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The Texture Gradient Equation for
Recovering Shape from Texture

Maureen Clerc and Stéphane Mallat, Member, IEEE

Abstract—This paper studies the recovery of shape from texture under perspective projection. We regard Shape from Texture as a
statistical estimation problem, the texture being the realization of a stochastic process. We introduce warplets, which generalize
wavelets over the 2D affine group. At fine scales, the warpogram of the image obeys a transport equation, called Texture Gradient
Equation. In order to recover the 3D shape of the surface, one must estimate the deformation gradient, which measures metric
changes in the image. This is made possible by imposing a notion of homogeneity for the original texture, according to which the
deformation gradient is equal to the velocity of the Texture Gradient Equation. By measuring the warplet transform of the image at

different scales, we obtain a deformation gradient estimator.

Index Terms—Shape from texture, texture gradient, warplets, wavelets.

1 INTRODUCTION

HEN observing a static monocular image, we perceive

the 3D structure of a scene through a combination of
shape cues, especially shading, occlusion, and texture. Shape
from Texture, first introduced 50 years ago by Gibson [1],
studies the recovery of the 3D coordinates of a surface in a
scene, by analyzing the distortion of its texture projected in
an image [2], [3], [4], [5], [6]. The Shape from Texture problem
is generally broken down into two independent steps. The
first step is to measure the texture distortion in the image
and the second is to recover the surface coordinates from
this texture distortion.

Texture can be modeled either deterministically or
stochastically. Although structural, or geometry-based
methods allow the recovery of 3D surface coordinates for
deterministic textures, stochastic models encompass a
wider class of textures [4], [5], [7]. Measuring the distortion
of stochastic textures requires local spectral measurements,
obtained by convolving the image with waveforms which
are localized in space as well as in spatial frequency. The
local filtering most commonly used is based on the localized
Fourier transform [8], [5], and wavelets have also recently
been introduced for Shape from Texture [3], [9].

Traditionally, one measures the texture distortion by
assuming a property on the original texture (for instance, its
homogeneity, its isotropy, or its spectral content), and
comparing the properties of the texture in the observed
image to the prior information on the original texture. A
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differential analysis consists of measuring the relative
distortion of the texture within the observed image, without
reference to the original texture. In [5], the relative texture
distortion between neighboring texture patches is approxi-
mated by an affine transform, and measured with a local
Fourier transform.

Unlike local Fourier functions, wavelets have the prop-
erty of migrating in position and scale under a 1D affine
transform, which leads to a simpler and more precise
estimation of the deformation. In two dimensions, to
maintain this migration property, it is necessary to general-
ize wavelets into warplets, whose “scale” is no longer a
scalar but a 2 x 2 warping matrix. The observed textured
image is modeled as the realization of a stochastic process.
The texture distortion can locally be approximated by a
2D affine transform, and the variance of the warplet
coefficients, called the warpogram, thus undergoes a trans-
port in the position-warping parameter space. This funda-
mental transport equation obeyed by the warpogram is
called Texture Gradient Equation. It can be regarded as the
analog of the Optical Flow Equation for motion estimation
[10]. Whereas the optical flow velocity is related to the
projection of 3D velocity vectors of objects in the scene, here
the texture gradient velocity is related to the 3D coordinates
of the surface where the texture lies.

To recover the 3D surface coordinates from the texture
variations in the image, one must assume that the texture
has some form of spatial homogeneity on the surface, so
that the texture variations are only produced by the
projective geometry. Perceptual results indicate that depar-
ture from isotropy is also an important cue in shape from
texture, leading to biased slant estimates when the original
texture is actually anisotropic [11]. Here, we address Shape
from Texture without supposing any isotropy property. As
natural though it may appear from a perceptual point of
view, texture homogeneity on a general nondevelopable
surface is very difficult to state mathematically.
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We can therefore distinguish two independent theore-
tical subproblems nested in the recovery of 3D surface
coordinates from the texture gradient. The first one is
purely geometrical and amounts to understanding how the
change of metric between the 3D surface and the image
plane, due to the projection (either orthographic or
perspective) relates to the surface coordinates. We call
deformation gradient the relative change of this metric within
the observed image. For instance, a planar surface viewed
under an orthographic projection has a deformation
gradient equal to zero. This is not true under a perspective
projection, because the foreshortening is not the same
throughout the image. The geometrical issues pertaining to
Shape from Texture have been formalized by Garding [2] and
further analyzed by Malik and Rosenholtz [5], who
establish the relationship between the deformation gradient
and local surface shape parameters. The 3D coordinates of
the surface can then easily be inferred, up to a scaling factor.
The second subproblem concerns texture modeling. We
mentioned that a homogeneity condition must be imposed
so that the texture gradient is only produced by the
geometrical deformation gradient. If this is the case, we
show that the velocity term of the Texture Gradient Equation
is equal to the deformation gradient, which can thus be
calculated. The solution of the Shape from Texture problem
can then be computed in two steps:

e Estimating the deformation gradient from the
Texture Gradient Equation.

e Measuring the 3D surface coordinates from the

deformation gradient.

The paper is organized as follows: In Section 2, we detail
the model used for Shape from Texture. We focus our
attention on developable surfaces, for which the texture
homogeneity condition can be stated quite simply. In
Section 3.1, we introduce the Texture Gradient Equation in
the 1D case, after observing that wavelets migrate in the
position-scale parameter space under an affine transform.
Section 3.2 establishes the Texture Gradient Equation in 2D.
Wavelets are now replaced by warplets, which are espe-
cially designed to migrate in the position-warping para-
meter space under a 2D affine transform. In Section 4, we
analyze the statistical issues involved with the Texture
Gradient Equation. The consistency of the deformation
gradient estimator is proved in 1D, and the corresponding
algorithm is illustrated with numerical results. Section 5
presents our Shape from Texture algorithm, with examples
on photographs. Last, we propose a new homogeneity
condition, based on the Texture Gradient Equation, which
generalizes the homogeneity condition of Section 2 to
general surfaces. This paper is oriented towards modeling
and algorithms; although we state some mathematical
results, we refer to [12] for their detailed proofs.

2 SHAPE FROM TEXTURE MODEL

We assume that the surface has a Lambertian reflectance
distribution. This supposes the texture to be “painted” on
the surface and to have neither rugosity nor self-occlusions.
With a Lambertian assumption and under perspective

Fig. 1. Perspective image of a textured cylinder (left). Image formation
(right): each position z in the image corresponds to a point p(z) at the
intersection between the surface ¥ and the light ray connecting = and
the optical center O. Vectors 77 and 5, respectively, represent the surface
normal and the light source direction.

projection, the image intensity at position z in the image
is related to the reflectance R of the surface in the scene by

I(z) = a(x) R(p(x)), (1)

where a(z) is a multiplicative shading term and p(z) is the
perspective backprojection (Fig. 1). For instance, if the light
is coming from a point source in direction 5 and if 7@ is the
surface normal, then a(x) = 7i(p(z)) - 3(p(zx)) [13], [14].

We use a stochastic model: The surface reflectance R is
the realization of a random process, supported on ¥ C R?,
and taking its values in R. The image intensity [ is also a
random process, supported on R?. As explained in the
introduction, we need to make a homogeneity assumption
on the texture so that its gradient in the image is only a
consequence of the geometrical deformation gradient. We
first study the Lambertian model (1) when X is a
developable surface, in which case the homogeneity
condition on the texture R can be stated in relatively simple
terms.

A developable surface ¥ (i.e., with zero Gaussian
curvature) can be unfolded isometrically into a portion of
a plane [15], thus defining a mapping from each position
p(z) € ¥ onto d(z) € R?. A 2D stochastic process R on R?
can then be defined by R(d(z)) = R(p(z)). In the develop-
able case, model (1) therefore simply becomes

I(z) = a(z) R(d(z)).

We say that the original texture R is homogeneous if R is a
wide-sense stationary process, i.e., satisfies E{R(z)} =
E{R(0)}, and

E{R(z) R(x+ 1)} = C(7). (2)
In this case,
E{Iz(:p)} = d*(x) E{R2(d(m))} = a*(z) C(0).

The shading term a(z) can thus be estimated up to a
multiplicative constant from the second moment of the
image E{I*(z)}. Shape from Shading studies shape recovery
from this shading term only [16]. Here, we concentrate on
the texture distortion and, hence, compensate for illumina-
tion changes. The estimation of E{I*(z)} from a single
realization of I(z) is performed with a local averaging
computed by convolving I? with with a Gaussian filter. We
then calculate E{I2(9c)}71/ ’I(z) to remove the shading
term a(x). The image resulting from this local contrast
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Fig. 2. A point z in the image backprojects to a point p(z) on ¥, whose
arc-length is d(z) = ¢(p(x)). The zig-zag line represents a stationary
texture covering 3. When projected onto the image, it gives rise to a
nonstationary process I(z) = R(d(z)).

normalization is still denoted I(x) for convenience. The
model therefore simplifies to

I(z) = R(d(z)). 3)

We assume that the surface Y is C? and, in particular, does
not contain any occluding contour. Hence, d(z) is C* and
invertible.

The Jacobian matrix of d(z) in an orthonormal basis
(Z1,25) of R2 is given by

ddy(z)  Ody(x)
Oz oz
Ja(x) = ad;éc) adf('x) : (4)

dxy 1

Since ¥ is developable and can be isometrically unfolded
into a portion of a plane, Jy(x) represents the change of
metric between the surface > and the image plane. We call
deformation gradient the relative variations of the Jacobian in
directions z; and x;. The deformation gradient is thus
represented by the two matrices, for k =1, 2:

ddi(z) 0di(a)\ ~! /Pdi(@) Pdi(x)

-1 _ 0z O Oz1.0x 0z1,072
Jd(x) ark Jd(-r) - ( (7[1;(11) f)dzréz) ) (0232(;) az$2<$) > . (5)

Jry Oy Ozp0xy  OrpOzs

As we shall see in Section 5.2, it is possible to recover the
three-dimensional coordinates of ¥ (up to a scaling factor)
from the deformation gradient. The main difficulty is to

estimate this deformation gradient given one realization of
I(z) = R(d(2)).

3 TEXTURE GRADIENT EQUATION

3.1 In 1D: Scalogram Migration

For the sake of simplicity, let us start with a 1D Shape from
Texture problem, in which the shape X to be recovered is a
curve. Let R denote the “reflectance” of ¥, parameterized
by arc-length ¢: R(¢) is assumed stationary and is depicted
in Fig. 2 by a regular zig-zag line along the curve. In a
1D perspective model, a pixel at position = in the image
backprojects onto a position p(x) on 3, whose arc-length is
{(p(z)). The image I(x) can therefore be viewed as the
deformation of a stationary process R by d(z) = {(p(z)):

Let 9 be a function with zero average, whose support is
n [—1,1]. A local analysis of the image is performed by
computing the inner product of I(x) with

Yusle) == (7). (6)

S

whose support is in [u—s,u+s]. This inner product
(I,y,s) is called a wavelet coefficient of I at position u and
scale s [17] and we call scalogram of I the variance of this
wavelet coefficient:

w(u, s) = E{‘(L wu,5>12}~

If R is stationary, then we easily verify that, for a fixed
scale s, its scalogram is independent of u:

w0 =0, @

In Fig. 3a, the scalogram of R is displayed in a gray-level
image as a function of u (horizontal axis) and of logs
(vertical axis): It does not vary with u. On the other hand,
the scalogram of I does in general depend on v, as can be
seen in Fig. 3b.

We introduce the Texture Gradient Equation, which links
together the partial derivatives of w(u, s):

Oyw(u, s) — v(u, s) O sw(u,s) = 0. (8)

(@)

Fig. 3. (a) Top: A realization of stationary process R(z). Bottom: scalogram E{}(R7 Yus)
respectively. Dark points indicate high amplitude. (b) Top: a realization of deformed process I(z)= R(d(z)).

w(u, s) = B{|(1, )] }.

(b)

2}. The horizontal and vertical axes represent v and log s,
Bottom: scalogram
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The velocity term v(u,s) can be interpreted as a texture
gradient: It measures how the image energy moves across
scales according to the position in the image. The Texture
Gradient Equation (8) is comparable to the Optical Flow
Equation for motion estimation [10]. The conservation
equation (7), expressing the stationarity of the original
process R, is analogous to brightness constancy in Optical
Flow. Appendix A.1 shows that, when the scale s is small
relative to the scale of variation of the deformation, the
scalograms of I and of R are related by a simple
migration in the position-scale parameter space. The
scalogram coefficient of I at position u and scale s
corresponds to the scalogram coefficient of R at position
d(u) and scale d'(u)s:

w(u, s) = B{(L, %)} = B{(R Yaaws)} (9)

As a consequence, Appendix A.1 shows that the texture
gradient equation can be derived from the conservation
equation (7). For s sufficiently small, the velocity v(u, s) of
the texture gradient equation does not depend upon s and
is nearly equal to d"(u)/d'(u), which is the one-dimensional
equivalent of the deformation gradient (5):

dl/(u)
d'(u)

v(u, s) ~ (10)
It is natural that d(x) should appear under this form in (10),
because with no additional assumption on the stationary
process, the deformation is only specified up to an affine
transform. Indeed, if I(z) = Ry(di(x)), where R; is
stationary, and if dy(z) = adi(z) + §, then one can find
another stationary process, Ry(z) = Ri(az + (), such that
I(z) = Ry(de(z)). The functions d; and dy, which satisfy
d}/d| = dj/d,, cannot be distinguished with the sole knowl-
edge that I is obtained through the deformation of a
stationary process.

Appendix A.1 derives (10) in a loose fashion, but a
careful analysis of the higher-order terms gives the
following result [12]: If the covariance of R, C(7), defined
in (2), satisfies

C(0) = C(r) = |7l n(7), (11)

with v > 0, 7(0) > 0, and 5 continuously differentiable in a
neighborhood of 0, then
d// (u)

(14 0O(s)) Oyw(u, s) — = Oogsw(u,s) = 0.

() 12)

The resolution error O(s) tends to zero at least as fast as s,
and can therefore be neglected at fine scales. Condition (11)
on the covariance of R is quite weak and is satisfied by most
correlation functions [18]. This proves that, at small scales
s — 0, the velocity of the Texture Gradient Equation con-
verges to the deformation gradient.

A scalogram w(u, s) is displayed on the bottom of Fig. 3b.
The large amplitude coefficients of the scalogram are
transported in the (u;logs) plane, with a velocity equal to
the deformation gradient. Computing the deformation
gradient from partial derivatives of the scalogram is thus

in principle possible. There remains a difficulty: We only
observe one realization of I(x), from which we must
estimate a scalogram, which involves estimating an en-
semble average. Section $ focuses on this estimation
problem.

3.2 In 2D: Warpogram Migration

A deformation can be locally approximated by an affine
transformation, which is specified by a translation and a
dilation. In 1D, the dilation parameter is a scalar, whereas,
in 2D, it is a 2 X 2 matrix. Our 1D analysis of deformed
stationary processes involved wavelets, constructed by
translating and dilating a mother waveform. In 2D,
wavelets are now replaced by warplets, constructed by
applying a 2D affine transform to a mother waveform.
Warplets are thus clearly designed to migrate under a
2D affine transform.

Let ¢(z1,z2) be a function having a zero average. A
warplet v, s is indexed by its position v = (u;,uz) and by a
2 x 2 invertible matrix

S = (511 512 ) 7
S21 522
which deforms the support of ¢:

Yy.s(z) = det Sflw(Sfl(:c —u)).
For instance, modulated Gaussians, called Gabor functions,

2 2

(21, 29) = exp (f #) exp(ikxy),

which nearly have a zero average if k> 1, have widely
been used for texture discrimination [19]. Fig. 4 displays
three warplets v, g constructed with a Gabor function. The
four parameters of S control the size and shape of the
support, and the spatial frequency of the oscillations.

A warplet coefficient of I(x) at position u and warping
matrix S'is defined as the inner product (I, ¢, s). The variance
of this warplet coefficient is called the warpogram of I:

w(u,$) = B{|(I, 6u) }-

We introduce a Texture Gradient Equation which relates
the partial derivatives of w(u,S) and generalizes the
1D equation (8):

2
Oy w(u, S) — Z vf‘](m S) ai;(u,S) =0 fork=1,2,

i=1

(13)

where the a;; are the coefficients of the following matrix

product
ow(u,S dw(u,S
6111(%5) 6112(“75) _ [aiu) aiau) % S11 S21
az (u, S)  axn(u,S) %ZS) %:ZS) S12 82 )

The velocity terms vf]-(u, S) define a texture gradient which
measures how the image energy moves across the position-
warping parameter space.

If I(z) = R(d(z)) and if d(z) is regular, then for detS
small enough, Appendix A.2 shows that the warpograms
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Fig. 4. Warplets vy g(z1, x2) for three different warping matrices S. Light and dark pixels indicate positive and negative values, respectively.

of I and of R are related by a migration property in
the six-dimensional position-warping parameter space

(Uh U2, 511, 812, 521, 822)i

= B{(1,vus)*} ~ BB, b s}

As a consequence, Appendix A.2 shows that if detS is
small, then the texture gradient is nearly independent of S
and nearly equal to the deformation gradient defined in (5).
Let us denote for k= 1,2:

w(u, S) (15)

oo, = (0 ).
we then have
”lfl(u>5) vlfQ(u,S) ~ 9’161(7‘) 9’162(71)
(o) k)= (gt %)

In [12], we prove more precisely that when det .S — 0, the
velocity of the Texture Gradient Equation, if uniquely
defined, converges to the deformation gradient. Section 4
shows how to use this property in order to estimate the
deformation gradient from warplet coefficients of the
image.

4 CONSISTENCY OF STATISTICAL ESTIMATION

For the sake of simplicity, this section focuses on the
1D estimation problem. We want to estimate d”’(u)/d'(u),
which, according to (10), is almost equal to the velocity of
the Texture Gradient Equation (8) at small scales. For this,
we need to estimate partial derivatives J,w(u,s) and
Oiogsw(u, s) from one realization of I. Since w(u,s) =

E{|(I , %,s>|2}r for a generic variable a representing u or

log s, one can verify that

19) w(u 5) = 2Re [E{ ¢us <I 8a")bu s> }] (18)

with
Oup(z) = /() (19)
alogsw(m) = —¢($) - 9“//(95) (20)

Let ¢y be a compactly supported wavelet with m vanishing
moments, i.e., whose inner product with any polynomial of
degree k < m vanishes:

/¢(x) ¥ de = 0.

Then, 0,4 and Ost are also compactly supported
wavelets and an integration by parts shows that they
respectively have m+1 and m vanishing moments.
Expression (18) indicates that d,w(u,s) simply depends
on the wavelet transform of I with mother wavelets i) and
Oap. Appendix B.1 details the implementation of these
wavelet transforms.

In view of (18), one could use the following unbiased
estimator to estimate d,w(u, s) from a single realization of I:

Buw(u, s) = 2Re[(1, vy (I, utbus)’]-

Unfortunately, the variance of a/a;(u, s) is typically larger
than |9, w(u, s)|, which leads to an unacceptably large mean-
squared error. To reduce the variance, we compute a
weighted average of (12), by convolution with a continuous,
positive window function ha(z) = A7'h(A™'z) supported
n [—-AA]:

(21)

dl/( )

1+ Ot ) = hat) = (G

Olog sw(+, 8 )> * ha(u).
(22)

We assume that d is C® and that d'(u) >n> 0. For
z € [u—A,u+ A], one can verify that

d"(z)/d (x) = d"(u)/d (u) + O(A). (23)
Replacing (23) inside (22), for A > s, we obtain

d'(u)  dyw(:,s) * ha(u)

T(W) ~ Boga(ys) < ha(w) T OB (24)

The error O(A) can be interpreted as a bias due to the
smoothing over a width A. Recalling the estimator
d,w(u,s) defined in (21), (24

estimator for 5 (Z))

) suggests the following

d'(w) _ ol s) *ha(w) -
d(W)  Gogaw(-,s) * ha(u) (%)

If the signal is measured at a resolution N, the wavelet
transform can be calculated up to the scale s =N"'. To
optimize the estimation, we must adjust A so that the bias
term is of the same order as the variance of the estimator.
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Fig. 5. (a) A realization of I(z) and the squared amplitude of its wavelet coefficients |(I

deformation log(d') in full line. (c) Stationarized signal R(z) = I(d~

We have proved in [12] that, for s = N~ and for A = N~1/%,
if R is a Gaussian process with a covariance which satisfies
(11) for a certain v > 0 and if the number of vanishing
moments of ¢ is larger than (2 + 1)/4, then

d”(u) d”(u) o

Pr <2(logN)N"'/? L.

b{ Py dw)| = 21BN N=co

In other words, d/<5> tends to & <“ with a probability that

tends to 1 when the resolution N goes to infinity.

This consistency result guarantees the convergence of the
estimator, but, in practice, for a fixed resolution, averaging
the smoothed estimators across several scales improves the

result. Therefore, we propose a modified estimator for %

d@): Zi@'vsi)*]m(u) . 26
d(u) 5, Oggatw(-, ;) % ha(u) 0

In the example of Fig. 5, the signal I(z), displayed in (a), is
sampled over [0, 1] at a resolution N = 4,096 and we choose
six scales in a range log s € [—4.5, —3] for which the signal
has nonnegligible energy. The partial derivatives of the
scalogram, 8/“;(, si) and &:g:w(-, s;), are computed with
(I, 0thy ), and
(I, Olog s%u,5;) that are calculated with a FFT-based procedure

(21) using wavelet coefficients (I, ),

0.6 0.8 1

. (b) Estimated deformation log(d') in dashed and exact

L)

H(x)) and [(R, )"

explained in Appendix B.1. The smoothing kernel is h(z) =
1 — || for = inside [—1, 1] and zero outside this interval. The

estimator [(ii’,’gs)) is computed with (26), for A = N~'/*> and
i =1,,6. The overall algorithm requires O(N log N) opera-
tions. It is important to note that only the wavelet
coefficients corresponding to six different scales need to
be computed. The whole wavelet transform plane is
displayed in Figs. 5a and 5c for an explanatory purpose
only. Fig. 5b shows logd' (full line) and its estimate log d'
(dotted line), obtained by integrating d@’ and choosing the
additive integration constant to satisfy [, exp(logd') = [ d.
An estimate d for the warping function can be obtained, up
to an affine transformation, by integrating exp(logd'). It is
then possible to stationarize I by computing R(z)=
I(d

transform remains nearly constant when v varies, modulo

1(7:)) Fig. 5c displays R: As expected, its wavelet
statistical fluctuations.

5 APPLICATION TO SHAPE FROM TEXTURE

We now turn to the estimation of shape from texture.
Section 5.1 details the deformation gradient estimation from
the warplet coefficients of the image when the deformation
gradient is equal to the velocity of the 2D Texture Gradient
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Fig. 6. (a) Original image with shading removed. (b) Normal vector computed. (c) Surface reconstructed from the normal vector. (d) Visualization of
(c) as gray levels. Because (a) does not contain texture on its borders, there are errors in the border of the reconstructed surface (c).

Equation (13). Section 5.2 presents shape recovery from the
deformation gradient and, last, Section 5.3 gives a condition
on the texture, for general (i.e., not necessarily developable)
surfaces, so that the deformation gradient is indeed equal to
the velocity of the 2D Texture Gradient Equation at small
scales.

5.1 Deformation Gradient Estimation

As explained in Section 2, the shading term is removed by
estimating E{I’(z)} from a single realization I(z). The
estimator computes 1% x G,(x), where G, is a 2D Gaussian
whose variance ¢ is adjusted to the scale of shading
variations. The shading term is nearly removed by dividing
I(z) by (I? ¥ G,)"/*(x). The images in Figs. 6a and 7a are the

result of this preprocessing step.
If the velocity terms vfj(u, S) of the Texture Gradient

Equation (13) are nearly equal to the deformation gradient
terms gfj(u) at small scales, as in (17), then the Texture

Gradient Equation can be rewritten for k= 1,2

-glfl(“)

g’fz (u)

[all(ua S)a al?(ua S); a2 (’LL, 5)7 a??(uv S)] %aukU)(’U,, S)»

g]2€1 (u)

-9152(“) J

(27)
where the a;;(u, S) have been defined in (14). A collection
of equations ((27)) corresponding to P different warping

matrices {S;},_; p are concatenated in a linear system
»

a(u,81)  ai2(u, 1) ax(u, 1) axn(u, S)

an(u, $)  an(u,Sh)  ax(u,S) an(u,Sh)

ani(u, Sp) - arz(u, Sp)  azn(u, Sp)  azn(u, Sp) (28)
gy [ OurleS)

ghatu) | _ [ Ourols52)

9151(“) :

g5, (u) Oy, w(u, Sp)
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Fig. 7. (a) Original image with shading removed. (b) Normal vector computed. (c) Surface reconstructed from the normal vector. (d) Visualization of

(c) as gray levels.

Because we only observe one realization of I(z), as in 1D,
expected values are estimated by averaging (28) with a
2D window ha (z) = A~2h(A~'z) supported inside [-A, A]>.

Since d(x) is C?, one can verify that convolving (28) with
hA yields

ari(u, ) am(u, 51)\ 9w
91{2(“)
. o 9]51 (u)
o) e @S \ghw) g
Ou,w(+, S1) * ha (u)
= : +0(A),
Oy w(-, Sp) * ha (u)
where
(W(% S))lgz,mgz = (53”11)(.7 S) * ha (u))lgi,jgzxsT.

Using dyw(u, S) = 2 Re[E{(I, ¢, s)(I,0ut0u5)"}], we esti-
mate J,w(+,S) x ha with 8/“;(, S) % ha, where

daw(u, S) = 2 Re[(I, us){1, dutbus)’]. (30)

Let us normalize the image support to [0, 1]°. If I has
N? = 2562 pixels, we can only compute the warpogram for
warplets 1, ¢ whose support in any direction is larger than
N-L. Therefore, we require all the eigenvalues of S to be
greater than N '

Denoting

(a7 (u. 9))

(29) suggests estimating the deformation gradient by
inverting the linear system

xS,
1<i,j<2

= (G0u(-.5) * ha ()

1<i,m<2

%
_— _— g11\u
an (u, St) s (u, St) Jk\l( )
gia(u)
&
_ _ u
a1 (u, Sp) g (u, Sp) 9/2\1( ) )
gg2(“) (31)

—

Oy w(+, S1) * ha (u)

Fuw(-, Sp) * ha (u)

To obtain at least as many equations as unknowns, one
must choose warplets corresponding to at least four
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viewing sphere surface &

Fig. 8. The slant-tilt frame field of X is (7, fx, by,), where by, = 77 x is, is
tangent to the surface ¥, and perpendicular to the plane of the figure.

different warping matrices S and, in practice, we shall use
even more. The estimators gfy. are then calculated by
singular value decomposition. The choice of matrices S
must be adjusted so that the system (31) is not degenerated.
However, for some shape and texture configurations, even
with an arbitrarily large number of different warping
matrices, the system may remain underdetermined, as in
the aperture problem for Optical Flow. Let us take the
example of the cylindrical shape in Fig. 1, which is curved
in the horizontal direction. If it is covered with a texture
with horizontal stripes, then the matrix on the left-hand side
of (31) will have a rank strictly smaller than four, which
does not allow recovery of the deformation gradient. With
such a texture, one cannot characterize the cylindrical shape
and, for example, distinguish it from a plane.
We parameterize S under the form:

S=R91<801 i)Rgz.

In Figs. 6 and 7, calculations are performed with six angles
6, € {ln/6,l=0,...,5} and with 6, = 0. Four scale couples
(s1, 82) are selected, ensuring that |(I, v,.g)| is large to avoid
numerical instabilities. Ideally, the set of warping matrices
{Si,;i=1..., P} should be selected adaptively according to
u, but we use the same set throughout the image. This
explains why we use a total of P =6 x4 =24 warping
matrices, instead of the minimal value of 4. As in 1D, it is
important to note that warplet coefficients need only be
calculated for relatively few scaling matrices, compared to a
full warplet transform. For each scaling matrix, we calculate
(I,%us), (I,0u%us), and (1,0, s) with the FFT, as
explained in Appendix B.2. There are thus a total of 168 =
24 x (1 +2+4) sets of warplet coefficients to compute. We
calculate 9, w(u, S) with (30) and convolve it with ha. In our
examples, we use A= N"1°=0.33, which must be
compared to the image support which is [0, 1]°. Finally,
the linear least-squares solution of (31) is computed with a
singular value decomposition [20].

Proving the statistical consistency of the deformation
gradient estimator in 2D is far more complicated than in 1D
and has not been done in the most general setting.
However, for a separable deformation d(zi,zs) =
(di(z1),ds(z2)), the 1D consistency results of Section 4
extend automatically to 2D. Figs. 6 and 7 show that good
numerical results are also obtained for nonseparable
deformations.

5.2 Recovering the 3D Surface Coordinates

Our goal is now to calculate the normal vector 7 to the
surface, from the deformation gradient. We first recall the
geometrical setting presented in [2]. The basic Shape from
Texture geometry assumes the image to be projected onto a
viewing sphere, as shown in Fig. 8. The perspective
backprojection p maps the viewing sphere to the surface 3.
The tilt direction 7 is defined as the direction of maximum
change of the distance HWH Defining b= Ou x t, we
obtain an orthonormal frame field (EZ, £,b) of the viewing
sphere. The differential of the backprojection transforms ¢
and b into two orthogonal vectors, which are denoted fy and
52 after being unit-normalized. The resulting orthonormal
frame field (77, s, l;g) of ¥ is called the slant-tilt frame field.
The slant is the angle o between 77 and W The variations
of the surface normal 77 depend upon the surface curvature,
and are specified by

Vi (ke T i
vgzﬁ B T Kb gE ’

where k; and k; are the normal curvatures of the surface in
the tilt and perpendicular directions, respectively, and 7 is
the geodesic torsion in the tilt direction [2]. In the rest of the
paper, we consider the deformation gradient to be
measured on the image plane and not on the viewing
sphere. The gaze transformation, which maps one to
another, can actually be approximated by the identity as
long as the surface ¥ remains close to the optical axis of the
camera. If this is not the case, a correction term must be
taken into account ([5], Appendix A.2).

If (&1, 2,) is an orthonormal basis of the image plane, the
tilt angle 6 is such that the projection of  on the image plane
is given by cos &1 + sin 6 Z>. We define

cosf) —sind
Ry = <sin0 cosf )
According to [5], [21], the deformation gradient (5) is related
to local surface parameters by

Ja(u) '8y, Ja(u) = Ry (M;(u) cosd — My(u) sin6) R_g,
Ja(u) '8y, Ja(u) = Ry (M;(u) sin 6 + M, (u) cosf) R_,

(32)
(33)

where M;(u) and M;(u) are given by

Mt(u):tm<2+||0p<u>||m/cosa ||0p<u>||f>, (34)
0 1
My(a) = tam( [0pCslim (10p(w) s a) (35)
1 0

In order to recover local surface shape from the deformation
gradient, the tilt and slant must be estimated. Algebraic
manipulations detailed in Appendix C show that this can be
achieved via a simple one-dimensional minimization. From
the tilt and slant, we then compute the normal
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— - . nd
n =coso Ou —sinot,

on a grid whose resolution is 16 times smaller than the
image resolution. This is due to the fact that each vector
is derived from the estimated deformation gradient which
depend on averaged warplet coefficients. Let the
3D coordinates of @ be (ni,nmg,n3). A needle map,
displayed in Figs. 6b and 7b, is given by the 2D vector

' = (ny,ny) = (n1/ns, na/ng).

In the golf-ball example of Fig. 6b, since the image border
does not contain any texture, we imposed that n} =n, =0
at the image corners.

The needle map can be integrated to obtain the depth
f(x1,22) of a point at position (z1, z3), up to a multiplicative
scaling factor. Noticing that 0,, f =n} and 0,,f = nj, it is
clear that f is the solution of Af = 9,,n} + 0,15 [13]. This
equation is solved with a standard finite difference scheme.
The reconstructed surface depth f(zi,z2) is plotted in
Figs. 6c, 6d, 7c, and 7d. In the overall algorithm, the most
significant amount of computation is devoted to calculating
the warplet coefficients for different warping matrices S,
each requiring O(N? log N) operations.

5.3 From Developable to Nondevelopable Surfaces

In Section 2, we modeled the image of a textured surface
under perspective projection as

I(z) = a(x) R(p(z)).

If 3 is a developable surface, then the reflectance R, defined
on ¥, can be “flattened” into a 2D process:

I(z) = a(z) R(p(x)) = a(z) R(d(2)).

When R is wide-sense stationary, Section 3 shows that the
deformation gradient corresponding to d(x) is almost equal
to the velocity of the Texture Gradient Equation, at small
scales (17). We now propose a similar approach for a
general nondevelopable differentiable surface. Noting that
(17) need only hold in the small scale limit (det S — 0), we
introduce a local version of model (36). In order to
transform R into a 2D process, we project it locally onto
the tangent plane to 3 at p(u), denoted T, (%), through the
exponential map [15]. This map, exp,,), projects a neighbor-
hood of 0 in T),)(X) to a neighborhood of p(u) on %, as
depicted in Fig. 9. It transforms radial lines stemming from
0 in T}, (%) into geodesics on X stemming from p(u), while
preserving lengths along these geodesics. We can define a
2D process R, in the neighborhood of 0 on T},,)(¥) by

(36)

RP(”) (’U) = R(expp(u) (’U) ) :

Let d,(z) be the function such that exp,,)(d.(r)) = p(z).
By definition,

I(x) = a(z) R(p(x)) = a(z) R(expy, (di(2)))

= a(x) ]{p(u)(du(x))v

which is a local version of model (36).

(37)

%)

Fig. 9. The exponential map exp,, maps a neighborhood of 0 on
the tangent plane to a neighborhood of p(u) on ¥. We define a
local mapping d, from the image plane to the tangent plane by

expy() (du(w)) = p().

Let us now impose a homogeneity condition on R. First
of all, it is natural to ask that E{|R(p)|*} be independent of
position p € ¥. As a result, a local contrast normalization
can be performed, leading to an image I(z) such that

I(x) = Ry (du(x)).

Let D, be the deformation operator such that D, f(x)
= f(du(z)). Just like the function d,, the operator D,
depends both on the local surface shape and on the
perspective projection. Its adjoint is written D, and

<Eufv 9) = (f, Dug)-

Because of distortions due to surface curvature, it does not
make sense to require R, to be wide-sense stationary.
Moreover, as proved in [12] even in the developable case,
when R is wide-sense stationary, the deformation gradient
is only approximately equal to the texture gradient (17),
with a resolution error of order O(det S)l/ 2, Introducing in
the 2D Texture Gradient Equation (13) an additional error
term of the same order is of no consequence. We can
therefore tolerate the nonstationarity of R, to induce an
error of order O(det S)'/2. We impose that, for a position v
close to 0 on the tangent plane, such that |v| < (det S)l/ 2,
HE{<Rp(u) ) E’uw'v75> <RP(U)’ €$51L¢U,S>*}|‘

S 38
= O(det S)*||V,yw(u, 9)|, -

where the gradients V, and V, are 2D vectors and || - || is
the Euclidean norm. This condition imposes a nontrivial
relationship between the surface geometry and the type of
texture homogeneity. If ¥ is developable and R, = R is
stationary, then the left-hand side of (38) vanishes, so the
condition is trivially satisfied. However, the condition is
much more general. For instance, it applies if R is the
restriction of a 3D stationary isotropic process to a sphere %,
or if R is a nonisotropic texture oriented along parallels or
meridians as in Fig. 10, and considered at the equator [22].

Under condition (38), one can prove that the deformation
gradient
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I

Fig. 10. A nonisotropic texture on a sphere, oriented along parallels (a)
or meridians (b), obeys the weak stationarity condition (38) at the
equator.

Ja, ()™ 0y T, (w)

is equal to the velocity of the Texture Gradient Equation,
with an error term that tends to zero when detS — 0.
Moreover, the geometrical relationships (32), (33) between
deformation gradient and local surface shape, which
derive from a differential analysis, are also valid for
Ju ()8, Jy, (u). The surface normal 7 can therefore be
recovered from the image of the textured surface with the
procedure described in Section 5.2.

The homogeneity assumption made in [5] is very
restrictive [21], [23] because it supposes the local texture
coordinates to follow either a frame field which is locally
parallel [15], or a frame field whose differential rotation is
known. The textures displayed in Fig. 10 are not oriented
along a parallel frame field, even at the equator, but are
nevertheless valid for Shape from Texture.

The condition (38) which we suggest is appropriate from
a perceptual point of view. It is a condition between the
surface and the texture, that allows the calculation of
surface shape from the texture gradient, with an error term
that tends to zero when the image resolution increases to
infinity. Owing to the error term it tolerates, this condition
applies to a broad class of textures and surfaces, for which
the Shape from Texture problem can be solved visually. The
remaining difficult issue is to specify precisely the class of
shape-texture combinations satisfying (38).

6 CONCLUSION

The warplet transform is a natural tool for analyzing the
image of a textured surface under perspective projection.
Indeed, the warpogram of the image satisfies a transport
equation, the Texture Gradient Equation. Under an appro-
priate homogeneity assumption on the original texture, the
velocity of the Texture Gradient Equation is equal to the
geometric deformation gradient, which measures relative
metric changes between the surface and the image plane.
We have introduced an estimator for the deformation
gradient and demonstrated the Shape from Texture algo-
rithm on photographs.

More work is necessary to fully understand what are the
necessary and sufficient relationships between the texture
and the surface shape, which guarantee that the deforma-
tion gradient is nearly equal to the velocity of the Texture

Gradient Equation and, hence, that the texture gradient can
be used for shape recovery.

Another area for further research concerns texture
modeling. The Lambertian assumption is somewhat re-
strictive, and a much wider class of natural textures could
be considered with a 3D modeling [24]. This could open
promising directions for Shape from Texture.

APPENDIX A

TEXTURE GRADIENT EQUATIONS
A.1 In One Dimension

We show that the velocity term wv(u,s) of the Texture
Gradient Equation (8) tends to the deformation gradient
d’(u)/d (u) when s — 0. For this purpose, we first verify
that when the scale s is small enough, the scalograms of I
and of R are related by a simple migration property in the
position-scale parameter space.

Since I(z) = R(d(z)), we have

(1) = [ Rld@) 5 o(*") da,

S S

and after a change of variable 2/ = d(z), we get

(1) = [ R S oY) Gt

Because ¢ is supported in [—1, 1], zﬁ(W) is nonzero
only if 2’ belongs to [d(u — s), d(u + s)]. If s < d'(u)/d"(u), a
Taylor expansion for d around position v implies that
|#' — d(u)| < 2d'(u) s. Hence, when s— 0, d(d'(z')) =~
d'(u), and if ¢ is in cla Taylor expansion for ¢ shows that

() ()

As a consequence,

(L hus) ~ / R(z) d,(i)s w(”“" dT(Z)(:)) dz.

But according to (6),

(39)

1 r—d(u)\
d/(u)s d)( d’(u)s ) - djd(u),d’(u)s(x),

50 (I, us) = (R, Vi) aw)s), which implies the scalogram
migration property (9):

E{| <Ia ’%,s) |2} ~ E{|<R7 wd(u),d’(u)s> |2}

Let s, be a fixed constant, with sy < d'(u)?/d"(u), and let
s(u) = so/d'(u). For s = s(u), (9) gives

w(uv S(U)) = E{| <[a wu,s(u)> |2} ~ E{|<R7 ’(/}d(u),.so) |2}

Since R is stationary, E{|(R, ¢d(u),s(,>\2} does not depend on
u; therefore,

Ew(u, s(u)) ~ 0.
d

One can expand the total derivative -
combination of partial derivatives:

as a linear
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%w(u, s(u)) = O,w(u, s(u)) + &' (u)dsw(u, s(u)).
Noticing that s'(u) = _(555;5(“)/ for s sufficiently small,
we get

d//(u)
) — o s ,8) = 0, 4
Ayw(u, s) 7w Oogsw(u,s) =0 (40)
which, when combined with (8), verifies (10): v(u, s) ~ ‘f;((u“)) .

A.2 In Two Dimensions
Let us first verify the warpogram migration property (15). If
det S is small enough

o= ff

Y(S ™ (z — ) dx

detS
g1y dz’
// detS (d (x)_u))detJd(d*I(ﬂﬁ’))
dz’
~ [ R g ls i e = ) g

where J;(z) is the Jacobian matrix defined in (4). Hence,

<I7 u)u,5> ~ <R7 d)d(u),Jd(u)S>7

50 E{|[(1,¢s)]’} = E{|(R, i) s,(ws)|’} which verifies the
migration property (15).

Let S(u) = Jy(u) ' Sp. If det Sy is small enough, setting
S = S(u) in the warpogram migration property yields

wlu, S(w) = B{s0) } = B{IER Yu.s)}-

Since R is stationary, the right-hand side of the above
relation is independent of u. Therefore, for k=1, 2,

d

ww(u S(u)) ~ (41)
Let
C* () = (@) 1=y = Do (Julw) ") S0,
and let S(u) = Jd(u)_ Sp. Because of (41),
dimw(u S(u)) = Oy w(u, S(u —|—ch] u) O, w(u, S(u)) =
(42)
But,

Ou ()™} = —Jalw) ™ Dy () Jaw)
therefore,
Ck(u) - - d(u)_lauk(*]d(u))s(u)'

By inserting the definition (14) of a;;(u, S) and the definition
(16) of the texture gradient coefficients gfj(u), a direct
calculation shows that

Zcu c’)buw u, S(u Zg”

Inserting (43) in (42) shows that, for for S(u) = S,

u) a;;(u, S(u)).  (43)

aij(u, S) = 0. (44)

Y

i,7=1
This proves that the deformation gradient terms g;(u) are
admissible as velocity terms uv; (u S) of the Texture

Gradient Equation.

APPENDIX B

WAVELET AND WARPLET EXPRESSIONS

B.1 Wavelet: Modulated Spline
The wavelet coefficients are calculated with the FFT [17]: A

wavelet transform can be obtained as a convolution product
(I ) = / I(@)s (s (x — u)) do = Tx (),  (45)

with ¢, (z) = s 14)(—s~'z). The Fourier transform of 1), (z) is
7215(("}) =

whose Fourier transform is

) = (2= iy ).

@Z*(sw). We choose 1 to be a modulated box-spline

For a discrete signal of size N, the wavelet JJS and the
variable u are discretized over the sampling grid and (45) is

computed with the FFT, requiring O(N log N) operations.
The wavelet coefficients (I, 9,10, s) = I * J,1)s(u) are also

calculated with the FFT using Fourier expressions derived
from (19), (20),

D) = —iw P(sw)
51;1/38((4)) = sw J'(sw).

B.2 Warplet: Modulated Gaussian
Like the wavelet transform, the warplet transform can be

written as the result of a 2D convolution product:

(I, 5) = /Z(a:) det S~Mp(S7 (z — u))dx =T * 12)5(u),
(46)
with 1g(x) = det S~1p(—S~

form of g is 1g(w) = ¥*(STw).
We choose ¢ to be a Gabor function whose Fourier

z). Note that the Fourier trans-

transform is

2
P = =20 E),

4

The warplet )5 and the variable u are discretized over the
image sampling grid. Computing (46) with the FFT requires
O(N? log N) operations. Similarly to (46), (I,0,,s) =
Ix Bazzs(u) can be computed with the FFT, using the

Fourier transform expressions
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8311155(“]) S (s1iw1 + sa1wy — 2m) ’LZ(ST(U),

2
— w ~
05, s (w) = —?1 (s12w1 + s2903) V(S w),
By, Ps(w) = _% (sn1w1 + sziwy — 2m) (5" w),

8;?/;5(60) = —% (812&11 + 522(4)2) {/;(STW)v
By s (w) = —iwr P(STw),
Dy Ps(w) = —iwn (ST w).

APPENDIX C
TILT AND SLANT ESTIMATION

For the sake of completeness, we reproduce results of [21]
on least-squares tilt and slant estimation. Let us denote the
elements of matrices M;(u) and M;(u) defined in (34) and

(35) as
=3 )=, )

We concatenate the elements of the two deformation
gradient matrices (16) into a single vector:

(47)

g :(gil (u)> 912 (u)a g%l (u)v 952 (u)a
9?1 (), 9%2 (u), ggl (u), ggz (u))T‘

Equations (32) and (33) show that there is a linear
relationship between g and (a, 3,7, 6):

9= H(e) (aa B, Vs 6)Ta

where H(#) is the matrix

[ —2c%s 2cs? cs? ]
s —2cs? —2c%s s3
s (-5 —s(®—5Y) —cs
cs? s(? -8t c(? -8t —cs?
s (-5 —s(2—sY) —c2s
cs? s(c?—5sY) (-5t —cs?
cs? 2c2s —2cs? e

| s° 2cs? 2c%s s

with ¢ =cosf and s =sinf. Given the estimation of the
deformation gradient g obtained in Section 5.1, we seek the
value of («, 3,7, 6,0) which minimizes

||g - H(e) (Oé, ﬂ7 Vs 5)T||§
For a specific 6, the (a,f3,7,6), which minimizes |g—
H() (o, 5,7, 6)T|\§ is given in closed form by

-1

T
(@80 = ((HO7HO) "HOTS) . )

The only step left is to find the § which minimizes

2

)

o= mo) (w07 10) O
2

and this can be achieved by a one-dimensional minimiza-
tion method. Once the tilt direction 6 has been estimated,

(o, B,7,06), are calculated with (48). The slant direction is
then given by ¢ = arctan~. Although they are not actually
used in our surface shape estimation algorithm, the
curvature parameters x, xp, and 7 can aM)e computed
from (a, 3,7,6,0), up to a scaling factor ||Op(u)]|.
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