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Locally Stationary Covariance and Signal Estimation
With Macrotiles

David L. Donoho, Stéphane Mallat, Rainer von Sachs, and Yann Samuelides

Abstract—A macrotile estimation algorithm is introduced to es-
timate the covariance of locally stationary processes. A macrotile
algorithm uses a penalized method to optimize the partition of the
space in orthogonal subspaces, and the estimation is computed with
a projection operator. It is implemented by searching for a best
basis among a dictionary of orthogonal bases and by constructing
an adaptive segmentation of this basis to estimate the covariance
coefficients. The macrotile algorithm provides a consistent estima-
tion of the covariance of locally stationary processes, using a dic-
tionary of local cosine bases. This estimation is computed with a
fast algorithm.

Macrotile algorithms apply to other estimation problems such
as the removal of additive noise in signals. This simpler problem is
used as an intuitive guide to better understand the case of covari-
ance estimation. Examples of removal of white noise from sounds
illustrate the results.

Index Terms—Best basis, covariance estimation, cosine basis,
local stationarity, noise removal, spectrum estimation.

I. INTRODUCTION

ESTIMATING the covariance of nonstationary processes
from few realizations is a challenging and mostly open

statistical problem. This problem often appears in signal pro-
cessing where only one realization is available. For a realiza-
tion of size , the expected values of the covariance matrix
must be estimated from only data values, which is extremely
difficult. In a nonparametric framework, in order to reduce the
number of coefficients to be estimated, one approach is to find
a sparse representation of the covariance matrix. This type of
strategy has been developed in the context of noise removal,
where signals are estimated by thresholding their decomposition
coefficients in an orthonormal basis [1]. This produces a small
risk if the original signal is well approximated by few nonzero
coefficients in this basis. When one does not know which or-
thonormal basis produces a small estimation risk, best bases al-
gorithms [2] search automatically for an optimized basis, given
the noisy data.

The Karhunen–Loève basis, which diagonalizes the covari-
ance matrix, provides a very sparse representation of the co-
variance since all nondiagonal coefficients are equal to zero.
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For stationary processes, we know that the Karhunen–Loève
basis is the Fourier basis, and we thus only need to estimate
the diagonal coefficients that correspond to the power spectrum.
For nonstationary processes, the Karhunen–Loève basis is not
known in advance, and it is therefore necessary to search for
a best basis which approximates this Karhunen–Loève basis.
This paper introduces amacrotileestimation algorithm inspired
from techniques recently studied in [3] and [4] to estimate the
Karhunen–Loève basis among a dictionary of orthogonal bases.

A macrotile model can be interpreted as a projection subspace
procedure [5], where the subspace is adaptively selected using
a penalization technique on the data. Section II introduces the
general principles of the macrotile algorithm. A macrotile es-
timation procedure can be applied to the removal of noise in
signals, where it can be interpreted as a particular best basis se-
lection procedure. It is first studied in this simpler context, and
Section III gives examples for the removal of noise from sounds
by searching for a best basis in a dictionary of local cosine bases.

The main result of the paper concerns the estimation of lo-
cally stationary covariance matrices with the macrotile algo-
rithm. It is more difficult than the removal of additive white
noise because the diagonalization of matrices has much more
sophisticated properties than the decomposition of signals in or-
thogonal bases. Locally stationary processes appear in physical
systems where random fluctuations are produced by a mecha-
nism which varies slowly in time or which has few brutal tran-
sitions. A locally stationary process can thus be qualitatively
defined as a process that is approximately stationary over suffi-
ciently short time intervals of unknown size [6]. For such pro-
cesses, it is shown that the Karhunen–Loève basis can be ap-
proximated by an appropriate local cosine basis [3], which is
estimated by the macrotile algorithm. The paper concentrates
on algorithmic and numerical aspects of macrotile estimation
as opposed to the mathematical proofs of consistency, which are
long and technical, and can be found in [7] and [8]. For signals
or processes of size , fast algorithms on trees are described to
compute macrotile estimators with operations.

II. PENALIZED MACROTILE ESTIMATION

A. Macrotile Projection Estimators

To better understand the estimation of covariance matrices,
this problem is related to the estimation of a signal contaminated
by an additive noise. The risk of a projection estimator is com-
puted for covariance estimation and noise removal. We write

as a random signal as opposed to a deterministic signal,
which we write as .
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Let be a signal of size , contaminated by a zero-mean
white Gaussian noise :

(1)

with . The signal is unknown but
considered as deterministic so that . Given the
empirical observations, noise removal consists of finding an
estimator of , which yields a small risk. As often in signal
estimation [18], we quantify this risk with a mean-square Eu-
clidean norm:

The estimation of the covariance operatorof a zero-mean
Gaussian random vector of size can be casted as a similar
estimation problem. This operator is characterized by a matrix
of covariance coefficients

for (2)

Let be the operator whose matrix is composed of sample-mean
estimators computed from independent realizations

of :

(3)

It is clearly unbiased: but yields a large risk.
The risk is calculated with the Hilbert–Schmidt norm of ,

which can be rewritten as a Euclidean norm in

In signal processing, the number of realizationsis much
smaller than , and we often have . The number of
data points is thus much smaller than the covariance
coefficients that we intend to estimate, and as a result,
is typically much larger than . This means that estimating

as 0 instead of would reduce the estimation risk. Improving
the empirical estimator can be viewed as a denoising problem
similar to (1)

(4)

where the ”noise” is the estimation error. A first
major difficulty is that is not white. Its coefficients have non-
Gaussian distributions that are highly correlated, and they de-
pend on . Moreover, is characterized by a matrix of co-
efficients that can be assimilated to an element of as op-
posed to the much smaller signal space in the denoising
problem. The covariance estimation problem is therefore much
more complicated than the removal of white noise. Yet, we will
develop a similar strategy to perform the estimation in both
cases, and the noise removal problem provides a simpler context
to better understand the properties of the resulting algorithm.

The denoising and covariance estimation problems are incor-
porated in the same framework where we are computing an es-
timator of a vector given . For denoising,

and , whereas for covariance estimation,
and . Projection estimators computeby projecting in
a subspace of dimension dim much smaller than :

The risk can be decomposed according to the Pythagorean the-
orem:

(5)

Since , the first term is the estimation
bias, whereas carries the remaining noise. An anal-
ysis of both terms shows that a projection estimator is an effi-
cient estimator only if can be well approximated by an element
in and if the space has a relatively small dimension.

The space plays the role of an estimation model, and one
difficulty is to find an appropriate space that produces a small
risk. Instead of choosing the subspacea priori, one can try
to optimize it, depending on. We study a procedure where

is selected among a predefined family. The family of
subspaces must be constructed from prior information on the
properties of to guarantee that within , there exists at least
one space that leads to a small estimation risk. The issue will
then be to estimate a “best” within , which will be done
with a penalization procedure.

The macrotile approach constructs the spacesin from a
relatively small number of spaces of dimen-
sion 1 that are called macrotiles. Anymacrotile modelspace

in is constructed as a sum of dim orthogonal
macrotile spaces, whose indexes are in a setof size :

The number of such combination of orthogonal macrotiles is
very large, and the total number of macrotile models in

is typically an exponential function of the number of
macrotiles. However, the fact that these models are obtained by
a rearrangement of a limited number of macrotile spaces of di-
mension 1 will allow us to implement the search for a best model
with a fast algorithm.

In the following, we will assume that the macrotile family
satisfies a progressive refinement property. This means that for
each subspace macrotile model , there exists a
richer model and, hence, a larger macrotile subspace

, whose dimension is at most twice as large:

dim dim dim (6)

With this property, one can test models by refining them pro-
gressively.

B. Penalization

A general framework for penalization estimation is presented
in [9] and [10] for the estimation of probability densities. These
mathematical results do not apply to a penalized estimation of
covariance matrices, but the underlying ideas of the macrotile
approach are similar.

Given a family of macrotile models , we want to find a
model , which reduces as much as possible the estima-
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tion risk (5). For this purpose, we first estimate an upper bound
of . This upper bound is then used by a penalization
procedure that finds .

In the denoising context,is a Gaussian white noise of vari-
ance , and as a consequence, the analysis of the penalization
procedure is much simpler than for covariance estimation. For
noise removal, one can derive the penalization formula from
general results in [9] and [10]. Since is an orthogonal pro-
jection onto a space of dimension dim

dim

Moreover, using a standard inequality on Gaussian distributions,
since all models in are constructed from a family of
macrotile spaces, one can prove [7] that if ,
the probability that

dim (7)

is larger than . Therefore, when tends to
, this probability tends to 1. Note that in our framework, the

total number of macrotiles is larger than the signal size,
which is itself large.

For covariance estimation, is a matrix of empirical
estimation error, whose entries have non-Gaussian distributions.
The variances of these errors are inversely proportional to the
number of realizations used to compute the sample means,
and proportional to the covariance coefficients of, which are
bounded by the largest eigenvalueof . In the Appendix , we
derive that

dim
(8)

Like in the denoising case, the variance of the projected noise
is bounded by a constant proportional to the dimension of the
model, and the largest eigenvalueof plays the same role as
the variance of the noise in the denoising problem. Moreover, in
[8], it is shown that similarly to (7), if is the covariance of a
Gaussian process, then satisfies

dim
(9)

with a probability that is larger than when
. Again, this probability tends to 1 when

tends to .
For noise removal and covariance estimation, inserting (7) or

(9) into (5) give similar upper bounds for the estimation risk.
With probability tending to 1 when tends to

dim (10)

with in the denoising case and
for covariance estimation. The penalization

approach tries to find a model which nearly minimizes this
upper bound and therefore produces a risk close to

Risk dim (11)

For estimating a model that can nearly reach the minimum
Risk , observe that

Therefore, can be replaced by when
minimizing the upper bound (10). Since is unknown,
the penalization approach replaces it by , and we
compute

dim (12)

Of course, the main difficulty is to prove that the risk
obtained with the penalized model is of the same

order as Risk , with probability close to 1, despite the fact that
we have approximated by . This requires
to choose a penalization constantat least larger than by a
fixed factor.

In the context of noise removal, where and are
signals of size , since , we write

Using techniques developed by Barronet al. [9] based on Ta-
lagrand inequalities, if , one can prove [7] that the
optimal penalized model

dim

(13)
has a nearly optimal risk

Risk (14)

with a probability that tends to 1 when tends to infinity.
Note that the multiplicative constant does not depend on the
signal size . This result is also similar to the one obtained for
removing Gaussian white noise by thresholding coefficients in
a best basis selected among a dictionary [2].

For covariance estimation, no mathematical result guarantees
that in general, the penalized model yields a risk that is close to
the minimum risk. However, Section IV-B explains that when
estimating locally stationary processes in a dictionary of local
cosine bases, this near-optimality result is valid.

III. D ENOISINGWITH LOCAL COSINE MACROTILES

This section studies the application of the macrotile pe-
nalization algorithm to noise removal, with a dictionary of
macrotile models constructed with local cosine basis. In this
context, finding the best macrotile model amounts to searching
for a best basis and estimating the coefficients of the signal
with an adaptive averaging in this basis. In a dictionary of local
cosine bases, a fast algorithm computes the signal estimator
with operations for a signal of size . This
fast algorithm as well as many ideas introduced in this section
will be used for covariance estimation.
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A. From Bases to Macrotile Models

For noise removal, we saw in (14) that a penalized macrotile
search yields a risk that is of the same order as
the minimum risk

Risk dim

(15)
The main issue is now to construct a family of macrotiles models
which can guarantee that Risk is small. We explain how to
construct such a family from a dictionary of bases and segmen-
tations of these bases.

Consider a dictionary , where each
is an orthonormal basis of . A

segmentation is a partition of the integers
in [1, ] into disjoint integer sets , each of which has a
cardinal written . The segmentation applied to the basis

associates with each a one-dimensional (1-D) macrotile
space generated by the sum vector . The
resultingmacrotile modelspace contains all
vectors of , whose coefficients in the basis are constant
over each macrotile . One can easily verify that the
orthogonal projection has decomposition coefficients
in that are equal to the average of the coefficients ofon
each macrotile:

(16)

and hence

(17)

Each model is characterized by a basis and by the
segmentation of this basis to estimate the coefficients with
an averaging of the noisy ones. The penalization algorithm of
Section II-B that computes a best empirical model from
thus amounts to finding a best basis in the dictionaryand
a best segmentation of this basis. A macrotile algorithm can
therefore be interpreted as a “best basis” denoising algorithm.
However, as opposed to other “best basis” estimation algorithms
[2], instead of estimating by thresholding the coefficients of
in a best basis, its coefficients are calculated with (16) using an
adaptive averaging obtained by finding the best segmentation of
the selected basis.

The family of macrotile models in corresponds to a
choice of possible segmentationsapplied to the bases of the
dictionary . To guarantee that Risk in (15) is small, there
must exist a model for which and dim
are simultaneously small. This means that one can obtain an
approximation of from its projection in a space in of
small dimension dim . For a family constructed from a
dictionary of orthonormal bases, is a signal whose
decomposition coefficients in the basis take only dim
different values. An important particular case is whenhas a
large number of decomposition coefficients in, which are
close to zero and is thus well approximated by a partial sum
of only vectors in . Such an approximation has decompo-

sition coefficients in , which takes at most different
values (including 0), and hence,can be well approximated
by a projection with an appropriate macrotile subspace
model that satisfies dim .

B. Local Cosine Macrotile Models

For sound signals, the performance of the audio compression
standard MPEG-2-AAC shows that most sounds can be well re-
constructed from relatively few nonzero coefficients in a local
cosine basis. This means that one can construct local cosine
macrotile models, of small dimension, that efficiently approxi-
mate sound signals. This section constructs a family of macrotile
models from a dictionary of local cosine bases, which will be
used for noise removal.

A local cosine basis divides an interval [0,] with win-
dows of varying sizes, which are multiplied by cosine vectors
of varying frequencies. Let

be half-integers that define a partition of [0,] in
intervals. Let , and . One can con-
struct for each a regular window with support

such that the local cosine family

(18)
is an orthonormal basis of [11]–[13]. Each local co-
sine vector has a support nearly localized in the
interval , and its Fourier transform has its en-
ergy mostly localized in the interval .
It can thus be represented by the Heisenberg rectangle

in a time-frequency plane.
This Heisenberg box is called atile because the union of the
Heisenberg rectangles associated with a local cosine basis
defines an exact tiling of the time–frequency plane. This is
illustrated by Fig. 1, which displays the local cosine coeffi-
cients of an audio recording . Darker tiles correspond to
high amplitude coefficients , whereas white tiles
coefficients that are nearly zero.

A difficult issue is to find a time partition that defines a local
cosine basis that is well adapted to an estimation problem.
Coifman and Meyer [11], [13] have thus constructed a dyadic
dictionary of local cosine bases, which includes orthonormal
bases defined over partitions whose intervals have sizes which
are powers of 2. The dictionary is organized as a tree. For

2 and 2 , we
denote by the window whose support is
and by the corresponding family of 2 local cosine
vectors

The family of cosine vectors is stored at the depth and
position (from left to right) of a binary tree. The 2local co-
sine families at the depth divide the interval [0, ] in 2
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Fig. 1. (a) Recordingf of four notes played on a clarinet. (b) Tiling corresponding to the local cosine coefficientsjhf ; g ij. The darker the grey level of the
tile, the larger the amplitude. (c) Macrotiles obtained by averaging the tiles over groups of varying sizes for each time interval.

overlapping intervals. The local cosine family at the root
of the local cosine tree has local cosine vectors that cover
the whole signal support. The maximum depth of this tree is

because 2 . There
are thus local cosine vectors stored in the tree.

A local cosine basis in this dictionary is constructed with an
admissible subtree, whose nodes have either 0 or 2 children. Let

be the position and depth of theleaves of
an admissible subtree. One can verify that the family

(19)

is a local cosine basis of [13]. It defines a particular segmen-
tation of the interval [0, ] into windows of various sizes.

Remember that a family of macrotile models is defined
with a dictionary of bases and a set of admissible segmenta-
tions. For a local cosine basis , we will con-
sider segmentations that are performed independently within
each family and that satisfy the refinement property (6).

Sound signals can include frequency tones that are localized
over a time interval and have narrow frequency bandwidth.
Let 2 be a local cosine family whose

window covers a time interval 2 2 , where
the signal has several narrow frequency tones. To efficiently
approximate such a signal with a macrotile model of small
dimension, it is necessary to define a frequency segmentation
that uses narrow macrotiles in the neighborhood of the fre-
quency tones to approximate them efficiently. Constructing
a local cosine macrotile model is similar to finding a piece-
wise constant approximation of the local signal coefficients

when the frequency indexvaries for and fixed.
For each , we thus consider any possible grouping, which
corresponds to a piecewise constant sequence of the 2
local cosine coefficients. We will, however, impose that each
macrotile has a size which is a power of two. For a given,
a segmentation in macrotile frequency intervals is thus
defined by a sequence of length 2 . Imposing
that each group has a number of elements that is a power of 2
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Fig. 2. (a) Music signalf . (b) Noisy signalx = x+ �. (c) Penalized macrotile estimationP (x) calculated with (21). (d) Representation of the time-frequency
macrotiles ofP (x). The darkest macrotiles correspond to high energy coefficients.

has no asymptotic effect on the performance of the macrotile
averaging and allows one to optimize this segmentation with a
fast CART algorithm [14]. A macrotile model is specified
by the indices of the local cosine basis and
the adaptive segmentation for each

(20)

Fig. 1 displays the representation of for one such
macrotile model. This macrotile model is just an example and
is not optimal in any sense with respect to this signal. The gray
level of each macrotile indicates the amplitude of the average
inner product corresponding to a particular grouping of local
cosine tiles. For a local cosine tree of depth , one
can verify that the total number of different macrotile models

is larger than 2 , but all these models are constructed
from only a number of macrotiles, which satisfies

C. Denoising With Fast Model Search

We now study the application of local cosine macrotiles to
noise removal with a fast implementation using the tree structure
of local cosine dictionaries. Given a noisy signal ,
a best local cosine model is selected according to (13). Since

, this amounts to computing

dim

(21)
Fig. 2 illustrates this macrotile denoising for the music

signal with four notes, which is shown in Fig. 1(a). Fig. 2(b)
is the signal contaminated by a white noise for an SNR of 0
db. Fig. 2(c) gives the macrotile estimation calculated
with the macrotile denoising algorithm. The resulting SNR is 7
db, which corresponds to a gain of 7 db. Fig. 2(d) displays the
macrotiles in the time–frequency plane. The harmonics appear
as darker and more narrow macrotiles; the time–frequency
structures of the signal are clearly preserved. Two other experi-
ments were performed with the same original signal and other
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white noises corresponding to SNR of 6.5 db and6 db; the
gains were, respectively, 6 and 8 db. The audio quality of the
signal is considerably improved by this macrotile denoising,
yet this example is only an illustration, and further refinements
in the models are needed to optimize the noise removal for
music signals. It is shown in [7] that as for the asymptotic per-
formance, the macrotile denoising is equivalent to thresholding
in the best basis. However, the macrotile denoising offers more
flexibility since it averages the coefficients instead of replacing
the small ones with 0.

When the family of models is constructed from dictionaries
of orthonormal bases having a tree structure, like a local cosine
dictionary, the best penalized model is computed with a fast dy-
namic programming algorithm similar to the one of Coifman
and Wickerhauser [15], which takes advantage of the additivity
property of the penalization cost for partial models. A partial
model is characterized by an orthonormal basisof a sub-
space of , as opposed to a basis of the whole space, and a
segmentation of . The cost of this model is defined by

Cost dim

where is calculated with (17) by summing only the
coefficients restricted to the basisof . Let
and be two partial models where and are
two orthogonal families of vectors. One can define a new model

, where is the segmentation of
obtained by segmenting with and with

. Clearly

Cost Cost Cost (22)

Using this additive property in a tree dictionary, one can now
identify the model that minimizes the cost with the fast bottom
up strategy of Coifman and Wickerhauser [15].

To any node of the local cosine tree is associated a family
of local cosine vectors , which generates a vector space.
Let be the optimal model of that minimizes Cost
among all models defined by ( ), where is a local co-
sine basis of . One possible candidate is the model

, where the segmentation is adjusted to minimize
the cost associated with the basis. However, other models
can also be considered by building other bases offrom the
local cosine vectors located in the descendant nodes. The space

can be decomposed into two orthogonal subspaces
and generated by the two local cosine families and

located at the children nodes in the binary tree. Using
the additivity property (22) we easily verify that we have (23),
shown at the bottom of the page. At the leaves of a local co-
sine tree of depth , the only possible choice is
since is the only basis available for . Using the aggrega-
tion relation (23), the optimal model is computed by going up
the tree along each branch, until the root where . The
resulting optimal model is and is the model that min-
imizes the cost over . The overall computational complexity
of the algorithm is driven by the number of operations to com-
pute the models at all nodes of the tree.

For this purpose, we first compute the local cosine co-
efficients of the noisy signal for all local
cosine vectors in the tree. With a fast lapped cosine trans-
form [12], this requires operations. Then, for
each and , we compute the segmentation, which yields a
model of minimum cost for local cosine family . The
cost is calculated from the 2 coefficients 2
associated with .

The optimal segmentation can be computed with
2 operations with a CART algorithm [14]. In the

following, we write Cost as the cost of a partial macrotile
model corresponding to a segmentationof . By definition,

is the segmentation that minimizes this cost. To compute it,
we use a segmentation tree, which subdecomposes any segmen-
tation in partial segmentations whose cost are summed. At the
level of this segmentation tree, each node of index 2
corresponds to segmentations of the group of2 co-
efficients for 2 2 . Let

be the optimal segmentation of this group, which yields
a partial model of minimum cost, which we write Cost .
One possible candidate is the segmentation, where all
coefficients of the group are averaged into one macrotile whose
average value is

The cost of the partial model associated with this segmentation
is

Cost

As in (23), using the additivity property of the cost function, one
can verify that we have (24), shown at the bottom of the page. At

if Cost Cost Cost

if Cost Cost Cost
(23)

if Cost Cost Cost

if Cost Cost Cost
(24)
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the maximum depth of this tree, the only pos-
sible segmentation is because there is only one coef-
ficient in each group. Using (24), a bottom-up strategy requires

2 operations to compute , which is the optimal seg-
mentation associated to all coefficients 2 , and

hence, . This segmentation defines , and by defi-
nition

Cost Cost

Since is computed with 2 operations, the
optimal model model is obtained with operations
using (23). Since , the penalization algorithm op-
timizing the model over adaptive segmentations thus requires

operations. Note that the computational
complexity of a thresholding estimator in a best local cosine
basis is of the same order because it is driven by the number
of operations to compute all the local cosine coefficients in the
dictionary [13].

IV. ESTIMATION OF COVARIANCE OF LOCALLY

STATIONARY PROCESSES

The study of the additive noise removal problem in Section III
provides important ideas and algorithmic tools to apply the pe-
nalized macrotile procedure to covariance estimation. The next
section shows that a dictionary of macrotile models can also be
constructed with a segmentation of orthonormal bases, in which
case, the search for a best macrotile model can be interpreted as
a simultaneous estimation of an approximate Karhunen–Loève
basis as well as the diagonal covariance coefficients in this basis.
The consistency and numerical performance of this estimator is
studied for locally stationary processes.

A. Macrotile Estimation of Covariance

To estimate the covariance of a process of size ,
according to (12), we compute the best penalized model

dim

(25)
where is an orthogonal projection in a space of opera-
tors, and is an upper bound of the largest eigenvalue ofthat
we suppose knowna priori. We study the calculation and prop-
erties of such an estimator for a family of macrotile models
constructed from a dictionary of orthonormal bases
that are segmented with a strategy similar to the one used in Sec-
tion III-A for the noise-removal problem.

A segmentation makes a partition of [1, ]
in disjoint integer sets , each of which has a cardinal written

. The segmentation applied to the basis associates with
each a 1-D macrotile space of operators. It is defined as
the 1-D space of operators, which are diagonalized inand
whose eigenvalues are the same for all and equal to
zero for all other vectors of .

Let us denote by the subspace of generated by the
vectors . A macrotile model is a
space of operators of dimension whose eigenspaces are the

. The basis diagonalizes the operators in and

their eigenvalues are constant over each macrotile .
Let be the orthogonal projection onto the vector space.
It applies to signals in . The orthogonal projection on
the operator space is an operator that can be decomposed as
a linear combination of the projectors on each eigenspace

. One can verify that the multiplicative factors are averages
of the diagonal coefficients of in the direction of vectors in

:

(26)

and since is an orthonormal family of operators

(27)

Using (3), we verify that each diagonal coefficient of the
empirical covariance matrix is calculated from the realizations

of with

(28)

The main difficulty is now to evaluate the resulting risk
depending on the properties of the process. If the

vectors of are discrete Fourier vectors multi-
plied by square windows that localize them over subintervals of
[1, ], then (28) can be interpreted as a simple periodogram.
Section IV-B studies the application of local cosine bases com-
puted with smooth windows to estimate the spectrum of locally
stationary processes.

Let be the orthonormal basis corresponding to the selected

penalized model . The estimator of is an operator
that is diagonal in and whose eigenvalues have been averaged

in dim groups. The best basis can thus be interpreted
as an approximate Karhunen–Loève basis of, which is opti-
mized to reduce the risk . Within this basis, the
segmentation is adapted to estimate the diagonal coefficients of

with an appropriate averaging of the empirical diagonal co-
efficients of . Several approaches have already been studied
to estimate covariance matrices by searching for an approxi-
mate Karhunen–Loève basis [3], [4]. The macrotile algorithm
improves over these approaches by simultaneously estimating
the basis and the diagonal covariance coefficients in this basis.
This provides better numerical estimations and leads to math-
ematical consistency results, which could not be obtained with
the previous approaches. In the following, we evaluate both nu-
merically and mathematically the efficiency of the macrotile pe-
nalized estimator in the context of locally stationary processes.

B. Locally Stationary Covariances

Intuitively, a locally stationary process can be locally approx-
imated by stationary processes. Many different mathematical
modeling of such processes have been proposed [3], [6], [16],
[17], [19], but the derivation of consistent estimators of the
resulting covariance is still an open issue. A zero-mean process

for is wide-sense stationary if its covariance
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satisfies . The
corresponding covariance operatoris a convolution operator,
diagonalized in the Fourier basis, and whose eigenvalues
(power spectrum) are given by

If the process is not strictly stationary, we can still write the
covariance

Priestley [6] and Martin and Flandrin [19] have proposed several
definitions of locally stationary processes by introducing a time-
varying power spectrum defined by

It can also be rewritten as the expected value of the Wigner–Ville
distribution of the process:

If the process is locally stationary, then one can expect that
has slow variations as a function of the position param-

eter . If also has a fast decorrelation, which means that
decays quickly when increases, then is a smooth func-
tion along the frequency variable. This time-varying spectrum
has been further studied in [16] and [17], as well as in [3], where
it is observed that if is nearly constant over the time–fre-
quency Heisenberg rectangle of a local cosine vector, then this
vector is nearly an eigenvector of the covariance operator.
More precisely, if is approximatively equal to a constant

over the Heisenberg rectangle
of a local cosine vector defined in (18), then

In this case, the eigenvectors of the covariance can be ap-
proximated by local cosine vectors and the eigenvalues are
given by the time-varying power spectrum. This shows that
the Karhunen–Loève basis of a locally stationary process can
be approximated by an appropriate local cosine basis, whose
vectors have a time–frequency localization adapted to the
variations of the time-varying power spectrum [3].

C. Local Cosine Approximate Karhunen–Loève

Since the Karhunen-Loève basis of a locally stationary
process can be approximated by a local cosine basis, one can
estimate its covariance with a penalized macrotile algorithm
that searches for a best macrotile model in a familycon-
structed with a dictionary of local cosine bases. A fast algorithm
is described to compute the resulting covariance estimator.

To specify a family of macrotiles , we still need to choose
the set of all possible segmentations for each basis. This section
concentrates on locally stationary processes having a fast decor-
relation, which means that has a fast decay as a func-
tion of , uniformly in . In this case, the time-varying power

spectrum is a uniformly smooth function of . An ap-
propriate estimator of the power spectrum (eigenvalues) is thus
obtained by averaging uniformly in frequency the sample-mean
estimator of the diagonal covariance coefficients in a local co-
sine basis. This corresponds to a particular family of admissible
segmentations of vectors in a local cosine basis.

We saw in (19) that a local cosine basis can be written
, where each regroups 2 cosine

vectors whose support is 2 2 .
Among these vectors, we choose segmentations that perform a
uniform averaging in frequency. This means that local cosine
coefficients in this interval are averaged along frequencies in
consecutive groups of 2coefficients, where 2is a fixed length
with 2 2 . Observe that this family of segmen-
tations is more restrictive than the segmentations used in the
local cosine macrotile family defined in Section III-B, which
were not necessarily uniform. The number of macrotile models
is therefore smaller, but the total number of macrotiles
combined to construct these models is the same in both cases,
and is nearly equal to .

Following (25), the best local cosine macrotile is calcu-
lated by minimizing

Cost dim (29)

Each model is specified by a local cosine basis and its
segmentation. The norm is computed from the de-
composition coefficients of each realization in the basis
with (27) and (28). The minimization of this cost in a local co-
sine dictionary is implemented with minor modifications of the
fast algorithm described in Section III-C because it has the same
additivity properties.

The best model is constructed from partial optimal models
associated with the local cosine spacesalong the tree

nodes, using the aggregation property (23). The only difficulty
is to construct the model where the segmentation is
adjusted to minimize the cost associated with the basis.

For each realization of the process, we first compute the
coefficients corresponding to all local cosine

vectors in the tree depth . With a fast lapped cosine trans-
form [12], for realizations, we require op-
erations. Following (28), we then compute

with operations.
To compute the segmentation, which minimizes the cost

associated with the basis , is a much simpler operation than
in Section III-C. Indeed, we are restricted to uniform segmen-
tations that average the 2 coefficients by intervals of
same size 2, for any 2 2 . The resulting averaged
coefficients are

for
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Fig. 3. (a) Diagonal coefficients of the covariance� in the ideal local cosine basis. (b) Macrotiles calculated by the penalized estimator fromR = 5 realizations.

With a standard dyadic averaging cascade by groups of 2, this is
calculated for all with 2 operations.
The cost associated with the only model of dimension
2 is

Cost

Finding the model that minimizes this cost overthus re-
quires 2 operations. The total number of operations to
compute all models in the tree is thus . With the
aggregation property (23), the optimal model is then also
computed with operations. The overall complexity of
the penalization algorithm is therefore dominated by the number
of operations to compute the local cosine coefficients of all re-
alizations, which is , since .

Fig. 3 illustrates this macrotiles covariance estimation with a
synthetic example. A locally stationary process is constructed
by aggregating independent stationary processes over the inter-
vals [0,240], [240 340], [340 740], [740 970], [970,1024]. Let

be the diagonal operator in a local cosine basiswhose di-
agonal coefficients are equal to the diagonal coefficients of.
The ideal cosine basis is the one where is minimum.
Fig. 3(a) shows the exact diagonal values ofin this ideal basis.
No macrotile averaging of coefficients was performed. The re-
sulting minimum error is . Fig. 3(b)
represents the penalized macrotile estimator computed
from realizations of the process. The risk is only twice
above the ideal minimum risk: .

Speech signals are typical realizations of locally stationary
processes, and unvoiced speech signals have a fast decorrela-
tion. Their covariance can thus be estimated with the penalized
macrotile algorithm. The problem is particularly difficult since
we have only realization and do not use any parametric
model. Before computing the macrotiles, a preprocessing nor-
malizes the average signal energy over intervals of 500 samples.
This improves the estimation in time domains where the signal

has a smaller energy. Fig. 4(a) shows an example of unvoiced
speech recording including a succession of five sounds. When
listening to this signal, the intervals of stationarity are approx-
imatively [0,800], [800,2800], [2800,5000], [5000,7300], and
[7300,8192]. Observe that the penalized macrotile estimation
selects time windows that correspond approximatively to these
intervals. In particular, the two sounds (phonetic writing)
are represented by similar macrotiles. Transient sounds such as

are represented by macrotiles having a poor frequency local-
ization. Despite the relatively good performance of such an esti-
mation, the fast decorrelation model is too restrictive for voiced
speech signals which can include narrow frequency tones. This
issue is further addressed in Section IV-D.

The consistency of this macrotile estimation procedure has
been proved using a formal definition of locally stationary pro-
cesses that imposes conditions directly on the covariance
[4] as opposed to its time varying power-spectrum. The fact that

does not vary too much along the time variableis im-
posed by supposing that has a uniformly bounded varia-
tion when varies. This condition is satisfied if has reg-
ular variations as a function of or few isolated brutal transi-
tions. The fast decorrelation property of these processes imposes
a minimum decay rate of as a function of . If is a lo-
cally stationary Gaussian process that satisfies these conditions,
then the minimum risk of a penalized macrotile estimator

Risk dim

can be bounded by [8]

Risk
(30)

where is a constant, and the exponent depends only
upon the decay rate of as a function of . Moreover, if
the penalization constant is sufficiently large, independently
of , then there exists and such that

Risk
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Fig. 4. (a) Unvoiced speech signal composed of[p], [oe], [s], [oe], and[ch] sampled at 11 kHz. (b) Penalized macrotile estimator of the signal above calculated
with C = 510 .

with a probability that tends to 1 when goes to . When
increases, the rate of convergence given by (30) is always

better than what can be obtained with a linear estimator that
does not adapt the basis to the specific process [8]. This linear
strategy is most often implemented in a local cosine basis or
with a window Fourier transform, which decomposes [0,] in
intervals of same size, chosen independently from the realiza-
tions of the process [20].

D. Estimation of Long-Range Locally Stationary Covariances

The previous section has studied locally stationary processes
that have a relatively fast decorrelation and whose time-varying
spectrum is therefore uniformly smooth as a function of
frequency. The macrotile models of Section IV-B perform a
uniform averaging in frequency, which is consistent with this
smoothness. Some locally stationary processes may not satisfy
this fast decorrelation property. This means the macrotile
segmentations of Section IV-B, which correspond to a uniform
averaging in frequency, must be replaced by more flexible
segmentations, which allow nonuniform frequency averaging
within each time interval. This is exactly what is performed by
the family of macrotile models of Section III-B, which are used
for noise removal in sounds.

The macrotile covariance estimator is calculated by com-
puting the best model

dim

(31)
In this case, the family of local cosine macrotile modelsin-
cludes adaptive piecewise-constant segmentations in each time
interval. Therefore, the fast algorithm of Section IV-B has to be
modified when computing the optimal segmentationof the
partial models at each node of the local cosine tree. Since
the dictionary is formally identical as the one used for the de-
noising problem, the same CART tree algorithm is used to find

the optimal adaptive segmentation. The resulting fast algorithm
requires operations to calculate .

Fig. 5 shows numerical results with a process constructed
by aggregating independent stationary processes over the
intervals [0,80], [80 180], [180 430], [430 830], [830 930], and
[930,1024]. On each interval, the process is the sum of two
independent stationary processes: one whose spectrum includes
a narrow frequency spike and one whose spectrum is uniformly
regular. Fig. 5(a) shows one realization of this spliced process.
Fig. 5(b) shows the diagonal coefficients ofin the ideal local
cosine basis , where is best approximated by a diagonal
matrix : . Fig. 5(d) represents the
penalized macrotile estimator computed with (31):

. Note that the frequency spikes
observed in Fig. 5(b) are retrieved in Fig. 5(d); this is possible
because the adaptive smoothing allows for macrotiles of very
different sizes in the same time interval. At fixed time, the
macrotile model produces a piecewise-constant approximation
of the true spectrum. Fig. 5(e) and (f) show that the frequency
spikes and the smoother parts are well approximated, given the
small number of realizations. To illustrate the importance of
the penalization, Fig. 5(c) represents the macrotile estimator

computed from the same realizations for a
penalization constant , which means that the choice of
model is not penalized by its dimension. As a result, a model
of maximum dimension is chosen, namely many intervals of
stationary and no averaging in frequency. The corresponding
risk is much larger: .

This penalized macrotile algorithm has also been tested on a
voiced-speech recording shown in Fig. 6, which is composed of
five vowels. The number of realizations is, of course, .
The corresponding macrotile penalized estimator is shown in
Fig. 6(b). The stationarity intervals can be distinguished and the
harmonics are clearly retrieved. Small intervals at the borders
of different sounds in Fig. 6(b) are due to the dyadic nature of
admissible segmentations.
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Fig. 5. Piecewise stationary process of sizeN = 1024. (a) One realization of the process. (b) Ideal diagonal covariance. (c) Macrotile estimator� computed

fromR = 5 realizations with no penalization (C = 0). (d) Macrotile estimator� computed with a penalization. (e), (f) Spectrum of the spliced process at
n = 300 andn = 700 are superimposed with the piecewise-constant estimations of the macrotile model in (d). The true spectrum is approximated by an estimator
using a very large number of realizations.



626 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 3, MARCH 2003

Fig. 6. (a) Voiced speech signal composed of[a], [oe], [i], [o], and[y] (phonetic writing), sampled at 5.5 kHz. (b) Penalized macrotile estimator of the signal
above calculated withC = 10 .

V. CONCLUSION

This paper introduces adaptive macrotile models to estimate
covariances of nonstationary processes. These models are
selected with a penalization algorithm. Macrotile estimations
provide general estimation procedures that apply to other prob-
lems such as the removal of additive noise. For noise removal,
macrotile estimations can be interpreted as a best basis denoising
algorithm. This simpler problem is thus used as an introduction
to better understand the properties of macrotile estimations.
An application to noise removal in sounds is presented with
macrotiles constructed with the local cosine dictionary. These
macrotilesdefineacoarsepavementof the time–frequencyplane,
which is adapted to the signal time–frequency properties.

The main result of the paper concerns the covariance es-
timation of locally stationary processes. A fast algorithm is
presented to compute the penalized macrotile estimator with

operations. For processes with a fast decorrela-
tion, the statistical consistency of this estimator has been proved
[8], but not for complex processes whose spectrum include
narrow frequency spikes. Although the numerical experiments
are encouraging, the proof of statistical consistency remains an
open problem in this case.

APPENDIX

A. Proof of (8)

We saw in (26) that

We can also derive from (28) that

(32)

so that

We use the orthogonality of the spacesand the independence
of the realizations , to show that since

Var (33)

where is a Gaussian vector whose covariance matrixadmits
as a largest eigenvalue. For each , is a

Gaussian random vector of dimension. The eigenvalues of
its covariance are clearly smaller than or equal to. Rewriting
it in the Karhunen–Loève basis of its covariance gives

where are independent Gaussian random variables
of variance 1, and for each . Therefore

Var Var

(34)
Combining (33) and (34) proves (8).
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