + Xn+i,n+i = 2

Xi, j = Xn+i,n+ j , Xn+i, j = −Xi,n+ j , i, j = 1, . . . , n,
X � 0,

in the variable X in S2n . This last problem is equivalent to PhaseCut. In fact, because
of symmetries in T (M), the equality constraints enforcing symmetry can be dropped,
and this problem is equivalent to a MaxCut like problem in dimension 2n, which reads

minimize Tr(T (M)X)
subject to diag(X) = 1, X � 0,

(5)

123

I. Waldspurger et al.

in the variable X in S2n . As we will see below, formulating a relaxation to the phase
recovery problem as a complex MaxCut-like SDP has direct computational benefits.

3 Algorithms

In the previous section, we have approximated the phase recovery problem (2) by a
convex relaxation, written

minimize Tr(UM)
subject to diag(U) = 1, U � 0,

which is a SDP in the matrix U ∈ Hn . The dual, written

max
w∈Rn

nλmin(M + diag(w))− 1Tw, (6)

is a minimum eigenvalue maximization problem in the variable w ∈ R
n . Both primal

and dual can be solved efficiently. When exact phase recovery is possible, the optimum
value of the primal problem PhaseCut is zero and we must have λmin(M) = 0, which
means that w = 0 is an optimal solution of the dual.

3.1 Interior point methods

For small scale problems, with n ∼ 102, generic interior point solvers such as SDPT3
[49] solve problem (5) with a complexity typically growing as O

(
n4.5 log(1/ε)

)
where

ε > 0 is the target precision [3, §4.6.3]. Exploiting the fact that the 2n equality
constraints on the diagonal in (5) are singletons, [28] derive an interior point method
for solving the MaxCut problem, with complexity growing as O

(
n3.5 log(1/ε)

)
where

the most expensive operation at each iteration is the inversion of a positive definite
matrix, which costs O(n3) flops.

3.2 First-order methods

When n becomes large, the cost of running even one iteration of an interior point solver
rapidly becomes prohibitive. However, we can exploit the fact that the dual of problem
(5) can be written (after switching signs) as a maximum eigenvalue minimization
problem. Smooth first-order minimization algorithms detailed in [38] then produce an
ε-solution after

O

(
n3√log n

ε

)

floating point operations. Each iteration requires forming a matrix exponential, which
costs O(n3) flops. This is not strictly smaller than the iteration complexity of special-
ized interior point algorithms, but matrix structure often allows significant speedup in
this step. Finally, the simplest subgradient methods produce an ε-solution in

123

Phase recovery

O

(
n2 log n

ε2

)

floating point operations. Each iteration requires computing a leading eigenvector
which has complexity roughly O(n2 log n).

3.3 Block coordinate descent

We can also solve the SDP in PhaseCut using a block coordinate descent algorithm.
While no explicit complexity bounds are available for this method in our case, the
algorithm is particularly simple and has a very low cost per iteration (it only requires
computing a matrix vector product). We write i c the index set {1, . . . , i − 1, i +
1, . . . , n} and describe the method as Algorithm 3.

Block coordinate descent is widely used to solve statistical problems where the
objective is separable (LASSO is a typical example) and was shown to efficiently
solve SDPs arising in covariance estimation [17]. These results were extended by [52]
to a broader class of SDPs, including MaxCut. We briefly recall its simple construction
below, applied to a barrier version of the MaxCut relaxation PhaseCut, written

minimize Tr(UM)− μ log det(U)
subject to diag(U) = 1

(7)

which is a SDP in the matrix U ∈ Hn , where μ > 0 is the barrier parameter. As in
interior point algorithms, the barrier enforces positive semidefiniteness and the value
of μ > 0 precisely controls the distance between the optimal solution to (7) and the
optimal set of PhaseCut. We refer the reader to [8] for further details. The key to
applying coordinate descent methods to problems penalized by the log det(·) barrier
is the following block-determinant formula

det(U) = det(B) det(y − xT B−1x), when U =
(

B x
xT y

)
, U
 0. (8)

This means that, all other parameters being fixed, minimizing the function det(X) in
the row and column block of variables x , is equivalent to minimizing the quadratic form
y − xT Z−1x , arguably a much simpler problem. Solving the SDP (7) row/column by
row/column thus amounts to solving the simple problem (9) described in the following
lemma.

Lemma 1 Suppose σ > 0, c ∈ R
n−1, and B ∈ Sn−1 are such that b �= 0 and B
 0,

then the optimal solution of the block problem

min
x

cT x − σ log(1 − xT B−1x) (9)

is given by

x =
√
σ 2 + γ − σ

γ
Bc

whereγ = cT Bc.

123

I. Waldspurger et al.

Proof As in [52], a direct consequence of the first order optimality conditions for (9).
��

Here, we see problem (7) as an unconstrained minimization problem over the off-
diagonal coefficients of U , and (8) shows that each block iteration amounts to solving a
minimization subproblem of the form (9). Lemma 1 then shows that this is equivalent to
computing a matrix vector product. Linear convergence of the algorithm is guaranteed
by the result in [8, §9.4.3] and the fact that the function log det is strongly convex over
compact subsets of the positive semidefinite cone. So the complexity of the method
is bounded by O

(
log 1

ε

)
but the constant in this bound depends on n here, and the

dependence cannot be quantified explicitly.

Algorithm 3 Block coordinate descent algorithm for PhaseCut.
Input: An initial X0 = In and ν > 0 (typically small). An integer N > 1.
1: for k = 1, . . . , N do
2: Pick i ∈ [1, n].
3: Compute

x = Xk
ic,ic Mic,i and γ = x∗Mic,i

4: If γ > 0, set

Xk+1
ic,i = Xk+1∗

i,ic = −
√

1 − ν

γ
x

else

Xk+1
ic,i = Xk+1∗

i,ic = 0.

5: end for
Output: A matrix X � 0 with diag(X) = 1.

3.4 Initialization and randomization

Suppose the Hermitian matrix U solves the semidefinite relaxation PhaseCut. As in
[4,24,44,54], we generate complex Gaussian vectors x ∈ C

n with x ∼ NC(0,U),
and for each sample x , we form z ∈ C

n such that

zi = xi

|xi | , i = 1, . . . , n.

All the sample points z generated using this procedure satisfy |zi | = 1, hence are
feasible points for problem (2). This means in particular that QP(M) ≤ E[z∗Mz]. In
fact, this expectation can be computed almost explicitly, using

E[zz∗] = F(U), with F(w) = 1

2
ei arg(w)

π∫

0

cos(θ) arcsin(|w| cos(θ))dθ

123

Phase recovery

where F(U) is the matrix with coefficients F(Ui j), i, j = 1, . . . , n. We then get

SDP(M) ≤ QP(M) ≤ Tr(MF(U)) (10)

In practice, to extract good candidate solutions from the solution U to the SDP relax-
ation in PhaseCut, we sample a few points from NC(0,U), normalize their coordinates
and simply pick the point which minimizes z∗Mz.

This sampling procedure also suggests a simple spectral technique for computing
rough solutions to problem PhaseCut: compute an eigenvector of M corresponding
to its lowest eigenvalue and simply normalize its coordinates (this corresponds to
the simple bound on MaxCut by [18]). The information contained in U can also
be used to solve a robust formulation [5] of problem (1) given a Gaussian model
u ∼ NC(0,U).

3.5 Approximation bounds

The SDP in PhaseCut is a MaxCut-type graph partitioning relaxation whose perfor-
mance has been studied extensively. Note however that most approximation results for
MaxCut study maximization problems over positive semidefinite or nonnegative matri-
ces, while we are minimizing in PhaseCut so, as pointed out in [30,45] for example,
we do not inherit the constant approximation ratios that hold in the classical MaxCut
setting.

3.6 Exploiting structure

In some instances, we have additional structural information on the solution of prob-
lems (1) and (2), which usually reduces the complexity of approximating PhaseCut
and improves the quality of the approximate solutions. We briefly highlight a few
examples below.

3.6.1 Symmetries

In some cases, e.g. signal processing examples where the signal is symmetric, the opti-
mal solution u has a known symmetry pattern. For example, we might have u(k− − i)
= u(k+ + i) for some k−, k+ and indices i ∈ [0, k− −1]. This means that the solution
u to problem (1) can be written u = Pv, where v ∈ C

q with q < n, and we can solve
(1) by focusing on the smaller problem

minimize v∗ P∗M Pv
subject to |(Pv)i | = 1, i = 1, . . . n,

in the variable v ∈ C
q . We reconstruct a solution u to (1) from a solution v to the

above problem as u = Pv. This produces significant computational savings.

123

I. Waldspurger et al.

3.6.2 Alignment

In other instances, we might have prior knowledge that the phases of certain samples
are aligned, i.e. that there is an index set I such that ui = u j , for all i, j ∈ I , this
reduces to the symmetric case discussed above when the phase is arbitrary. W.l.o.g.,
we can also fix the phase to be one, with ui = 1 for i ∈ I , and solve a constrained
version of the relaxation PhaseCut

min. Tr(UM)
subject to Ui j = 1, i, j ∈ I,

diag(U) = 1, U � 0,

which is a SDP in U ∈ Hn .

3.6.3 Fast Fourier transform

If the product Mx can be computed with a fast algorithm in O(n log n) operations,
which is the case for Fourier or wavelet transform operators, we significantly speed
up the iterations of Algorithm 3 to update all coefficients at once. Each iteration of the
modified Algorithm 3 then has cost O(n log n) instead of O(n2).

3.6.4 Real valued signal

In some cases, we know that the solution vector x in (1) is real valued. Problem (1)
can be reformulated to explicitly constrain the solution to be real, by writing it

min
u∈Cn , |ui |=1,

x∈Rp

‖Ax − diag(b)u‖2
2

or again, using the operator T (·) defined in (4)

minimize

∥∥∥∥T (A)
(

x
0

)
− diag

(
b
b

) (
Re(u)
Im(u)

)∥∥∥∥
2

2
subject to u ∈ C

n, |ui | = 1
x ∈ R

p.

The optimal solution of the inner minimization problem in x is given by x = A†
2 B2v,

where

A2 =
(

Re(A)
Im(A)

)
, B2 = diag

(
b
b

)
, and v =

(
Re(u)
Im(u)

)

hence the problem is finally rewritten

minimize ‖(A2 A†
2 B2 − B2)v‖2

2
subject to v2

i + v2
n+i = 1, i = 1, . . . , n,

123

Phase recovery

in the variable v ∈ R
2n . This can be relaxed as above by the following problem

minimize Tr(V M2)

subject to Vii + Vn+i,n+i = 1, i = 1, . . . , n,
V � 0,

which is a SDP in the variable V ∈ S2n , where M2 = (A2 A†
2 B2 − B2)

T (A2 A†
2 B2 −

B2) = BT
2 (I − A2 A†

2)B2.

4 Matrix completion and exact recovery conditions

In Candes et al. [13] and Chai et al. [14], phase recovery (1) is cast as a matrix
completion problem. We briefly review this approach and compare it with the SDP in
PhaseCut. Given a signal vector b ∈ R

n and a sampling matrix A ∈ C
n×p, we look

for a vector x ∈ C
p satisfying

|a∗
i x | = bi , i = 1, . . . , n,

where the vector a∗
i is the i th row of A and x ∈ C

p is the signal we are trying to
reconstruct. The phase recovery problem is then written as

minimize Rank(X)
subject to Tr(ai a∗

i X) = b2
i , i = 1, . . . , n

X � 0

in the variable X ∈ Hp, where X = xx∗ when exact recovery occurs. This last problem
can be relaxed as

minimize Tr(X)
subject to Tr(ai a∗

i X) = b2
i , i = 1, . . . , n

X � 0
(PhaseLift)

which is a SDP (called PhaseLift by [13]) in the variable X ∈ Hp. Recent results in
[10,11] give explicit (if somewhat stringent) conditions on A and x under which the
relaxation is tight (i.e. the optimal X in PhaseLift is unique, has rank one, with leading
eigenvector x).

4.1 Weak formulation

We also introduce a weak version of PhaseLift, which is more directly related to
PhaseCut and is easier to interpret geometrically. It was noted in [10] that, when
I ∈ span{ai a∗

i }n
i=1, the condition Tr(ai a∗

i X) = b2
i , i = 1, . . . , n determines Tr(X),

so in this case the trace minimization objective is redundant and PhaseLift is equivalent
to

123

I. Waldspurger et al.

find X
subject to Tr(ai a∗

i X) = b2
i , i = 1, . . . , n

X � 0.
(Weak PhaseLift)

When I /∈ span{ai a∗
i }n

i=1 on the other hand, Weak PhaseLift and PhaseLift are not
equivalent: solutions of PhaseLift solve Weak PhaseLift too but the converse is not true.
Interior point solvers typically pick a solution at the analytic center of the feasible set
of Weak PhaseLift which in general can be significantly different from the minimum
trace solution.

However, in practice, the removal of trace minimization does not really seem to alter
the performances of the algorithm. We will illustrate this affirmation with numerical
experiments in Sect. 5.4 and a formal proof is given in [19] who showed that, in the
case of Gaussian random measurements, the relaxation of Weak PhaseLift was tight
with high probability under the same conditions as PhaseLift.

4.2 Phase recovery as a projection

We will see in what follows that phase recovery can interpreted as a projection problem.
These results will prove useful later to study stability. The PhaseCut reconstruction
problem defined in PhaseCut is written

minimize Tr(UM)
subject to diag(U) = 1, U � 0,

with M = diag(b)(I − AA†)diag(b). In what follows, we assume bi �= 0,
i = 1, . . . , n, which means that, after scaling U , solving PhaseCut is equivalent
to solving

minimize Tr(V (I − AA†))

subject to diag(V) = b2, V � 0.
(11)

In the following lemma, we show that this last SDP can be understood as a projection
problem on a section of the semidefinite cone using the trace (or nuclear) norm. We
define

F = {V ∈ Hn : x∗V x = 0,∀x ∈ R(A)⊥}

which is also F = {V ∈ Hn : (I − AA†)V (I − AA†) = 0}, and we now formulate
the objective of problem (11) as a distance (Fig. 1).

Lemma 2 For all V ∈ Hn such that V � 0,

Tr(V (I − AA†)) = d1(V,F) (12)

where d1 is the distance associated to the trace norm.

123

Phase recovery

Fig. 1 Schematic representation
of the sets involved in Eqs. (13)
and (14): the cone of positive
hermitian matrices H

+
n (in light

grey), its intersection with the
affine subspace Hb , and
F ∩ H

+
n , which is a face of H

+
n

Proof Let B1 (resp. B2) be an orthonormal basis of range A (resp. (range A)⊥). Let T
be the transformation matrix from canonical basis to orthonormal basis B1 ∪B2. Then

F = {V ∈ Hn s.t. T −1V T =
(

S1 S2
S∗

2 0

)
, S1 ∈ Hp, S2 ∈ Mp,n−p}

As the transformation X → T −1 XT preserves the nuclear norm, for every matrix
V � 0, if we write

T −1V T =
(

V1 V2
V ∗

2 V3

)

then the orthogonal projection of V onto F is

W = T

(
V1 V2
V ∗

2 0

)
T −1,

so d1(V,F) = ‖V −W‖1 = ‖
(

0 0
0 V3

)
‖1. As V � 0,

(
V1 V2
V ∗

2 V3

)
� 0 hence

(
0 0
0 V3

)
�

0, so d1(V,F) = Tr
(

0 0
0 V3

)
. Because AA† is the orthogonal projection onto R(A),

we have T −1(I − AA†)T =
(

0 0
0 I

)
hence

d1(V,F) = Tr
(

0 0
0 V3

)
= Tr((T −1V T)(T −1(I − AA†)T)) = Tr(V (I − AA†))

which is the desired result. ��
This means that PhaseCut can be written as a projection problem, i.e.

minimize d1(V,F)
subject to V ∈ H+

n ∩ Hb
(13)

123

I. Waldspurger et al.

in the variable V ∈ Hn , where Hb = {V ∈ Hn s.t. Vi,i = b2
i , i = 1, . . . , n}. More-

over, with ai the i-th row of A, we have for all X ∈ H+
p ,Tr(ai a∗

i X) = a∗
i Xai =

diag(AX A∗)i , i = 1, . . . , n, so if we call V = AXA∗ ∈ F , when A is injective,
X = A†V A†∗ and Weak PhaseLift is equivalent to

find V ∈ H+
n ∩ F

subject to diag(V) = b2.

First order algorithms for Weak PhaseLift will typically solve

minimize d(diag(V), b2)

subject to V ∈ H+
n ∩ F

for some distance d over R
n . If d is the ls-norm, for any s ≥ 1, d(diag(V), b2) =

ds(V,Hb), where ds is the distance generated by the Schatten s-norm, the algorithm
becomes

minimize ds(V,Hb)

subject to V ∈ H+
n ∩ F (14)

which is another projection problem in V .
Thus, PhaseCut and Weak PhaseLift are comparable, in the sense that both algo-

rithms aim at finding a point of H
+
n ∩F ∩Hb but PhaseCut does so by picking a point

of H
+
n ∩ Hb and moving towards F while Weak PhaseLift moves a point of H

+
n ∩ F

towards Hb. We can push the parallel between both relaxations much further. We will
show in what follows that, in a very general case, PhaseLift and a modified version
of PhaseCut are simultaneously tight. We will also be able to compare the stability of
Weak PhaseLift and PhaseCut when measurements become noisy.

4.3 Tightness of the semidefinite relaxation

We will now formulate a refinement of the semidefinite relaxation in PhaseCut and
prove that this refinement is equivalent to the relaxation in PhaseLift under mild
technical assumptions. Suppose u is the optimal phase vector, we know that the optimal
solution to (1) can then be written x = A†diag(b)u, which corresponds to the matrix
X = A†diag(b)uu∗diag(b)A†∗ in PhaseLift, hence

Tr(X) = Tr(diag(b)A†∗ A†diag(b)uu∗).

Writing B = diag(b)A†∗ A†diag(b), when problem (1) is solvable, we look for the
“minimum trace” solution among all the optimal points of relaxation PhaseCut by
solving

SDP2(M) � min. Tr(BU)
subject to Tr(MU) = 0

diag(U) = 1, U � 0,
(PhaseCutMod)

123

Phase recovery

which is a SDP in U ∈ Hn . When problem (1) is solvable, then every optimal solution
of the semidefinite relaxation PhaseCut is a feasible point of relaxation PhaseCutMod.
In practice, the SDP SDP(M + γ B), written

minimize Tr((M + γ B)U)
subject to diag(U) = 1, U � 0,

obtained by replacing M by M + γ B in problem PhaseCut, will produce a solution
to PhaseCutMod whenever γ > 0 is sufficiently small (this is essentially the exact
penalty method detailed in [6, §4.3] for example). This means that all algorithms
(greedy or SDP) designed to solve the original PhaseCut problem can be recycled
to solve PhaseCutMod with negligible effect on complexity. We now show that the
PhaseCutMod and PhaseLift relaxations are simultaneously tight when A is injective.
An earlier version of this paper showed PhaseLift tightness implies PhaseCut tightness
and the argument was reversed in [50] under mild additional assumptions.

Proposition 1 Assume that bi �= 0 for i = 1, . . . , n, that A is injective and that there
is a solution x to (1). The function

Φ : Hp → Hn

X �→ Φ(X) = diag(b)−1 AX A∗diag(b)−1

is a bijection between the feasible points of PhaseCutMod and those of PhaseLift.

Proof Note that Φ is injective whenever b > 0 and A has full rank. We have to show
that U is a feasible point of PhaseCutMod if and only if it can be written under the
form Φ(X), where X is feasible for PhaseLift. We first show that

Tr(MU) = 0, U � 0, (15)

is equivalent to

U = Φ(X) (16)

for some X � 0. Observe that Tr(UM) = 0 means UM = 0 because U,M � 0, hence
Tr(MU) = 0 in (15) is equivalent to

AA†diag(b)Udiag(b) = diag(b)Udiag(b)

because b > 0 and M = diag(b)(I−AA†)diag(b). If we set X = A†diag(b)Udiag(b)
A†∗, this last equality implies both

AX = AA†diag(b)Udiag(b)A†∗ = diag(b)Udiag(b)A†∗

and

AXA∗ = diag(b)Udiag(b)A†∗ A∗ = diag(b)Udiag(b)

123

I. Waldspurger et al.

which is U = Φ(X), and shows (15) implies (16). Conversely, if U = Φ(X) then
diag(b)Udiag(b) = AXA∗ and using AA† A = A, we get AXA∗ = AA†AXA∗ =
AA†diag(b)Udiag(b) which means MU = 0, hence (15) is in fact equivalent to (16)
since U � 0 by construction.

Now, if X is feasible for PhaseLift, we have shown Tr(MΦ(X)) = 0 andφ(X) � 0,
moreover diag(Φ(X))i = Tr(ai a∗

i X)/b2
i = 1, so U = Φ(X) is a feasible point of

PhaseCutMod. Conversely, if U is feasible for PhaseCutMod, we have shown that
there exists X � 0 such that U = Φ(X) which means diag(b)Udiag(b) = AX A∗.
We also have Tr(ai a∗

i X) = b2
i Uii = b2

i , which means X is feasible for PhaseLift and
concludes the proof. ��

We now have the following central corollary showing the equivalence between
PhaseCutMod and PhaseLift in the noiseless case.

Corollary 1 If A is injective, bi �= 0 for all i = 1, . . . , n and if the reconstruction
problem (1) admits an exact solution, then PhaseCutMod is tight (i.e. has a unique
rank one solution) whenever PhaseLift is.

Proof When A is injective, Tr(X) = Tr(BΦ(X)) and Rank(X) = Rank(Φ(X)).
��

This last result shows that in the noiseless case, the relaxations PhaseLift and
PhaseCutMod are in fact equivalent. In the same way, we could have shown that Weak
PhaseLift and PhaseCut were equivalent. The performances of both algorithms may
not match however when the information on b is noisy and perfect recovery is not
possible.

Remark 1 Note that Proposition 1 and Corollary 1 also hold when the initial signal is
real and the measurements are complex. In this case, we define the B in PhaseCutMod
by B = B2 A†∗

2 A†
2 B2 (with the notations of paragraph 3.6.4). We must also replace

the definition of Φ by Φ(X) = B−1
2 A2 X A∗

2 B−1
2 . Furthermore, all steps in the proof

of Proposition 1 are still valid if we replace M by M2, A by A2 and diag(b) by B2.
The only difference is that now 1

b2
i
Tr(ai a∗

i X) = diag(Φ(X))i + diag(Φ(X))n+i .

4.4 Stability in the presence of noise

We now consider the case where the vector of measurements b is of the form b =
|Ax0| + bnoise. We first introduce a definition of C-stability for PhaseCut and Weak
PhaseLift. The main result of this section is that, when the Weak PhaseLift solution
in (14) is stable at a point, PhaseCut is stable too, with a constant of the same order.
The converse does not seem to be true when b is sparse.

Definition 1 Let x0 ∈ C
n,C > 0. The algorithm PhaseCut (resp. Weak PhaseLift) is

said to be C-stable at x0 iff for all bnoise ∈ R
n close enough to zero, every minimizer

V of Eq. (13) (resp. (14)) with b = |Ax0| + bnoise, satisfies

‖V − (Ax0)(Ax0)
∗‖2 ≤ C‖Ax0‖2‖bnoise‖2.

123

Phase recovery

The following matrix perturbation result motivates this definition, by showing that
a C-stable algorithm generates a O(C‖bnoise‖2)-error over the signal it reconstructs.

Proposition 2 Let C > 0 be arbitrary. We suppose that Ax0 �= 0 and ‖V −
(Ax0)(Ax0)

∗‖2 ≤ C‖Ax0‖2‖bnoise‖2 ≤ ‖Ax0‖2
2/2. Let y be V ’s main eigenvector,

normalized so that (Ax0)
∗y = ‖Ax0‖2. Then

‖y − Ax0‖2 = O(C‖bnoise‖2),

and the constant in this last equation does not depend upon A, x0,C or ‖b‖2.

Proof We use [20, Eq. 10] for

u = Ax0

‖Ax0‖2
v = y

‖Ax0‖2
E = V − (Ax0)(Ax0)

∗

‖Ax0‖2
2

This result is based on [29, Eq. 3.29], which gives a precise asymptotic expansion of
u − v. For our purposes here, we only need the first-order term. See also [7,47] or
[46] among others for a complete discussion. We get ‖v − u‖ = O(‖E‖2) because if
M = uu∗, then ‖R‖∞ = 1 in [20, Eq. 10]. This implies

‖y − Ax0‖2 = ‖Ax0‖2‖u − v‖ = O

(‖V − (Ax0)(Ax0)
∗‖2

‖Ax0‖2

)
= O(C‖bnoise‖)

which is the desired result. ��
Note that normalizing y differently, we would obtain ‖y − Ax0‖2 ≤ 4C‖bnoise‖2.

We now show the main result of this section, according to which PhaseCut is “almost
as stable as” Weak PhaseLift. In practice of course, the exact values of the stability
constants has no importance, what matters is that they are of the same order.

Theorem 1 Let A ∈ C
n×m, for all x0 ∈ C

n,C > 0, if Weak PhaseLift is C-stable in
x0, then PhaseCut is (2C + 2

√
2 + 1)-stable in x0.

Proof Let x0 ∈ C
n,C > 0 be such that Weak PhaseLift is C-stable in x0. Ax0 is a

non-zero vector (because, with our definition, neither Weak PhaseLift nor PhaseCut
may be stable in x0 if Ax0 = 0 and A �= 0). We set D = 2C +2

√
2+1 and suppose by

contradiction that PhaseCut is not D-stable in x0. Let ε > 0 be arbitrary. Let bn,PC ∈ R
n

be such that ‖bn,PC‖2 ≤ max(‖Ax0‖2, ε/2) and such that, for b = |Ax0| + bn,PC, the
minimizer VPC of (13) verifies

‖VPC − (Ax0)(Ax0)
∗‖2 > D‖Ax0‖2‖bn,PC‖2

Such a VPC must exist or PhaseCut would be D-stable in x0. We call V //
PC the restriction

of VPC to range(A) (that is, the matrix such that x∗(V //
PC)y = x∗(VPC)y if x, y ∈

range(A) and x∗(V //
PC)y = 0 if x ∈ range(A)⊥ or y ∈ range(A)⊥) and V ⊥

PC the

restriction of VPC to range(A)⊥. Let us set bn,PL =
√

V //
PC ii −|Ax0|i i for i = 1, . . . , n.

123

I. Waldspurger et al.

As V //
PC ∈ H+

n ∩F , V //
PC minimizes (14) for b = |Ax0| + bn,PL (because V //

PC ∈ Hb).

Lemmas 3 and 4 (proven in the appendix) imply that ‖V //
PC − (Ax0)(Ax0)

∗‖2 >

C‖Ax0‖2‖bn,PL‖2 and ‖bn,PL‖2 ≤ ε. As ε is arbitrary, Weak PhaseLift is not C-stable
in x0, which contradicts our hypotheses. Consequently, PhaseCut is (2C + 2

√
2 + 1)-

stable in x0. ��
Theorem 1 is still true if we replace 2C + 2

√
2 + 1 by any D > 2C + √

2. We
only have to replace, in the demonstration, the inequality ‖bn,PC‖2 ≤ ‖Ax0‖2 by
‖bn,PC‖2 ≤ α‖Ax0‖2 with α = D − (2C + √

2)/(1 + √
2). Also, the demonstration

of this theorem is based on the fact that, when VPC solves (13), one can construct some
VP L = V //

PC close to VPC , which is an approximate solution of (14). It is natural to
wonder whether, conversely, from a solution VP L of (14), one can construct an approx-
imate solution VPC of (13). It does not seem to be the case. One could for example
imagine setting VPC = diag(R)VP L diag(R), where Ri = bi/

√
VP L ii . Then VPC

would not necessarily minimize (13) but at least belong to Hb. But ‖VPC − VP L‖2
might be quite large: (14) implies that ‖diag(VP L)− b2‖s is small but, if some coef-
ficients of b are very small, some Ri may still be huge, so diag(R) �≈ I. This does
happen in practice (see Sect. 5.5).

To conclude this section, we relate this definition of stability to the one introduced
in [11]. Suppose that A is a matrix of random gaussian independant measurements
such that E[|Ai, j |2] = 1 for all i, j . We also suppose that n ≥ c0 p (for some c0
independent of n and p). In the noisy setting, [11] showed that the minimizer X of a
modified version of PhaseLift satisfies with high probability

||X − x0x∗
0 ||2 ≤ C0

|| |Ax0|2 − b2 ||1
n

(17)

for some C0 independent of all variables. Assuming that the Weak PhaseLift solution
in (14) behaves as PhaseLift in a noisy setting and that (17) also holds for Weak
PhaseLift, then

||AX A∗ − (Ax0)(Ax0)
∗||2 ≤ ||A||2∞||X − x0x∗

0 ||2
≤ C0

||A||2∞
n

|| |Ax0|2 − b2 ||1

≤ C0
||A||2∞

n
(2||Ax0||2 + ||bnoise||2)||bnoise||2

Consequently, for any C > 2C0
||A||2∞

n , Weak PhaseLift is C-stable in all x0. With
high probability, ||A||2∞ ≤ (1 + 1/8)n (it is a corollary of [11, Lemma 2.1]) so
Weak PhaseLift (and thus also PhaseCut) is C-stable with high probability for some
C independent of all parameters of the problem.

4.5 Perturbation results

We recall here sensitivity analysis results for semidefinite programming from [48,53],
which produce explicit bounds on the impact of small perturbations in the observation

123

Phase recovery

vector b2 on the solution V of the SDP (11). Roughly speaking, these results show that
if b2 + bnoise remains in an explicit ellipsoid (called Dikin’s ellipsoid), then interior
point methods converge back to the solution in one full Newton step, hence the impact
on V is linear, equal to the Newton step. These results are more numerical in nature
than the stability bounds detailed in the previous section, but they precisely quantify
both the size and, perhaps more importantly, the geometry of the stability region.

4.6 Complexity comparisons

Both the relaxation in PhaseLift and that in PhaseCut are SDPs and we highlight below
the relative complexity of solving these problems depending on algorithmic choices
and precision targets. Note that, in their numerical experiments, [13] solve a penalized
formulation of problem PhaseLift, written

min
X�0

n∑
i=1

(Tr(ai a
∗
i X)− b2

i)
2 + λTr(X) (18)

in the variable X ∈ Hp, for various values of the penalty parameter λ > 0.
The trace norm promotes a low rank solution, and solving a sequence of weighted

trace-norm problems has been shown to further reduce the rank in [13,21]. This method
replaces Tr(X) by Tr(Wk X)where W0 is initialized to the identity I . Given a solution
Xk of the resulting SDP, the weighted matrix is updated to Wk+1 = (Xk + ηI)−1

(see [21] for details). We denote by K the total number of such iterations, typically of
the order of 10. Trace minimization is not needed for the SDP (PhaseCut), where the
trace is fixed because we optimize over a normalized phase vector. However, weighted
trace-norm iterations could potentially improve performance in PhaseCut as well.

Recall that p is the size of the signal and n is the number of measured samples
with n = J p in the examples reviewed in Sect. 5. In the numerical experiments in
[13] as well as in this paper, J = 3, 4, 5. The complexity of solving the PhaseCut and
PhaseLift relaxations in PhaseLift using generic semidefinite programming solvers
such as SDPT3 [49], without exploiting structure, is given by

O

(
J 4.5 p4.5 log

1

ε

)
and O

(
K J 2 p4.5 log

1

ε

)

for PhaseCut and PhaseLift respectively [3, § 6.6.3]. The fact that the constraint matri-
ces have only one nonzero coefficient in PhaseCut can be exploited (the fact that the
constraints ai a∗

i are rank one in PhaseLift helps, but it does not modify the principal
complexity term) so we get

O

(
J 3.5 p3.5 log

1

ε

)
and O

(
K J 2 p4.5 log

1

ε

)

for PhaseCut and PhaseLift respectively using the algorithm in [28] for example. If
we use first-order solvers such as TFOCS [2], based on the optimal algorithm in [36],
the dependence on the dimension can be further reduced, tobecome

123

I. Waldspurger et al.

O

(
J 3 p3

ε

)
and O

(
K J p3

ε

)

for solving a penalized version of the PhaseCut relaxation and the penalized formula-
tion of PhaseLift in (18). While the dependence on the signal dimensions p is somewhat
reduced, the dependence on the target precision grows from log(1/ε) to 1/ε. Finally,
the iteration complexity of the block coordinate descent Algorithm 3 is substantially
lower and its convergence is linear, but no fully explicit bounds on the number of
iterations are known in our case. The complexity of the method is then bounded by
O

(
log 1

ε

)
but the constant in this bound depends on n here, and the dependence cannot

be quantified explicitly.
Algorithmic choices are ultimately guided by precision targets. If ε is large enough

so that a first-order solver or a block coordinate descent can be used, the complexity
of PhaseCut is not significantly better than that of PhaseLift. On the contrary, when
ε is small, we must use an interior point solver, for which PhaseCut’s complexity is
an order of magnitude lower than that of PhaseLift because its constraint matrices are
singletons. In practice, the target value for ε strongly depends on the sampling matrix
A. For example, when A corresponds to the convolution by 6 Gaussian random filters
(Sect. 5.2), to reconstruct a Gaussian white noise of size 64 with a relative precision
of η, we typically need ε ∼ 2.10−1η. For 4 Cauchy wavelets (Sect. 5.3), it is twenty
times less, with ε ∼ 10−2η. For other types of signals than Gaussian white noise, we
may even need ε ∼ 10−3η.

4.7 Greedy refinement

If the PhaseCut or PhaseLift algorithms do not return a rank one matrix then an approx-
imate solution of the phase recovery problem is obtained by extracting a leading eigen-
vector v. For PhaseCut and PhaseLift, x̃ = A†diag(b)v and x̃ = v are respectively
approximate solutions of the phase recovery problem with |Ax̃ | �= b = |Ax |. This
solution is then refined by applying the Gerchberg–Saxton algorithm initialized with
x̃ . If x̃ is sufficiently close to x then, according to numerical experiments of Sect. 5, this
greedy algorithm converges to λ x with |λ| = 1. These greedy iterations require much
less operations than PhaseCut and PhaseLift algorithms, and thus have no significant
contribution to the computational complexity.

4.8 Sparsity

Minimizing Tr(X) in the PhaseLift problem means looking for signals which match
the modulus constraints and have minimum �2 norm. In some cases, we have a priori
knowledge that the signal we are trying to reconstruct is sparse, i.e. Card(x) is small.
The effect of imposing sparsity was studied in e.g. [31,35,39].

Assuming n ≤ p, the set of solutions to ‖Ax − diag(b)u‖2 is written x =
A†diag(b)u + Fv where F is a basis for the nullspace of A. In this case, when
the rows of A are independent, AA† = I and the reconstruction problem with a �1
penalty promoting sparsity is then written

123

Phase recovery

minimize ‖A†diag(b)u + Fv‖2
1

subject to |ui | = 1,

in the variables u ∈ C
p and y ∈ C

p−n . Using the fact that ‖y‖2
1 = ‖yy∗‖�1 , this can

be relaxed as

minimize ‖VUV∗‖�1

subject to U � 0, |Uii | = 1, i = 1, . . . , n,

which is a SDP in the (larger) matrix variable U ∈ Hp and V = (A†diag(b), F).
On the other hand, when n > p and A is injective, the matrix F disappears, taking

sparsity into account simply amounts to adding an l1 penalization to PhaseCut. As
noted in [50] however, the effect of an �1 penalty on least-squares solutions is not
completely clear.

5 Numerical results

In this section, we compare the numerical performance of the Gerchberg–Saxton
(greedy), PhaseCut and PhaseLift algorithms on various phase recovery problems. As
in [13], the PhaseLift problem is solved using the package in [2], with reweighting,
using K = 10 outer iterations and 1,000 iterations of the first order algorithm. The
PhaseCut and Gerchberg–Saxton algorithms described here are implemented in a pub-
lic software package available at http://www.cmap.polytechnique.fr/scattering/code/
phaserecovery.zip.

These phase recovery algorithms computes an approximate solution x̃ from |Ax |
and the reconstruction error is measured by the relative Euclidean distance up to a
complex phase given by

ε(x, x̃) � min
c∈C,|c|=1

‖x − c x̃‖
‖x‖ . (19)

We also record the error over measured amplitudes, written

ε(|Ax |, |Ax̃ |) � ‖|Ax | − |Ax̃ |‖
‖Ax‖ . (20)

Note that when the phase recovery problem either does not admit a unique solution or
is unstable, we usually have ε(|Ax |, |Ax̃ |) � ε(x, x̃). In the next three subsections, we
study these reconstruction errors for three different phase recovery problems, where
A is defined as an oversampled Fourier transform, as multiple filterings with random
filters, or as a wavelet transform. Numerical results are computed on three different
types of test signals x : realizations of a complex Gaussian white noise, sums of complex
exponentials aω eiωm with random frequencies ω and random amplitudes aω (the
number of exponentials is random, around 6), and signals whose real and imaginary
parts are scan-lines of natural images. Each signal has p = 128 coefficients. Figure 2
shows the real part of sample signals, for each signal type.

123

http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip
http://www.cmap.polytechnique.fr/scattering/code/phaserecovery.zip

I. Waldspurger et al.

20 40 60 80 100 120
−3

−2

−1

0

1

2

3

4

0 50 100
−0.05

0

0.05

0 50 100
0

0.2

0.4

0.6

0.8

1

(c)(b)(a)

Fig. 2 Real parts of sample test signals. a Gaussian white noise. b Sum of 6 sinuoids of random frequency
and random amplitudes. c Scan-line of an image

5.1 Oversampled Fourier transform

The discrete Fourier transform ŷ of a signal y of q coefficients is written

ŷk =
q−1∑
m=0

ym exp

(−i2πkm

q

)
.

In X-ray crystallography or diffraction imaging experiments, compactly supported
signals are estimated from the amplitude of Fourier transforms oversampled by a
factor J ≥ 2. The corresponding operator A computes an oversampled discrete Fourier
transform evaluated over n = J p coefficients. The signal x of size p is extended into
x J by adding (J − 1)p zeros and

(Ax)k = x̂ J
k =

p∑
m=1

xm exp

(
− i2πkm

n

)
.

For this oversampled Fourier transform, the phase recovery problem does not have a
unique solution [1]. In fact, one can show [40] that there are as many as 2p−1 solutions
x̃ ∈ C

p such that |Ax̃ | = |Ax |. Moreover, increasing the oversampling factor J
beyond 2 does not reduce the number of solutions.

Because of this intrinsic instability, we will observe that all algorithms perform
similarly on this type of reconstruction problems and Table 1 shows that the percentage
of perfect reconstruction is below 5 % for all methods. The signals which are perfectly
recovered are sums of few sinusoids. Because these test signals are very sparse in the
Fourier domain, the number of signals having identical Fourier coefficient amplitudes
is considerably smaller than in typical sample signals. As a consequence, there is a
small probability (about 5 %) of exactly reconstructing the original signal given an
arbitrary initialization. None of the Gaussian random noises and image scan lines
are exactly recovered. Note that we say that an exact reconstruction is reached when
ε(x, x̃) < 10−2 because a few iterations of the Gerchberg–Saxton algorithm from
such an approximate solution x̃ will typically converges to x . Numerical results are
computed with 100 sample signals in each of the 3 signal classes.

123

Phase recovery

Table 1 Percentage of perfect
reconstruction from |Ax |, over
300 test signals, for the three
different operators A (columns)
and the three algorithms (rows)

Fourier
(%)

Random filters
(%)

Wavelets
(%)

Gerchberg–Saxton 5 49 0

PhaseLift with reweighting 3 100 62

PhaseCut 4 100 100

Table 2 Average relative signal
reconstruction error ε(x̃, x) over
all test signals that are not
perfectly reconstructed, for each
operator A and each algorithm

Fourier Random filters Wavelets

Gerchberg–Saxton 0.9 1.2 1.3

PhaseLift with reweighting 0.8 Exact 0.5

PhaseCut 0.8 Exact Exact

Table 3 Average relative error
ε(|Ax̃ |, |Ax |) of coefficient
amplitudes, over all test signals
that are not perfectly
reconstructed, for each operator
A and each algorithm

Fourier Random filters Wavelets

Gerchberg–Saxton 9.10−4 0.2 0.3

PhaseLift with reweighting 5.10−4 Exact 8.10−2

PhaseCut 6.10−4 Exact Exact

Table 2 gives the average relative error ε(x, x̃) over signals that are not perfectly
reconstructed, which is of order one here. Despite this large error, Table 3 shows
that the relative error ε(|Ax |, |Ax̃ |) over the Fourier modulus coefficients is below
10−3 for all algorithms. This is due to the non-uniqueness of the phase recovery
from Fourier modulus coefficients. Recovering a solution x̃ with identical or nearly
identical oversampled Fourier modulus coefficients as x does not guarantee that x̃
is proportional to x . Overall, in this set of ill-posed Fourier experiments, recovery
performance is very poor for all methods and the PhaseCut and PhaseLift relaxations
do not improve much on the results of the faster Gerchberg–Saxton algorithm.

5.2 Multiple random illumination filters

To guarantee uniqueness of the phase recovery problem, one can add independent
measurements by “illuminating” the object through J filters h j in the context of X-ray
imaging or crystallography [10]. The resulting operator A is the discrete Fourier trans-
form of x multiplied by each filter h j of size p

(Ax)k+pj = (̂xh j)k = (̂x � ĥ j)k for 1 ≤ j ≤ J and 0 ≤ k < p,

where x̂ � ĥ j is the circular convolution between x̂ and ĥ j . Candes et al. [10] proved
that, for some constant C > 0 large enough, Cp Gaussian independent measurements
are sufficient to perfectly reconstruct a signal of size p, with high probability. Similarly,
we would expect that, picking the filters h j as realizations of independent Gaussian
random variables, perfect reconstruction will be guaranteed with high probability
if J is large enough (and independent of p). This result has not yet been proven
because Gaussian filters do not give independent measurements but [13] observed

123

I. Waldspurger et al.

that, empirically, for signals of size p = 128, with J = 4 filters, perfect recovery is
achieved in 100 % of experiments.

Table 1 confirms this behavior and shows that the PhaseCut algorithm achieves
perfect recovery in all our experiments. As predicted by the equivalence results pre-
sented in the previous section, we observe that PhaseCut and PhaseLift have identical
performance in these experiments. With 4 filters, the solutions of these two SDP relax-
ations are not of rank one but are “almost” of rank one, in the sense that their first
eigenvector v has an eigenvalue much larger than the others, by a factor of about 5–10.
Numerically, we observe that the corresponding approximate solutions, x̃ = diag(v)b,
yield a relative error ε(|Ax |, |Ax̃ |) which, for scan-lines of images and especially for
Gaussian signals, is of the order of the ratio between the largest and the second largest
eigenvalue of the matrix U . The resulting solutions x̃ are then sufficiently close to x so
that a few iterations of the Gerchberg–Saxton algorithm started at x̃ will converge to x .

Table 1 shows however that directly applying the Gerchberg–Saxton algorithm
starting from a random initialization point yields perfect recovery in only about 50 % of
our experiments. This percentage decreases as the signal size p increases. The average
error ε(x, x̃) on non-recovered signals in Table 2 is 1.3 whereas on the average error
on the modulus ε(|Ax |, |Ax̃ |) is 0.2.

5.3 Wavelet transform

Phase recovery problems from the modulus of wavelet coefficients appear in audio
signal processing where this modulus is used by many audio and speech recognition
systems. These moduli also provide physiological models of cochlear signals in the ear
[16] and recovering audio signals from wavelet modulus coefficients is an important
problem in this context.

To simplify experiments, we consider wavelets dilated by dyadic factors 2 j which
have a lower frequency resolution than audio wavelets. A discrete wavelet transform
is computed by circular convolutions with discrete wavelet filters, i.e.

(Ax)k+ j p = (x � ψ j)k =
p∑

m=1

xmψ
j

k−m for 1 ≤ j ≤ J − 1 and 1 ≤ k ≤ p

where ψ j
m is a p periodic wavelet filter. It is defined by dilating, sampling and peri-

odizing a complex wavelet ψ ∈ L2(C), with

ψ
j

m =
∞∑

k=−∞
ψ(2 j (m/p − k)) for 1 ≤ m ≤ p.

Numerical computations are performed with a Cauchy wavelet whose Fourier trans-
form is

ψ̂(ω) = ωd e−ω 1ω>0,

up to a scaling factor, with d = 5. To guarantee that A is an invertible operator, the
lowest signal frequencies are carried by a suitable low-pass filter φ and

123

Phase recovery

(Ax)k+J p = (x � φ)k for 1 ≤ k ≤ p.

One can prove that x is always uniquely determined by |Ax |, up to a multiplication
factor. When x is real, the reconstruction appears to be numerically stable. Recall that
the results of Sect. 3.6.4 allow us to explicitly impose the condition that x is real in
the PhaseCut recovery algorithm. For PhaseLift in [13], this condition is enforced by
imposing that X = xx∗ is real. For the Gerchberg–Saxton algorithm, when x is real,
we simply project at each iteration on the image of R

p by A, instead of projecting on
the image of C

p by A.
Numerical experiments are performed on the real part of the complex test signals.

Table 1 shows that Gerchberg–Saxton does not reconstruct exactly any real test signal
from the modulus of its wavelet coefficients. The average relative error ε(x̃, x) in
Table 2 is 1.2 where the coefficient amplitudes have an average error ε(|Ax̃ |, |Ax |) of
0.3 in Table 3.

PhaseLift reconstructs 62 % of test signals, but the reconstruction rate varies with
signal type. The proportions of exactly reconstructed signals among random noises,
sums of sinusoids and image scan-lines are 27, 60 and 99 % respectively. Indeed,
image scan-lines have a large proportion of wavelet coefficients whose amplitudes are
negligible. The proportion of phase coefficients having a strong impact on the recon-
struction of x is thus much smaller for scan-line images than for random noises, which
reduces the number of significant variables to recover. Sums of sinuoids of random
frequency have wavelet coefficients whose sparsity is intermediate between image
scan-lines and Gaussian white noises, which explains the intermediate performance
of PhaseLift on these signals. The overall average error ε(x̃, x) on non-reconstructed
signals is 0.5. Despite this relatively important error, x̃ and x are usually almost equal
on most of their support, up to a sign switch, and the importance of the error is precisely
due to the local phase inversions (which change signs).

The PhaseCut algorithm reconstructs exactly all test signals. Moreover, the recov-
ered matrix U is always of rank one and it is therefore not necessary to refine the solu-
tion with Gerchberg–Saxton iterations. At first sight, this difference in performance
between PhaseCut and PhaseLift may seem to contradict the equivalence results of
Sect. 4.3 (which are valid when x is real and when x is complex). It can be explained
however by the fact that 10 steps of reweighing and 1,000 inner iterations per step are
not enough to let PhaseLift fully converge. In these experiments, the precision required
to get perfect reconstruction is very high and, consequently, the number of first-order
iterations required to achieve it is too large (see Sect. 4.6). With an interior-point-
solver, this number would be much smaller but the time required per iteration would
become prohibitively large. The much simpler structure of the PhaseCut relaxation
allows us to solve these larger problems more efficiently.

5.4 Impact of trace minimization

We saw in Sect. 4.1 that, in the absence of noise, PhaseCut was very similar to a
simplified version of PhaseLift, Weak PhaseLift, in which no trace minimization is
performed. Here, we confirm empirically that Weak PhaseLift and PhaseLift are essen-

123

I. Waldspurger et al.

100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Number of measurements

R
ec

on
st

ru
ct

io
n

ra
te

Weak PhaseLift
PhaseLift

100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Number of measurements

Pr
op

or
tio

n
of

ra
nk

on
e

so
ls

.

Weak PhaseLift
PhaseLift

Fig. 3 Comparison of PhaseLift and Weak PhaseLift performance, for 64-sized signals, as a function of
the number of measurements. Reconstruction rate, after Gerchberg–Saxton iterations (left) and proportion
of rank one solutions (right)

tially equivalent. Minimizing the trace is usually used as rank minimization heuristic,
with recovery guarantees in certain settings [12,15,21] but it does not seem to make
much difference here. In fact, [19] recently showed that in the independent experi-
ments setting, Weak PhaseLift has a unique (rank one) solution with high probability,
i.e. the feasible set of PhaseLift is a singleton and trace minimization has no impact. Of
course, from a numerical point of view, solving the feasibility problem Weak PhaseLift
is about as hard as solving the trace minimization problem PhaseLift, so the result [19]
simplifies analysis but does not really affect numerical performance.

Figure 3 compares the performances of PhaseLift and Weak PhaseLift as a func-
tion of n (the number of measurements). We plot the percentage of successful recon-
structions (left) and the percentage of cases where the relaxation was exact, i.e. the
reconstructed matrix X was rank one (right). The plot shows a clear phase transitions
when the number of measurements increases. For PhaseLift, these transitions happen
respectively at n = 155 ≈ 2.5p and n = 285 ≈ 4.5p, while for Weak PhaseLift, the
values become n = 170 ≈ 2.7p and n = 295 ≈ 4.6p, so the transition thresholds are
very similar. Note that, in the absence of noise, Weak PhaseLift and PhaseCut have
the same solutions, up to a linear transformation (see Sect. 4.2), so we can expect the
same behavior in the comparison PhaseCut versus PhaseCutMod.

5.5 Reconstruction in the presence of noise

Numerical stability is crucial for practical applications. In this last subsection, we
suppose that the vector b of measurements is of the form

b = |Ax | + bnoise

with ‖bnoise‖2 = o(‖Ax‖2). In our experiments, bnoise is always a Gaussian white
noise. Two reasons can explain numerical instabilities in the solution x̃ . First, the
reconstruction problem itself can be unstable, with ‖x̃ − cx‖ � ‖|Ax̃ | − |Ax |‖ for
all c ∈ C. Second, the algorithm may fail to reconstruct x̃ such that ‖|Ax̃ | − b‖ ≈
‖bnoise‖. No algorithm can overcome the first cause but good reconstruction methods
will overcome the second one. In the following paragraphs, to complement the results

123

Phase recovery

in Sect. 4.4, we will demonstrate empirically that PhaseCut is stable, and compare its
performances with PhaseLift. We will observe in particular that PhaseCut appears to
be more stable than PhaseLift when b is sparse.

5.5.1 Wavelet transform

Figure 4 displays the performance of PhaseCut in the wavelet transform case. It shows
that PhaseCut is stable up to around 5–10 % of noise. Indeed, the reconstructed x̃
usually satisfies ε(|Ax |, |Ax̃ |) = ‖ |Ax | − |Ax̃ | ‖2 ≤ ‖bnoise‖2, which is the best we
can hope for. Wavelet transform is a case where the underlying phase retrieval problem
may present instabilities, therefore the reconstruction error ε(x, x̃) is sometimes much
larger than ε(|Ax |, |Ax̃ |). This remark applies especially to sums of sinusoids, which
represent the most unstable case.

When all coefficients of Ax have approximately the same amplitude, PhaseLift
and PhaseCut produce similar results, but when Ax is sparse, PhaseLift appears less
stable. We gave a qualitative explanation of this behavior at the end of Sect. 4.4
which seems to be confirmed by the results in Fig. 4. This boils down to the fact
that the values of the phase variables in PhaseCut corresponding to zeros in b can
be set to zero so the problem becomes much smaller. Indeed, the performance of
PhaseLift and PhaseCut are equivalent in the case of Gaussian random filters (where
measurements are never sparse), they are a bit worse in the case of sinusoids (where

SinusoidsGaussian

−3 −2.5 −2 −1.5 −1 −0.5
−3

−2.5

−2

−1.5

−1

−0.5

0

Amount of noise

R
el

at
iv

e
er

ro
r

−3 −2.5 −2 −1.5 −1 −0.5
−3

−2.5

−2

−1.5

−1

−0.5

0

Amount of noise

R
el

at
iv

e
er

ro
r

Image Scan-Lines

−3 −2.5 −2 −1.5 −1 −0.5
−3

−2.5

−2

−1.5

−1

−0.5

0

Amount of noise

R
el

at
iv

e
er

ro
r

Reconstruction error (PhaseCut)
Modulus error (PhaseLift)
Modulus error (PhaseCut)

Fig. 4 Mean reconstruction errors versus amount of noise for PhaseLift and PhaseCut, both in decimal
logarithmic scale, for three types of signals: Gaussian white noises, sums of sinusoids and scan-lines of
images. Both algorithms were followed by a few hundred Gerchberg–Saxton iterations

123

I. Waldspurger et al.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Amount of noise

R
el

at
iv

e
er

ro
r

Reconstr. error (PhaseLift)
Reconstr. error (PhaseCut)
Modulus error (PhaseLift)
Modulus error (PhaseCut)

−4 −3.5 −3 −2.5 −2 −1.5 −1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5
PhaseLift (non−sparse)
PhaseCut (non−sparse)
PhaseLift (sparse)
PhaseCut (sparse)

R
ec

on
st

ru
ct

io
n

er
ro

r

Amount of noise

Fig. 5 Left Mean performances of PhaseLift and PhaseCut, followed by Gerchberg–Saxton iterations, for
four Gaussian random illumination filters. The x-axis represents the relative noise level, ‖bnoise‖2/‖Ax‖2
and the y-axis the relative error on the result, which is either ε(x̃, x) or ε(|Ax̃ |, |Ax |). Right Loglog plot
of the relative error over the matrix reconstructed by PhaseLift (resp. PhaseCut) when A represents the
convolution by five Gaussian filters. Black curves correspond to Ax non-sparse, red ones to sparse Ax

measurements are sometimes sparse) and quite unsatisfactory for scan-lines of images
(where measurements are always sparse).

5.5.2 Multiple random illumination filters

Candes and Li [11] proved that, if A was a Gaussian matrix, the reconstruction problem
was stable with high probability, and PhaseLift reconstructed a x̃ such that

ε(x̃, x) ≤ O

(‖bnoise‖2

‖Ax‖2

)
.

The same result seems to hold for A corresponding to Gaussian random illumination
filters (cf. Sect. 5.2). Moreover, PhaseCut is as stable as PhaseLift. Actually, up to
20 % of noise, when followed by some Gerchberg–Saxton iterations, PhaseCut and
PhaseLift almost always reconstruct the same function. Figure 5 displays the cor-
responding empirical performance, confirming that both algorithms are stable. The
relative reconstruction errors are approximately linear in the amount of noise, with

ε(|Ax̃ |, |Ax |) ≈ 0.8 × ‖bnoise‖2

‖Ax‖2
and ε(x̃, x) ≈ 2 × ‖bnoise‖2

‖Ax‖2

in our experiments.
The impact of the sparsity of b discussed in the last paragraph may seem irrelevant

here: if A and x are independently chosen, Ax is never sparse. However, if we do not
choose A and x independently, we may achieve partial sparsity. We performed tests for
the case of five Gaussian random filters, where we chose x ∈ C

64 such that (Ax)k = 0
for k ≤ 60. This choice has no particular physical interpretation but it allows us
to check that the influence of sparsity in |Ax | over PhaseLift is not specific to the
wavelet transform. Figure 5 displays the relative error over the reconstructed matrix in
the sparse and non-sparse cases. If we denote by Xpl ∈ C

p×p (resp. Xpc ∈ C
n×n) the

matrix reconstructed by PhaseLift (resp. PhaseCut), this relative error is defined by

123

Phase recovery

ε = ‖AXpl A∗ − (Ax)(Ax)∗‖2

‖(Ax)(Ax)∗‖2
(for PhaseLift)

ε = ‖diag(b)Xpcdiag(b)− (Ax)(Ax)∗‖2

‖(Ax)(Ax)∗‖2
(for PhaseCut)

In the non-sparse case, both algorithms yield very similar error ε ≈ 7‖bnoise‖2/‖Ax‖2
(the difference for a relative noise of 10−4 may come from a computational artifact).
In the sparse case, there are less phases to reconstruct, because we do not need to
reconstruct the phase of null measurements. Consequently, the problem is better con-
strained and we expect the algorithms to be more stable. Indeed, the relative errors
over the reconstructed matrices are smaller. However, in this case, the performance of
PhaseLift and PhaseCut do not match anymore: ε ≈ 3‖bnoise‖2/‖Ax‖2 for PhaseLift
and ε ≈ 1.2‖bnoise‖2/‖Ax‖2 for PhaseCut. This remark has no practical impact in
our particular example here because taking a few Gerchberg–Saxton iterations would
likely make both methods converge towards the same solution, but it confirms the
importance of accounting for the sparsity of |Ax |.
Acknowledgments The authors are grateful to Richard Baraniuk, Emmanuel Candès, Rodolphe Jenatton,
Amit Singer and Vlad Voroninski for very constructive comments. In particular, Vlad Voroninski showed in
[50] that the argument in the first version of this paper, proving that PhaseCutMod is tight when PhaseLift
is, could be reversed under mild technical conditions and pointed out an error in our handling of sparsity
constraints. AA would like to acknowledge support from a starting grant from the European Research
Council (ERC project SIPA), and SM acknowledges support from ANR 10-BLAN-0126 and ERC Invariant-
Class 320959 grants.

6 Appendix: Technical lemmas

We now prove two technical lemmas used in the proof of Theorem 1.

Lemma 3 Under the assumptions and notations of Theorem 1, we have

‖V //
PC − (Ax0)(Ax0)

∗‖2 > 2C‖Ax0‖2‖bn,PC‖2

Proof We first give an upper bound of ‖VPC − V //
PC‖2. We use the Cauchy–Schwarz

inequality: for every positive matrix X and all x, y, |x∗ X y| ≤ √
x∗ X x

√
y∗ X y. Let

{ fi } be an hermitian base of range(A) diagonalizing V //
PC and {gi } an hermitian base

of range(A)⊥ diagonalizing V ⊥
PC . As { fi } ∩ {gi } is an hermitian base of C

n , we have

‖VPC − V //
PC‖2

2 =
∑
i,i ′

| f ∗
i (VPC − V //

PC) fi ′ |2 +
∑
i, j

| f ∗
i (VPC − V //

PC)g j |2

+
∑
i, j

|g∗
j (VPC − V //

PC) fi |2 +
∑
j, j ′

|g∗
j (VPC − V //

PC)g j ′ |2

= 2
∑
i, j

| f ∗
i (VPC)g j |2 +

∑
i

|g∗
i (V

⊥
PC)gi |2

123

I. Waldspurger et al.

≤ 2
∑
i, j

| f ∗
i (VPC) fi‖g∗

j (VPC)g j | +
(∑

i

g∗
i (V

⊥
PC)gi

)2

= 2TrV //
PC TrV ⊥

PC + (TrV ⊥
PC)

2

≤
(√

2
√

TrV //
PC

√
TrV ⊥

PC + TrV ⊥
PC

)2

(21)

Let us now bound TrV ⊥
PC . We first note that TrV ⊥

PC = Tr((I− AA†)VPC (I− AA†)) =
Tr(VPC (I − AA†)) = d1(VPC ,F) (according to Lemma 2). Let u ∈ C

n be such
that, for all i , |ui | = 1 and (Ax0)i = ui |Ax0|i . We set b = |Ax0| + bn,PC and
V = (b × u)(b × u)∗. As V ∈ H+

n ∩ Hb and VPC minimizes (13),

TrV ⊥
PC = d1(VPC ,F) ≤ d1(V,F) = d1((Ax0 + bn,PCu)(Ax0 + bn,PCu)∗,F)

= d1((bn,PCu)(bn,PCu)∗,F)
≤ ‖(bn,PCu)(bn,PCu)∗‖1 = Tr(bn,PCu)(bn,PCu)∗ = ‖bn,PC‖2

2

We also have TrV //
PC = TrVPC − TrV ⊥

PC . This equality comes from the fact that, if
{ fi } is an hermitian base of range(A) and {gi } an hermitian base of range(A)⊥, then

TrVPC =
∑

i

fi VPC f ∗
i +

∑
i

gi VPC g∗
i =

∑
i

fi V //
PC f ∗

i +
∑

i

gi V ⊥
PC g∗

i

= TrV //
PC + TrV ⊥

PC

As V ⊥
PC � 0, TrV //

PC ≤ TrVPC = ‖|Ax0| + bn,PC‖2
2 and, by combining this with

relations (21) and (22), we get

‖VPC − V //
PC‖2 ≤ √

2‖|Ax0| + bn,PC‖2‖bn,PC‖2 + ‖bn,PC‖2
2

≤ √
2‖Ax0‖2‖bn,PC‖2 + (1 + √

2)‖bn,PC‖2
2

And, by reminding that we assumed ‖bn,PC‖2 ≤ ‖Ax0‖2,

‖V //
PC − (Ax0)(Ax0)

∗‖2 ≥ ‖VPC − (Ax0)(Ax0)
∗‖2 − ‖V //

PC − VPC‖2

> D‖Ax0‖2‖bn,PC‖2 − √
2‖Ax0‖2‖bn,PC‖2

− (1 + √
2)‖bn,PC‖2

2

≥ (D − 2
√

2 − 1)‖Ax0‖2‖bn,PC‖2 = 2C‖Ax0‖2‖bn,PC‖2

which concludes the proof. ��
Lemma 4 Under the assumptions and notations of Theorem 1, we have ‖bn,PL‖2 ≤
2‖bn,PC‖.

123

Phase recovery

Proof Let ei be the i-th vector of C
n’s canonical base. We set ei = fi + gi where

fi ∈ range(A) and gi ∈ range(A)⊥.

VPC ii = e∗
i VPC ei

= f ∗
i V //

PC fi + 2 Re(f ∗
i VPC gi)+ g∗

i V ⊥
PC gi

= V //
PC ii + 2 Re(f ∗

i VPC gi)+ V ⊥
PC ii

Because | f ∗
i VPC gi | ≤ √

f ∗
i VPC fi

√
g∗

i VPC gi =
√

V //
PC ii

√
V ⊥

PC ii ,

(√
V //

PC ii −
√

V ⊥
PC ii

)2

≤ VPC ii ≤
(√

V //
PC ii +

√
V ⊥

PC ii

)2

⇒
√

V //
PC ii −

√
V ⊥

PC ii ≤ √
VPC ii ≤

√
V //

PC ii +
√

V ⊥
PC ii

So

|bn,PL,i | = |
√

V //
PC ii − |Ax0|i |

≤ |
√

V //
PC ii − √

VPC ii | + |√VPC ii − |Ax0|i |
≤

√
V ⊥

PC ii + bn,PC,i

and, by (22),

‖bn,PL‖2 ≤
∥∥∥∥
{√

V ⊥
PC ii

}

i

∥∥∥∥
2
+ ‖bn,PC‖2

=
√

TrV ⊥
PC + ‖bn,PC‖2 ≤ 2‖bn,PC‖2

which concludes the proof. ��

References

1. Akutowicz, E.J.: On the determination of the phase of a Fourier integral, I. Trans. Am. Math. Soc. 83,
179–192 (1956)

2. Becker, S., Candes, E.J., Grant, M.: Templates for convex cone problems with applications to sparse
signal recovery. Math. Prog. Comp. 3, 165–218 (2011)

3. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engi-
neering applications. MPS-SIAM series on optimization. Society for Industrial and Applied Mathe-
matics: Mathematical Programming Society, Philadelphia, PA (2001)

4. Ben-Tal, A., Nemirovski, A., Roos, C.: Extended matrix cube theorems with applications to μ-theory
in control. Math. Oper. Res. 28(3), 497–523 (2003)

5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.S.: Robust Optimization. Princeton University Press, Prince-
ton, NJ (2009)

6. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont, MA (1998)
7. Bhatia, R.: Matrix Analysis, vol. 169. Springer, NewYork (1997)
8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

123

I. Waldspurger et al.

9. Bunk, O., Diaz, A., Pfeiffer, F., David, C., Schmitt, B., Satapathy, D.K., Veen, J.F.: Diffractive imaging
for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels.
Acta Crystallogr. A 63(4), 306–314 (2007)

10. Candes, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude
measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

11. Candes, E.J., Li, X.: Solving quadratic equations via phaselift when there are about as many equations
as unknowns. ArXiv preprint arXiv:1208.6247 (2012)

12. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Preprint (2008)
13. Candes, E.J., Eldar, Y., Strohmer, T., Voroninski, V.L: Phase retrieval via matrix completion. ArXiv

preprint arXiv:1109.0573 (2011)
14. Chai, A., Moscoso, M., Papanicolaou, G.: Array imaging using intensity-only measurements. Inverse

Probl. 27, 015005 (2011)
15. Chandrasekaran, V., Recht, B., Parrilo, P., Willsky, A.S.: The convex geometry of linear inverse prob-

lems. Found. Comput. Math 12(6), 805–849 (2012)
16. Chi, T., Ru, P., Shamma, S.: Multiresolution spectrotemporal analysis of complex sounds. J. Acoust.

Soc. Am 118, 887–906 (2005)
17. d’Aspremont, A., Banerjee, O., El Ghaoui, L.: First-order methods for sparse covariance selection.

SIAM J. Matrix Anal. Appl. 30(1), 56–66 (2006)
18. Delorme, C., Poljak, S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62(1),

557–574 (1993)
19. Demanet, L., Hand, P.: Stable optimizationless recovery from phaseless linear measurements. ArXiv

preprint arXiv:1208.1803 (2012)
20. El Karoui, N., d’Aspremont, A.: Approximating eigenvectors by subsampling. ArXiv:0908.0137

(2009)
21. Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with applications to

hankel and euclidean distance matrices. In: American Control Conference, 2003. Proceedings of the
2003, vol. 3, pp. 2156–2162. Ieee (2003)

22. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)
23. Gerchberg, R., Saxton, W.: A practical algorithm for the determination of phase from image and

diffraction plane pictures. Optik 35, 237–246 (1972)
24. Goemans, M.X., Williamson, D.P.: Approximation algorithms for max-3-cut and other problems via

complex semidefinite programming. J. Comput. Syst. Sci. 68(2), 442–470 (2004)
25. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-

ability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
26. Griffin, D., Lim, J.: Signal estimation from modified short-time fourier transform. IEEE Trans. Acoust.

Speech Signal Process. 32(2), 236–243 (1984)
27. Harrison, R.W.: Phase problem in crystallography. JOSA A 10(5), 1046–1055 (1993)
28. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite

programming. SIAM J. Optim. 6, 342–361 (1996)
29. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)
30. Kisialiou, M., Luo, Z.Q.: Probabilistic analysis of semidefinite relaxation for binary quadratic mini-

mization. SIAM J Optim 20, 1906 (2010)
31. Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex programming.

ArXiv preprint arXiv:1209.4785 (2012)
32. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim.

1(2), 166–190 (1991)
33. Luo, Z.Q., Luo, X., Kisialiou, M.: An efficient quasi-maximum likelihood decoder for psk signals. In:

Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03). 2003 IEEE International
Conference on, vol. 6, pp. VI-561. IEEE (2003)

34. Miao, J., Ishikawa, T., Shen, Q., Earnest, T.: Extending X-ray crystallography to allow the imaging of
noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem. 59, 387–410
(2008)

35. Moravec, M.L., Romberg, J.K., Baraniuk, R.G.: Compressive phase retrieval. In: Proc. of SPIE
vol. 6701, pp. 670120–1 (2007)

36. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2).
Sov. Math. Dokl. 27(2), 372–376 (1983)

123

Phase recovery

37. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim Methods Softw.
9(1), 141–160 (1998)

38. Nesterov, Y.: Smoothing technique and its applications in semidefinite optimization. Math. Program.
110(2), 245–259 (2007)

39. Osherovich, E., Shechtman, Y., Szameit, A., Sidorenko, P., Bullkich, E., Gazit, S., Shoham, S., Kley,
E.B., Zibulevsky, M., Yavneh, I., et al.: Sparsity-based single-shot subwavelength coherent diffractive
imaging. Nat. Mater. 11(5), 455–459 (2012)

40. Sanz, J.L.C.: Mathematical considerations for the problem of fourier transform phase retrieval from
magnitude. SIAM J. Appl. Math. 45, 651–664 (1985)

41. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11 (1987)
42. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl. comput.

Harmon. Anal. 30(1), 20–36 (2011)
43. So, A.M.C.: Non-asymptotic performance analysis of the semidefinite relaxation detector in digital

communications. Working paper (2010)
44. So, A.M.C., Zhang, J., Ye, Y.: On approximating complex quadratic optimization problems via semi-

definite programming relaxations. Math. Program. 110(1), 93–110 (2007)
45. So, A.M.-C., Ye, Y.: Probabilistic analysis of semidefinite relaxation detectors for multiple-input,

multiple-output. Convex Optim. Signal Process. Commun. 166 (2010)
46. Stewart, G.W.: Matrix Algorithms, Vol. II: Eigensystems. Society for Industrial Mathematics, Philadel-

phia (2001)
47. Stewart, G.W., Sun, J.: Matrix perturbation theory. Academic Press, Boston (1990)
48. Todd, M., Yildirim, E.A.: Sensitivity analysis in linear programming and semidefinite programming

using interior-points methods. Math. Program. 90(2), 229–261 (2001)
49. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3—a MATLAB software package for semidefinite pro-

gramming. Optim. Methods Softw. 11, 545–581 (1999)
50. Voroninski, V.: A comparison between the phaselift and phasecut algorithms. Working paper (2012)
51. Waldspurger, I., Mallat, S.: Time-frequency phase recovery. Working paper (2012)
52. Wen, Z., Goldfarb, D., Scheinberg, K.: Block coordinate descent methods for semidefinite program-

ming. In: Anjos, M., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimiza-
tion, pp. 533–564. Springer (2012)

53. Yildirim, E.A.: An interior-point perspective on sensitivity analysis in semidefinite programming.
Math. Oper. Res. 28(4), 649–676 (2003)

54. Zhang, S., Huang, Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim.
16(3), 871–890 (2006)

123

	Phase recovery, MaxCut and complex semidefinite programming
	Abstract
	1 Introduction
	1.1 Notations

	2 Phase recovery
	2.1 Greedy optimization in the signal
	2.2 Splitting phase and amplitude variables
	2.3 Greedy optimization in phase
	2.4 Complex MaxCut

	3 Algorithms
	3.1 Interior point methods
	3.2 First-order methods
	3.3 Block coordinate descent
	3.4 Initialization and randomization
	3.5 Approximation bounds
	3.6 Exploiting structure
	3.6.1 Symmetries
	3.6.2 Alignment
	3.6.3 Fast Fourier transform
	3.6.4 Real valued signal

	4 Matrix completion and exact recovery conditions
	4.1 Weak formulation
	4.2 Phase recovery as a projection
	4.3 Tightness of the semidefinite relaxation
	4.4 Stability in the presence of noise
	4.5 Perturbation results
	4.6 Complexity comparisons
	4.7 Greedy refinement
	4.8 Sparsity

	5 Numerical results
	5.1 Oversampled Fourier transform
	5.2 Multiple random illumination filters
	5.3 Wavelet transform
	5.4 Impact of trace minimization
	5.5 Reconstruction in the presence of noise
	5.5.1 Wavelet transform
	5.5.2 Multiple random illumination filters

	Acknowledgments
	6 Appendix: Technical lemmas
	References

