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Abstract

We introduce a class of inverse problem estimators compoyechixing adaptively a family of
linear estimators corresponding to different priors. Spanixing weights are calculated over blocks of
coefficients in a frame providing a sparse signal represientaThey minimize arl! norm taking into
account the signal regularity in each block. Adaptive diosl image interpolations are computed over
a wavelet frame with al®(NIlogN) algorithm.

I. INTRODUCTION

Many signal acquisition and restoration require to solvaraerse problem while trying to
improve the signal resolution. It amounts to estimate a higolution signalf € RN from Q
measurementgq], obtained through a linear operatdr and contaminated by an additive noise
w

ylaj=Uflgl+wlg] ge¥ with [¢[=Q<N.

Image interpolation is an important example, wherés a subsampling operator. Many image
display devices have zooming abilities that interpolafgutnmages to adapt their size to high
resolution screens. For example, high definition telewisiomclude a spatial interpolator which
increases the size of standard definition videos to matchnitiie definition screen format and
possibly improve the image quality.

Linear operators compute an estimatomwhich also belongs to a space of dimension
and thus does not improve the signal resolution. For imatggpnlations, bicubic interpolators
most often provide nearly the best results among linearatpes [35]. To estimaté in a space
of dimension larger thaiQ requires using non-linear estimators adapted to priorrméion
on the signal properties. A wide range of techniques have leseloped to improve linear
image interpolators. Directional image interpolationisetadvantage of the geometric regularity

of image structures by performing the interpolation in asghodirection along which the image
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is locally regular. The main difficulty is to locally idenyifthis direction of regularity. Along
an edge, the interpolation direction should be parallehtogdge. Many adaptive interpolations
have been thus developed with edge deteclors [33], [2], #it] by finding the direction of
regularity with gradient operators! _[62], [36], [13], 159B4], [18], [7], [1], [€], [16], [58].
More global image models impose image smoothness prioifs asia bounded total variation
to optimize the interpolation [39], [44], [3]._[43]. Othemage smoothness priors have also been
used to compute interpolated images with alternate piiojgston convex sets [49], [[9]. These
algorithms can provide a better image quality then a linaegerpolator but they also produces
artifacts so that the resulting PSNR remains of the samer @slex bicubic interpolator. The
introduction of interpolators adapted to local covariameage models have lead to more precise
estimators/[38]. This approach has been improved by Zhadd\an|[63] by using autoregressive
image models optimized over image blocks. In most casesiriently provides the best PSNR
for spatial image interpolation. Super-resolution intdgtions can further be improved by using
a sequence of images 48], [30Il, [31], [46], [27] or a compani dataset [28], [22]) [58] to
perform the interpolation. While these approaches can bee raccurate, they are much more
demanding in computation and memory resources.

Prior information on the image sparsity has also been usedfage interpolation. Wavelet
estimators were introduced to compute fine scale waveldficeats by extrapolating larger scale
wavelet coefficients[ [12], [15]. A more general and prongstiass of non-parametric super-
resolution estimators assumes that the high resolutiamakiyis sparse in some dictionary of
vectors. This sparse representation is estimated by dexsingpthe low-resolution measurements
y in a transformed dictionary. These algorithms, which axeéemeed in Sectior_ll, have found
important applications for sparse spike inversion in ggspis or image inpainting [23]| [26].
However, they do not provide state-of-the-art results foage interpolation.

Section[ll describes a new class of adaptive inverse egtisiacalculated over a sparse
signal representation in a frame. It is obtained with a spaaptive mixing of a family of
linear estimators, which are optimized for different sigpaors. Mixing linear estimators has
been shown to be very effective for noise removal [37]. Hoevethese approaches do not apply
to inverse problems because they rely on a Stein unbiasetieahgstimator of the risk, which
is then not valid.

Our inverse sparse mixing estimator is derived from a m&iuodel of the measurements

October 23, 2009 DRAFT



It is computed in Sectioh IV by minimizing ait norm over blocks of frame coefficients, with
weights depending upon the different signal priors. Sedtbdescribes a fast block orthogonal
matching pursuit algorithm which computes the mixing weésghLinear mixture models have
been studied over wavelet coefficients for image denois#?j. [For image interpolation, Sec-
tion [VIlimplements the inverse mixing estimator in a wavétate withO(NlogN) operations,

with state-of-the-art numerical results.

[I. SPARSEINVERSE PROBLEM ESTIMATION IN DICTIONARIES

Sparse super-resolution estimations over dictionariesige effective non parametric ap-
proaches to inverse problems. These algorithms are regievitgh their application to image
interpolation.

A signal f € RN is estimated by taking advantage of prior information whagecifies a
dictionary 2 = {@p}per Where f has a sparse approximation. This dictionary may be a basis
or some redundant frame, with a sidg = P > N. Sparsity means thdt is well approximated
by its orthogonal projectiorfy over a sub-spac¥, generated by a small numbkt = |A| of

vectors{ @} pen chosen inZ:.
fa= > c(p) @ 1)

peN
Measurements are obtained with a linear operatpwith an additive noisev:

y(q)=Uf(q)+w(q) for ge ¥, with |4|=Q<N. (2)

Sparse inversion algorithms estimate the approximatiacey, of f fromy, together with the
decomposition coefficients(p) of the projection off in V. It results from [(1) and[(2) that
y= 5 c(pUgp+w with w =U(f—fr)+w. (3)
peN
This means thay is well approximated by a projection in a spad®/s = {U@}pcn. The
spaceV and the coefficients(p) are estimated by finding a sparse representation infthe

transformed dictionary

‘@U = {U‘Pp}per : (4)

All vectors U ¢, belong to the image space bof, which is of dimensiomQ. Since there are

P > N > Q such vectors, the transformed dictiona# is redundant, ang has an infinite
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number of possible decompositions in this dictionary. Arspaapproximation
§=3 &pUe . (5)
peN
can be calculated with a basis pursuit algorithm which mings a Lagrangian penalized by an
It norm [53], [14]

1
Slly=§ &p)Ugpl+A S [Ep) - (6)
2V 2, APVGITEA 0

A sparse representation can also be calculated with fasgedg matching pursuit algorithms |42].
Let A be the support o€(p) in I'. The resulting sparse estimatidnof f is given by
f=Y e (7)
peA

Such an estimation is precise and stable if the suppatt & includes a precise approximation
supportA of the decomposition coefficients df so that it recovers an estimatérin a space
Vi C Va. One must also guarantee that the computations are stathlbesrte thafU ¢} pen
is a Riesz basis. The “Restrictive Isometry Property” of @=and Tao [11] and Donohio [21]
imposes that the Riesz constants are uniformly boundedlf@upports of a given size. They
then proved that the recovery is precise and stable. Thisatdge isometry property is valid for
certain classes of random operattrsbut not for structured operators such as a subsampling
on a uniform grid. For structured operators, the precisiod atability of this sparse inverse
estimation depends upon the “geometry” &f which is not well understood mathematically,
despite some sufficient exact recovery conditions provedropp [55], [56].

Several authors have applied this sparse super-resohigjonithm for image interpolation and
inpainting. Curvelet frames [10] and contourlet frames] [BGild sparse image approximations
by taking advantage of the image directional regularitgtidnaries of curvelet frames have been
applied successfully to image inpainting [23], [26]. Forifarm grid interpolations, Tablg | in
Sectior V] shows that the resulting estimations are not esige as linear bicubic interpolations.
Table[l shows that a contourlet algorithm [45] sometimes peovide a slightly better PSNR
then a bicubic interpolation, but these results are bel@asthte of the art obtained with adaptive
directional interpolators [63]. Dictionaries of image ga#s have also been studied for image
interpolations with sparse representatidng [60], but Witk PSNR improvements compared to

bicubic interpolations.
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A source of instability of these algorithms come from theéxibility, which does not in-
corporate enough prior information. The approximationcepe, is estimated by selecting
independently each of the dictionary vectgs. A selection ofM vectors thus corresponds
to a choice of an approximation space amc(r,\ﬁ;) possible subspaces. It does not take into
account geometric image structures which create deperedean the choice of approximation
vectors. Structured approximation algorithms use sucbr priformation to restrict the set of
possible approximation spaces [29], [[32]. Since approiomavectors often appear in groups,
one can select simultaneously blocks of approximationarsct25], [24], [52], which reduces
the number of possible approximation spaces. TPhpenalization in[(B) is then replaced by
a sum of thel? norm over each block, which results in a mixgdand I> norm [65]. This is
also called a “group lasso” optimization |61], [50], [4]. @¥e structured approximations have
been shown to improve the signal estimation in a compresswsing context for a random
operatorU [5], [24]. However, for more unstable inverse problems sashmage interpolation,

this regularization is not sufficient to reach state-of-#neresults.

[1l. MIXING ESTIMATORS OVERFRAME BLOCKS

Sparse super-resolution algorithms can be improved bygusiore prior information on the
signal properties. This section introduces a general dasparse inverse estimators that define
signal approximations over blocks of vectors in a frame sTdiass of estimators are introduced
as an adaptive mixing of linear estimators.

A Tikhonov regularization optimizes a linear estimator loyposing that the solution has a
regularity specified by a quadratic prior [54]. Suppose thagas a regularity which is measured

by a quadratic regularity norniRg |2, where Ry is a linear operator. Sobolev norms are

particular examples wherBy are differential operators. Let? be the variance of the noise

w. A Tikhonov estimator compute§= U,y by minimizing ||Re f||? subject to
luf-yl?<Qo?. 8)
The solution of this quadratic minimization problem is atdained by minimizing a Lagrangian
20Tyl A [Ro P ©

In Bayesian terms, this Lagrangian is minus the log of thegsms distribution of the signal

given the observationg whose minimization yields a maximum a posterior estimakbe first
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term is proportional to minus the log probability of the Gsias distribution of the noise. The
second term is minus the log probability of a Gaussian pristridution whose covariance is
(R*éRg)*l, whereRj is the adjoint oRg. In this framework, the regularity prior is thus interprte
as a covariance prior.

If we neglect the noise, which is often the case for imagerat@tion then [(B) becomes
ngy: y. If U is a subsampling operator by a factor 2 an&4fis a convolution operator then
the resulting Tikhonov interpolatdjdér implements a linear filtering with an impulse response
hg:

f(n)=Ugyn) = S y(@he(n—20) for n=(ng,ny).
ge¥y

Let Vg be the image space of a linear estima@r. The estimationf = Ugy can only be
a precise approximation if is well approximated by its projection Mg. Adaptive estimators
introduce more flexibility on the construction of this apxiroation space, which is obtained as
a union of subspaces selected depending upon the sign#hrigguVe introduce a class of such
estimators by estimating a mixture model fof

A global linear mixture would decompodeas a combination of signals having a regularity
Rg. This is equivalent to modef as a realization of a linear mixture of Gaussian random
vectors with covariancefR;Rg) 1. The regularity||Re f||2 is estimated fromy by minimizing

IRe |2 = ||Ray||? which is obtained with the Tikhonov estimatdy:

To adapt the mixture to local signal properties, it is not pated globally but locally in a basis
or frame providing a sparse signal representation. A spafmesentation reduces the estimation
to lower dimensional spaces where the signal projectiororsmegligible.

Let us consider a basis or franie/y} per and its dual framg {p} per, Which provide a sparse

representation oy

y=Y c(p)Pp with c(p)=(f,yp) .
%‘ p p

Suppose that we are given a family of regularization opesaf®g}g-o specifying different
signal priors. We define a mixture gfwith components having different regularitieg = ReUg .

For eachB, we consider index blockBg q C I whereq is a position parameter that is sampled
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over a subgrid g of I'. These blocks cover the index $ebut may have a non-empty intersection
qure Be,q = r .

Let Vg q be the space generated bYp}pes, - We want to select blockBg q where the signal
projection
Yo.q = % c(P) Pp € Voq (10)
pPEBg g

has mostly a regularitiRg or can be interpreted as the realization of a Gaussian vediose

covariance is dominated byR;Re) L. It defines an adaptive local signal mixture over blocks

y= a(8,q)yeq+yr - (11)
9;9(]629 |

Each blockBg q is selected if the mixing coefficier#(8,q) is close to 1 and it is removed if
a(8,q) is close to 0. The residual signgl is not dominated by one component and thus has no
specific regularity.

Let {Ug}eeo be the optimal linear Tikhonov estimators correspondinthéopriors{Rg}gco.
For interpolation, thdzJQ+ are interpolators in several directiosA mixture estimator is defined
from a mixture model[(11) by inverting each signal componghnprior Rg with U(j and the

residue with a generic estimator':

f= egeuér <qu9 5(97Q)y{97q> +U"(yr) (12)

The generic linear estimatdt ™ does not incorporate any prior knowledge concerningRhe
signal regularity. In a Bayesian framewotl;" is an estimator computed with a prior Gaussian
distribution whose covariance is not conditionedérit can be computed from the covariances
(R*éRg)*l of each prior distribution conditioned up@h and from the probability distribution of
6. For image interpolations) * is isotropic, or nearly isotropic if implemented with a seize
interpolation such as a bicubic interpolation.

Inserting [(10) in[(IR) yields a mixing estimator which |dgahdapts the inverse operator to

the signal regularity:

F:p;cm) (Qgeae<p>u;+ar<p>u+)wp, (13)

with mixing weights
— A(6.0) 1s,,, d =1— . 14
ag(p) qgea( d) 1g,,(p) and a(p) Gg@aemo) (14)
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V. SPARSEMIXTURE ESTIMATION

The choice of a mixing estimatdr (12) is derived from a migtanodel ofy:

y= a(0,q)ygq+yr with ygq= c(p) Pp - (15)
Gzeqeze a r | pegeﬁq P

Computing such a model can be interpreted as a non-standardes separation problem,
with only one measurement channel. The mixing parameigfsq) must be estimated from
a known set of potential sourcgg q which are highly redundant, with a prior information on
their quadratic regularity. A sparse mixing estimator irdduced with a weighted! norm
optimization.

A linear mixture estimator can be obtained by minimizing tasidue energyly; ||> penalized

by the signal regularity over all blocks measured by

GZ ||FN39519,qyg,qH2=92 Z 80,4/ IR Yo.qll*- (16)
€0qel g €0qel g

However, this approach does not take advantage of the gpprgir.

Since the signal has a sparse representation, many blatélsig q are close to zero. If it is
not the case then the signal model assumes that they havellariggspecified by one of the
operatorsRg. It implies that the mixing coefficienta(8,q) should locally be non-negligible for
one or no paramete?, and is therefore sparse. Sparsity priors have been useadridasd blind
source separation problems [64]] [8], with a sparsity paorthe unknown sources. In this case
the sparsity is not imposed on the sources but on mixing coaffis. According to the sparsity
approach reviewed in Sectidn I, the quadratic prior nornmoring coefficients in[(16) is thus
replaced by am! norm. Mixing coefficients are obtained by minimizing theidesl norm||y;||?

penalized by the resulting weightét prior

2@ =3y 4(6.4) Yo ol >+ 4(6,0)
Gzeqez €Ogely

The minimization of such a quadratic function of the unknoé(@,q) penalized by thein?

(17)

norm can be computed with standard algorithms, such as &ativie thresholding| [19].
As opposed to group lasso algorithms using mikeandl! norms, this minimization does not
only recover the signal with a sparse set of blocks but it aésmlarizes the decomposition by

imposing a signal regularity within each block. Moreoveéroes not optimize a decomposition
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parameter for each frame coefficient but a single mixing rpatar per block. The signal regu-
larity in each block can also be interpreted as a linear aqamration property in an orthonormal

basis defined in the block. Let us denote
RoqY=RoYoq= g c(p)RePp -
peBg g

It results that

IRgYe.qll> = (R gRo.q¥:Y) -
q

The symmetric operatdig qliaq is diagonalized iV g ¢ in an orthonormal basigbg g m}m with

eigenvalues\2:
Rp qRo.qy = > A {¥: Be.m) b, qm-
m

If the eigenvalued 2 vary by a large factor then the energigoye q/12/||Ye gl|? is small if and only

if y has an energy concentrated over the eigenvedtiogg m}m corresponding to the smallest
eigenvalues\2. The regularity condition is therefore equivalent to a spdinear approximation
condition in this eigenvectors basis.

The blocksBg 4 have a regularization role in the adaptive selection ofrestibrsUJ but should
not be too large to maintain enough flexibility in the choi¢efo The regularization is effective
if the eigenvalueg A2} vary by a sufficiently large factor so that one can indeed éobs’
the signal regularity in each block. The block shape mustefoee be adapted accordingly to
the properties oRy. For directional interpolation in the direction &f a better regularization
is obtained with blocks elongated in the direction@of

The estimation depends upon the grids of the position indexes| of the blocksBg . To
reduce this grid effect, the estimation can be computed wsetveral sets of translated grids.
Each gridlg is translated by several vectofsg}i<i<i: g = g + Tg,. FoOr eachi, mixing
coefficientsa( 6, q) are computed with blockBg 4 translated on the grillg ;. The final estimator

is obtained by averaging these mixing coefficients

|
w0.0= 13 a(0.0) (19
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V. COMPUTATIONS AND ORTHOGONAL BLOCK MATCHING PURSUIT

To reduce the computation of mixing coefficients, an uppaunioof the Lagrangian_(17)
is computed from the frame coefficients 6fin each block. Efficient algorithms have been
developed forl? minimization but they remain slow for image processing @apions. An
orthogonal block matching pursuit algorithm is introdudedapproximate the optimization,
with much less computations.

The Euclidean norm of coefficients in a block is written:
2 2
Icllgg, = % lc(p)|* -
PEbg q

Proposition 1. If B is the upper frame constant ¢iJy} per then for all y anda:

(8 <BA(8) (19)
where
7@ = 53 el (15 3 a0.01ap) (20)
2pe% €00gel g i

)\ ) _
"5y 14(6,9)| IRe.qcllg , -
€0gel s

and Ry 4 satisfies

¥(p,p) €Bgg , % Re.q(P,MRg o(m, ') = (Ro{ip, Re Py ) (21)

me q.Q

If the frame is an orthonormal basis then=Bl and .Z (&) = .#1(4).
Proof: Observe that

ly— g@q;gé@qwe,q!\z =| %c(p)(l— Qgque &(8,9) 185,4(P)) Fpl1*.

SinceB is the upper frame bound dfp} per

ly— egque 4(6,0)ypql2 < B % lc(p)|?|1— ggqueéw,q) Igeo(P)I° - (22)

The regularity norm can be written

IReyeall>= 5  c(p)e(P) (RePp,Rolfiy)
(p.P)EBG,
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11

The matrIX{<RglIIp,R9lllp/>} (p.P)eBog is symmetric positive and can thus be (non uniquely)

factorized mtoR Rg «q WhereRg ¢ satisfies[[21). One can thus rewrite

5 2 2
IRoYe.qll“ = <R27q RB,qQ c) = ||R9,qc||59.q-

Inserting this together witH (22) in_(17) provés19). If thame is an orthonormal basis then
the inequality [(2R) is an equality witB =1, so.Z(a) = £1(8). O
In the following, mixing coefficients are computed by minimig the upper bound#;(8),

which is faster to compute from the frame coefficientsfofith the change of variable

a_(97q) = a(67q> ||F\76,qc||%9q
the LagrangianZi(&) can be rewritten in a standard form

EZ1 )=—I|X ®al’+A a1 =5 [x(p) —Pa(p)|*+A a(6, )| (23)
pEY €0gel g

with x(p) = |c(p)| and
P)I18,4(P)

P= 2 2, 20 HReqCH | (24)

The minimization of [(2B) is implemented with iterative aﬂgbms such as [19], which all have
a computational complexity dominated by the calculationddfand ® at each iteration. Let
K be the total number of bIock«@B&q}gE@?qerq and S be the maximum size of these blocks.
We verify from [24) that the operato® and ®* are computed witfO(K'S) operations sd
iterations of arl minimizer is implemented witlD(K SL) operations.

To further reduce the number of operations, a solution isprded with a greedy minimization
implementing an orthogonal block matching pursuit. Theoatgm is initialized by setting
4(0,q) = 0 and it computes progressively non-zero mixing coeffigeditd,q) to minimize
Z1(8) at each step.

If a singled(8,q) is chosen to be non-zero, thén(20) becomes

~ 1 ~ ~ —
H@=3Y ; )2 (&(6,0)~ 2a(6,9) ) + A 1&(8,0)| [IRocclB, -
pe% pG 0,9
The minimum is thus obtained with a soft thresholding
F\79 c||3
a(6,0) = p(6,q) = max(1-A PRoalEs,, ) (25)
leli3,,
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12

The corresponding minimum Lagrangian value is
1
£1(8) = 5(|lc]* - &(6,))
with
e(6,q) = [[c|g,,p(6,0)% . (26)

The minimization of#3(8) with a single non-zero mixing coefficient is thus obtainechgosing
the block index(8,q) which maximizese(8,q).

An orthogonal matching pursuit algorithm selects one by ldoeks that do not intersect. & ~
hasL non-zero coefficient$&(6,q) }1<i<L corresponding to non-intersecting blodgg ¢ then

we verify similarly that the mixing coefficients which minine .#1(8) are

ace,aq)=p(6,q)
and
1 L
H@=; <||c||2— > e<a,q|>>
=1
with
e(61,a) = Ilcll3, , P(8,a)?

At each iteration, to minimize#;(&), an orthogonal block matching pursuit finBg, o which
maximizese(0,q) among all blocks that do not intersect with the previousliected blocks.

The resulting algorithm is described below.

1) Initialization: setl =0 and compute
Vo €O, Vqely , €6,q) =|lcllz, p(6,9)° , &06,q)=0. (27)
2) Maxima finding:
(6,a) = argrave(6,q) and seta(dl,q) = p(8.a).
3) Energy update: i&(6,q;) > T then eliminate all blocks that intersect wily,
VO e, Vqerly , if %1Be,q(p> 18g 4 (p) #0 set e6,9)=0,

setl =1+ 1 and go back to step 2).

Otherwise stop.
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This algorithm computes mixing coefficierd$d’q) for all 6 € © andq < Ig. It stops when
there is no sufficiently energetic block compared to a precishresholdT that is typically
proportional to the noise variance. In the image interpatahumerical experiments = 0 as
the noise is neglected. The following proposition gives @pear bound of the computations
and memory requirements required for an efficient implemt#n of this algorithm, which is
described in the proof. The operatcﬁ?gq are said to be sparse Fﬁevqc is computed oveBg 4
with O(|Bg q|) operations.

Proposition 2. Over a family of K blocks of maximum size S, an orthogonalkbloatching

pursuit can be implemented in(R(S +log,K)) operations with @K'S) memory. For sparse
regularity operators, the computational complexity i$KDS+10g,K)).

Proof: The geometry of all blocks is stored in an arrBy8,q) which gives the list of all
p € Bg q. Each list has less thedelements so the array requir€@§K S) memory.

Let us build an array.(p) for p € I' which stores the list of al{6,q) for which p € Bg q. If
IL(p)| is the size of such a list then

%U—(p)\ = % Ggeqezre 18y q(P) = ggeqezre % 18p,4(P) -

Sincey per 1gy,(P) < Sit results that

Zr\up)\ng.
pe

This array thus require®(K S) memory.

Energy values are stored in an array of sizendexed by(6,q) and in an ordered heap of
sizeK. A heap is a binary tree data structure which stores the elenté a set and allows to
find the maximum element wit®(1) operations[[17]. The construction of a heap for a sef of
elements require®(K) operations. The array and the heap req@&) memory, so the total
memory isO(K S). If the blocks are highly structured, which is often the casapplications,
then we do not need to stoB{6,q) andL(p) because these lists can be computed analytically
from the blocks shape and position parameté&3)). The required memory is then ony(K).

At the initialization, the computation of each of tlke energy valuee(0,q) is dominated

by the calculation off

F\797qCH|39_q which requires at mosD(S?) operations. The total is thus
O(KS?) operations. IfRg q iS @ sparse regularity operator such as a derivative opetatn it

is computed withO(S) operations and the total is therefoP¢K S).
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The selection of the indefd;,q;) corresponding to the largest energy is implemente@(ih)
operation by finding the element at the top of the heap. Sineeetare mosK iterations, these
steps are implemented @(K) operations.

For the energy update, for afi € Bg o Stored inB(6,0q,) we extract eact{6,q) in the list
L(p) of blocks which includep and hence which interse@g . If €8,q) # 0 then we set
e(0,q) = 0. Since the selected blocks do not intersect, gaehl” is covered by at most one
selected blocks so over all iterations, this step requidés ,cr [L(p)[) = O(KS) operations.

If e(6,q) # 0 then we also suppress6,q) from the heap. Suppressing an element from a
heap of sizeK requiresO(log,K) operations. Since there aké elements in the heap after
the initialization, the suppression of elements acrosstethtions is done withO(K log, K)
operations.

Summing the operations of each steps, it results@fKt S*+log, K)) operations are sufficient
over all iterations. If the operatoRy 4 are sparse operators then it reduce®t& (S+1og,K)).

O

In most applications, the geometry of blocks is highly stuoed, so as explained by the proof,
the algorithm then only require®(K) memory. The computational upper boun@$k (S +
log, K)) and O(K(S+1log,K)) are pessimistic because they do not take into account the fac
that signals have a sparse representation so blocks areongiuted over regions where the
frame coefficients have a negligible energy. The algorithops and does not select blocks
covering all the frame indexes. The computational compfelsi thus much smaller than with

an It minimizer which require€D(KS) operation per iteration.

VI. INTERPOLATIONS WITH SPARSEWAVELET MIXTURES

An adaptive directional image interpolation is computedelsjimating sparse image mixture
models in a wavelet frame. This section describes a faskbiwatching pursuit implementation,
which requiresO(NlogN) operations and gives state-of-the-art interpolationItesu

The subsampled imaggn] for n€ ¢ is decomposed in a translation invariant wavelet frame
{Wd m}o<d<amew ON a single scale (the finest one), and is reconstructed witlugh frame

{Pd m}o<d<amew [40]. Wavelet coefficients are written

c(d,m) = (y, Yam) -
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The wavelet transform separates a low frequency imagerojected over the low-frequency
scaling filters{ o m}mew and a high-frequency imagg projected over the finest scale wavelets

in three directions{ Yy m}1<d<amew:
3

yi= > c(0,m) Pom andyn = dz c(d, m) Jg,m. (28)
=]

me¥
The low frequency imagg has little aliasing and can thus be precisely interpolatét &

cubic spline interpolatdd ™. The high frequency imagg, is interpolated by selecting directional
interpolatord) for 6 € ©, where® is a set of angles uniformly discretized between 0 an@ihe
appendix specifies the directional cubic spline interp):nlsalﬂg used in numerical experiments.
For each angled, a directional interpolatolugr is applied over a blockBg 4 of wavelet
coefficients if the directional regularity fathr§9,qC|| is relatively small in the block. As
explained in Section_lll, such a regularization is effeeti¥ the eigenvalues oﬁ’g’q F\Tg’q have
an overall variation that is sufficiently large to distingiuiregular from non-regular variations
in the direction6. This is obtained by choosing rectangular blogks, that are elongated in
the direction of6. Each blockBg 4 in the spatial neighborhood ofis chosen to be identical in
the three directionsl = 1,2,3 so X, ,(d,m) = 1g,,(m). Numerical experiments are performed
with 20 anglesf, with blocks having a width of 2 pixels and a length betweenn@ 42
pixels depending upon their orientation. Each block thuduitles between 36 and 72 wavelet

coefficients over thel = 1,2 3 directions.

d=1 d=2 d=3

Fig. 1. A blockBg g is composed of 3 elongated blocks (shown with the same gxag) lef orientation6 in the 3 wavelet
directionsd = 1,2, 3. In the neighborhood of an edge, a block is selected if theelga coefficients have regular variations in
the direction, as shown by the 3 different blocks.

According to the algorithm of Sectidn]V, an adaptive intégtion estimator is obtained by
estimating the mixing coefficient(6,q) of a mixture model which minimizes the Lagrangian
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Fig. 2. Example of sampling grifig (black dots) included i (white dots) for6 = arctar{3). A block Bg q of lengthL =6
is shown, wherey € I'g is indicated with a cross.

(20)
13
L) = 3 lc(d, m)] (6,0) 1g4(m) =
2 zlmgg < QZGCIEZ eq )
1A 1(6,9)| R «Cl13,,, -

€0gelyg
To further reduce computations, we do not implement exatiy regularity operator§97q
corresponding to the interpolatoksy of the appendix. These operators are replaced by an
approximation:
Re q¢(d,m) = c(d,m) — Ag oc(d, m).

For eachd = 1,2,3, Ag c(d,m) is the average of the wavelet coefficients in the bldg,
which are located on the line of angfethat goes througim. So R_’evqc can be computed with
two operations per block point. The regularity nohlﬁ&qcﬂéaq is the energy of the coefficient
variations relatively to their average in the directiénlt is also the norm of the error when
approximating wavelet coefficients by lines of constant eélewcoefficients along an angéin
a block. These lines of wavelet coefficients are low-freqyeipandlets of anglé, as defined
in [41]. The minimization in[(2B) can thus also be interpdets an optimized approximation in
orthogonal bandlets computed over adapted blocks of wawekdficients.

Block positionsq are sampled along a grilg to cover the image sampling grid¢ =
UgerBo,g- If the block has a length, the sampling grid is constructed by subsampling the

image sampling grid by a factdr/2 in the horizontal or vertical direction closest & and by
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a factor 2 in the perpendicular direction, as illustratedFigure[2. The resulting total number of
blocksK over all angles is proportional to the numb¥rof pixels, and in this implementation
K <4N.

SectionV explains that the Lagrangian[(29) can be minimized with an iterative algarith
which requiresO(K S) operations per iteration, whel®= 72 is the maximum block size. An
orthogonal block matching pursuit requires much less djpera Since the directional regularity
operators are sparse, Proposifibn 2 gives a heap impletiwentiaat require®(K(S+log,K)) =
O(N logN) operations. Blocks are rectangles translated on a unifaidy o block points and
the intersection of blocks can be computed analyticalyhwib storage requirements. The block
matching pursuit implementation of Propositidn 2 thus mezgO(K) = O(N) memory. To reduce
grid effects, as explained at the end of Seclidn V, sevetahatrs are computed with different
translations of these grids. The adaptive wavelet intatpolis derived from the averaged mixing
coefficients [(1B).

Figure[3 shows an example of mixing coefficieatg§m) computed over wavelet coefficients
along 20 angle® of a discrete grid, which are the arctangent of rational nensbT he coefficient
ag(m) are sparse and close to 1 only at the locations and in the pipgt® direction6 where
wavelet coefficients have a relatively large amplitude anel rgular, which illustrates the
accuracy of the direction estimation. Figlie 4 also congpé#re energy of wavelets coefficients
along all directionsz§:1|c(d,m)|2 with the aggregation of mixing coefficients along all angles
S gcodg(m). Observe that it is close to one where wavelet coefficients harelatively large am-
plitude along geometric structures having some directioggularity. Directional interpolations
are performed at these locations and are otherwise replac@dseparable interpolator.

The image low frequencies are interpolated with a cubinspéistimatot) © and the highest

frequency wavelets with the adaptive interpolator defimeB):

f=uty +C§1 Zc(dam) (;an(m)Uér-Far(m)UJr) Jam (30)
with

ag(m) :qgeé(e,q) gy, (M) and a(m) = 1—ggea9(m) :

Since wavelets are translatefiy m(n) = Jy(n—m), their interpolation are also translated:
Ug Pam(n) = (Ug Pa)(n—m) .
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a=0" p=95 e=140
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=90 =995 6=104.0" 6=108.4" 6=1166"
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8=135" 6=1534" 8=1616 8=166.0" 6=1705

Fig. 3. (a) An image crop from Lena’s hat. (b)-(d) Wavelet fioents in the horizontal, vertical and diagonal direogo
Black, gray and white represent negative, zero and positdedficients. (e) Aggregation of mixing coefficienfy.gag(m).
White mixing coefficients are close to 0 and black coefficdeate close to 1. Second row to bottom row: each image gives the
mixing coefficientsag(m) for a specific angléd, which is the arctangent of a rational number.

If we precomputefiy =U*{ly and g = U, Jiy then [3D) is a reconstruction from an adapted

set of wavelets
3
f=Uty + c(d,m ag(m) P . +a (M) Pgm) - 31
W+ 3 3 cldm)( 5 ao(m) Fm+-ac(m) ) (31)

For compactly supported wavelets, the wavelet interpmiatare truncated to maintain a compact

support. The mixing weightag(m) are zero for most angles arld [31) is computed V@tiN)
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(b)

Fig. 4. (a) Low-resolution Lena image (b) Energy of wavelet coefficients in all directio§§:l|c(d,m)|2. White and black
pixels represent respectively small and large coefficiga}sAggregation of mixing coefficient§ oo ag(m). White coefficients
are close to 0 and black coefficients are close to 1.

operations. The overall adaptive interpolation algoritbitiherefore implemented wit®(NlogN)
operations.

The adaptive interpolator can also be computed by rewri@) as

3 3
F_u+t +
f=U <y|+dzlmE a(m) c(d, m) llld,m> +6;9U9 (glm%ae(m)c(d,m) llld,m>- (32)

For each angle, an inverse wavelet transform is computedawelet coefficients multiplied by
the mixing weights, and the resulting signal is interpalate the corresponding direction.

The proposed image zooming algorithm, named hereafter Sparée Mixing Estimation), is
compared with a bicubic interpolation as well as recent sugsolution algorithms “NEDI” (New
edge directed interpolation) [38], “DFDF” (Directionaltéting and data fusion), “Curvelet” [26],
“Contourlet” [45] and “SAI” (Soft-decision Adaptive Intpolation) [63]. As explained in Sec-
tion[l, NEDI, DFDF and SAI are adaptive directional intergtddn methods. Curvelet and Con-
tourlet are sparse inverse problem estimators describ®ddtior 1], computed in different dictio-
naries. Among previously published algorithms, SAI cutlseprovides the best PSNR for spatial
image interpolatior [63]. All experiments are performedhsgoftwares provided by the authors of
these algorithms, and the SME software is availabktat//www.cmap.polytechnique &smallat/SME.htm

Figure[® shows the six images used in the numerical expetsméena and Boat include
both fine details and regular regions. Peppers and Camerareamainly composed of regular
regions separated from sharp contours. Baboon is rich ind@teails. Straws (from the Brodatz

texture database) contains directional patterns that @gerposed in various directions. These
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high-resolution images are down-sampled by a factei22 The resulting low-resolution images

are then zoomed by the algorithms under comparison.

Fig. 5. Images used in the numerical experiments. From topottom, left to right: Lena, Peppers, Baboon, Cameraman,
Boat, Straws.

Table[]l gives the PSNRs generated by all algorithms for thages in Figuré]5. The SME
algorithm is implemented with a Lagrangian multiplier= 0.6 in (29). For all these images,
the results obtained with an orthogonal matching pursuiirmization of the Lagrangian or with
an iterativel' minimizer are within 0Ldb. In the following, all SME numerical results are thus
computed with an orthogonal block matching pursuit whidauiees much less operations. SME
and SAI give similar PSNRs for all the images, the overalhgafi SME being slightly better.
Their gain in PSNR is significantly larger than with all otregorithms.

The sparse Contourlet interpolation algorithm yields atine same PSNR as a bicubic
interpolation but often provides better image quality. ISpaestimations in a curvelet dictionary
as implemented in_[26] provides good results for image infirag but is not suitable for image
zooming.

Figure[6 compares the interpolated image obtained by diffeslgorithms. The local PSNRs
on the cropped images are reported as well. Bicubic intatjpms produce some blur and jaggy

artifacts in the zoomed images. These artifacts are redtwasdme extent by the NEDI and
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Bicubic | NEDI | DFDF | Curvelet| Contourlet| SAl SME
Lena 33.93 | 33.77 | 33.91 24.31 33.92 34.68 | 34.58
Peppers 32.83 | 33.00 | 33.18 23.60 33.10 3352 | 3352
Baboon 22.92 | 23.16 | 22.83 20.34 22.53 2319 | 23.16
Cameraman|| 25.37 | 25.42 | 25.67 19.50 25.35 25.88 | 26.26

Boat 29.24 | 29.19] 29.32 | 22.20 29.25 | 29.68] 29.76

Straws 20.53 | 2054 20.70 | 17.09 20.52 | 21.48] 2161

| Ave.gan | 0 [ 004 ] 013 ][ -630 [ -0.02 | 0.60 | 068 ]
TABLE |

COMPARISON OF IMAGE ZOOMING ALGORITHMS PSNRS (IN DB) ARE COMPUTED OVER IMAGES OFFIGURE[R. FROM LEFT
TO RIGHT: BicuBIC INTERPOLATION, NEDI [38], DFDF [62], QURVELET [26], CONTOURLET[45], SAI [63] AND SME
(SPARSEMIXING ESTIMATOR). THE BOTTOM ROW SHOWS THE AVERAGE GAIN OF EACH METHOD RELATIVE © BICUBIC

INTERPOLATION. THE HIGHESTPSNRIN EACH ROW IS IN BOLDFACE.

DFDF algorithms, but the image quality is lower than with Shisd SAI algorithms, as shown
by the PSNRs. The SME algorithms restores slightly bettguleg geometrical structures than
SAl, as shown by the middle leg of the tripod in Cameraman &edbeards of Baboon. The
contourlet algorithm is able to restore the geometricalcitmres (see Baboon’s beard) when
the underlying contourlet vectors are accurately estichdtowever, as explained in Sectibn |l,
the vector support recovery is not stable. When the appratiig contourlet vectors are not
estimated correctly, it produces directional artifacttgrats, which offsets its gain in PSNR.
FigurelT further compares SME with bicubic interpolatioMEimproves the PSNR and the
visual image quality where the image has some directiomallagity. It appears in the straws, the
hat border and the hairs of various directions. Otherwisis, similar to a bicubic interpolation

since it also implements a non-directional separable polation.

VIlI. CONCLUSION

This paper introduces a new class of adaptive estimatoesraat by mixing a family of linear
inverse estimators, derived from different priors on thgnal regularity. Mixing coefficients are
calculated in a frame over blocks of coefficients having gorayriate regularity and providing
a sparse signal representation. They are computed by rzingnanl! norm which is weighted
by the signal regularity in each block. This regularizatiorproves the estimation for highly
unstable inverse problems relatively to lasso estimatdistwcompute am! norm or a mixed?

andl! norm over blocks of dictionary coefficients. A fast orthogbmatching pursuit algorithm
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High-resolution image L ow-resolution image Bicubic 21.60 dB

W ﬂ#

SAl 23.62 dB

fg\'\-._ i - y AN "
Contourlet 23.06 dB

NEDI 23.80 dB DFDF 23.16 dB

Fig. 6. PSNRs (in dB) are computed in the cropped images (fameraman and Babboon). From left to right: high-resatutio
image, low-resolution image (shown at the same scale by@ntathe pixel size), bicubic interpolation, SME (Sparséikiy
Estimator), NEDI [38], DFDF[[62], Contourlet [45], SAIT63]
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Bicubic 33.67 dB SME 35.75 dB

High-resolution image Bicubic 21.46 dB SME 23.98 dB

Fig. 7. PSNRs (in dB) are computed in the illustrated croppeabes (from Lena and Straws). From left to right: high-heton
image, bicubic interpolation, SME.

October 23, 2009 DRAFT



24

is introduced to reduce the number of operations. A padrcapplication to image interpolations
is studied by mixing directional interpolators over orihtblocks in a wavelet frame. For an
image ofN pixels, the computational complexity 3(NlogN) and it provides state-of-the-art
interpolation results.
APPENDIX
A cubic-spline [57] directional interpolatdrjg in a direction® is described for upscaling

images by a factor 2. It is illustrated in Figl. 8. Original gdes are shown as crosses.

L]

[Je[Je[ Je[ Jo[ Jo[ ]
XeQeXe( e X0 e

Fig. 8. Directional interpolation scheme. Samples represkby the crosses, circles, dots and squares will be nanosdes,
circles, dots and squares for short. The directional iatjpn starts from the low-resolution image defined on tresses and
proceeds in three steps: (1) One-dimensional interpolatadong the anglé, which reconstructs the circles from the crosses.
(2) A one-dimensional vertical interpolation which recwasts the dots from the crosses and the circles. The dotedbatong

to the resulting high-resolution image and will be used ia tbllowing step. (3) Another one-dimensional interpalatialong

6, which reconstructs the squares from the dots.

« Step 1 computes a one-dimensional interpolations in thectlan 6. We consider all lines
of angle 6 that intersect original image samples (crosses in[Big. 8)ve@ compute mid-
points (circles) between image samples (crosses), withbéc @pline interpolation. This
operation oversamples by a factor two either the image rowt)e image columns, or the
diagonals of angletm/4. The missing coefficients are shown as squares in[Fig. 8.

« Step 2 computes new samples (dots) with a cubic spline ioleipn along these oversam-
pled rows, columns or diagonals. This interpolation introek little aliasing because of the
oversampling provided by the previous step. The positidritbese new samples (dots) are
chosen so that any missing coefficient (square) is a midtfmatween two dots on a line
of angle6.

« Step 3 computes missing samples (squares) with a cubicesjpiear interpolation along

the directionf from the previously calculated new samples (dots).
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