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Abstract

This paper constructs translation-invariant operators on L2(R4 ), which are Lip-
schitz-continuous to the action of diffeomorphisms. A scattering propagator is a
path-ordered product of nonlinear and noncommuting operators, each of which
computes the modulus of a wavelet transform. A local integration defines a win-
dowed scattering transform, which is proved to be Lipschitz-continuous to the
action of C? diffeomorphisms. As the window size increases, it converges to a
wavelet scattering transform that is translation invariant. Scattering coefficients
also provide representations of stationary processes. Expected values depend
upon high-order moments and can discriminate processes having the same power
spectrum. Scattering operators are extended on L?(G), where G is a compact
Lie group, and are invariant under the action of G. Combining a scattering on
L? (Rd) and on L?(SO(d)) defines a translation- and rotation-invariant scatter-
ing on L? (]Rd). © 2012 Wiley Periodicals, Inc.

1 Introduction

Symmetry and invariants, which play a major role in physics [6]], are making
their way into signal information processing. The information content of sounds
or images is typically not affected under the action of finite groups such as trans-
lations or rotations, and it is stable to the action of small diffeomorphisms that
deform signals [21]. This motivates the study of translation-invariant representa-
tions of L? (Rd) functions, which are Lipschitz-continuous to the action of diffeo-
morphisms and which keep high-frequency information to discriminate different
types of signals. We then study invariance to the action of compact Lie groups and
rotations.

We first concentrate on translation invariance. Let L. f(x) = f(x — ¢) denote
the translation of f € L2(R%) by ¢ € R?. An operator ® from L2(R%) to a
Hilbert space # is translation-invariant if ®(L¢ f) = ®(f) forall f € L? (Rd )
and ¢ € R?. Canonical translation-invariant operators satisfy ®(f) = L, f for
some a € R? that depends upon f [15]]. The modulus of the Fourier transform
of f is an example of a noncanonical translation-invariant operator. However,
these translation-invariant operators are not Lipschitz-continuous to the action of
diffeomorphisms. Instabilities to deformations are well-known to appear at high
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frequencies [[10]. The major difficulty is to maintain the Lipschitz continuity over
high frequencies.
To preserve stability in L2(R%) we want ® to be nonexpansive:

V(fh) e L2RY)? () = D)l < |.f —hll.

It is then sufficient to verify its Lipschitz continuity relative to the action of small
diffeomorphisms close to translations. Such a diffeomorphism transforms x € R4
into x — 7(x), where 7(x) € R¥ is the displacement field. Let L f(x) = f(x —
7(x)) denote the action of the diffeomorphism 1 — t on f. Lipschitz stability
means that ||®(f) — ®(L f)]| is bounded by the “size” of the diffeomorphism
and hence by the distance between the 1 — 7 and 1, up to a multiplicative constant
multiplied by || £|. Let |z(x)| denote the euclidean norm in R¥, |Vt (x)| the sup
norm of the matrix Vt(x), and |H t(x)| the sup norm of the Hessian tensor. The
weak topology on C? diffeomorphisms defines a distance between 1 — 7 and 1 over
any compact subset €2 of R by
(1.1) do(1,1—1) = sup |t(x)| + sup |V (x)| + sup |Ht(x)|.
xX€Q x€Q x€Q

A translation-invariant operator @ is said to be Lipschitz-continuous to the action
of C? diffeomorphisms if for any compact Q C R there exists C such that for all
f € L2(R?) supported in 2 and all r € C2(R%)

(1.2) 1(f) = (Ll = CIfI(sup [Ve(x)| + sup [He(x)]).

x€R4 xeR4
Since @ is translation invariant, the Lipschitz upper bound does not depend upon
the maximum translation amplitude sup,. |z (x)| of the diffeomorphism metric (I.T).
The Lipschitz continuity (1.2)) implies that & is invariant to global translations, but
it is much stronger. ® is almost invariant to “local translations” by 7(x), up to the
first- and second-order deformation terms.

High-frequency instabilities to deformations can be avoided by grouping fre-
quencies into dyadic packets in R? with a wavelet transform. However, a wavelet
transform is not translation invariant. A translation-invariant operator is constructed
with a scattering procedure along multiple paths, which preserves the Lipschitz
stability of wavelets to the action of diffeomorphisms. A scattering propagator
is first defined as a path-ordered product of nonlinear and noncommuting oper-
ators, each of which computes the modulus of a wavelet transform [13]. This
cascade of convolutions and modulus can also be interpreted as a convolutional
neural network [11]. A windowed scattering transform is a nonexpansive operator
that locally integrates the scattering propagator output. For appropriate wavelets,
the main theorem in Section [2] proves that a windowed scattering preserves the
norm: |®(f)||lx = || f| forall £ € L2(R?), and it is Lipschitz-continuous to C2
diffeomorphisms.

When the window size increases, windowed scattering transforms converge to
a translation-invariant scattering transform defined on a path set Puo that is not



GROUP INVARIANT SCATTERING 1333

countable. Section [3|introduces a measure  and a metric on Pso and proves that
scattering transforms of functions in L2(R?) belong to L2(Puo, dj1). A scattering
transform has striking similarities with a Fourier transform modulus but a different
behavior relative to the action of diffeomorphisms. Numerical examples are shown.
An open conjecture remains on conditions for strong convergence in L2 (Rd ).

The representation of stationary processes with the Fourier power spectrum re-
sults from the translation invariance of the Fourier modulus. Similarly, Section [4]
defines an expected scattering transform that maps stationary processes to an 12
space. Scattering coefficients depend upon high-order moments of stationary pro-
cesses and thus can discriminate processes having the same second-order mo-
ments. As opposed to the Fourier spectrum, a scattering representation is Lipschitz-
continuous to random deformations up to a log term. For large classes of ergodic
processes, it is numerically observed that the scattering transform of a single re-
alization provides a mean-square consistent estimator of the expected scattering
transform.

Section [5] extends scattering operators to build invariants to actions of compact
Lie groups G. The left action of g € G on f € L?(G) is denoted Lg f(r) =
f(g7'r). An operator ® on L?(G) is invariant to the action of G if ®(Lg f) =
®(f) for all f € L?(G) and all g € G. Invariant scattering operators are con-
structed on L?(G) with a scattering propagator that iterates on a wavelet trans-
form defined on L?(G), and a modulus operator that removes complex phases. A
translation- and rotation-invariant scattering on L? (R?) is obtained by combining
a scattering on L2(R?) and a scattering on L2(SO(d)).

Available at |www.cmap.polytechnique.fr/scattering is a package of
software to reproduce numerical experiments. Applications to audio and image
classification can be found in [[1 13} |4} [18]].

NOTATION. [[t]loo = supyega [T(0)]. [ ATlloo = SUP(y yyepad [T(x) =T ()],
IVelloo = supyege V() and [ H oo := supyepa [H(x)| where |Hr(x)]
is the norm of the Hessian tensor. The inner product of (x, y) € R29 js x - y. The
norm of f in a Hilbert space is || f|| and in L2(R%) || f || = / | £(x)|>dx. The
norm in LY(R9) is || f|l; = [ 1f(x)|dx. We denote the Fourier transform of f
by f(w) = f(x)e™*® dw. We denote by g o f(x) = f(gx) the action of a
group element g € G. An operator R parametrized by p is denoted by R[p] and
R[] = {R[p]}peq- The sup norm of a linear operator A in L2 (R?) is denoted by
||A||, and the commutator of two operators is [4, B] = AB — BA.

2 Finite Path Scattering

To avoid high-frequency instabilities under the action of diffeomorphisms, Sec-
tion [2.2] introduces scattering operators that iteratively apply wavelet transforms
and remove complex phases with a modulus. Section[2.3|proves that a scattering is
nonexpansive and preserves L? (Rd) norms. Translation invariance and Lipschitz
continuity to deformations are proved in Sections [2.4]and [2.5]
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2.1 From Fourier to Littlewood-Paley Wavelets

The Fourier transform modulus ®( f) = | f | is translation invariant. Indeed, for
¢ € R?, the translation L. f(x) = f(x — ¢) satisfies L/C\f(a)) = e_ic’“’f(w) and
hence |L/c\f | = | f |. However, deformations lead to well-known instabilities at
high frequencies [[10]. This is illustrated with a small scaling operator, L f(x) =
f(x—1(x)) = f((1 —s)x) for t(x) = sx and ||Vt|eo = |s| < 1. If f(x) =
¢'§X f(x), then scaling by 1 — s translates the central frequency £ to (1 — s)&. If 6
is regular with a fast decay, then

2.1 N1 =711~ IslELI0] = [ VTlloo IE]11£1]-

Since |£| can be arbitrarily large, ®(f) = | f | does not satisfy the Lipschitz
continuity condition when scaling high frequencies. The frequency displace-
ment from £ to (1 — s)& has a small impact if sinusoidal waves are replaced by
localized functions having a Fourier support that is wider at high frequencies. This
is achieved by a wavelet transform [7} [14]] whose properties are briefly reviewed in
this section.

A wavelet transform is constructed by dilating a wavelet v € L2(R¢) with a
scale sequence {a’ }jez for a > 1. For image processing, usually a = 2 [3| 4]
Audio processing requires a better frequency resolution with typically a < 21/8
[1]. To simplify notation, we normalize a = 2, with no loss of generality. Dilated
wavelets are also rotated with elements of a finite rotation group G, which also
includes the reflection —1 with respect to 0: —Ix = —x. If d is even, then G is
a subgroup of SO(d); if d is odd, then G is a finite subgroup of O(d). A mother
wavelet ¥ is dilated by 27/ and rotated by r € G,

(2.2) Yoi () = 2% (27 r~y).

Its Fourier transform is 1}2 ir(@) = 1}(2_1 r~'w). A scattering transform is com-
puted with wavelets that can be written

(2.3) Y(x) = e!"*P(x) andhence V(w)= O(w — n),

where 6 (w) is a real function concentrated in a low-frequency ball centered at
w = 0 whose radius is of the order of 7. As a result, fﬂ\(a)) is real and concentrated
in a frequency ball of the same radius but centered at w = 1. To simplify notation,
we denote A = 2/r € 2% x G, with |A| = 2/. After dilation and rotation,
IZ 2(w) = 0 (A~ 1w — 1) covers a ball centered at An with a radius proportional to
|A| = 2/. The index A thus specifies the frequency localization and spread of V.

As opposed to wavelet bases, a Littlewood-Paley wavelet transform [[7, [14] is a
redundant representation that computes convolution values at all x € R4 without
subsampling:

(2:4) VxeRY WRS(x) = f *yalx) = / Sy (x —u)du.
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Its Fourier transform is
WA/ @) = (@) = [(@©¥(3 o).

If f is real then f(—a)) = f*(a)), and if ¥/ (w) is real then W[—A] f = W[A] f*.
Let GT denote the quotient of G with {—1, 1}, where two rotations 7 and —r are
equivalent. It is sufficient to compute W[2/r] f for “positive” rotations r € G .
If f is complex, then W[2/r] f must be computed forallr € G = G* x {—1,1}.

A wavelet transform at a scale 27 only keeps wavelets of frequencies 2/ > 277 .
The low frequencies that are not covered by these wavelets are provided by an
averaging over a spatial domain proportional to 27

(2.5) Ay f = f *dys  withgps(x) =227 x).

If f is real, then the wavelet transform Wy f* = {Ay f. (W[A] f)ren, } is indexed
byAy={A=2/r:reGt 2/ >277/} Itsnorm s

(2.6) IWr fI2 =145 FI2 + Y IWRIFIZ

AEA

If J = oothen Weo f = {W[A]f}ren,, With Ao = 2% x G*. Its norm is
Woo f1I? = D5 A IWIALS |2. For complex-valued functions £, all rotations
in G are included by defining Wy f = {Ay f, (W[A] f)r,—ren,} and Weo f =
{WIA]f}2,—ren.,-The following proposition gives a standard Littlewood-Paley
condition [7] so that Wy is unitary.

PROPOSITION 2.1. For any J € Z or J = oo, Wy is unitary in the spaces of

real-valued or complex-valued functions in Lz(Rd) if and only if for almost all
w € R4

Q7 B Y D WeIr'w)fP =1 and

j=—ooreG 0
p@=8 Y Y e/ w)

j=—ooreG
where B = 1 for complex functions and f = % for real functions.

PROOF. If f is complex, § = 1, and one can verify that (2.7) is equivalent to

2.8) VieZ 1670+ > WelrTle))P =1

j>—J,reG
Since W[2/r] f (@) = f(@)V,s, (). multiplying (Z8) by | / ()|? and applying
the Plancherel formula proves that | W f||? = || f||?. For J = oo the same result
is obtained by letting J go to oo.
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Conversely, if |W f||*> = || f ||, then (2.8) is satisfied for almost all @. Oth-
erwise, one can construct a function f # 0 where f has a support in the do-

main of @ where (2.8)) is not valid. With the Plancherel formula we verify that
Wy £117 # || f|I?, which contradicts the hypothesis.

If £ is real then | f(w)| = | f(—w)| so |[W[2/ 7] f]| = ||W[=2/r]f]. Hence
Wy f || remains the same if r is restricted to G and v is multiplied by +/2, which
yields condition (2.7) with 8 = % O

In all the following, 1} is a real function that satisfies the unitary condition (2.7).
It implies that @(O) = [¥(x)dx = 0 and |$(rw)| = |¢A5(w)| forall r € G.
We choose $ (w) to be real and symmetric so that ¢ is also real and symmetric and
¢(rx) = ¢(x) forall r € G. We also suppose that ¢ and y are twice differentiable
and that their decay as well as the decay of their partial derivatives of order 1 and 2
is O((1 + |x|)7472).

A change of variable in the wavelet transform integral shows that if f is scaled
and rotated, 2/ gof=1f (21 gx) with 2! g € 22 x G, then the wavelet transform is
scaled and rotated according to

(29 WA@'go f) =2'go W2 gA] f
Since ¢ is invariant to rotations in G, we verify that Ay commutes with rotations
inG: Aj(go f)=goAyfforallg € G.

In dimension d = 1, G = {—1, 1}. To build a complex wavelet ¥ concentrated

on a single frequency band according to (2.3), we set @(a)) = 0 forw < 0.
Following (2.7), Wy is unitary if and only if

0
2100 BY W@ /wDP =1 and [p@)P =8 Y [yQ /o).

jGZ ]=—oo

If 1; is a real wavelet that generates a dyadic orthonormal basis of LZ(R) [14], then

1/7 = 21} 1y>o satisfies (2.7). Numerical examples in the paper are computed with
a complex wavelet ¥ calculated from a cubic-spline orthogonal Battle-Lemarié
wavelet 1; [14]].

In any dimension d > 2, (ﬂ\ € L2(R?) can be defined as a separable product in
frequency polar coordinates @ = |w|n, with 7 in the unit sphere S? of R4:

V(wl,n) e RY xS? g (lwln) = ¥(w)y ).

The one-dimensional function ¥ (|w|) is chosen to satisfy (2.10). The Littlewood-
Paley condition (2.7) is then equivalent to

vnes? Dyl =1.
reG
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2.2 Path-Ordered Scattering

Convolutions with wavelets define operators that are Lipschitz-continuous under
the action of diffeomorphisms, because wavelets are regular and localized func-
tions. However, a wavelet transform is not invariant to translations, and W[A] f =
f 1, translates when f is translated. The main difficulty is to compute translation-
invariant coefficients, which remain stable under the action of diffeomorphisms
and retain high-frequency information provided by wavelets. A scattering operator
computes such a translation-invariant representation. We first explain how to build
translation-invariant coefficients from a wavelet transform, while maintaining sta-
bility under the action of diffeomorphisms. Scattering operators are then defined,
and their main properties are summarized.

If U[A] is an operator defined on L2(R?), not necessarily linear but which
commutes with translations, then [ U[A] f(x)dx is translation invariant if finite.
WIAlf = f * ¥, commutes with translations but [ W[A] f(x)dx = 0 because
[ ¥(x)dx = 0. More generally, one can verify that any linear transformation of
W [A] f, which is translation invariant, is necessarily 0. To get a nonzero invariant,
we set U[A]f = M[AW][A]f where M[A] is a nonlinear “demodulation” that
maps W[A] f to a lower-frequency function having a nonzero integral. The choice
of M [A] must also preserve the Lipschitz continuity to diffeomorphism actions.

If Y (x) = e!™*@(x), then ¥ (x) = e!*"* 6, (x), and hence

@11 WRIf(x) =X (f* % 03(x)  with fA(x) = e f(x).

The convolution f* * 6, is a low-frequency filtering because g)t (w) = 6 A lw)
covers a frequency ball centered at w = 0, of radius proportional to |A|. A nonzero
invariant can thus be obtained by canceling the modulation term e A" with M[A].
A simple example is

(2.12) MAJh(x) = e iA1% =1 @RAM) (1)

where <I>(iz\ (An)) is the complex phase of }At(/\n). This nonlinear phase registra-
tion guarantees that M [A] commutes with translations. From (2.11)) we have that
[ MAIWAlf(x)dx = | f (An)] |§ (0)|. It recovers the Fourier modulus repre-
sentation, which is translation invariant but not Lipschitz-continuous to diffeomor-
phisms as shown in (2.1). Indeed, the demodulation operator M [A] in (2.12) com-
mutes with translations but does not commute with the action of diffeomorphisms
and in particular with dilations. The commutator norm of M [A] with a dilation is
equal to 2, even for arbitrarily small dilations, which explains the resulting insta-
bilities.

Lipschitz continuity under the action of diffeomorphisms is preserved if M [A]
commutes with the action of diffeomorphisms. For L2(R) stability, we also im-
pose that M [A] is nonexpansive. One can prove [4] that M [A] is then necessarily
a pointwise operator, which means that M [A]h(x) depends only on the value of
h at x. We further impose that |M[AJh]| = || for all A € L2(R?), which
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then implies that |M[A]k| = |h|. The most regular functions are obtained with
M [Alh = |h|, which eliminates all phase variations. We derive from (2.11)) that
this modulus maps W [A] f into a lower-frequency envelope:

MWL = WIS = [f* % 6al.
Lower frequencies created by a modulus result from interferences. For example,
if f(x) = cos(§1-x) + acos(§ - x) where & and & are in the frequency band
covered by ¥y, then |/ * ¥ (x)| = 271 (£1) + avy (62)e! €276DX| ogcillates
at the interference frequency |&2 — &1, which is smaller than |£1| and |&>].

The integration [U[A]f(x)dx = [|f % ¥, (x)|dx is translation invariant
but it removes all the h1gh frequencies of | f * ¥4 (x)|. To recover these high
frequencies, a scattering also computes the wavelet coefficients of each U[A] f:
{U[A]f x ¥ },. Translation-invariant coefficients are again obtained with a mod-
ulus U[AJU[A]lf = |U[A]f * ¥,/| and an integration [ U[AM|U[A] f(x)dx. If
f(x) =cos(é1-x)+acos(é,-x) witha < 1,and if |§, —&1| < |A| with [E;—£1|in
the support of x’p\,\/, then U[A|U[A] f is proportional to a |y (§1)| | (162 — &1])].
The second wavelet 1}  captures the interferences created by the modulus, between
the frequency components of f in the support of 1%.

We now introduce the scattering propagator, which extends these decomposi-
tions.

DEFINITION 2.2. An ordered sequence p = (A1,A2,...,Ay) With A € Ao =
2Z x G is called a path. The empty path is denoted p = @. Let U[A]f =
| f » ¥y for f € L2(R?). A scattering propagator is a path-ordered product of
noncommutative operators defined by
(2.13) Ulpl = UlAm]--- UlA2]U[A1],
with U[@] =

The operator U[p] is well-defined on L2(R?) because |U[A] £ < lvall1ll £l

for all A € A . The scattering propagator is a cascade of convolutions and modu-
lus:

(2.14) Ulplf = |If * ¥a,l * Vs |-+ [ x ¥a, |-
Each U [A] filters the frequency component in the band covered by xﬁ 2, and maps it
to lower frequencies with the modulus. The index sequence p = (A1,A2,...,An)

is thus a frequency path variable. The scaling and rotation by 2/g € 2% x G of
a path p is written 2/gp = (2'gA1,2/gAs,...,2!gA,n). The concatenation of
two paths is denoted p + p’ = (A1,A2,...,Am, A}, A%, ... A} ); in particular,
p+A=(A1,42,...,Am, A). It results from (2.13) that

(2.15) Ulp+ p1=U[p1UIp].

Section explains that if f is complex valued then its wavelet transform is

Weo f = AWI[Al f}2,—ren.,> Whereas if f isreal then Wo f = {WI[A] f}ren. -
If f is complex then at the next iteration U [A1] f = |W [A1] f| is real, so next-stage
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wavelet transforms are computed only for A € A . The scattering propagator of
a complex function is thus defined over “positive” paths p = (A1,42,...,Ay) €
A7 and “negative” paths denoted —p = (—A1,A2,...,A,4). This is analogous
to the positive and negative frequencies of a Fourier transform. If f is real, then
W[=A1lf = W[Ai]f* so U[=A1]f = U[A1] f and hence U[—p] f = Ulp]f.
To simplify explanations, all results are proved on real functions with scattering
propagators restricted to positive paths. These results apply to complex functions
by including negative paths.

DEFINITION 2.3. Let P be the set of all finite paths. The scattering transform of
f € LY(R?) is defined for any p € Poo by

(2.16) Sf(p) = Mi / Ulp)lf(x)dx with pup = / Ulplé(x)dx.
P

A scattering is a translation-invariant operator that transforms f € L' (R?)
into a function of the frequency path variable p. The normalization factor i, re-
sults from a path measure introduced in Section [3] Conditions are given so that
pp does not vanish. This transform is then well-defined for any f < L' (R%)
and any p of finite length m. Indeed, |[¥1]l1 = [[¥|1 so implies that
IUIp1 It < If N1 [l )If'. We shall see that a scattering transform shares sim-
ilarities with the Fourier transform modulus, where the path p plays the role of a
frequency variable. However, as opposed to a Fourier modulus, a scattering trans-
form is stable under the action of diffeomorphisms, because it is computed by iter-
ating on wavelet transforms and modulus operators, which are stable. For complex-
valued functions, S f is also defined on negative paths, and S f(—p) = S f(p) if
f is real.

If p # @ then S f(p) is nonlinear but it preserves amplitude factors:

(2.17) YueR Suf)(p)=IulSf(p).

A scattering has similar scaling and rotation covariance properties as a Fourier
transform. If f is scaled and rotated, 2/ g o f(x) = f(2!gx), then (2.9) implies
that U[A](2lg o ) =2/ g o U[27! gA] f, and cascading this result shows that

(2.18) ¥pePo Ulpl@'gof)=2'goURTgplf.
Inserting this result in the definition (2.16]) proves that
(2.19) S@'go f(p) =275 12 gp).

Rotating f* thus rotates identically its scattering, whereas if f is scaled by 2!, then
the frequency paths p are scaled by 27!, The extension of the scattering transform
in L? (Rd) is done as a limit of windowed scattering transforms, which we now
introduce.

DEFINITION 2.4. Let J € Z and PJ be a set of finite paths p = (A1,A2,...,Am)
with A € Ay and hence |Ax| = 2/ > 277 A windowed scattering transform is
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(2.20) Srlplf(x) = Ulplf * ¢pps(x) = / Ulplf(u)dps (x —u)du.

The convolution with ¢,/ (x) = 2747 ¢(277 x) localizes the scattering trans-
form over spatial domains of size proportional to 27

Sylplf(x) = |1f > Ya | * Vo, | - | % Y| * dav (x).

It defines an infinite family of functions indexed by Py, denoted by

SyPslf == ASslplf }pepr,;-
For complex-valued functions, negative paths are also included in Py, and if f is
real, Sy[—plf = Ss[plf-

Section [2.3| proves that for appropriate wavelets, || f||> = ZPGPJ 1S7 [P f I
However, the signal energy is mostly concentrated on a much smaller set of fre-
quency-decreasing paths p = (Ax)k<pm for which |Agi 1| < [Ag|. Indeed, the
propagator U[A] progressively pushes the energy towards lower frequencies. The
main theorem of Section[2.5]proves that a windowed scattering is Lipschitz-contin-
uous under the action of diffeomorphisms.

Since ¢(x) is continuous at 0, if f € L'(R%) then its windowed scattering
transform converges pointwise to its scattering transform when the scale 27 goes
to oco:

vreR lim 245,01 () =p(0) f Ulplfu)du

=¢(0)pS(p).
However, when J increases, the path set Py also increases. Section |3| shows that
{Ps}sez defines a multiresolution path approximation of a much larger set Poo
including paths of infinite length. This path set is not countable as opposed to each
Py, and Section [3|introduces a measure @ and a metric on Poo.

Section extends the scattering transform S f(p) to all f € L2(R?) and to
all p € Poo, and proves that S f € L?(Pso. djt). A sufficient condition is given
to guarantee a strong convergence of Sy f to S f, and it is conjectured that it is
valid on L2(R¢). Numerical examples illustrate this convergence and show that a
scattering transform has strong similarities to a Fourier transforms modulus when
mapping the path p to a frequency variable w € R,

(2.21)

2.3 Scattering Propagation and Norm Preservation

We prove that a windowed scattering Sy is nonexpansive and preserves the
L2(R?) norm. We denote by S;[Q2] := 1Ss[plipeq and U] := {U|[pl}pen
a family of operators indexed by a path set €2.

A windowed scattering can be computed by iterating on the one-step propagator
defined by

Usf ={A1f. UM Nren,
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FIGURE 2.1. A scattering propagator U applied to f computes each
UlM]f = |f x ¥a,| and outputs S;[D]f = f * ¢,s. Applying
Uy to each U[A{]f computes all U[Ay, A,] f and outputs S;[A;] =
U[A1] * ¢os. Applying iteratively Uy to each U[p] f outputs Sy[p]f =
Ulplf * ¢, and computes the next path layer.

with Ay f = f x ¢y and U[A]f = |f * ¥;|. After calculating Uy f, apply-
ing again Uy to each U[A] f yields a larger infinite family of functions. The de-
composition is further iterated by recursively applying Uy to each U[p] f. Since
UAU[p] = Ulp 4+ Al and A;U[p] = Ss|[p], it holds that

(2.22) UsUlplf = {Sslplf. (Ulp + Alf)ren, )

Let A’} be the set of paths of length m with A% = {@}. It is propagated into
(2.23) UsUIATLSf = (SsIATILUIAT N £,

Since Py = J,uen A’} one can compute S;[Py]f from f = U[@]f by iter-
atively computing Uy U[A'}] f for m going from O to oo, as illustrated in Figure
2.1l

Scattering calculations follow the general architecture of convolution neural net-
works introduced by LeCun [[11]]. Convolution networks cascade convolutions and
a “pooling” nonlinearity, which is here the modulus of a complex number. Con-
volution networks typically use kernels that are not predefined functions such as
wavelets but which are learned with back-propagation algorithms. Convolution
network architectures have been successfully applied to a number of recognition
tasks [[11] and are studied as models for visual perception [2, [17]. Relations be-
tween scattering operators and path formulations of quantum field physics are also
studied in [9].

The propagator Uy f = {Ay f,(IW[A] f|)aea,} is nonexpansive because the
wavelet transform Wj is unitary and a modulus is nonexpansive in the sense that
[la|—|b|| < |a—b| for any (a,b) € C2. Thisis valid whether f is real or complex.
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As a consequence,

WU f=Ushl? = A7 f = AshI>+ D [IWRALFI = WAL

A.EAJ
(2.24) < Wy f = Wrhl* < |1f = h|*.
Since W is unitary, setting 7 = 0 also proves that |[Uy f| = || f|, so Uy pre-

serves the norm.
For any path set 2 the norms of S;[2] f/ and U [Q2] f are

IS1Q1717 = Y ISs[p) /1P and UIRLSI> = ) U1
DEQ PER

Since Sy[Py] iterates on Uy, which is nonexpansive, the following proposition
proves that Sy [Py] is also nonexpansive [12].

PROPOSITION 2.5. The scattering transform is nonexpansive:
(2.25) V(fh) e LXR?)? (S5 [Ps1f = Ss[PslR] < |If = Al
PROOEF. Since Uy is nonexpansive, it results from (2.23)) that
IUIATf = UIATIR|?
> |UsUIATLf = UsU[AT IR
= |SsIATLSf = SyIATIRI? + U f = UIAT 102,

Summing these equations for m going from 0 to co proves that

(2.26) I1S7[Ps1f = Ss[Pslhll*> = Z ISs[AFLf = Sy [AT1R)?

§||f—h||2- 0

Section 2.2 explains that each U[A] f = | f » 5| captures the frequency energy
of f over a frequency band covered by {/;A and propagates this energy towards
lower frequencies. The following theorem proves this result by showing that the
whole scattering energy ultimately reaches the minimum frequency 2~/ and is
trapped by the low-pass filter ¢,s. The propagated scattering energy thus goes to 0
as the path length increases, and the theorem implies that | S;[Ps]f 1l = I|.f].
This result also applies to complex-valued functions by incorporating negative
paths (—A1,42,...,Ay) in Py.

THEOREM 2.6. A scattering wavelet  is said to be admissible if there exists n €
R4 and p > 0, with |p(w)| < |¢(2w)| and p(0) = 1, such that the function

+o00
2.27) V() = |ple—n =Y k(1 -2 -
k=1
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satisfies

(2.28) a = inf Z ZID(Z /r_la))|1p(2 Trlw)? > 0.

1< <2
ol < —ooreG

If the wavelet is admissible, then for all f € L2(R?)

00
(2.29) Jim [UIATISI? = tim Y [Ss[AG1f)? =0
and nm
(2.30) ISsPsLAI =171
PROOF. We first prove that limy—oco |[U[A}] f]l = 0 is equivalent to having

LMy 00 Ypep IS7IAG1S 117 = 0 and to [|S7[Ps1f | = || fIl. Since [Ush| =
||k for any h € LZ(Rd) and UyU[AR] f = {S7[A%] £ UAST],
Q31 UAGLfI? = WUsUINGLA 1P = IS AGLF 12 + IO TAS 1.

Summing for m < n < oo proves that lim;— [|U [Am] f1 = 0is equivalent

t0 limm 00 Yy IS7IA®] fII? = 0. Since f = U[AY] f, summing (2:31)) for
0 < n < m also proves that

(2.32) 1A% = Z”SJ T2+ IUIAT 1P,
SO

o0
IS7IPASIP = D ISAAGLAI> = 1 /1P
n=0
if and only if limp,— o0 [U[A7]]| = 0. O

We now prove that condition (2.27)) implies that limy, o |[U[A}] f |2 =0.1t
relies on the following lemma, which gives a lower bound of | f * ¥, | convolved
with a positive function.

LEMMA 2.7. Ifh > O then for any f € L2(R%)

(2.33) |f « Yl xh > sup |f * Yy % hy| with hy(x) = h(x)e'™*.
neR4

The lemma is proved by computing

If % Yl * h(x) = f /f(v)xlfx(u — v)dv|h(x — u)du

= /‘/ S —0)e " T (x —w)dv|du

)V — v)h(x — u)e! "™ gy du
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= ‘/ f(v)/%x(x —v—u)h)e'™ du’ dv

- ‘/f(v)w (= 0)dv| = |f Y3 5 g,

which finishes the lemma’s proof.
Appendix |Aluses this lemma to show that the scattering energy propagates pro-
gressively towards lower frequencies and proves the following lemma:

LEMMA 2.8. If (2.28) is satisfied and

(2.34) LAIE =D > i IWRIrfI? <o
Jj=0reG+

then

(2.35) % IUIPSLfI? < max(J + LDIfI? + 1 £113.

PROOF. The class of functions for which || f||,y < oo is a logarithmic Sobolev
class corresponding to functions that have an average modulus of continuity in
L2(R%). Since

+o00
WUIPASI? = D IUIATLA 1P

m=0
if || fllw < oo then (2.33) implies that lim,;—oo [[U[AT]f || = 0. This re-
sult is extended in L2(R%) by density. Since ¢ € L'(R?) and ¢(0) = 1, any
f € L2(RY) satisfies limy—oo | f — full = O, where f, = f * ¢pn and
¢an(x) = 27"4p(27"x). We prove that limyu— o0 |[U[A™] f4]|> = 0 by show-
ing that || f, ||w < oo. Indeed,

WA foll? = / F@P @) 5 r o) do
<o / 1f @) do.

because ¥ has a vanishing moment so |$(a))| = O(|w|), and the derivatives of ¢
are in L1 (R%) so || |¢(w)| is bounded. Thus we have that || f;,||w < oo.
Since U[A™] is nonexpansive, [|[U[A7]f — U[AT] full < I.f — faull, s0

IUIATIA N = IS = fall + IUTAT T fall.

Since limy——oo || f — full = 0 and limy— 00 [[U[A}] fu || = 0, we have
: m 2 _
Tim UIAT)f ) =0

forany f € L2(R9). O
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The proof shows that the scattering energy propagates progressively towards
lower frequencies. The energy of U[p] f is mostly concentrated along frequency-
decreasing paths p = (Ag)x<m for which [Ax 1| < |Ag|. For example, if f =6,
then paths of length 1 have an energy ||U[27r]8]12 = ||/, 1> = 27w
This energy is then propagated among all paths p € Py. For a cubic spline
wavelet in dimension d = 1, over 99.5% of this energy is concentrated along
frequency-decreasing paths. Numerical implementations of scattering transforms
thus limit computations to these frequency-decreasing paths. The scattering trans-
form of a signal of size N is computed along all frequency-decreasing paths, with
O(N log N) operations, by using a filter bank implementation [[13]].

The decay of Y oo IS [AT]f | implies that we can neglect all paths of
length larger than some m > 0. The numerical decay of ||S;[A}] f |2 appears
to be exponential in image and audio processing applications. The path length is
limited to m = 3 in classification applications [1} [3]].

Theorem2.6|requires a unitary wavelet transform and hence an admissible wave-
let that satisfies the Littlewood-Paley condition Z( JP)ELXG |$(2j ro)|? = 1.

There must also exist p > 0 and n € R? with |p(w)| < |qA5(2w)| such that

> W@re)? 5@ ro — )

(j,r)EZXG

is sufficiently large so that @ > 0. This can be obtained if according to (2.3),
V¥ (x) = €"*f(x) and hence W(a)) Q(a) — 1), where 0 and p 0 have their en-
ergy concentrated over nearly the same low-frequency domains. For example, an
analytic cubic spline Battle-Lemarié wavelet is admissible in one dimension with

= 3m/2. This is verified by choosing p to be a positive cubic box spline, in
which case a numerical evaluation of (2.28) gives « = 0.2766 > 0.

2.4 Translation Invariance

We show that the scattering distance ||S7[Ps]f — S;[Ps]h| is nonincreasing
when J increases, and thus converges when J goes to co. It defines a limit distance
that is proved to be translation invariant. Section [3| studies the convergence of
S7[Ps]f,when J goes to 0o, to the translation-invariant scattering transform S f .

PROPOSITION 2.9. Forall (f,h) € L2R?)2 and J € Z,

(2.36) 1Ss+1[Ps+1lf — Ss+1[Pr+1lll = 1Ss[Ps1f — Ss[Pslhll.

PROOF. Any p’ € P41 can be uniquely written as an extension of a path
p € Py where p is the longest prefix of p’ that belongs to Py, and p’ = p + ¢
for some g € Py41. The set of all extensions of p € Py in Py is

(2.37) Pl ={pUlp+277r 4+ p"Yregt prery -
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It defines a nonintersecting partition of Py, = UpEP S 775 41- We shall prove
that such extensions are nonexpansive,

(2.38) Y ASr41lp)f = Sralp Wl < 1S [p)f = Sslplhl®.
P'EP) L,
To later prove Proposition [3.3] we also verify that it preserves energy,
(2.39) Yo ISl 117 = 1S (LS 117
P'EPT L,
Summing (2.38) on all p € Py proves (2.36).
Appendix |A| proves in (A.6) that for all g € L2(R%)
lg * orrl>+ D llg * Vos, I = llg * s[>
reG+t

Applying it to g = U[p]f — U[p]h together with U[p]f * ¢, = Sy[p]f and
\ULp1Sf * Yoy = Ulp + 277 1] f gives

1711 = Sslplhl® = IIS7411p)f = Syalplhl?

(2.40) + 3 WUlp + 27771 f —Ulp + 27 rlnl?.
reG+

Since

Sy+1[Pr+1)ULp + 27711 f = {Syalp +277r + p"Bprer,

and Sy4+1[Py+1]f is nonexpansive, it implies

I1SsLp1f = Ss(plhll?
> 1Ss+1[p1f = Sr+1lplhl?
+ Y Y ssnlp 27 r+ 0N = Splp + 27+ ph
P"E€Pj+1reGt
which proves (2.38). Since Sj[Pjy+1]f preserves the norm, setting 4 = 0 in
(2.40) gives an equality

ISsPIAIP = 1Ssalpl AP+ Y. D ISswalp +277r + p"1f 1%

P"€Py+1 Gt
which proves (2.39). O

This proposition proves that || Sy [Ps] f — Ss[Ps]h|l is positive and nonincreas-
ing when J increases, and thus converges. Since Sy[P] is nonexpansive, the limit
metric is also nonexpansive:

V() e L2RD? - lim (|Sy[Ps1f = Ss[PsIhl < 1 = Al

i
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For admissible scattering wavelets that satisfy (2.28)), Theorem [2.6 proves that
ISsPsIfI = 11l so limyooo IS7[Ps1fIl = [ /]l The following theorem
proves that the limit metric is translation invariant:

THEOREM 2.10. For admissible scattering wavelets

VfEL2RY), Ve eRY lim |IS;[Ps)/ = Ss[PslLe /] =0.
—>00
PROOF. Since Sy[Py]Le = Le Sy[Ps]land Sy[Ps]f = Ay U[Psl/f.

ISs[Psl1Lc f = Sy[Ps1fIl = L AJUPsf — AgU[Ps] f ]
(2.41) <ILcAy = AsIIIUTPIfI

LEMMA 2.11. There exists C such that for all T € C2(R?) with |V |eo < % we
have

(2.42) IL:Asf —AsfIl<CUAI27 T]co-

This lemma is proved in Appendix [B] Applying itto t = ¢ and hence ||7|/oo =
|c| proves that

(2:43) ILeds =4l =C27 fel.
Inserting this into (2.41) gives
(2.44) ILeSsIPILS = SsIPsIf N < €277 Jel IU PSS

Since the admissibility condition (2.28) is satisfied, Lemma[2.§] proves in (2.33)
that for J > 1

(2.45) %IIUW’J]JFII2 <U+DIIZ+ 115
If || f||lw < oo then from (2.44)) we have
ILeSsIPILSf = SaPILFI? < (0 + DISI? + 1£15)C? 207 272 |e?

so limy o0 | LeSy[Pslf — Ss[Ps1f ]| = 0.

We then prove that limy_oo || LeST[Pr1f — S7[Ps1fll = 0 for all f €
L2(R%), with a similar density argument as in the proof of Theorem Any
f € L2(R%) can be written as a limit of { f,}yen With || fu]lw < 00, and since
S7[Py] is nonexpansive and L. unitary, one can verify that

ILeSy[Ps1f = SalPILSIN = ILeSaIPslfn = SalPlfall +2I1F = full-

Letting n go to oo proves that limy oo || LSy [Py f — Ss[Ps1f || = 0, which
finishes the proof. O
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2.5 Lipschitz Continuity to Actions of Diffeomorphisms

This section proves that a windowed scattering is Lipschitz-continuous under the
action of diffeomorphisms. A diffeomorphism of R4 sufficiently close to a transla-
tion maps x to x — t(x) where 7(x) is a displacement field such that ||V |lco < 1.
The diffeomorphism action on f € L2(R9) is Ly f(x) = f(x — 7(x)). The
maximum increment of 7 is denoted by [|At|leo = Sup(y ,yer2a [T(x) — T(U)|.
Let S; be a windowed scattering operator computed with an admissible scattering
wavelet that satisfies (2.28). The following theorem computes an upper bound of
IS7[Ps1L<f —Ss[Ps]f | as a function of a mixed (1', L2(R9)) scattering norm:

+o00
(2.46) 0PI =Y IVIAFIS I

m=0
We denote by Py, the subset of P of paths of length strictly smaller than m, and
(a v b) := max(a, b).

THEOREM 2.12. There exists C such that all f € L2(R%) with |U[Ps]f |1 < oo
and all T € C2(R?) with |V1|eo < % satisfy

(2.47) ISs[PsIL f = Sy[Ps1fI = CIIUPs] f 1 K(7)
with
" [AT]lco
(2.48) K(t) =27 T]loo + [IVT|loo| log 2 V1 + [[Htlco,

and forallm > 0
(2.49) 1S7[Prmlle f = Ss[Prmlf 1l = Cm| fK(z).
PROOF. Let [Sy[Pys], Lz] = Sy[PylL: — L:Sy[Py]. We have
ISs[PsIL<f = SyPsIfN < IL<Ss[Ps)f — Ss[PsIf]
+ ISy [Ps]. Ll f1I.
Similarly to (2.41)), the first term on the right satisfies
251 IL<Ss[Ps1f = SsPsIfIN = LAy — A IUPSS].

Since

(2.50)

“+o00 1/2 +o00
P fl= (Y IIU[A'}’]fIIZ) < Y IUIATIFIL

we have that

(2.52) ILSs[Ps1f = SslPslfIl = IL<Ay — As | IUPs]f Il

Since Sy[Py] iterates on Uy, which is nonexpansive, Appendix [D] proves the
following upper bound on scattering commutators:

LEMMA 2.13. For any operator L on L2(R?)
(2.53) ISy [PsL LIS < IUTPs1f Ml Uy L]l
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The operator L = L also satisfies
(2.54) U, LIl < 1Ws, L]l

Indeed, Uy = M Wy, where M{hy,(hy)ren,} = ths.(|hxl)ren,} is a nonex-
pansive modulus operator. Since ML, = L. M

(2.55) I[Us. L]l = [IMy Wy, L]l < [I[Ws, L]l
Inserting (2.53) with (2.54) and (2.52) in (2.50) gives

(2.56) ISs[PsIL< f = Sy[Ps1fIl =

IUPsIf iU LeAy — Agll + Wi, L]DD-
Lemmal2.11|proves that || L; Ay — Ay || < C 277 ||z||co. This inequality and
imply that
@.57) I1S7[PSIL.f = Si[Ps1f 1 < CIUIPsLS 1127 lItlloo + I[Wi, LellD.

To prove (2.47)), the main difficulty is to compute an upper bound of ||[[Wy, L],
and hence of ||[Wy, L]||> = |[Wy., L<]* [Wy, L]|, where A* is the adjoint of an
operator A. The wavelet commutator applied to f is

(Wi, L f = {{As. L f. ((WIAL Le]lfren, b

whose norm is
(2.58) W, LSFIP = M[Ar. L FIP+ Y IIWIAL LI
AEAJ
From this we get that
Wi, Lol* Wi, Ll = [Ag, LJ* [Ag. Ll + ) WAL Le]* WAL Le).
XGAJ
The operator [Wy, L]* [Wy, L] has a singular kernel along the diagonal, but Ap-

pendix [E] proves that its norm is bounded.

LEMMA 2.14. There exists C > 0 such that all J € Z and all T € Cz(Rd) with
IVtlloo < 5 satisfy

At
@59 W Ldl < c(nvfuoo(log [87lleo 1) + ||Hr||oo).
1Vl

Inserting the wavelet commutator bound (2.59) in (2.57) proves the theorem
inequality (2.47). One can verify that (2.47) remains valid when replacing Py by
the subset of paths of length smaller than m: Py, = |, ,, A} if we replace

NUPs1f N1 by |U[Psmlfl1. The inequality results from

m—1

(2.60) WUIPrml Sl =D UGS < mllf].

n=0
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This is obtained by observing that

(2.61) IUIAGIA I < MU IAGA L < 1L
because U[A'}] f is computed in (2.22) by applying the norm-preserving operator
Uy on U[A1]f. O

The condition ||V1|eo < % can be replaced by | V1|l < 1if C is replaced by
C (1—Vtlleo)™. Indeed, [|S;[Ps1 /]| = || f| and

ISSIPALfI < £ = | Velloo) ™.
1

This remark applies to all subsequent theorems where the condition ||Vt|leo < 5
appears. The theorem proves that the distance ||Sy[PslL.f — S;[Ps]1f | pro-
duced by the diffeomorphism action L. is bounded by a translation term propor-
tional to 277/ ||7||eo and a deformation error proportional to ||V7|/s. This defor-
mation term results from the wavelet transform commutator [Wy, L;]. The term
log(||At]leo/|IVT|leo) can also be replaced by max(J/, 1) in the proof of Theorem
For compactly supported functions f, Corollary replaces this term by
the log of the support radius.

If f eL? (R?) has a weak form of regularity such as an average modulus of

continuity in L2(R¢), then Lemma|2.8| proves that

lUIPs1£ 17 Z IUIASLf 117

is finite. Numerical experiments indicate that | U[A’}] /|| has exponential decay for
a large class of functions, but we do not characterize here the class of functions for
which |U[Ps]fll1 = Y peo |U[A"]f |l is finite. In audio and image processing
applications [11 [3]], the percentage of scattering energy becomes negligible over
paths of length larger than 3 so (2.49) is applied with m = 4.

The following corollary derives from Theorem [2.12] that a windowed scatter-
ing is Lipschitz-continuous under the action of diffeomorphisms over compactly
supported functions.

COROLLARY 2.15. For any compact 2 C R there exists C such that for all
fe LZ(Rd) supported in 2 with ||U[Ps] f|l1 < oo and for all T € C2(R?) with
IVtlloo < 5 if27 = lItlloo/ IV lloo, then

262)  (ISs[PslLcf = Sy[Ps1f I = CIUPsLf 11 (IVTloo + [1HTloo)-

PROOF. The inequality (2.62)) is proved by applying toaT with Lz f =
L+ f and showing that there exists C” that depends only on £ such that

[AT] 00
VTl

2.63) 27 [Fleo + ||V?||oo(1og v 1) I HE oo <

C'(IVtllos + [ Hzlloo)-
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Since f has a support in Q, Lz f = L. f is equivalent to T(x) = t(x) for all
xeQ={x:x—1(x) € Qand T71(Q) = Q.. If Q has a radius R, then the
radius of Q¢ is smaller than 2R, because ||VT|loo < % We define T as a regular
extension of 7 equal to 7(x) for x € Q2 and to the constant minyeg, 7(x) outside
a compact Q. of radius (4R + 2) including €2;. From this we have

(2.64) [AT]loo = sup  [T(x) =T(u)| = (4R + 2)[|VT|| o

(x,u)eQ?2
The extension in Qr — ¢ can be made regular in the sense that

[VTlloo + 1HT]loo < @ (IVllooll + [1HTlo0)

for some o > 0 that depends on Q2. This property together with (2.64)) proves
2.63). O

Similarly to Theorem [2.12} if P is replaced by the subset Py ,, of paths of
length smaller than m, then |U[Py] f |1 is replaced by m|| f || in (2.62). The upper

bound ([2.62) is proportional to m|s| || f|| if Lz f(x) = f((1—s)x) with |V (x)| =
|s| < 1. In this case, a lower bound is simply obtained by observing that since

ISsIPs1fIl =1 £l and [Sy[PsILe fl = L fIl = A=5)"" £,
ISy IPALf = SgPILAN = LSl = A1 >27 s | £

Together with the upper bound (2.62), it proves that if 7(x) = sx, then the scatter-
ing distance of f and L f is of the order of ||Vt o || f1I-
The next theorem reduces the error term 27 || 7 || oo in Theoretho a second-

order term 272/ 7|3, with a first-order Taylor expansion of each Sy[p]f. We
denote

VSi[Pr1f(x) :={VSs[plf(X)}pep,.

t(x) - VSy[Py]f(x) == {z(x) - VSs[p] f(X)}pep, -
THEOREM 2.16. There exists C such that all f € L2(R?) with |U[Ps]f |1 < oo
and all T € C2(R?) with | Vt|loo < 3 satisfy
(2.65)  |Ss[PsIL<f = Ss[Pslf + - VSs[PsIfI = CIUPs1Sf 11 K(z)
with
[At]loo
IVTloo

PROOF. The proof proceeds similarly to the proof of Theorem [2.12] Replacing
Sy[PslL:—=Ss[Ps1by Sy[PslL:—Ss[Ps]+t-VSs[Ps]in the derivation steps
of the proof of Theorem [2.12]amounts to replacing LAy — Ay by L:Ay — Ay +
V Ay. Equation (2.56) then becomes

ISs[PsIL f — Sy[Pslf +1-VSs [Pyl <
NUPAS WAL Ay — Ay + VAs| + [[Wr, L]|).

266)  K(r) =22 |o) + ||vf||oo(log v 1) I Heloe.
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Appendix [C|proves that there exists C > 0 such that
(2.67) ILeAsf — Ay +VAsl < C 272 ||
Inserting the upper bound (2.59)) of ||[Wy, L]|| proves (2.63). O

If27 > ||t]loo and ||V |lco + | HT]loo < 1, then K(z) becomes negligible and
7(x) can be estimated at each x by solving the system of linear equations resulting

from (2.65)):
(2.68) VpePy Sylpllcf(x)—=Ssplf(x)+t(x)-VS;[p]lf(x) =~ 0.

In dimension d, the displacement 7(x) has d coordinates that can be computed if
the system (2.68) has rank d. Estimating 7(x) has many applications. In image
processing, the displacement field 7 (x) between two consecutive images of a video
sequence is proportional to the optical flow velocity of image points.

3 Normalized Scattering Transform

To define the convergence of S7[Py], all countable sets Py are embedded in
a noncountable set Pyo. Section constructs a measure 4 and a metric in Puo.
Section redefines the scattering transform S f as the limit of windowed scat-
tering transforms over Py, with S f € L2(Poo., dj1) foi € L2(R?). Numerical

comparisons between S f and | f | are given in Section

3.1 Dirac Scattering Measure and Metric

A path p € P can be extended into an infinite set of paths in Py that re-
fine p. In that sense, Py is a set of higher-resolution paths. When J increases
to 0o, these progressive extensions converge to paths of infinite length that belong
to an uncountable path set Poo. A measure and a metric are defined on Pe.

A path p = (A1, A2,..., Am) of length m belongs to the finite product set A7}
with Ao = 2% x G*. An infinite path p is an infinite ordered string that be-
longs to the infinite product set ASS. For complex-valued functions, adding neg-
ative paths (—A1,A2,...,4,) doubles the size of A%, and ASS. We concentrate
on positive paths (A1, A2,...,A,) and the same construction applies to negative
paths. Since Ao = 2% x G is a discrete group, its natural topology is the dis-
crete topology where basic open sets are individual elements. Open elements of
the product topology of A are cylinders defined for any A € Ao and n > 0 by
Ch(A) = {9 = {9k k>0 € AL : gny1 = A} [22]. Cylinder sets are intersections
of a finite number of open cylinders:

Cn()tl,)tz,...,km) = {q € Ag qdn+1 = ll,kz,...,q,H.m = Am}

m
=) Casi (i)
i=1
As elements of the topology, cylinder sets are open sets but are also closed. Indeed,
the complement of a cylinder set is a union of cylinders and is thus closed. As a
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result, the topology is a sigma algebra on which a measure w can be defined. The
measure of a cylinder set C is written w(C).

Let Poo be the set of all finite paths including the @ path: Poo = U, eny A%%-
Toany p = (A1,A2,...,Am) € Pso, We associate a cylinder set

C(p)=Co(p) ={qg e A :q1 = A1, 2, ... qm = Am}.

This family of cylinder sets generates the same sigma algebra as open cylinders,
because open cylinders can be written Cy, (1) = U(M,Az,...,kn)eA’éo C(A1,Aa,. ..,
An, A). The following proposition defines a measure on A3 from the scattering of
a Dirac:

Ulpld = [ 1Y, | *x Yl x| % p, |-

PROPOSITION 3.1. There exists a unique o-finite Borel measure |1, called the
Dirac scattering measure, such that n(C(p)) = ||U[p]8||? for all p € Peoo. Forall

2lg € Ao and p € Poo, t(C(2'gp)) = 29 W(C(p)). If 1Y (@)] + [P (—w)| # 0
almost everywhere, then ||U[p]é|| # 0 for p € Poo.

PROOF. The Dirac scattering measure is defined as a subdivision measure over
the tree that generates all paths. Each finite path p corresponds to a node of the
subdivision tree. Its sons are the {p + Ajren,» and C(p) = Ujep,  C(p + 1) is
a nonintersecting partition. Since

IUpI8)1> = |UsU[pl8))* = Z IULp + 21811,
A€EA

we have that u(C(p)) = Zkero W(C(p+A)). The sigma additivity of the Dirac
measure over all cylinder sets results from the tree structure, and the decomposition
of the measure of a node u(C(p)) as a sum of the measures u(C(p + 1)) of
all its sons. This subdivision measure is uniquely extended to the Borel sigma
algebra through the sigma additivity. Since A3 = (J,cp.  C(A) and u(C(R)) =
IU[A]S]1% = ||¥]1%, this measure is o-finite.

We showed in (ZI8) that U[p](2lg o f) = 2lg o U[27!gp]f. Since 2/g o
§ = 27915 we have |U[27 gp]§||> = 274! || U[p)8||? and hence u(C (2! gp)) =

L (p)). R R

For the set of @ € R¢ where ¥ (w) = 0 and ¥/ (—w) = 0 is of measure 0, let us
prove by induction on the path length that U[p] f # 0if f € L2(R?) [ JL'(R?)
orif f = §. We suppose that U[p] f # 0 and verify that U[p + A] f # O for

any A € Aoo. Since Ul[p ]f is real, |m(a))| = |m( —w)|. But (h(w)
W(/\ Lw), so WA (w) and 1// 2 (= a)) vanish 51multaneously on a set of measure 0. We

have that U[p + A f = U[p]f %L % 01fU[p]f # 0so U[p+ A]f is anonzero
function. Il
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A topology and a metric can now be constructed on the path set ASS. Neighbor-
hoods are defined with cylinder sets of frequency resolution 27

3.1) Ciip= |J cr+rccp.

A€EA

|Al<2=/
Clearly Cj11(p) C Cy(p). The following proposition proves that w(Cy(p))
decreases at least like 279 when 27 increases, and it defines a distance from
these measures. The set ASS of infinite paths is not complete with this metric. It
is completed by embedding the set Poo of finite paths, and we denote by Po, =
Poo U AZ the completed set. This embedding is defined by adding each finite
path p € P to C(p) and to each Cy(p) for all J € Z without modifying their
measure. We still denote Cs(p) the resulting subsets of Peo. For complex-valued
functions, the size of Py, is doubled by adding finite and infinite negative paths

(A1, A2, A, ).
PROPOSITION 3.2. If p € P is a path of length m, then

(3.2) w(Cr(p) = ISs8Ip1I% < 27 I 1y 17
Suppose that | ()| + |¥ (—w)| # 0 almost everywhere. For any ¢ # ¢’ € Poo
(3.3) d(g.q)=  inf  u(Cs(p)) and d(g.q)=0

(g.9")eCy(p)?

defines a distance on Poo, and Py is complete for this metric.

PROOF. According to (3.1])

wCrp) = > wCp+)= Y [Ulp+As|*
A€A o A€A
|A|<2—/ |A|l<2—7

Since U[p + A]8 = |U|[p]d » ¥, | and
o @)> = Y [P,

A€A oo
[A|<2=7

the Plancherel formula implies
(Cr(p) =Y IUPIs*¥al®> = ULPIS * ¢ps > = IS5 [PISI>.

AEA o
[Al<2=7

Since Sy[p]é = U[p]d * ¢,s, Young’s inequality implies

ISsIp18ll < U1P1SI1 Ipav II-
Moreover, [U[A]f v < [I¥alls [/ llx with [[¥alls = [[¥]1, so we verify by in-
duction that |U[p]d[l1 < [[y[|™. Inserting ¢,/ |12 = 2747 |$||? proves (3-2).

Let us now prove that d defines a distance. If ¢ # ¢’, we denote by p €
P their common prefix of longest size m, which may be 0, and we show that
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d(q.q") # 0. Let |gmy1]| = 2/m+1 and |dpr] = 2/m+1 be the frequencies
of their first different coordinate. If 27/ = max(|gm+1]. |dpn1q]) then (q.q") €
Cy(p)? and it is the smallest set including both paths so d(g.q") = n(Cy(p)).
We have that d (g, q’) # 0 because u(Cy(p)) > u(C(p + 2_J£)) forr € Gt

and Propositionproves that u(C(p)) # O forall p € Poo,s0d(q,q") # 0.
The triangle inequality is proved by showing that

(3.4) V(g.q'.q") € P2, d(q'.q") <max(d(q.q").d(q.q")).

This is verified by writing d(q.q") = n(Cy(p)), d(¢'.q") = w(Cy(p')), and
d(q',q") = n(Cy»(p")). Necessarily p is a substring of p’ or vice versa, and p”
is larger than the smallest of the two. If p” is strictly larger then the smallest, say
p. then 1(Cy(5")) < w(C(P") < Cy(p), so (A is satisfied. If p = p = 7,
then 277" < max(2=7,277") and (34) is satisfied. Otherwise p” = p is strictly
smaller than p’ and necessarily 27" = 27 so is also satisfied.

To prove that Py, is complete, consider a Cauchy sequence {g j}jeN in Poo. Let
Pk be the common prefix of maximum length m among all ¢; for j > k. Itisa
growing string that either converges to a finite string p € Poo if my is bounded or
to an infinite string p € AZ5. Among all paths {g; } ;>x Whose maximum common
prefix with p has a length my, let g;, be a path whose next element A,,, +1 has a
maximum frequency amplitude |A,;, +1|. One can verify that

sup d(q;,q;)) = d(qj.. p) = supd(p.q;).
Joi'zk =k

The convergence of sup; ;> d (gj.q,7) to 0 as k increases also implies the con-
vergence of sup; - d( P, q;) to 0 and hence the convergence of {g;};en to p. [J

3.2 Scattering Convergence

For h € L?(Poo, dit), we denote ||h||72300 = fﬁoo |h(q)|? du(q), where p is the
Dirac scattering measure. This section redefines the scattering transform S f as a
limit of windowed scattering transforms and proves that S f € L2?(Peso,dt) for
all f € L2(R?). We suppose that v is an admissible scattering wavelet and that

[V ()| + | (—w)| # 0 almost everywhere.

Let ¢, (p)(g) be the indicator function of Cy (p) in Poo. A windowed scattering
Ss[Pslf(x) = {Sslplf(x)}pep, is first extended into a normalized function of
(¢, x) € Poo x R?

Sslplf(x)

(3.5) Sy fg.x) =) 1S P18l

PEPy

HCJ(P) (q).
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It satisfies Sy f(p.x) = Sy[plf(x)/lISs[pl8] for p € Peo. Since u(Cy(p)) =
1S5 (P18, for all (f,h) € L*(R?)?

[ [ 1517@0) = $sh@. 0P du@ax = 1Ss(PAS = Ss1PI A1
< If =hl?,
and
[ [ 151 1@ 0R du@rdx = 112151 = 1112,
Poo RY
s0 Sy f(q. x) can be interpreted as a scattering energy density in Ps x R¥.
The windowed scattering Sy f (g, x) has a spatial resolution 2~/ along x and
a resolution 27 along the frequency path ¢. When J goes to oo, S f(g, x) loses
its spatial localization, and Theorem proves that the asymptotic metric on
S7[Pslf and hence on Sy f(g, x) is translation invariant. The convergence of

Sy f(g.x) to a function that depends only on ¢ € Py is studied by introducing
the marginal L2(R?) norm of Sy f(g. x) along x for ¢ fixed:

Vg ePoo S1/(q) = / 1S5 /(g x) dx

_ ||SJ[P I
- Z [p]5||

It is a piecewise constant function of the path variable ¢ whose resolution increases
with J. Since ;1(Cy(p)) = ||Ss[pl8|%,
ISy f = Sshl3_ = / 1S5 £ (@) — Ssh(@)* di(q)
(3.7) Poo
2
= > |ISsIp1 A1l = ISs IRl

PEPy

(3.6)

cs(p(@)-
PEPy

The following proposition proves that Sy is a nonexpansive operator that preserves
the norm.

PROPOSITION 3.3. Forall (f,h) € L2 R?)2 and J € Z

(3.8) ISy f = Sshls, < 1S541f — Sr+1hlp.
(3.9) ISy f —Sshls, < ISs[Ps1f = Ss[Pslkll < |1 f — Rl
(3.10) 1S5 f Iz = 111
PROOF. We proved in (2.39) that
(3.11) I1Ss[p1f 1% = Z I1S7+1[P"1 /117,

p’ePf_H
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where Py = Upepj P§+1 is a disjoint partition. Applying this to f and &
implies

[ISsIp1f 1 — ||SJ[P]h|||2 < Z I1Ss+1lP1f 1l = ||SJ+1[P/]h||‘2~
P'EPY L,

Summing over p € Py and inserting (3.7) proves (3.8).

Since |[|Sy[p]fII=ISsLp)2lI| < IISs[p]f —Ss[plh]l. summing this inequality
over p € Py and inserting (3.7) proves the first inequality of (3.9). The second
inequality is obtained because S;[Py] is nonexpansive. Setting 7 = 0 proves that

157 f 15, = IS7[Ps1f 1 and Theorem .6 proves [|S;[Ps1/1l = || /|, which
gives (3.10). O

Since ||Syf — S. Jh| 5, is nondecreasing and bounded when J increases, it
converges to a limit that is smaller than the limit of the nonincreasing sequence
1S7[Ps1f — Ss[Pslh|. The following proposition proves that S; f converges
pointwise to the scattering transform on Py, introduced in Definition [2.3

PROPOSITION 3.4. If f € LY(R?), then

61D VpePw Jim S1/(p) =S5/ (p) = / Ulplf(x)dx
—>00 Mp

with p = [ U[p)8(x)dx.

PROOF. If p € Poo, then Sy f(p) = |Ss[p)f1I/11Ss[p]8]l for J sufficiently
large. Let us prove that

(3.13) Jim 242185 [p] £ = g / Ulplf(x)dx

and that this equality also holds for f = §. Since Sy[p]f = U[p]lf * ¢,s, the
Plancherel formula implies

G149 24Ys,[pl f1I1? = 2% (27) 74 / Uplf (@) 1627 0)? do.

Since derivatives of ¢ are in L (R?), we have ¢(w) = O((1 + |w|)~ 1), and hence
(2m)~4247 |<,‘1A>(2Ja))|2 converges to [|¢||2 §(w). Moreover, if f € L'(R?) then
Ulplf € LY(R%) so m(w) is continuous at @ = 0. We have from (3.14) that
limy o0 227 |S ;[P f1I* = [UTp] ()2 | $]| which proves (3T3). The same
derivations hold to prove this result for f = 4.

Since | ()| + |¥ (—w)| # 0 almost everywhere, Proposition [3.1| proves that
U[p]é # 0. Since it is positive, it has a nonzero integral. We have from (3.13)) that

limy o0 ISy [P1 /1S5 1P18I = [ Ulplf(x)dx/ [ U[pl§(x)dx, which proves
. U
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The scattering transform S f can now be extended to Py, as a windowed scat-
tering limit:
Vg € P S f(g) =liminf Sy f(q).
J—00

Proposition proves that ||Sy f 5, = I/l so Fatou’s lemma implies that

Sf € L?(Poo.djt). The following theorem gives a sufficient condition so that
Sy f converges strongly to S f, which then preserves the L2(R¢) norm of f.

THEOREM 3.5. Iffor f € L2(R?) there exists QY C Py with
lim |S7[Q1/1>=0 and
J—o00

lim sup Ss1plf H
T L ep,—a IS, [Pl /1l IISJ[p]5||

then limy o0 Sy f =S flip, = 0with |S i, = IIf | and

(3.15)

(3.16) Vp € Poo / 5 £@ R duq) = |ULpLf I
C(p)

If (f.h) € L2(R%)? satisfy (3.15), then

(3.17) Jim ISs[P)f ~ SsIPsIl = 15 ~ Shils

If B.15) is satisfied in a dense subset of L2(R%), then Sy f converges strongly to
S f forall f € L2(R?), and both (3.16) and B.17) are satisfied in L?>(R%).

PROOF. The following lemma proves that {87 f}sen is Cauchy and hence con-
verges in norm to S f € L?(Poo, dit). The proof is in Appendix

LEMMA 3.6. If f € L2(R?) satisfies B.13), then {Sy f}sen is a Cauchy se-
quence in L?(Pso, d1).

Since_L2 (Poo, dyr) is complete, Sy f(q) converges in norm to its limit inf Sf.
Since [|Sy £l = [l it also implies that ||S f |5 = || f]. Also, U[p +q] =
UlqlU[p], so

IS;UPIf I3 = / 1S5 f(@? du(q).
C(p)
Since ||§JU[p]f||?300 = ||U[p] f I, taking the limit when J goes to oo proves

@.16).

The windowed scattering convergence (3.17)) relies on the following lemma:
LEMMA 3.7. If (f.h) € L2(R%)? satisfy (3.13), then
(3.18) lim [|S;[Ps1f — Ss[Pslhll = Lim ||S;f —Sshlz_.
J—o00 J—o00
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PROOF. Since (3.15) implies that S; f and S, respectively, converge in norm

to S f and Sh, the convergence (3.17) results from (3.18)). Proving (3.18) is equiv-
alent to proving that limy_, o Zpepj I7(f,h)[p] =0 for

1 (f.p] = |Ss[p1f = Ss[pInll®> = [IISs1p1 f ]| — IISJ[p]hII\Z«
Observe that

2
15 (AP = ISs1p1f 11 1S Tolh H ”

Sslplf Ssplh
SyIP1fIl - IS LplAll

2

8

(3.19) <2[Ss[p1 /1 ||SJ[P]h||(” ||§j{§}j:|| - ||§j{,€}5||
H Sy[p18 2)
1S h|| ISsLp18I )

When summing over p € Py, we separate Q; U Q? from its complement in
Py. Since we have

Jim ISSIR71F 1P =0, ISsPIIfIP = 112,

lim [|S;[Q%11% = 0. |S/[PsIRI? = ]2,
J—00

dividing the sum over Q{ and Q? and applying Cauchy-Schwarz proves that
li =
Jim > S PL IS Pl =0
peQ,uQ’

and 3, ep, [1Ss[p1f I ISsIPIAI < I /1l IR]l. The hypothesis (3.15) applied to f
H Sslplh Ss[p)8
I

and & gives
- wp (H Silplf Sul p B 2) .
pePy -l uQh I1SsLp1f Sslplhll  ISs[pI8]
so (3.19) implies that lim_, Zpepj I7(f,h)[p] = 0, which finishes the proof
of the lemma. 0

Suppose that (3.15)) is satisfied in a dense subset of_L2 (RY). Any f € L? (R9)
is the limit of { f;, },>0 in this dense set. Since S and Sy are nonexpansive,

ISf =Sy flpg <20 = fall + 1S fu = Sy full 5.

Since fy satisfies (3.15), we proved that Sy fa converges in norm to S fn. Letting n
20 to oo implies that Sy f converges in norm to S. The previous derivations then
imply that both (3.16) and (3.17) are satisfied in L?(R?). O

J—>o00

If f € LY(R?) and p € Poo, applying the Plancherel formula proves that

Ssylplf Sslpls |

(3.20) Paus ” 1S/TP17 T 1S/ 1pI8I
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since Sy[p]f(x) = Ulplf * ¢, and ||U[p]f||1 < oo. This is, however, not
sufficient to prove (3.15)) because the sup is taken over all p € Py — QJJI , which
grows when J increases. For f € L!(R%), one can find paths py € Py, which
are not frequency decreasing, where Sy[ps]f/|ISs[ps]1f |l does not converge to
S7lps16/11Ss[ps16|l. The main difficulty is to prove that over the set Qf of all
such paths, a windowed scattering transform has a norm || Sy [Q; 1f |l that con-
verges to 0. Numerical experiments indicate that this property could be valid for
all £ € LY(R%). It also seems that if / € L!(R?), then S f(g) is a continuous
function of the path g relative to the Dirac scattering metric. This is analogous to
Fourier transform continuity when f € L!(R9).

CONJECTURE 3.8. Condition (3.15) holds for all f € LY (R%). Moreover, if f €
LY(R?), then S f(q) is continuous in P relative to the Dirac scattering metric.

If this conjecture is valid, since L! (Rd) is dense in L? (Rd), then Theorem
proves that S; converges strongly to S f for all f € L2(R¢) and ||S f 5, =
|l /]l In addition, property proves that ||S;[Ps]f — Ss[Pslh| converges
to|Sf—S h|5 as J goes to co. Through this limit, the Lipschitz continuity
of S under the action of diffeomorphisms can then be extended to the scattering
transform S.

3.3 Numerical Comparisons with Fourier

Let R4+ be the half frequency space of all = (w1, s, ..., wg) € R? with
w1 > 0and wi € R for k > 1. To display numerical examples for real functions,
the following proposition constructs a function from R4* to P, that maps the
Lebesgue measure of R4 into the Dirac scattering measure. It provides a repre-
sentation of S f over R4+, We assume that Y is an admissible scattering wavelet
and that |1’ﬂ\(a))| + |1Z(—a))| Z# 0 almost everywhere.

PROPOSITION 3.9. There exists a surjective function q(w) from R4t onto Poo
such that for all measurable sets 2 C P

(3.21) wW(Q) = / do.
()

PROOF. The proof first constructs the inverse ¢g~! by mapping each cylinder
C(p) for p € Po into a set g~ 1(C(p)) C R4 satisfying the following proper-
ties: W(C(P)) = [,-1(c(py 9@ and ¢~ (C(p)) N ¢~ (C(p") = @ if C(p) N
C(p") = @, and g~ (C(p)) C ¢~ (C(p")) if C(p) C C(p). Let g~ (C(p)) be
the closure of ¢~ 1(C(p)) in R4 . For all p # @, we also impose that the frontier
of g~ 1(C(p)) is a set of measure 0 in R4+ and that g—1(C(p + 1)) C ¢~ 1(C(p))

forall A € A. The cylinders C(p) generate the sigma algebra on which the mea-
sure u is defined. A measurable set €2 can be approximated by sets €2, that are the
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union of disjoint cylinder sets C(p) with limy_, oo £ (€2 — Q%) = 0. The properties
of ¢~ ! on the cylinders C(p) imply that fq*l @) dw = (), and when k goes
to oo we get (3.21).

Once all g~1(C(p)) are constructed, the inverse ¢(w) is uniquely defined for
all o € R4T as follows: Let Pm be the prefix of § € Py of length m. We
define ¢7'(@) = Nimen ¢~ (C(pm)). Since g~1(C(p + 1)) C ¢~ (C(p)) for
all A € Aoo, we have that (,,en ¢ H(C(Pm)) = Nmen 4 H(C(pm)). Itis a
closed nonempty set because ¢ 1 (C(pm)) C ¢~ 1(C(pm—1)) is a nonempty set of
measure |U[pm]8|| # 0. We verify that ¢(w) = g for all @ € ¢~ 1(g) defines a
surjective function on R4+ by showing that quﬁm g~ 1(q) is a partition of R4,

If Py, is the set of all paths of length m, then | bep,, C(p) is a partition of Poo 80
the recursive construction of ¢! implies that |_J hep,, g~ 1(C(p)) is a partition of
R4+, Letting m go to infinity proves that Uzep., 47" (@) is a partition of R+,

The sets ¢~ (C(p)) satisfying the previously mentioned properties are defined
recursively on the path length, with a subdivision procedure. In dimension d = 1,
each ¢~ 1(C(p)) is recursively defined as an interval of RT. We begin with paths
p = 2/ of length 1 by defining ¢~ (C(27)) = [2/||y]|?.2/ ¥ |?), whose
width is 2/ ||y||> = u(C(27)). Suppose now that ¢g~'(C(p)) is an interval of
width equal to .(C(p)). Allg~(C(p +2/)) for j € Z are defined as consecutive
intervals [a;,a;—1) that define a partition of ¢~1(C(p)) = Ujezlaj,aj—1) with
aj—1 —a; = ||U[p + 2718||2 = u(C(p + 27)). One can verify that this recur-
sive construction defines intervals ¢ 1 (C(p)) that satisfy all mentioned properties.
Moreover, in this case the resulting function g(w) is bijective from R to Poo.

In higher dimensions d > 1, this construction is extended as follows: All cylin-
ders C(A) for all paths p = A = 2/r of length 1 are mapped to nonintersecting
hyperrectangles ¢! (C (1)) of measure

do = u(C2/r) = U2/ r]8]1> = 29 |y ||.
g~ 1(C(27r))
These hyperrectangles are chosen to define a partition of R4+, and hence R4+ =
Urean, g~ (C(L)) with ¢g71(C(A)) N g~ (C(A)) = @ for A # A'. Suppose
now that ¢~ 1(C(p)), with fq*l (C(p)) dx = ||U[p]8||?, is defined for all paths p of
length m. The operator U preserves thenorm ) ; cx U [p+A18012 = |IU[p)S|I%.
We can thus partition ¢ ~1(C(p)) into subsets {g~1(C(p + A))Iren,, With

/ dw = |U[p + A5]1
a1 (C(p+A)
and with frontiers that are zero-measure piecewise hyperplanes of dimension d — 1.

The property ¢~ (C(p + 1)) C ¢~ 1(C(p)) forall A € A is obtained with a
progressive packing strategy. We first construct ¢~ 1(C(p + 1)) forall A = 2/r
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with j > 0 by defining a partition of a closed subset of g~ 1(C(p)) of measure
ZAGAOO,Ile |U[p+A]8||?. The remaining ¢~ ! (C(p+A)) are then progressively
constructed for A = 2/r and j going from —1 to —oo, within the remaining closed
subset of g~ (C(p)) not already allocated. This is possible since we guarantee that
the frontier of each ¢~ (C(p)) has a zero measure. O

The function ¢(w) maps the Lebesgue measure into the Dirac scattering mea-
sure, but it is discontinuous at all @ € R4+ such that q(w) € Poo. Indeed, these w
are then at a boundary of the subdivision procedure used to construct g(w). As a
result, if @ and '’ are on opposite sides of a subdivision boundary, then they are
mapped to paths g(w) and g(w") whose distance d (¢(w), ¢(w’)) does not converge
to 0 as |w — w'| goes to 0.

Measure preservation (3.21) implies that g(w) defines a function S f(g(w)),
which belongs to LZ(R4*) and

15 £ (@@ 2as = / 15 £(q(@)P do

R4+

_ [ S @Pduig) = IS £13_.
7300

If f is a complex-valued function, then Ps is a union of positive paths ¢ =
(A1, A2, ...) and negative paths —q = (—A1,A2,...). Setting ¢(—w) = —¢q(w)
defines a surjective function from R¢ to Pq, that satisfies (3.21). We have that
S_‘I(q(—a))) = g_f(—q(a))) for all o € R?, and S f(q(w)) € L2(R%) with
IS flanNll =1Sflz.-

If f satisfies (3.13), then S f(¢(w)) and | f (w)| have an equivalent decay over
dyadic frequency bands, because their norm is equal over these frequency bands.
Indeed, for a frequency band A = 2/r of radius proportional to |A| = 2/, the

measure preservation (3.21)) together with (3.16) proves that U [A] f || = || f * ¥ |l
satisfies

S fg)Pdo = [URL /I
(3.22) g=1(C () Lo
— 5 [1@P e o) do.

If Conjecture is valid, then this is true for all f € L2(R4). In dimension
d =1,¢71(C©27)) = [IvI?2/, ||¥]?2/*!) and |1/ﬁ\(2ja))| is nonnegligible on
a similar dyadic frequency interval. Hence S f(q(w)) and | f (w)| have equivalent
energy over dyadic frequency intervals.

Figure b,c,d) shows the convergence of the piecewise constant Sy f(g(w))
when J increases, for a Gaussian second derivative /. Sy f(¢g(w)) is constant
if g(w) = p is constant and hence if € ¢~ '(Cy(p)). The frequency interval
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FIGURE 3.1. (a) Fourier modulus | f (w)] of a Gaussian second deriv-
ative as a function of w € [0, 2]. (b,c,d) Piecewise constant graphs of
S7 f(g(w)) as a function of w € [0,2]. The color specifies the length
of each path g(w): 0 is yellow, 1 red, 2 green, 3 blue, 4 violet. The
frequency resolution 27 increases from (b) to (c) to (d), and Sy f(g(w))
converges to a limit function S f(g()).

g 1 (Cy(p)) has a width 1(Cy(p)) = ||Ss8[p]||?, which goes to 0 as J goes to
oo as shown by (3.2). When J increases, each ¢~ 1(Cs(p)) is subdivided into
smaller intervals ¢~ (Cy1(p’)) corresponding to paths p that are prolongations
of p. For each w, the graph color specifies the length of the path p = g(w). At
low frequencies, g(w) = & is shown as a yellow interval. Paths g(w) of length 1
to 4 are, respectively, coded in red, green, blue, and violet.

In these numerical examples, the total energy of Sy f(g(w)) on frequency-
decreasing paths g(w) is about 10° times larger than the energy of scattering co-
efficients on all other paths. We thus only compute S f(q(w)) for frequency-
decreasing paths, with an O(N log N) filter bank algorithm described in [13]. Tt
is implemented with the complex cubic spline Battle-Lemarié¢ wavelet . As ex-
pected from (3:22), S; f(q(®)) f has an amplitude and a frequency localization
that is similar to the Fourier modulus | f (w)| shown in Figure a). The discon-
tinuities of S(q(w)) f along w are produced by the discontinuities of the mapping
q(w), as opposed to discontinuities of S(q) f relative to the scattering metric in
Poo- R

Figurecompares S(q(w)) f; and | f; (w)| for four functions f;, 1 < i < 4.
For f1 = lyo,1], the first row of Figure 3.2/ shows that |ﬁ(w)| = 0((1 + o)™
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FIGURE 3.2. (a) Eachrow 1 < i < 4 gives an example of function
fi(x). (b) Graphs of the Fourier modulus | f; (»)| as a function of w. (c)
Graphs of the scattering S f; (¢(w)) as a function of w.

has the same decay in w as S f1(q(w)). The second row corresponds to a Gabor
function f>(x) = eé* ¢ —x?/2 , and the third row shows a small scahng f3 (x)
(1 —s)x) with s = —0.1. The support of f3(a)) =(1-s)"1! fz((l —5) lw)
is shifted towards higher frequencies relative to the support of f2 A numerical
computation gives ||| /2| — | /3]l = Cls| || f2] with C = 13.5. As shown by 2.3),
the constant C grows proportionally to the center frequency £ of ]2 It illustrates
the instability of the Fourier modulus under the action of diffeomorphisms.

On the contrary, the scattering distance remains stable. We numerically obtain
IS f2 — S f3]| = C|s| || f2]| with C = 1.5, and this constant does not grow with £.
It illustrates the Lipschitz continuity of a scattering relative to deformations. In the
fourth row, f4 is a sum of two high-frequency Gabor functions, and | ﬁ;(a))| in-
cludes two narrow peaks localized within the support of f’; The wavelet transform
has a bad frequency locallzatlon at such high frequencies and cannot discriminate
the two frequency peaks of f4 from f3 However, these two frequency peaks cre-
ate low-frequency interferences, which appear in the graph of f4, and which are
captured by second-order scattering coefficients. As a result, S f4 is very different
from S f3, which illustrates the high-frequency resolution of a scattering transform
obtained through interferences.
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4 Scattering Stationary Processes

A scattering defines a representation of stationary processes in 12(Pso) hav-
ing different properties from a Fourier power spectrum. The Fourier power spec-
trum depends only on second-order moments. A scattering transform incorporates
higher-order moments that can discriminate processes having the same second-
order moments. Section4.2]shows that it is Lipschitz-continuous to random defor-
mations up to a log term.

4.1 Expected Scattering

The properties of a scattering transform in L? (R?) are extended to stationary
processes X (x) with finite second-order moments. The role of the L? (R%) norm
on functions is replaced by the mean-square norm E (| X (x)|%)1/2 on stationary sto-
chastic processes, which does not depend upon x and is thus denoted E (| X |2)1/ 2,
Convolutions as well as a modulus preserve stationarity. If X (x) is stationary, we
have that U [p] X (x) is also stationary, and its expected value thus does not depend
upon Xx.

DEFINITION 4.1. The expected scattering transform of a stationary process X is
defined for all p = (A1,A2,...,Am) € Px by

SX(p) = EUIpIX) = E(|X Y, | %] x ¥z, ).

This definition replaces the normalized integral of the scattering transform
by an expected value. The expected scattering distance between two stationary pro-
cesses X and Y is

ISX =SY > = > ISX(p)—SY(p)*.
P€Poo

Scattering coefficients depend upon normalized high-order moments of X. This

is shown by decomposing

UIPIX(x0)> = E(UpIX *)(1 + €(x)).

A first-order approximation assumes that |¢|] < 1. Since [ ¥, (x)dx = 0 and
UlplX(x) = VIU[p]X(x)|?, computing U[p + A]X = |U[p]X ¥ with
V1 4+€ex14¢€/2gives
_IUIPIX * vl

2E(U[plX|»)1/2
Iterating on (@.I) proves that SX(p) = E(U[p]X) for p = (A1.A2..... Am)
depends on normalized moments of X of order 2™, successively filtered by the
wavelets ¥y, for 1 <k <m.

The expected scattering transform is estimated by computing a windowed scat-
tering transform of a realization X (x):

S7Ps1X = {Ss[plX}pep, withSy[p]lX = U[p]X = ¢,..

@.1) Ulp + A1X
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Since [ ¢, (x)dx = 1, we have that E(S;[p]X) = E(U[p]X) = SX(p). So
Ss[Ps]X is an unbiased estimator of {SX(p)}pep, .
The autocovariance of a real stationary process X is denoted

RX(1r) = E((X(x) — E(X))(X(x — 1) — E(X))).

Its Fourier transform RX (w) is the power spectrum of X. The mean-square norm
of Sy[Ps1X = {Ss[plX}pep, is written

E(IS;[PAX1%) = Y E(Ss[pIX]P).
DEP;

The following proposition proves that Sy[Ps]X and S X are nonexpansive and
that SX € 12(Ps). The wavelet v is assumed to satisfy the Littlewood-Paley

condition (2.7).

PROPOSITION 4.2. If X and Y are finite second-order stationary processes, then

(4.2) E(|Ss[Ps1X = Ss[Ps1Y|?) < E(X = Y|?),
(4.3) ISX —SY|> <E(X —-Y|?),
(4.4) ISX|? < E(IX]?).

PROOF. We first show that Wy X = {A; X, (W[A]X)zen, | is unitary over sta-
tionary processes. Let us denote

E(IWsX|I>) = E(A; X))+ Y E(WAX[).
AEA

Both Ay X = X x¢,s and W[A]X = Xy, are stationary. Since [ ¢,/ (x)dx =1
and f Yy (x)dx = 0, we have that E(AyX) = E(X) and E(W[A]X) = 0. Since
the power spectrum of Ay X and W[A]X is, respectively, RX (w)|<$(2" w)|? and
RX(@) [y ()2, we get

E(A7X ) = / RX(@)$Q o) do + E(X)?
and
E(WAIXP) = / RX(@)|71()] do.

Since E(|X|?) = [ /ﬁX(w)dw + E(X)?, the same proof as in Proposition
shows that the wavelet condition (2.7) implies that E(||W; X ||?) = E(| X |?).
The propagator Uy X = {A; X, (|W[A]X|)sea, } satisfies

E(UsX —UsY|?) < E(IWs X =Wy Y |?) = E(1X = Y[?)
and is thus nonexpansive on stationary processes. We verify as in (2.23)) that

Uy UIATIX = {S;[A7]1X, U[A} X}
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Since Py = U,:(:o A}, one can compute S;[Ps]X by iteratively applying the
nonexpansive operator Uy. The nonexpansive property (4.2) is derived from the
fact that Uy is nonexpansive, as in Proposition [2.5]
Let us prove [@.3). Since SX(p) = E(Sy[p]X) and SY(p) = E(S;[p]Y).
> 18X (p) = SY(p)I> < E(ISs[Ps1X = Ss[PsIY|*) < E(IX — Y ).
PEPJ
Letting J go to oo proves (4.3). The last inequality is obtained by setting
Y =0. O

Paralleling the scattering norm preservation in L2 (R?), the following theorem
proves that Sy [P] preserves the mean-square norm of stationary processes:

THEOREM 4.3. If the wavelet satisfies the admissibility condition (2.28)) and if X
is stationary with E(|X|?) < oo, then

(4.5) E(ISsIPs1XII?) = E(X ).

PROOF. The proof of (4.5) is almost identical to the proof of (2.29) in The-
orem if we replace f by X, | f (w)|? by the power spectrum RX (w), and
I £1IZ by E(|X|?). We proved that E(]|W;X|?) = E(|X|?), so we also have
E(|UsX|?) = E(|X|?). In the derivations ofLemma replacing f, = U[p] f
by X, = U[p]X and |]§,(a))|2 by ﬁXp(w) proves that

SEQUIPAXIP) < max(d + LDE(XP) + Y 3" JEAX * ¥, ).

J>0reG+
Since Py = |J,,en A'7, if the right-hand side term is finite, then
: m 2\
(4.6) lim E(JUATIX|P) = 0.

The same density argument as in the proof of Theorem proves that also
holds if £(|X |?) < oo because RX(w) is integrable.

Since E(|Us X [?) = E(|X|?) and U;U[A™]X = {S;[A"]X, U[AT !X},
iterating m times on Uy proves as in that

m—1
E(X[») = Y E(IS;[AFIX[?) + E(IUATIX[?).
n=0

When m goes to oo, (4.6) implies (@.3). O

A windowed scattering Sy[p] = U[p]X » ¢,s averages U[p]X over a do-
main whose size is proportional to 27. If U[p]X is ergodic, it thus converges to
SX(p) = E(U[p]X) when J goes to co. The windowed transformed scatter-
ing S7[Ps]X is said to be a mean-square consistent estimator of SX if its total
variance over all paths converges to 0:

lim E(|S;[Ps1X =8, X|?) = lim Y E(S;[p]X —SX(p)|*) = 0.
J—>o00 J—>oop€7jj
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FIGURE 4.1. Decay of log, E(||S;[Ps]X — SX|?) as a function of J
for a Gaussian white noise X (bottom line) and a moving average Gauss-
ian process (top line) along frequency-decreasing paths.

Mean-square convergence implies convergence in probability and therefore that
S7[Ps]1X converges to SX with probability 1.

For a large class of ergodic processes X, including Gaussian processes, mean-
square convergence is observed numerically, with E(|S;[Ps]X — S;X)|?) <
C 2% for C > 0 and @ > 0. When J increases, the global variance of S;[P]X
decreases despite the path subdivision into new paths because each modulus re-
duces the variance by removing random phase variations. The variance of S;[p]X
thus decreases when the path length increases, and it is concentrated over a small
number of frequency-decreasing paths. For a Gaussian white noise and a moving
average Gaussian process of unit variance, Figure@4.1|shows that, computed over all
frequency-decreasing paths, log E(||S7[Ps]X — S X|?) decays linearly as a func-
tion J. For the correlated Gaussian process, the decay begins for 27 > 24, which
is the correlation length of this process. Indeed, the averaging by ¢, effectively
reduces the estimator variance when 27 is bigger than the correlation length.

CONIECTURE 4.4. If X is a Gaussian stationary process with | RX ||y < oo, then
S7[PyX] is a mean-square consistent estimator of S X.

The following corollary of Theorem [{.3] proves that mean-square consistency
implies an expected scattering energy conservation.

COROLLARY 4.5. For an admissible scattering wavelet that satisfies condition
2.28), Sy[Ps1X is mean-square consistent if and only if

CX) ISX|* = E(X ).

and mean-square consistency implies that for all A € Ao

(4.8) D 18X+ p)I> = E(X * v ).
P€Pso

PROOF. We have from Theoremthat E(||S;[Ps]1X||?) = E(|X|?). Since

E(IS;[PAIXI7) = Y E(Ss[p)X)* + E(ISs[Ps1X — E(S7[Ps1X)?)
PEPy
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and E(Sy[p]X) = SX(p), we derive that
Jim E(Sy[Ps]1X — E(Ss[P71X)[?) =0

if and only if |[SX ||> = E(|X|?). Moreover, since U[p]U[A]X = U[A + p]X for
all A € Ao, applying (.7) to U[A]X instead of X proves (4.§). O

_ The expected scattering can be represented by a singular scattering spectrum in
Poo. Similarly to Section we associate to S X(p) = E(U[p]X) a function that
is piecewise constant in Peo,

5 2 cJ(p)(q)
PEPy

The following proposition proves that Py converges to a singular measure,
called a scattering power spectrum.

PROPOSITION 4.6. Py X(q) converges in the sense of distributions to a Radon
measure in Poo, supported in Poo:

(4.10) PX(¢) = lim P;X(q)= ) SX(p)*8(q-p).
J—o0
P€Pso
PROOF. For any p € Pxo, the Dirac §(p — ¢q) is defined as a linear form sat-

isfying fﬁoo f(@)s(p — q)du(q) = f(p) for all continuous functions f(g) of
Poo relative to the scattering metric. For all J € Z, u(Cy(p)) = |Ss[p18]13
p € Cy(p), and limy_,o £(Cy(p)) = 0. We thus obtain the following conver-
gence in the sense of distributions:

Le, (» (@)
m —— = 8 — .
TS = e )

Letting J go to oo in (&.9) proves (@#.10). O

If S;[Ps]X is mean-square consistent, then implies that the scattering
spectrum P X(q) is related to the Fourier power spectrum R X (w) by

1 ~ ~
(4.11) / PX(q)dp(q) = E(IX = yu|*) = Z/RX(@)W(?L o) do.
CA)
Let g(w) be the function of Proposition which maps the Lebesgue measure

of R4+ into the Dirac scattering measure of Pno. It defines a scattering power
spectrum PX(q(w)) over the half-frequency space @ € R4*. In dimensiond = 1,

g~(C @) = [lly 1?2/, |y 727+, so @IT) implies

w227 +! U e
[ . PXG@ydo =5 [ RY@IFQI0) do.
lyl22/ 2
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FIGURE 4.2. (a) Realization of a Bernoulli process X (x) at the top and
a Gaussian white noise X, (x) at the bottom, both having a unit variance.
(b) Scattering power spectrum PX;(q(w)) of each process as a function
of w € [0, 7]. The values of PX;(q(w)) are displayed in red, green,
blue, and violet for paths g (w) of lengths 1, 2, 3, and 4, respectively.

Although PX(q(w)) and RX (w) have the same integral over dyadic frequency
intervals, they have very different distributions within each of these intervals. In-
deed, (@.1)) shows that if p is of length m, then E(U[p]X) depends upon normal-
ized moments of X of order 2. We have that PX(g(w)) depends upon arbitrarily
high-order moments of X, whereas RX (w) only depends upon moments of or-
der 2. Hence, PX(q) can discriminate different stationary processes having the
same Fourier power spectrum and thus the same second-order moments.

Figure gives the scattering power spectrum of a Gaussian white noise X»
and of a Bernoulli process X1 in dimension d = 1, estimated from a realization
sampled over N = 10* integer points. Both processes have a constant Fourier
power spectrum RX; (w) = 1 but very different scattering spectra. Their scatter-
ing spectrum PX;(g(w)) is estimated by P;X;(q(w)) in (@.9) at the maximum
scale 2/ = N. It is a sum of spikes in Figure b), which converges to a Radon
measure supported in Ps, when increasing 2/ = N. A Gaussian white noise X»
has a scattering spectrum mostly concentrated on paths g(w) = (2/) of length 1.
These scattering coefficients appear as large-amplitude red spikes at dyadic po-
sitions in the bottom graph of Figure 4.2(b). Their amplitude is proportional to
SX5(27)% ~ 2/. Other spikes in green correspond to paths ¢(w) = (A1, A2) of
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length 2. They have a much smaller amplitude. Scattering coefficients for paths
of length 3 and 4, in blue and violet, are so small that they are not visible. The
top of Figure 4.2(b) shows the scattering spectrum Py X;(q(w)) of a Bernouilli
process Xi. It has a maximum amplitude for paths ¢g(w) of length 1 (in red), but
longer paths shown in green, blue, and violet also produce large scattering coef-
ficients as opposed to a Gaussian white noise scattering. Scattering coefficients
for paths p of length m depend upon the moments of X up to the order 2. For
m > 1, large scattering coefficients indicate a strongly non-Gaussian behavior of
high-order moments.

4.2 Random Deformations

We now show that the scattering transform is nearly Lipschitz-continuous under
the action of random deformations. If t is a random process with |V|eo =
|Vt(x)| < 1, then x — 7(x) is a random diffeomorphism. If X(x) and t(x) are
independent stationary processes, then the action of this random diffeomorphism
on X (x) defines a randomly deformed process L X(x) = X(x—t(x)) that remains
stationary.

The following theorem adapts the result of Theorem [2.12] by proving that the
scattering distance produced by a random deformation is dominated by a first-order
term proportional to E(||Vt||%,). Let us denote

+00 5 1/2
EQUIPAXID = Y (Y EQUIpIXP))
m=0 peA’}l
where A’} is the set of paths p = (Ax)x<m of length m with [Ax| < 27,

THEOREM 4.7. There exists a constant C such that for all independent stationary
processes T and X satisfying ||Vt| oo < % with probability 1, if E(JU[Py]X||1) <
oo, then

(4.12) E(|ISs[PsIL:X = S;[P71X|1*) < CE(|U[P;]1X|11)* K(r)
with

_ _ 1Al 2
(4.13) K@) =E((277Itlloc + VTl IOgWVI + [Hlloo .

Over the subset Py iy, of paths in Py of length strictly smaller than m,
4.14) E(|Ss[PsmlLeX = S5[PrmlX|I?) < CmE(X)K (7).
PROOF. Similarly to the proof of Theorem [2.12] we decompose
E(|Ss[PsILX = S;[P71X|1*) < 2E(|L<Ss[P7]1X — S;[Ps1X|?)
+2E([Ss[Ps]. LX)
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Appendixproves that E(||[Sy[Ps], L:]X||?) < E(JU[Ps]X||1)? B(r) with

AT oo 2
@15 B@) =czE((||vf||oo(1og ij“ v1) ; ||Hr||oo) )

and since
4.16) E(|L:S;[Ps1X — S;[Ps1X %) < C2E(UPIXID* EQ™ |t]|%).

we get (4.12)). The commutator [Sy[Py], L] and L:Sj[Ps]—S[Ps] are random
operators since t is a random process. The key argument of the proof is provided
by the following lemma, which relates the expected L2(R¢) sup norm of a random
operator to its norm on stationary processes. This lemma is proved in Appendix [G]

LEMMA 4.8. Let K, be an integral operator with a kernel k. (x,u) that depends
upon a random process t. If the following two conditions are satisfied:

E(kr(x, kX (x,u')) = ke (x —u,x —u') and
/ lkz(v,v)] v — v'|dv dv’ < oo,
then for any stationary process Y independent of v, E(| K.Y (x)|?) does not depend
upon x and
(4.17) E(K:Y?) < E(IKIIP)E(Y ).
where || K+ | is the operator norm in L2(R?) for each realization of t.

This result remains valid when replacing Sy [Py] by S;[Ps,m] and U[P;] by
U[Pyj,m]. With the same argument as in the proof of (2.60), we verify that

E(U[PsmlX 1) <mE(X[*)'/2,
which proves (@.14). O

Small stationary deformations of stationary processes result in small modifica-
tions of the scattering distance, which is important to characterize deformed sta-
tionary processes as in image textures [3]. The following corollary proves that
the expected scattering transform is almost Lipschitz-continuous in the size of the
stochastic deformation gradient V7, up to a log term.

COROLLARY 4.9. There exists C such that for all independent stationary pro-
cesses T and X satisfying |V1|oo < % with probability 1, if E(|U[Pso]X||1) <
00, then

(4.18) ISL:X — SX|?* < CE(|U[Poo]l)E(|1X[*)K()

with

AT oo 2
(4.19) K(r) = E{(||Vr||oo(1og “vj” v 1) + ||Hr||oo) }
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PROOF. Because
E(|Ss[PsIL<X — S7[Ps1X|?) < IE(Ss[Ps1L-X) — E(Ss[Ps1X)I?,

letting J go to oo in (@.12)) proves (@.18). O

5 Invariance to Actions of Compact Lie Groups

Invariant scattering is extended to the action of compact Lie groups G. Sec-
tion builds scattering operators in L?(G) that are invariant to the action of
G. Section|5.2|defines a translation- and rotation-invariant operator on L2(R¢) by
combining a scattering operator on L2(R%) and a scattering operator on L2(SO(d)).

5.1 Compact Lie Group Scattering

Let G be a compact Lie group and L?(G) be the space of measurable functions
f(r) such that || f||> = I | f(r)|?>dr < oo, where dr is the Haar measure of
G. The left action of g € G on f € L?(G) is defined by Lg f(r) = f(g7'r).
This section introduces a scattering transform on L?(G) that is invariant under the
action of G. It is obtained with a scattering propagator that cascades the modulus
of wavelet transforms defined on L2(G).

The construction of Littlewood-Paley decompositions on compact manifolds
and in particular on compact Lie groups was developed by Stein [19]]. Different
wavelet constructions have been proposed over manifolds [16]. Geller and Pe-
senson [8] have built unitary wavelet transforms on compact Lie groups, which
can be viewed as analogues of unitary wavelet transforms on the circle in R2. In
place of sinusoids, they use the eigenvectors of the Laplace-Beltrami operator of
an invariant metric defined on the group. Similarly to Meyer wavelets [[14], these
basis elements are regrouped into dyadic subbands with appropriate windowing.
For any 2L < 1, it defines a scaling function $2L (r) and a family of wavelets
{sz (r)}—L<j<oo that are in L2(G) [8]. The wavelet coefficients of f/ € L?(G)

are computed with left convolutions on the group G for each A =2/,

5.1) W) = f * 930r) = / F(©)¥5(s~" r)dg.
G

and the scaling function performs an averaging on G,

(5.2) ALf0) = f 5 or(r) = / F(©)Par (s r)dg.
G

The resulting wavelet transform of f € L?(G) is

Wif ={ALf.OV[A]f)5ex,) withAp = =27:j>-L}.
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At the maximum scale 2L = 1, since 51 (r) = (fG dg)™! = |G|7! is constant,
the operator Ay performs an integration on the group,

5.3 Aot @) =161 [ F(e)dg = const.
G
Wavelets are constructed to obtain a unitary operator [§]
(5.4) WLl =11 with W £ = 1AL £ 17 + Y IWIRLSIP.
IEKL

The Abelian group G = SO(2) of rotations in R? is a simple example param-
etrized by an angle in [0, 277]. The space L?(G) is thus equivalent to LZ[0, 27].
Wavelets in L2(G) are the well-known periodic wavelets in L2[0, 27] [14]]. They
are obtained by periodizing a scaling function ¢z (x) = 27L¢(27L x) and wave-
lets ¥, (x) = 2/ y/(2/ x) with (¢, ) € L2(R)?:

5.9 $2L (x) = Z ¢or(x —27m) and 1}2,- (x) = Z Yy (x —2mm).
meZ meZ
We suppose that &5(0) = 1 and <]3(2k71) = 0 for k € Z — {0}. The Poisson

formula implies that ¢ (x) = Y nez ®(x —n) = 2x. Convolutions and
on the rotation group are circular convolutions of periodic functions in L2[0, 277].
With the Poisson formula, one can prove that the periodic wavelet transform 13
is unitary if and only if (¢, ¥) € L?(R)? satisfy the Littlewood-Paley equalities

.

For a general compact Lie group G, we define a wavelet modulus operator by
U[A]f = |[WL[A]f], and the resulting one-step propagator is

OLf ={ALf (O f Diex, -

Since W is unitary, we verify as in that Uy, is nonexpansive and preserves
the norm in L?(G).

A scattering operator on LZ(G)~applies Ur, iteratively. Let Pr. denote the set of
all finite paths p = {A1,A2,..., A, } of length m, where A = 27k € KL. Fol-
lowing Definition a scattering propagator on L2(G) is a path ordered product
of noncommutative wavelet modulus operators

U[p] = UlAm) -+ U[A2]U ],

with U[@] = Id.
Following Deﬁnition a windowed scattering is defined by averaging U[p] f
through a group convolution with ¢,r

(5.6) SLIPIf(r) = ALU[P]f(r) = f UIB)f(8)$ye (g~ " r)dg.

G
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It yields an infinite family of functions Sy, [Prlf = {SL[P]f } 5, Whose norm is

ISLIPLIAI? = D ISLIBIAI®  with |SLIR] /I = /ISL[ﬁ]f(r)l2 dr.
pePL

Since U [PL] is obtained by cascading the nonexpansive operator Uy, the same
proof as in Proposition [2.5| shows that it is nonexpansive:

V(fih) € L2(G)? |SLIPLLS = SLIPLIkll < IS =,
Since U [73L] preserves the norm in L2(G), to also prove as in Theorem that
ISLIPLLAN = Il |, it is necessary to verify that limy— oo ||17[KT]||2 = 0. For
the translation group where G = R¥, Theoremproves this result by imposing
a condition on the Fourier transform of the wavelet. The extension of this result
is not straightforward on L?(G) for general compact Lie groups G, but it remains
valid for the rotation group G = SO(2) in R?. Indeed, periodic wavelets 1;1 €
L2(S0(2)) = L?[0,2x] are obtained by periodizing wavelets vy € L2(R) in
(5.5), which is equivalent to subsampling uniformly their Fourier transform. If yr
satisfies the admissibility condition of Theorem[2.6] then by replacing convolutions
with circular convolutions in the proof, we verify that the periodized wavelets 1}1

define a scattering transform of L2[0, 2] that preserves the norm || Sz[P] f| =

A1

When 2L = 1, Ay is the integration operator (5.3) on the group, so So[p] f(r)
does not depend on r. Following Definition [2.3] it defines a scattering transform
that maps any f € L?(G) into a function of the path variable p:

57) vieB Slplf =167 [ Ulplf(ode

G
Over a compact Lie group, the scattering transform So[Po] f = {So[p]f} FeP, 18
a discrete sequence in 1 (750). The following proposition proves that it is invariant
under the action Lg f(r) = f(g~'r)of g € G on f € L2(G):
PROPOSITION 5.1. Forany f €e L>(G)and g € G
(5.8) SolPolLg f = SolPol /.

PROOF. Since Ay and W[)L] f are computed with left convolutions on G, they
commute with Lg. We have that U [)L] and hence So[P7] also commutes with Le

Ifpe Py, since So[ﬁ]f(r) is constant in r, So[[)]Lgf LgSO[ﬁ]f = So[iﬂf,
which proves (5.8). O

As in the translation case, the Lipchitz continuity of S7. under the action of
diffeomorphisms relies on the Lipschitz continuity of the wavelet transform Wy
The action of a small diffeomorphism on f € L?(G) can be written L, f(r) =
f(z(r)~1r) with 7(r) € G. The proof of Theorem on Lipschitz continuity
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applies to any compact Lie groups G. The main difficulty is to prove Lemma[2.14]
which proves the Lipschitz continuity of Wi by computing an upper bound of the
commutator norm ||[Wz,, L<]||. The proof of this lemma can still be carried by
applying Cotlar’s lemma, but integration by parts and the resulting bounds require
appropriate hypotheses on the regularity and decay of 1;1. If G = SO(2), then the
proof can be directly adapted from the proof on the translation group by replacing
convolutions with circular convolutions. It proves that Sy is Lipschitz-continuous
under the action of diffeomorphisms on L2(S0(2)).

5.2 Combined Translation and Rotation Scattering

We construct a scattering operator on L2 (R?) that is invariant to translations
and rotations by combining a translation-invariant scattering operator on L? (R%)
and a rotation-invariant scattering operator on L2(SO(d)).

Let G be a rotation subgroup of the general linear group of R4, which also
includes the reflection —1 defined by —1x = —x. According to (2.2)), the wavelet
transform in L2(R?) is defined forany A = 2/r € 2Z x G by W[A]f = f » ¥3,
where ¥ (x) = 297y (27 r1x). Sectionconsiders the case of a finite group G
that is a subgroup of SO(d) if d is even or a subgroup of O(d) if d is odd, while
including —1. The extension to a compact subgroup potentially equal to SO(d) or
O(d) is straightforward. We still denote by G the quotient of G by {—1, 1}. The
wavelet transform of a complex-valued function is defined over all A € 2% x G but
is restricted to 22 x Gt if f is real. All discrete sums on G and G are replaced
by integrals with the Haar measure dr. The group is compact and thus has a finite
measure |G| = [; dr. We have that these integrals behave as finite sums in all
derivations of this paper. The theorems proved for a finite group G remains valid
for a compact group G. In the following we concentrate on real-valued functions.

Let Py be the countable set of all finite paths p = (A1, A2,...,A,) with A €
Ay ={A =2/r:j > —J,r € G'}. The windowed scattering S;[Ps]f =
{Ss[p)f}pep, is defined in Definition but Ay and Py are not discrete sets
anymore. The scattering norm is defined by summing the L2(R?) norms of all
Sylplf forall p = (2/1ry,...,2/mry,) € Py, with the Haar measure,

ISs PSS =

> 2. / 1S7127 1, 2 f 12 dry -+ dTm,

m=0j,>—J,..., jm>—JG+m
which is written

ISP = / 1Sy 101712 dp.
Py

One can verify that Sy [P] is nonexpansive as in the case where G is a finite group.
For an admissible scattering wavelet satisfying (2.28)), Theorem 2.6 remains valid

and [|S7[Ps1f 1 = 171
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The scattering Sy is covariant to rotations. Invariance to rotations in G is ob-
tained by applying the scattering operator S; defined on L2(G) by (5.6). Any
P = (A1, A2,..., Am) € Py with 11 = r2/‘ can be written as a rotation p = rp
of a normalized path p = (A1, A2, ..., Am), where A = r~'1; and hence where
A1 = 271 is a scaling without rotation. We have that

Silplf(x) = Sylrplf(x).

For each x and p fixed, Sy[rp]f(x) is a function of r that belongs to L2(G).
We can thus apply the scattering operator St [p] to this function of r. The result
is denoted S7.[p]Sy[rp] f(x) forall j € Pyr. This output can be indexed by the
original path variable p = r p, and we denote the combined scattering by

(5.9) SLIPISs Pl f(x) := SLIPISr p) f(x).

This combined scattering cascades wavelet transforms and hence convolutions along
the spatial variable x and along the rotation r, which is factorized from each path.
In d = 2 dimensions then L?(SO(2)) = L?[0, 27]. The wavelet transform along
rotations is implemented by circular convolutions along the rotation angle variable
in [0, 27], with the periodic wavelets (5.5).

A combined scattering transform computes

SLIPLISI[PI)f = {SLIPISI(P)S }pep, 5P, -

Its norm is computed by summing the L2(R?) norms | St [B1Ss[p)f 1%

(5.10) ISLIPLIS PSP = ) [||§L[ﬁ]51[1?]f||2dp-

ﬁeﬁLPJ
Since S7.[P] and S [Py] are nonexpansive, their cascade is also nonexpansive:
V(fh) e LX®RD? |ISLIPLISs[Ps)f — SLIPLIS/ PRI < || f =l

When J goes to oo, Sy[Py] converges to the scattering transform S f, which
is translation invariant and covariant to rotations: S(r o f)( p) = S f(rp) for all
P € Poo. By setting 2L = 1, Proposition proves that So [730] is invariant to
rotations in G. If G is the full rotation group S O(d), then the combined scattering
So[[)']S f(p) for (p,p) € Po x Poo defines a translation- and rotation-invariant
representation. Such translation- and rotation-invariant scattering representations
are used for the rotation-invariant classification of image textures [[18]. For any
(c,g) € R% x SO(d), we denote Leg f(x):= f(g7 (x —¢)).

PROPOSITION 5.2. Forall (c,g) € R? x SO(d) and all f € L2(R%)

(5.11) V(5. p) € Pox Poo SolPIS(p)Le,gf = SolPIS(p) f.
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PROOF. The scattering transform in L2 (Rd) is translation invariant and covari-
ant to rotations: SLc.g f(p) = S f(g7'p) forall p € Pxo. Since g~ ! acts as a ro-

tation on the path p, Propositionproves that So[p]S f(g~! p) = So[p]S f(p).
which gives (5.T1). O

Appendix A Proof of Lemma [2.§]

The proof of (2.33) shows that the scattering energy propagates towards lower
frequencies. It computes the average arrival log frequency of the scattering energy
IU[p]f| for paths of length m and shows that it increases when m increases.
The arrival log frequency of p = {A; = 2/k Tk }k<m is the log frequency index
log, [Am| = jm of the last path element.

Let us denote e;, = ||U[A’}1]f||2 and e, = ||Sy [A'J"]f||2 The average arrival
log frequency among paths of length m is

(A1) am =y Y jmlUPIfI? = —J.

DPEA'}
The following lemma shows that when m increases by 1, then a,, decreases by
nearly o/2, where « is defined in (2.28).

LEMMA A.1. If (2.28)) is satisfied, then
o
(A2) Vm>0 5 em=1 <(am+ Jem — (a@m+1 + J)em+1 + em—1 — eém.

We first show that (A.2)) implies (2.35) and then prove this lemma. Summing
over (A.2) gives
m—1
o
(A.3) 3 Z ex < (a1+J)e1—(am+1+J)em+1+eo—em < eo+(a1+J)er.
k=0
Form =1,p = 2/rsoaje; = Do 2reGt ] |W[27r] f||?>. Moreover,
eo = || f1I?, so

o+ @+ Ner =117+ Y. D G+ DIWRIrfI*
Jj>=J reG+
Inserting this into (A.3) for m = oo proves (2.35).

Lemma [A.T]is proved by calculating the evolution of a,, as m increases. We
consider the advancement of a path p of length m — 1 with two steps p 427 r + 2! 7/
and denote f, = U|[p]f. The average arrival log frequency a,, can be written as
the average arrival log frequency of |[U[p + 2/r] f||? over all 2/r and all p of
length m — 1:

(A4) amem=Y_ > > jlfy* vl

peA’y*1 j>=J reGt
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After the second step, the average arrival log frequency of [|U[p +27r 42!+ £ ||?
overall p € A'J"_l, 277, and 2! iS dppgr:

amiremer = 3 3 3 ST Uy * Vsl x|

peAN1j>—J reGtTI>—Jr'eG+
The wavelet transform is unitary and hence for any & € L2(R¢)

2 2 2
P = D" Y x|+ [l % s |12
I>—J r'eG+
Applied to each h = f), » ¥,;, in (A.4) this equation, together with
= 2
em = Z Z Z I fp * ¥aip| % ps |“dr,
peA—1j>=JreG+
shows that I = a;, ey — am+1em+1 + J ey satisfies

1= 3 3 Y A(X X GDlly* Vil * v,

peAT1j>=Jr'eGt I>—JreG+
. 2
+ G+ DUy * Vo, * 92 12).

A lower bound of [/ is calculated by dividing the sumon/ for/ > j and/ < j.
Inthe j +J —1term for/ < j, the index [ is replaced by j — 1 and the convolution
with ¢, is incorporated in the sum:

12 3 3 N2 (X W * vl * vl

peNF—1j>=J r'eGt —J<I<j reG+

(A.5) + WSy * Vi, | % s |2
=3 Y = Dy * Vol * Yty 2 ar
I>j reG+

Since wavelets satisfy the unitary property (2.7), for all real functions f €
L2(R%)andall g € Z,

(A.6) Yoo D U x v P IS bos P =1L x el
—q>I>—J reG+

Indeed, implies that
~ 1 ~ ~

A BRI+ > D W T )P =192%w).

—g>I>—J reG
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It £ is real, then || f * Yipr, || = |/ * ¥_ys, I Multiplying (&) by | /()| and
integrating in @ proves (A.6). Inserting (A.6) in (A.5)) gives

12 % XX (I e vl sl

peA—1j>=JreG+

0= DUy * Vol * byt P = 1Sy % Va5 byr ||2)).
I>j

If p > 0 satisfies |p(w)| < |(,1A5(2a))|, then for any f € L2(R?) and any / € Z,

1L * dot1 I = LS * par, > with 1, (x) = 24 p(2Tr 7 x).
‘We have that

=Yy Z(n|fp*w2f,|*p2j,n2

penT—1j>=J reG+
=S DUy * Va2 = Wy % s, | pzz,nZ))
I>j
Applying Lemma for h = p,, and a frequency 2/ 1 proves that
1o * Vi pl % 021, |l Z 1 fp * Yair * Patri |
with py1,. 57 (x) = szr(x)eizjm'x

and Py, 57 () = 527 r—1w — 2771y). We have that

I > Z Z Z(pr*lﬂzfr*l)zfr,zjnz

peATlj>=J reG+
= Y= Uy a1 P = Uy sy # 1) )

I>j

We shall now rewrite this equation in the Fourier domain. Since f,(x) € R,
| fp(w)| = | fp(—w)|, applying Plancherel gives

123 ¥ Jlhory ¥ (|1/7(2‘jr‘1w)l2|ﬁ(2‘jr‘1w—n)l2

peA’J”—l reG j>—J

S - PP )P - e 2f—fn>|2>)dw.

I1>j

Inserting U defined in (2.27) by

+o00
V() = [plo-mP =Y k11— -
k=1
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with k = [ — j gives

125 Y [1hP Y be e

peA’}q_l j>=J

with b(w) =), \Tl(r_lw)|1z(r_1w)|2 . Letus add to /

= Y et = ¥ [IH@P B 0P do.

peA’}’f1 peA’}lf1

Since p > 0, |p(w)| < p(0) = 1 and hence U(w) < 1. The wavelet unitary
property (2.7) together with W(w) < 1 implies that

~ 1 ~ . 1 .
PR =5 3 e Pz 5 3 e w)
j<—JreG j=<—-J
SO

1 N +o00 )
Hanaz s Y [1heP Y b oo

peA’J”_1 Jj=—00

If « = infi<jpj<2 ) ;P27 @), then }_; b2/ w) > « forall w # 0. If
hypothesis (2.28)) is satisfied and hence o > 0, then

Tz Y [1h@Pdo=5 3 15

peA’f‘1 peAT_l

N WUplfIP = %em_l.

—1
PEAT}

DR

Inserting I = a;; e — Am+1 €m+1 + J em proves that
_ _ o
(A.8) Amem — dm+1em+1 + Jem + em—1 > 5 €m—1.

Since Uy preserves the norm, e, = ep;+1 + €m; indeed, (2.23) proves that
UsUIATLf = {UINTT £, Sy[A™] f}. Inserting & = e — em41 and &p—1 =
em—1 — em into (A.8) gives

o
E em—1 = (am + J)em — (am+1 + J)em+1 + em—1 — €m,

which finishes the proof of LemmalA.1]
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Appendix B Proof of Lemma 2.11]

Lemma2.T1|as well as all other upper bounds on operator norms are computed
with Schur’s lemma. For any operator K f(x) = [ f(u)k(x,u)du, Schur’s lemma
proves that

(B.1) /|k(x,u)|dx <C and [lk(x,u)|du <C = ||K|=<C,

where || K is the L2(R?) norm of K.
The operator normof k y = L, A y— Ay is computed by applying Schur’s lemma
on its kernel,

(B.2) ky(x,u) = ¢ps(x —t(x) —u) — ¢ys (x —u).

A first-order Taylor expansion proves that

kg (x,u)| <

/1 Voo (x —u—tt(x)) - t(x)dt
0

1
<lleo [ 199 (e —u—reoplar
SO
1
(B.3) / lky(x,u)|du < ||r||oo/ / Vs (x —u —t t(x))|dudt.
0
Since V¢, (x) = 2=47=Iy¢(277 x), we have that

/ ks Ce)ldu < [elloo2™4 / Vg @) du!
=277 ||7]l0 IV l1.

(B.4)

Similarly to (B.3)) we prove that

1
[ s tralax < ||r||oo/O [ 19620 G ==ty iaxa.

The Jacobian of the change of variable v = x — ft(x) is Id — tVt(x), whose
determinant is larger than (1 — ||V |e0)? = 27¢, s0

1
[ seaniax < ezt [ [ 19900 - w)lava
0
=277 ||zl IVll1 27
Schur’s lemma applied to this upper bound and proves the lemma result:

IL:Ay — Az <2777V |l1 [7]loo-
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Appendix C Proof of (2.67)

We prove that
(C.H ILcAsf—Asf+7-VArfI<ClIAI27 %
by applying Schur’s lemma (B.1)) on the kernel of ky = LAy — Ay +1-VAj:
kj(x,u) = ¢ps(x —1(x) —u) — s (x —u) + Voppu (x —u) - t(x).

Let H f(x) be the Hessian matrix of a function f at x and |H f(x)| the sup
matrix norm of this Hessian matrix. A Taylor expansion gives

1
lky(x,u)| = ‘/(; tt(x) - Hpps(u —x — (1 —t)r(u)) - t(x)dt

1
C2) < eI, /0 11 Hbos (4 — x — (1 — D)x(x))]dr.

Since ¢, (x) = 2=y (277 x), Hep,s(x) = 2=74=2J g ¢ (27 x). With a change
of variable, (C.2) gives

/ kg Gro)ldu < [[7] 227472 / \H$ @ ') du’

=272 ||7|% | Ho |,

(C.3)

where [|[Ho|l1 = [ |H¢(u)|du is bounded. Indeed, all second-order derivatives
of ¢ at u are O((1 + |u[)~2~1).
The upper bound (C.2) also implies that

1
[ ks ranlax < ||r||§o/0 1 [ 1Hps 0 =5 = (= DyeColaudr.

The Jacobian of the change of variable v = x — (1 —¢)t(x) isId — (1 — )Vt (x),
whose determinant is larger than (1 — || V1]/s0)?, 50

1
/|k1<x,u>|dx < ||r||§o<1—||Vr||oo>—d/O/|H¢21<v—u>|dvdz
(C.4) =272 |I¢|% 11 Hp |1 2¢.

The upper bounds (C.3) and (C.4) with Schur’s lemma (B.T) proves (C.I).

Appendix D Proof of Lemma 2.13|
This appendix proves that for any operator L and any f € L2(R%)

O.1) 1Ss[Ps1 LI < IWUs, LINUIPSLf 1 = IUs. L1I Y NWUIAGIf -

n=0
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For operators A and B, we denote by {A, B} the operator defined by {4, B} f =
{Af, Bf}. We introduce a wavelet modulus operator without averaging:

D2) Vyf ={WRLfI=1f *¥alirea,
with Ay = {2/r:j >—J,r e G},
and Uy = {Ay, Vj}. The propagator Vj creates all paths
ViUIATLSf = U[A”H]f for any n > 0.

Since U [A | = Id, we have that VJ = U[A’}]. Let Pj » be the subset of P, of
paths p of length smaller than m.
To verify (D.I)), we shall prove that

(D.3) (S [Pg.m] Z Km-nV7},

where K, = {[Ay.L].Sy[Pjn-1][Vs. L]} satisfies
(D4 [ Knll < U, L]II.
Since V7 f = U[A'}] f, it implies that for any f € L2(R%)

NISsTPsml LIS < ZuKm IVE LI <UL IIZIIU Al

and letting m tend to oo proves (D.I).
Property is proved by first showing that

(D.5) SyPrmlL ={LAy,S;[Prm-1]1LVs} + Km,
where K,,, = {[AJ, L], Ss[Psm-11[Vs,L]}. Indeed, since Vi = U[AT], we
have that Ay V' = S;[A"] and Py = Uj—y A" yields

SiPrml ={AsV] o<n<m.
‘We have that
Sy[PrmlL ={As V} L}o<n<m
= {LAy +[Ay, L, AgViT'LVy + AgViT Vi, L i<n<m
={LAy,Si[Prm—-1lLVs}+{[As, L] Ss[Prm—1][Vs. L]}
={LAy,Ss[Prm=1]LVy} + Km,

which proves (D.5).
A substitution of Sj[Pj m—1]L in (D.3) by the expression derived by this same

formula gives

Sy[PrmlL ={LAs,LAjVy,Ss[Prm—2lLV}} + Km=1Vy + Km.
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With m substitutions, we obtain

m
SJ [P],m]L = {LAJ V}l}Ogn<m + Z Km—n V}l

n=0
m
= LS[Prml+ ) Km-nV},

n=0

which proves (D.3).

Let us now prove on Ky, ={[As.L). S7[Psm—-1][Vs.L]}. Since Sy[Py]
is nonexpansive, its restriction Sy [Py ] is also nonexpansive. Given that Uy =
{As,Vy}, we get

1Km £1I? = I[As, LI + 1S5 TPrm—1llVs. LIS 112
< A7 LIS IP + Ve, LIAIP = U7 LLAI? < WU LU LA

which proves (D.4).

Appendix E Proof of Lemma 2.14

This section computes an upper bound of ||[Wy, L.]|| by considering
[WJ7 L‘C]*[WJ’ L‘L’] =

Yo WRIFL LMW/ r]. Lol + [Ag. Le]* [Ag. Ly).
reGtj=—J+1

Since [|[Wy, Lelll = Wi, Le]* Wi, L]V,

%) . . /
. dis Y | X wpd i, )

(E.1 reG+  j=—J+1
+I[As, Le)* [Ag, LY.

To prove the upper bound (2.59) of Lemma [2.14] we compute an upper bound for
each term on the right under the integral and the last term, which is done by the
following lemma.

LEMMA E.1. Suppose that h(x), as well as all its first- and second-order deriva-
tives, have a decay in O((1 + |x]|)™72). Let Zjf = f xhjwith hj(x) =

295 (27 x). There exists C > 0 such that if ||V | oo < %, then

(E2) IZj. L]l = ClIVelloo-
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and if [ h(x)dx = 0, then

+o00

E3) | X (2 Lod"(Z). L]

j=—o0
A
C(max(log | THOO, I)HV‘CHOO + ||Hr||oo).
IVTlloo

1/2
=

Inequality (E.3)) clearly remains valid if the summation is limited to —J instead
of —oo, since [Z;, L{]*[Z;, L] is a positive operator. Inserting in (E.I)) both (E.2)
with & = ¢ and (E3) with 2(x) = ¥ (r~'x) for each r € GT and replacing —oco
by —J proves the upper bound (2.59) of Lemma[2.14]

To prove Lemma[E.T] we factorize

[Zj,L|=K; L, withK; =2Z; —L.Z; L.
Observe that
B4  Zj. Le*[Z). LJIV? = |LEKF K Le| V2 < || Lo | 1KF K |12,
and that

+o00 . 1/2
€5 | X 1z L0120 L4 H

J=—00

<Ll | Y K7
Jj=—00

with || L[| < (1=||Veleo)™. Since L' f(x) = f(§(x)) with £ (x —7(x)) = x,
the kernel of K; = Zj — L. Z;j L7 'is

(E6) kj(x,u)=hj(x —u)—hj(x —t(x) —u + v(u)) det(Id — Vr(u)).

By computing upper bounds of ||K;|| and || Z'ﬁ:ioo K7 K|, the lemma is
proved. The sum over j is divided into three parts
400
1/2
(E.7) ” Y KK ” <
j=—oc0
1/2 1/2

| £ wx]

We shall first prove that

-1 . 00 . 1/2
o3 e S
j==v j=0

(E.8) ”_Zy KfK,-”l/zg

j=—00

C(IVtloo + 277 |Atlloo + 2772 | AT |12 V| 1L2).
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Then we verify that || K[| < C||Vt|oo and hence that

! 1/2
(E9) | 3 &k = vkl = crivel.
j==v

The last term carries the singular part, and we prove that
> . 1/2
(E10) > KK | = Vel + 1 Hloo).
=0

Choosing y = max(log[||At|leo/||VT|leo], 1) yields

+o00 1/2 A
| ¥ &7 = o (max(1og 1 gm0 ) 190w + D0 )
j=—00

IVTlloo

Inserting this result in will prove the second lemma result (E.3). In the proof,
C is a generic constant that depends only on / but that evolves along the calcula-
tlor"}slie proof of is done by decomposing K; = K 1t K 7,2, with a first kernel
(E.11)  kji(x.u) = a@)h;(x —u) witha(u) = (1 —det(Id — Vz(u))),

and a second kernel

(E.12) lgjjz(x, u) = det(Id — Vr(u))(hj (x—u)—hj(x—t(x)—u+ f(u))).

This kernel has a similar form to the kernel (B.2) in Appendix [B|with 7 (x) replaced
here by 7(x) — t(u). The same proof shows that

(E.13) 12l < €27 | Atloo.
Taking advantage of this decay, to prove (E.8) we decompose
—7 1/2 Yoo 12
| 2 w7 =] X Rk
j==00 j=—00
_y _ ~ ~
+ Y (K2l + 22 | K2 2 K11 ?)
Jj=—00
and verify that
0
~ S, = |12
E14) 1Kl =ClIVelw and | Y K5 K| = ClIVele.
Jj=—00

The kernel of the self-adjoint operator K ;:1 K 7,118

Fi(.2) = / 51 (e )1 (x 2)dx = a(y)a@)iy * hj(z — ).
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with iij (u) = h;.‘ (—u). We now have that the kernel of K = 2 i<0 I?inlfj,l is
k(r.2) =Y kj(r.2) =a(a@)f(z—y) with0(x) =Y hj *hj(x).
Jj=<0 j<0
Applying Young’s inequality to | K f | gives
IRl < sup |aGo)]*[6]]1.

ucRd
Since é(a)) = ngo |l/1\(2_ja))|2 and hA(O) = [ h(x)dx = 0 and h is regular with
a polynomial decay, we verify that ||0||; < co. Moreover, since

(1 — det(Id — Vz () > (1 - | Vt[lo)®

we have sup,, |a(u)| < d||Vt||oo, Which proves that |IK||}/? < C||Vt|loo. Since
|Kj1]*> < [IK|, we get the same inequality for ||K;1]|?, which proves the two

upper bounds of (E.14).
The last sum Z}io K j’." K carries the singular part of the operator, which is

isolated and evaluated separately by decomposing K; = K1 + K >, with a first
kernel

(E.15)  kji(x,u)=hj(x —u) —h;j((Id = Vr(u))(x —u))det(Id — Vz(u))
satisfying K;11 = [kj1(x,u)du = 0if [ h(x)dx = 0. The second kernel is
kjo(x,u) = det(Id — Vr(u))(hj (d—=Vt(u)(x —u))

—hj(x —t(x) —u + t(u))).

The sum } ;.o K7 Kj1 has a singular kernel along its diagonal, and its norm is
evaluated separately with the upper bound

(E.16)

e 1/2 0 1/2
KK = | KK
Jj=0 Jj=0
(E.17) ~
+ > (K2l + 221K 2 121 K 12,
j=0
We will prove that
(E.18) 1K1l < ClIVtlloo
and
(E.19) 1K) 2|l < C min2™ | Htloos VT l0o)-

These two inequalities imply that || K;|| < C||Vt| . Inserting this inequality in
(E.4) yields the first lemma result (E.2)), and it proves (E.9). Equations (E.I8) and
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(E.19) also prove that

(o,@]
(E20) Y (K2l + 221K 21 KjallY?) < C(VTlloo + 1 HT [loo)-
j=0

If [ h(x)dx = 0, then thanks to the vanishing integrals of k;; we will prove that

|

> 2
(E21) I3 Kk = cliVelo + 1He o).
j=0

Inserting (E.20) and (E.21)) into (E.I7) proves (E.I0).
Let us now first prove the upper bound (E.19) on K ». The kernel of K| > is
kjo(x,u) = det(Id — Vf(u))(hj (Id—=Vz(u)(x —u))
—hj(x —t(x) —u + 1(u))).

A Taylor expansion of /1; together with a Taylor expansion of 7(x) gives

(E.22) t(x)—t(u) =Vr(u)(x —u) + a(u, x —u)
with
1
(E.23) a(u,z) = [ tzHt(u + (1 —1)z)z dt,
0
SO

1
kja(x,u) = —det(Id — Vr(u)) / Vh; ((Id —tVt(u))(x —u)
(E.24) 0
+ (1 —=1)(r(u) — r(x)))a(u,x —u)dt.

For j > 0, we prove that ||K; || decays like 27/. First we observe that
|det(Id — Vz(u))| < 2¢. Since Vhj(u) = 27+4iVh(2/u), the change of vari-
able x’ = 2/ (x —u) in gives

1
k-,dzd‘VhId—V !
[ atraoidx <27 [| [ h(aa-r e
+ (1 =1)2/ (t(u) — 127 X 4+ u))) 2 a(, 27/ x")dt |dx’.
Forany 0 <t <1
|(1d — tVr)x' + (1= 1)2/ Q77X +u) — t(u))| >
x|

11 = [Vtlloo) = =
2
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Equation (E.23)) also implies that

1
27 a(u,27/x")| =27/ [ txX'Hr(u + (1 —1)277/ x")x" dt
0

(E.25)
. |x/|2
<27 | Hlloo

Since |[Vh(u)| < C(1 4 |u])~¢~2, with the change of variable x = x'/2 we get

(E.26) / lkj2(x,u)|dx < C 277 | H| oo

For j < 0, we use a maximum error bound on the remainder « of the Taylor
approximation (E.22):

27 (. 277 ) < 2[|Vlloo I¥'l,

which proves that [ |k;(x,u)|dx < C||Vt| o and hence that
(E27) [ Izt lax < € min | e, [V o).

Similarly, with the change of variable u’ = 2/ (x—u), we compute [ 1kj2(x, u)|du,
which leads to the same bound (E.27). Schur’s lemma gives
(E.28) I1Kj2ll < € minQ@77 | He oo |V lo0).

which finishes the proof of (E.19).
Let us now compute the upper bound (E.I8) on K ;. Its kernel k; ; in (E.I5)
can be written k; 1 (x,u) = 24/ g(u, 27 (x — u)) with

(E.29) gu,v) = h(v) — h((Id — Vr(u))v) det(Id — V (u)).
A first-order Taylor decomposition of /& gives

glu,v) = (1 — det(Id — Vr(u)))h(ld —Vt(u)v)

(E.30) 1
+ f Vh((l —t)v+t(Id— Vr(u))v) -Vt(u)vdt.
0

Since det(Id— V(1)) > (1—||V1|lo0)?, we get (1—det(Id—V (1)) < d ||Vl 00.
Moreover, |V |co < %, and /(x) as well as its partial derivatives have a decay that
is O((1+ |x))7%72), so

(E.31) lg(u, v)| < C[[Velloo(l + [v) 7472,
s0 kj1(x,u) = 0% | Vrloo(l + 27 |x — u])~?~2). Since
/ kjr(v0)ldu = O(|Velloo) and / lkj (ranldx = O(1V7 o).

Schur’s lemma (B.I)) proves that || K} 1|| = O(||Vt|lco) and hence (E.I8).
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Let us now prove (E2I) when [ h(x)dx = 0. The kernel of the self-adjoint
operator Q; = K}k1KJ}1 is

kj(y.z) = /k}",l(my)k',l(x,z)dx
(E32) - f 2247 * (3,29 (x — y))g(z.2) (x — 2))dx
- / 24 g% (y.x + 2 (2 — y)g(z.x))dx.

The singular kernel k = > j k jof Y ; O, almost satisfies the hypotheses of the
T(1) theorem of David, Journé, and Semmes [5] but not quite because it does not
satisfy the decay condition |k(y,z) —k(y,z')| < C|z/ —z|* |z — y|~¢~ for some
a > 0. We bound this operator with Cotlar’s lemma [20], which proves that if Q;
satisfies

(E33) Vil 07Ol <I1BG —DP* and [|Q; OFI < 1B( — DI
then

(E.34) HZ Q; ” <Y BU).
7 7

Since Q; is self-adjoint, it is sufficient to bound || Q; Q/||. The kernel of Q; QO
is computed from the kernel k; of Q;,

(E.35) ki j(y.2) = /Ej(z,u)l?z(y,u)du-

An upper bound of ||Q; Q; || is obtained with Schur’s lemma (B.T)) applied to l;l, je
Inserting (E.32)) in gives

[ tay = [ ‘ [t ngu2 g x +2' -y
(E.36)
x 247 g* (2, x' + 27 (u — 2))dx dx' du|dy.

The parameters j and / have symmetrical roles and we can thus suppose that j > /.
Since [ h(x)dx = 0 we have from (E:29) that | g(u,v)dv = 0 for all u. For
v = (Vn)n<d, one can thus write g(u,v) = 9g(u, v)/dvy, and (E.3T)) implies that

(E.37) 12, v)| < C[[Velloo(l + [v) ™47,

Let us make an integration by parts along the variable u; in (E.36). Since all first-
and second-order derivatives of /1(x) have a decay that is O((1 + |x[)~972), we
derive from (E.29) that for any v = (un),<q € R% and v = (Vn)n<d € RY,
dg(u,v) o
€3%) D] < el + ol = Vel 0
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and from (E.30)
dg(u,v)
8v1
In the integration by parts, integrating 29 g(z, x" + 27 (u — z)) brings out a term
proportional to 2=/, and differentiating g(u, x)g(u, x)2% g (v, x + 2L(u — y))

brings out a term bounded by 2/. An upper bound of (E-36) is obtained by inserting
(E.31), (E.37), (E.38), and (E.39), which proves that there exists C such that

/ k1, (v, 2)ldy < C*Q@77|Vel3 1 Hzlloo +2'77 V%)

(E.39) < C[Vtlloo(l + [v](1 = [Ve]loo)) 471

< C22 7 (| Voo + || Helloo)*.

The same calculation proves the same bound on | |l€l, 7 (¥,2)|dz, so Schur’s lemma
(B.T) implies that
101 Qi1 < C* 2"/ (IIVelloo + | HTlloo)*.

Applying Cotlar’s lemma (E33) with B(j) = C27V2(|Vt|leo + [|HT]l00)?
proves that

€40 | 5> &K | = |3 0s] = clVeloe + 1 H1l00)?,
j=—00 J

which implies (E.21).
Appendix F Proof of Lemma 3.6

We have from (3.13)) that there exists €7 with limj_, . €7 = 0 such that

ISs0p1f ”2 €J 2
S — 2 g 8 < —|S )
pepsfl_)szf s ISs[pIS| slple) = 2 15/1p171

and 3 o7 IS7[p1 1% < €7 11£17/8. Since IS [Ps1SI1* = /11, we get

2
E1) S Isstprr = WP g is) ™ < 1712,
DPEPy

I1S70p181 7

The set of all extensions of a p € Py into P4 is defined in (2.37). It can be
rewritten Pf_H =Pj4+1 N Cy(p), and (2.38) proves that

ISs[plf — Sslplhl* = Z ISs41[P'1f = Ss41lP101I>.
P'EP;+1NCy(p)

Iterating k times on this result yields

ISs[p)f — Sylplhl? = Z I1Ss4xlP'1f — Sy4xlp 101>,
D'€Pj+xNC 4k (P)
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Applyingitto f and h = wpé with wp = |Ss[p]fII/[1Ss[p]S]| gives
1Ss1P)f = 1pSsIpI8I? = > 1S7+x[P'Lf = 1pSs+xlP'181.
P'EPy4+xNCy4+x(p)
Summing over p € Py and applying (E.I)) proves that

) 3 ISsLp]fl

Syl f — == Ss+klp'18
Ssiplé
PEPy p'€Py1xNC ik (p) 1Ss[plS|

2
2
=eslfl”.

and hence

) 3 ISs+lP’1/1 1Ss1P1 /]

S "8 Sslplé
S5 e ot ol 1Skl B1 IS0

It g € Cyiic(p"). then Sy4(q) = ISy & [P1f1I/11Ss+k[p"18]l. But p" € Cs(p)
sogq € Cy(p) and hence S;(q) = |[Ss[p1f1/1SsIpI8]I.

Finally, ||S71%[p'181> = 1(Cy1x(p")), so the sum can be rewritten as a path
integral

2
1S5 +£[p'181% < es Il f112.

[ 1S5t @ = 1 5@ duta) < es 1112
’7)00
which proves that {S f}sen is a Cauchy sequence in L? (P, dt).

Appendix G Proof of Lemma 4.§]
This appendix proves that
G.1) E(K:XP) < E(IK 1) E(IX ),

as well as a generalization to the sequence of operators at the end of the appen-
dix. The lemma result is proved by restricting X to a finite hypercube It =
{(x1,x2,...,xg) € RY :Vi <d, |x;| < T} whose indicator function 1y, defines
a finite energy process X7 (x) = X(x)1z, (x). We shall verify that E(|K; X (x)|?)
does not depend upon x and that
E(IK:XT?)
2T)4

We first show how this result implies (G.I). The L2(R¢) operator norm defini-

tion implies

IK X7 = / K X (0P dx < | Kol [ X7 (o) dox.

(G.2) E(|K:X(x)|*) = Jim

Since X and t are independent processes,
E(|K:X7|1*) < E(|K ) E(X1HQT)?.
Applying (G.2) thus proves the lemma result (G.TJ).
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To prove (G.2), we first compute
E(|K:X(x)|*) = E (/ ke (x,w)ky (x, u) X (u)X* (u')du du’).
Since X is stationary, E(X(u)X*(u’)) = Ax(u —u’), and the lemma hypothesis
supposes that E (k¢ (x,u)k¥(x,u")) = k¢(x —u,x —u’). Since X and 7 are

independent, the change of variable v = x — u and v/ = x — u’ gives

E(|KTX(x)|2)=[ ke(x —u,x —u')Ax (u — u')du du’

(G.3) :/ ke(v,v")Ax (v — v")dv dv’,

which proves that E (| K; X (x)|?) does not depend upon x.
Similarly,

(G4) E(|K: XT(x)]?) = / ke(v,v")Ax (v — V), (v—x)17, (0 —x)dvdv’,
and integrating along x gives

(G.5) @T)"? E(|K:XT|?) =/ ke (v, v") Ax (v =0") (1 = pr (v =v"))dv AV,

with
1= pr( =) = @) [ 110 =), 0 = )
- ]i[ O Ll ) RS
| o7 )T
i=1
and hence
d
(G.6) 0<pr() <N |ul <d@T)™'|vl.

i=1

Inserting (G.3)) into (G.5) proves that

Q@T)?E(|K: X7 |*) = E(IK: X(x)|*)
(G'7) / I / / / /
— k:(v,v)Ax (v —v)pr (v —v)dv dv'.

Since [f lkz(v,v)] |v—v'|dvdv’ < 0o and Ax (v —v') < Ax(0) = E(|X]?), we
have from (G.7) and (G.6) that
Jim QT E(| K X7|?) = E(KX (X)),

which proves (G.2).
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Lemmais extended to sequences of operators K, = {Kz n}ner with kernels
{kzniner as follows: Let us denote

(G.8) IKX (> =) |KenX)? and |[Kef[> =D 1 Ken fII

nel nel

If each average bilinear kernel is stationary,

(G.9) E (ke (. )k}, (x.1")) = kepn(x —u,x —u)

and

(G.10) //‘Zla,n(v,v/)‘|v—v/|dvdv/ < 00,
nel

then

(G.11) E(|KX|I”) < E(IK P E(X[?).

The proof of this extension follows the same derivations as the proof of (G.I))
for a single operator. It just requires replacing the L2(R¢) norm || /|2 by the norm
> er || fll? over the space of finite energy sequences { f; }ner of L? (R%) func-
tions and the sup operator norms in L2(R?) by sup operator norms on a sequence
of L2(R%) functions.

Appendix H Proof of Theorem
This appendix proves E(||[Ss[Ps]. L<]1X||?) < E(JU[Ps]X|1)? B(r) with

2
(H1)  B(x) = CE((HVTHOO(log [Tl 1) + ||H‘L’||oo) )

IV]loo
and
+o00 5 1/2
EQUPAXIn =Y (X EQUIpXP)
m=0 peAf';
For this purpose, we shall first prove that if for any stationary process X
(H.2) E(I[Wys, L)X |?) < B@E(X]?)
where
E(IWs, LJX|?) = E([As, LX) + ) E(IWRL LX),
AEA
then
(H3) E(I1Ss[Ps]. LIX I?) < B@E(IUPsIX 1)

Since a modulus operator is nonexpansive and commutes with L., with the same
argument as in the proof of (2.53)), we derive from (H.2) that

(H.4) E(|[Us, L)X |?) < B)E(IX]?).
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The proof of Proposition [4.2] also shows that U is nonexpansive for the mean-
square norm on processes. Since Sy[Py] is obtained by iterating on Uy, we have
that

E(|[Ss[Ps), L1X|?) < B@®E(U[Ps]1X [11)*.

The proof of this inequality follows the same derivations as in Appendix [D]for
L = Lq by replacing f by X, | fII> by E(|X[*), [U[p]f|*> by E(U[p]X|?),
and the L2(R?) sup operator norm ||[Uy, L]|| by B(t), which satisfies (H4) for
all X.

The proof of (H.I)) is ended by verifying that

(H.5) E(|Wy. LJX %) < E(C*()E(X )
and hence B(t) = E(C?(r)) with

Az
C(r) = C(||Vr||oo(log ”VTHOO V1) 4+ ||Ht|so |-
o0

The inequality (H.5) is derived from Lemma , which proves that the L2(R¢)
operator norm of the commutator [Wy, L] satisfies

(H.6) IWr. L]l = C(2).

Let us apply to Ky = [Wy,L:] = {[As., L], [WIA], L<]}sen, the extension
(G.11) of Lemma This extension proves that if the kernels of the wavelet
commutator satisfy the conditions (G.9) and (G.10), then

E(|Ws, LAX %) < E(IIW, LI E(X ).

Together with (H.6), it proves (H.3).
To finish the proof, we verify that the wavelet commutator kernels satisfy (G.9)

and (G.I0). If Z; f(x) = f » hj(x) with h; (x) = 24/ (27 x), then the kernel of
the integral commutator operator [Z;, L] = Z;L; — L Z; is
ke j(x,u) =hj(x —u —1(x))

—hj(x —u—7(u+t(Bw))))|det(ld — V(u + t(,B(u))))|_1

where B is defined by B(x) = x + ©(B(x)). The kernel of [Ay, L] is k¢ gy
with h = ¢, and the kernel of [W[A], L] for A = 2/r is k;; with h(x) =
¥ (r~!x). Since T and Vr are jointly stationary, the joint probability distribution
of their values at x and v + 7(8(u)) depends only upon x — u. We have that
E(k,j(x, u)ke j(x,u")) = ke, j(x —u,x —u’) , which proves the kernel station-
arity (G.9) for wavelet commutators.

The second kernel hypothesis (G.10) is proved by showing that if |ha(x)| =
O((1 + |x])~472), then

//‘ Z l;t,j(v,v/)‘ v —v|dvdv’ < oo.
jz=J

(H.7)
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Since ky,j (v,v") = E(ke,j(x,x — v)ks j(x,x —v')), it is sufficient to prove that
there exists C such that for all x, with probability 1,

H8) I = Z // ke, j(x,x —v)| kg, j(x,x —0)| v —v'|dvdv’ < C.
j==J
Since h;(x) = 2%/ h(2/x) and u + t(B(u)) = B(u), we have from that
ke j(x,x — 2= Jw) = 24/ ke, j(x,x —w) with
Et,j (x,x—w) =h(w— 2jr(x))
— h(w =27 T (B(x =277 w)))|det(ld — Ve(B(x — 2 w)))[ "
The change of variable w = 2/v and w’ = 27/’ in (H8) shows that ] =

(H.9)

I; = // ke (x, x —w)| ke, (x. x — w')| |w — w'|dw dw'.

Since |h(w)| = O((1 + |w])™472) and ||V1]loo < % with probability 1, by com-
puting separately the integrals of each of the four terms of the product

Iz, (x. x + w)| ke j (X, x + w')] [w —w],

with a change of variables y = w 42/ t(x) and z = w 4+ 2/ t(B(x + 27/ w)), we
verify that there exists C’ such that /; < C’ and hence that ] = ) i>—J 27 <
27+1C" with probability 1. This proves and hence the second kernel hypoth-
esis (G.10).
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