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Locally Stationary Covariance and Signal Estimation
With Macrotiles

David L. Donoho, Stéphane Mallat, Rainer von Sachs, and Yann Samuelides

Abstract—A macrotile estimation algorithm is introduced to es- For stationary processes, we know that the Karhunen-Loeve
timate the covariance of locally stationary processes. A macrotile pasis is the Fourier basis, and we thus only need to estimate
algorithm uses a penalized method to optimize the partition of the the diagonal coefficients that correspond to the power spectrum.
space in orthogonal subspaces, and the estimation is computed with . N S
a projection operator. It is implemented by searching for a best For noqstatlonary proce;sgs, the Karhunen-Loeve basis is not
basis among a dictionary of orthogonal bases and by constructing Known in advance, and it is therefore necessary to search for
an adaptive segmentation of this basis to estimate the covariancea best basis which approximates this Karhunen—Loéve basis.
coefficients. The macrotile algorithm provides a consistent estima- This paper introducesraacrotileestimation algorithm inspired
tion of the covariance of locally stationary processes, using a dic- from techniques recently studied in [3] and [4] to estimate the

tionary of local cosine bases. This estimation is computed with a \ . L
fast algorithm Karhunen—-Loéve basis among a dictionary of orthogonal bases.

Macrotile algorithms apply to other estimation problems such A macrotile model can be interpreted as a projection subspace
as the removal of additive noise in signals. This simpler problem is procedure [5], where the subspace is adaptively selected using
used as an intuitive guide to better understand the case of covari- 3 penalization technique on the data. Section Il introduces the
ance estimation. Examples of removal of white noise from sounds general principles of the macrotile algorithm. A macrotile es-
illustrate the results. : . . .

timation procedure can be applied to the removal of noise in

Index Terms—Best basis, covariance estimation, cosine basis,signals, where it can be interpreted as a particular best basis se-
local stationarity, noise removal, spectrum estimation. lection procedure. It is first studied in this simpler context, and

Section Il gives examples for the removal of noise from sounds
|. INTRODUCTION by searching for a best basis in a dictionary of local cosine bases.

. . The main result of the paper concerns the estimation of lo-
E STIMATING t_he covariance of non_statlonary Iorocessec,SaIIy stationary covariance matrices with the macrotile algo-
from few realizations is a challenging and mostly opef)

" : L thm. It is more difficult than the removal of additive white
stat|s_t|ca| problem. This p“"?'e”.‘ oft_en appears in signal P'B%ise because the diagonalization of matrices has much more
EEf‘SI?gi;Nf]]sr(:'hOrjl\l]); 0|;1(e retalcljzstllo nis ?:’ﬁ'labl\?'r::%r a rrsatl;izs%phisticated properties than the decomposition of signals in or-
mous?bz ee;tir,nati q frgmpgﬁ © da?auveasll?es \?vﬁic::haisaex(fc?em?al )ﬁﬂogonal bases. Locally stationary processes appear in physical

o .N > ysystems where random fluctuations are produced by a mecha-
difficult. In a nor_1p_arametr|c framework, in order 1o redgce thﬁi m which varies slowly in time or which has few brutal tran-
number of coefficients to be estimated, one approach is to f'& ifons. A locally stationary process can thus be qualitatively

atsp;arsehreprs sent3t|on| of tze. cc:\r:anancte r?atfnx. Th|s typeu‘iined as a process that is approximately stationary over suffi-
strategy has been developed in the context of NoiSe removye, ntly short time intervals of unknown size [6]. For such pro-

where signals are estimated bythresholdmgthelrdecomposmé) ses, it is shown that the Karhunen—Loéve basis can be ap-

?Ziﬁ;iﬁgfr'm'r?gl (;_rtr::;r;(_)srmaellIb:seél%‘l{;fg;sdpbro?gcer?o?] sg;% oximated by an appropriate local cosine basis [3], which is
ISK 1 9! \gnat s w Pproxi y1ew Z81%stimated by the macrotile algorithm. The paper concentrates

coefficients in this basis. When one does not know which 06' algorithmic and numerical aspects of macrotile estimation

thonormal basis produces a small estimation risk, best basesag opposed to the mathematical proofs of consistency, which are

gorithms [2] search automatically for an optimized basis, givqgng and technical, and can be found in [7] and [8]. For signals

th?”?g'?/a?hatién Lodve basis. which diagonalizes the co aor_processes of siz¥, fast algorithms on trees are described to
nunen—Loev 1S, WAl 'ag 1z€ v Elompute macrotile estimators with( N (log N)?) operations.
ance matrix, provides a very sparse representation of the co-

variance since all nondiagonal coefficients are equal to zero.
[l. PENALIZED MACROTILE ESTIMATION

Manuscript received April 11, 2001; revised October 10, 2002. The associate
editor coordinating the review of this paper and approving it for publication was’
Prof. Abdelhak M. Zoubir.

Macrotile Projection Estimators

To better understand the estimation of covariance matrices,

D. L. Donoho is with the Statistics Department, Stanford University, Stanforg, . . . . . .
CA 94305 USA. P b this problem is relgted to thg estimation of a S|gngl contamlnated
S. Mallat and Y. Samuelides are with the Ecole Polytechnique, CMAP, 911b8/ an additive noise. The risk of a projection estimator is com-
Palaiseau, France i - o ) Buted for covariance estimation and noise removal. We write
R. von Sachs is with the Institut de Statistique, Université Catholique de Lol d . | d d L |
vain, 1348 Louvain-la-Neuve, Belgium. z[n] as a random signal as oppose to a deterministic signal,
Digital Object Identifier 10.1109/TSP.2002.808116 which we write as:[n].

1053-587X/03$17.00 © 2003 IEEE



DONOHOet al: LOCALLY STATIONARY COVARIANCE AND SIGNAL ESTIMATION 615

Let z[n] be a signal of sizé&V, contaminated by a zero-meanP = N andz = z, whereas for covariance estimatidh= N2

white Gaussian noisén]: andz = I. Projection estimators compuiedy projectingz in
N N a subspacé of dimension dinhM) much smaller thad:
T=x+¢ Q)
z=Pm(2).

with E{€[n]Je[m]} = §[n — m] a2. The signak: is unknown but
considered as deterministic so that] = E{Z[n]}. Given the The risk can be decomposed according to the Pythagorean the-
empirical observations, noise removal consists of finding angrem:

estimatorz of z, which yields a small risk. As often in signal

estimation [18], we quantify this risk with a mean-square Eu- Iz = Pm@)|1? = Iz = PP + [[IPM@I. (5)

clidean norm: . . ) 9. L
SinceE{z} = z, the first term||z — Px(z)]|* is the estimation

N . . L .
. . bias, whereaf P4 ()||? carries the remaining noise. An anal-
. 2\ ; _ 2 ’
E{llz —«|"} = Z E{lz[n] - z[n]|"}- ysis of both terms shows that a projection estimator is an effi-
o n=t . cient estimator only if can be well approximated by an element
The estimation of the covariance operaloof a zero-mean in M and if the spaceé\M has a relatively small dimension.
Gaussian random vect@in] of5|zeN_can be cast_ed as aSImIIar_ The spaceM plays the role of an estimation model, and one
estimation problem. This operator is characterized by a matdificulty is to find an appropriate space that produces a small
of N2 covariance coefficients risk. Instead of choosing the subspakga priori, one can try
[ to optimize it, depending oA. We study a procedure where
vn,m] = E{yln]y"[m]} forl<nm <N. () \is selected among a predefined fam#fy The family F of
LetT be the operator whose matrix is composed Ofsamp|e_meypspaces must be constructed from prior information on the

estimators computed fromR independent realizations Properties of: to guarantee that withitt, there exists at least
{G:Y1<r<p OF J: one spaceM that leads to a small estimation risk. The issue will

then be to estimate a “best1 within F, which will be done

N 1SN . with a penalization procedure.
yln,m] = I Z Yrlnlyy[m] . ®3) The macrotile approach constructs the spaee F from a
r=1 relatively small numbey# of space Wy }1<j<y# of dimen-
Itis clearly unbiasedE{T'} = I but yields a large risk. sion 1 that are called macrotiles. Amyacrotile modekpace
The risk is calculated with the Hilbert—Schmidt nornfefI’, M in 7 is constructed as a sum &f = dim(M) orthogonal
which can be rewritten as a Euclidean nornGiN” macrotile spaces, whose indexes are in d s#tsize K
N N N M = BrerWy.
IT =T =" > Inln,m] = Aln, m] .
n=1m=1 The number of such combination of orthogonal macrotiles is

In signal processing, the number of realizatioRsis much Very large, and the total number of macrotile modgis in
smaller thanN. and we often have? = 1. The number of F is typically an exponential function of the numbg# of
data pointsV R is thus much smaller than th¥? covariance macrotiles. However, the fact that these models are obtained by
coefficients that we intend to estimate, and as a rel§ili; sz a rearrangement of a limited number of macrotile spaces of di-

is typically much larger thafiL'||2. This means that estimating mension 1 will allow us to implement the search for a best model

T as 0 instead of would reduce the estimation risk. Improving™Vith @ fast algorithm.

the empirical estimatdF can be viewed as a denoising problem [N the following, we will assume that the macrotile famify
similar to (1) satisfies a progressive refinement property. This means that for

R each subspace macrotile modet # C” € F, there exists a
r=r+e (4) richer modelM’ € F and, hence, a larger macrotile subspace

. ~ . . . M c M, whose dimension is at most twice as large:
where the "noise® = T" — T is the estimation error. A first

major difficulty is thate is not white. Its coefficients have non- dim(M) < dim(M’) < 2 dim(M) . (6)

Gaussian distributions that are highly correlated, and they de-

pend onl". Moreover,I" is characterized by a matrix &f2 co- With this property, one can test models by refining them pro-

efficients that can be assimilated to an elementdf as op- gressively.

posed to the much smaller signal spa® in the denoising

problem. The covariance estimation problem is therefore muBh

more complicated than the removal of white noise. Yet, we will A general framework for penalization estimation is presented

develop a similar strategy to perform the estimation in both [9] and [10] for the estimation of probability densities. These

cases, and the noise removal problem provides a simpler contegthematical results do not apply to a penalized estimation of

to better understand the properties of the resulting algorithmcovariance matrices, but the underlying ideas of the macrotile
The denoising and covariance estimation problems are incapproach are similar.

porated in the same framework where we are computing an esGiven a family of macrotile models, we want to find a

timator z of a vectorz € C” givenz = z + €. For denoising, modelM € F, which reduces as much as possible the estima-

Penalization
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tion risk (5). For this purpose, we first estimate an upper boundFor estimating a mode\f that can nearly reach the minimum
of || Pr(€)||2. This upper bound is then used by a penalizatioRisk;,, observe that
procedure that findgu1.
In th2e denoising contexg is a Gaussian w_hlte noise of vari-- iz = Pr(2)|1% = ||2]1% = || Pa(2)]1%
ances-, and as a consequence, the analysis of the penalization

procedure is much simpler than for covariance estimation. Fﬂﬁerefore”z—PM(z)Hz can be replaced by|| P (z)||2 when
noise removal, one can derive the penalization formula frominimizingthe upper bound (10). Sinf@,(z)||? is unknown,

general results in [9] and [10]. Sind&, is an orthogonal pro- he penalization approach replaces it b\ (2)|2, and we
jection onto a space of dimension divt) compute

E{||Pm(8)]*} = o dim(M). —
HIP©IF) = 7 dim) M = arg in {(—IPMEIF+ C'dim(M)}. (12

Moreover, using a standard inequality on Gaussian distributions,

since all models\ in F are constructed from a family 8f#  Of course, the main difficulty is to prove that the rigk —

macrotile spaces, one can prove [7] that#f > exp(1/30?), P, (2)||? obtained with the penalized mod&i is of the same

the probability that order as Risk,,,, with probability close to 1, despite the fact that
we have approximateltl’y(2)||? by || Pam(Z)||?. This requires
[[Pm(E)|| <o \/3 log V# dim(M) (7) tochoose a penalization constdiitat least larger tha6' by a

fixed factor.
is larger tharl — 0.5 x [V#]~1/2. Therefore, whed# tendsto  In the context of noise removal, where= » andz = 7 are
+00, this probability tends to 1. Note that in our framework, thignals of sizeV, sinceC' = 302 log V#, we write
total number of macrotile¥# is larger than the signal siz¥,
which is itself large. R C'=C,o? log V¥,
For covariance estimatiofi,= I' — I" is a matrix of empirical
estimation error, whose entries have non-Gaussian distributiopsjng techniques developed by Barrenal. [9] based on Ta-

The variances of these errors are inversely proportional to fagrand inequalities, i€, > 3202, one can prove [7] that the
numberR of realizations used to compute the sample meansptimal penalized model

and proportional to the covariance coefficientd ofvhich are

bounded by the largest eigenvaluef I'. In the Appendix , we v arg ﬁlgjf {—||PM(3)||2 e o2 log V# dim(M)}

derive that
dim(M (13)
. im i i
E{|[Pu@)|?) <222 ](% ). ©) has a nearly optimal risk
Like in the denoising case, the variance of the projected noise [l — P, (%)]|* < 4G Riskpin (14)

is bounded by a constant proportional to the dimension of the

model, and the largest eigenvalvef I' plays the same role aswith a probability that tends to 1 wheW# tends to infinity.

the variance of the noise in the denoising problem. Moreover,iote that the multiplicative constant does not depend on the
[8], it is shown that similarly to (7), il is the covariance of a signal sizeN. This result is also similar to the one obtained for
Gaussian process, then= T" — T satisfies removing Gaussian white noise by thresholding coefficients in
a best basis selected among a dictionary [2].

For covariance estimation, no mathematical result guarantees
that in general, the penalized model yields a risk that is close to
the minimum risk. However, Section 1V-B explains that when
with a probability that is larger thah — 6 + [V#]~/> when  estimating locally stationary processes in a dictionary of local
V# > exp(1/30?). Again, this probability tends to 1 whé¥*  cosine bases, this near-optimality result is valid.
tends to+oo.

For noise removal and covariance estimation, inserting (7) or
(9) into (5) give similar upper bounds for the estimation risk.
With probability tending to 1 whew# tends to+oco This section studies the application of the macrotile pe-

nalization algorithm to noise removal, with a dictionary of
Iz = Pm@)II” < [lz = Pm(2)|IP + Cdim(M)  (10) macrotile models constructed with local cosine basis. In this
context, finding the best macrotile model amounts to searching
with ¢ = 30? logV# in the denoising case and = 9 for 4 best basis and estimating the coefficients of the signal
A?(log V#)?/R for covariance estimation. The penalizationyith an adaptive averaging in this basis. In a dictionary of local
approach tries to find a model which nearly minimizes thigpsine bases, a fast algorithm computes the signal estimator
upper bound and therefore produces a risk close to with O(N (log, N)?) operations for a signal of siz&. This
) ) ) ) fast algorithm as well as many ideas introduced in this section
Risknin = Ailneff{”'z = Pu(2)II +CdimM)} . (11) il be used for covariance estimation.

dim(M)

IPa(@I < 3 log V¥ 4 [ =5

©)

[ll. DENOISING WITH LOCAL COSINE MACROTILES
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A. From Bases to Macrotile Models sition coefficients in3;, which takes at mosk + 1 different
yalues (including 0), and hence,can be well approximated
by a projectionP(z) with an appropriate macrotile subspace
model that satisfies difo\1) < K + 1.

For noise removal, we saw in (14) that a penalized macrot
search yields a riskz — Pg, (Z)||* that is of the same order as
the minimum risk

Risk i, = AiAneff{”x — Py(2)|® + CPUZ log, V#dim(/\/l)} . B. Local Cosine Macrotile Models

(15) For sound signals, the performance of the audio compression
The main issue is now to construct a family of macrotiles modet¢andard MPEG-2-AAC shows that most sounds can be well re-
which can guarantee that Rigk is small. We explain how to constructed from relatively few nonzero coefficients in a local
construct such a family from a dictionary of bases and segmea®sine basis. This means that one can construct local cosine

tations of these bases. macrotile models, of small dimension, that efficiently approxi-
Consider a dictionaryD = {B,}secz, Where each mate sound signals. This section constructs a family of macrotile
B, = {gfnhgmgzv is an orthonormal basis of¥. A models from a dictionary of local cosine bases, which will be

segmentatiorS = {I}1<k<x IS a partition of the integers used for noise removal.

in [1, N] into K disjoint integer setd}., each of which has a A local cosine basis divides an interval [0]] with win-
cardinal written[,f. The segmentatios applied to the basis dows of varying sizes, which are multiplied by cosine vectors
B, associates with each, a one-dimensional (1-D) macrotileof varying frequencies. Let/2 = a1 < a2 < --- < ap41 =
space W, generated by the sum vect@melk gt,. The N + 1/2 be half-integers that define a partition of [¥] in L
resultingmacrotile modekpaceM = @& W, contains all intervals. Let, = a,1—a,, andy < min, [, /2. One can con-
vectors ofCV, whose coefficients in the bas are constant struct for eaclp € [1, L] a regular windowy,[n] with support
over each macrotilég® },.c1, . One can easily verify that the [a, — 7, ap+1 + 7] such that the local cosine family

orthogonal projectionP,(Z) has decomposition coefficients

in B, that are equal to the average of the coefficients’ @i { ] = g, [n] 2 s [T n 1\n— al,]}
each macrotile: Ip,al™ = Ip L, 175 L 1<p<L,0<q<l,

. (18)
1 i i N

Pu(7) = il @, %) g% (16) is an orthonormal basis of"[11]-[13]. Each local co-
;If <Z n;k sine vector g, , has a support nearly localized in the
interval [a,, ap+1], and its Fourier transform has its en-

and hence ergy mostly localized in the intervdyr/l, , (¢ + 1)7/l,)].

Ko It can thus be represented by the Heisenberg rectangle
1PM@I? =3 | 3 (& ah)

mely

2
‘ a7 lap,aps1] x [gn/l,, (¢ + 1)7/1,] in a time-frequency plane.
k=1"k mel, This Heisenberg box is calledtde because the union of the

i i Heisenberg rectangles associated with a local cosine basis
Each modelM is characterized by a basl% and by the defines an exact tiling of the time—frequency plane. This is

segmenta‘giorﬁ of this k?aSiS to estimate the_ co_efficients_ Wiﬂ7II strated by Fig. 1, which displays the local cosine coeffi-
an averaging of the noisy ones. The penalization algorithm gbq of an audio recording[n]. Darker tiles correspond to
Section II-B that computes a best e_mp_|r|cal m_cm!gblfrom T high amplitude coefficientd(x, g, )|, whereas white tiles
thus amounts to f!ndlng a'best l:_)a5|s in the @cuonﬁryand coefficients|(z, g,.,)| that are neafly Zero.

a best segmentation of this basis. A macrotile algorithm cany yiticyit issue is to find a time partition that defines a local

therefore be interpreted as a *best basis” denoising algorithfysine pasis that is well adapted to an estimation problem.
Hovyever, as oppqsed_to other *best b§5|s” est|mat|_o_n algor'th'@aifman and Meyer [11], [13] have thus constructed a dyadic
[2], instead of estimating by thresholding the coefficients af dictionary of local cosine bases, which includes orthonormal

in a best basis, its coefficients are calculated with (16) using gses defined over partitions whose intervals have sizes which
adaptive averaging obtained by finding the best segmentatlorh% powers of 2. The dictionary is organized as a tree. For
the selecte_d basis. _ _ a, = pN277 +1/2 anda,+1 = (p+ 1)N277 +1/2, we

The family of macrotile models\t in F corresponds to a denote byy/ the window whose support [8, — 7, a,11 + 7]
choice of possible segmentatiosigpplied to the basds;, of the and byBi ﬂ’]’e corresponding family df, = N 2=J |ocal cosine
dictionaryD. To guarantee that Rigl, in (15) is small, there vectors P

must exist a modeM for which ||z — Py (z)|| and din{M)

are simultaneously small. This means that one can obtain an ] 2
approximation ofr from its projection in a spaca1 in F of B} = {gp,q,j [n] = g} [n] 9=IN
small dimension dirM). For a family F constructed from a , )
dictionary of orthonormal baseB, Pr(Z) is a signal whose cos {W (q n 1) n— p2—.JN - 5} } .
decomposition coefficients in the bads take only dinfM) 2 2-IN 0<q<N2—i
different values. An important particular case is whehas a '

large number of decomposition coefficientsf#p, which are The family of cosine vector$) is stored at the deptf and
close to zero and is thus well approximated by a partial sypositionp (from left to right) of a binary tree. The’2ocal co-
of only K vectors in3,. Such an approximation has decomposine familieng; at the deptty divide the interval [0,N] in 2’
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Fig. 1. (a) Recording of four notes played on a clarinet. (b) Tiling corresponding to the local cosine coeffi¢igntg, ,)|. The darker the grey level of the
tile, the larger the amplitude. (c) Macrotiles obtained by averaging the tiles over groups of varying sizes for each time interval.

overlapping intervals. The local cosine famiB at the root ~ Sound signals can include frequency tones that are localized
of the local cosine tree ha¥ local cosine vectors that coverover a time interval and have narrow frequency bandwidth.
the whole signal support. The maximum depth of this tree st B;’ = {gp,q,j}0<q<N27j be a local cosine family whose

. —J—=1 > . .
J = logy(N/(2n)) because) = miny, [,/2 = 27"7"N. There indow covers a time intervgb 2~/ N, (p+1)277 N], where
arethus/ N < N log, N local cosine vectors stored inthe treeghe signal has several narrow frequency tones. To efficiently
adm|SS|b'|e Subtl’ee, Whose n.O'deS haVe E'Ither Oor2 Chlldl’en. a%ension’ itis necessary to define a frequency Segmentation
b = {p. ji}1<i<z be the position and depth of theleaves of that uses narrow macrotiles in the neighborhood of the fre-

an admissible subtree. One can verify that the family quency tones to approximate them efficiently. Constructing
' a local cosine macrotile model is similar to finding a piece-
By, = {B}! h1<i<r (19) wise constant approximation of the local signal coefficients

(f, 9p.q.;) When the frequency indexvaries forp andj fixed.
is a local cosine basis @V [13]. It defines a particular segmen-For eachp, 7, we thus consider any possible grouping, which
tation of the interval [O/V] into windows of various sizes. corresponds to a piecewise constant sequence of THé/ 2
Remember that a family of macrotile modefsis defined local cosine coefficients. We will, however, impose that each
with a dictionary of base® and a set of admissible segmentamacrotile has a size which is a power of two. For a giyey,
tions. For a local cosine bast = {BJ! }1<;<z, we will con- a segmentation i, macrotile frequency intervals is thus
sider segmentations that are performed independently witldefined by a sequence of length= {2°* }; <1<k, , . Imposing

each faminBg; and that satisfy the refinement property (6). that each group has a number of elements that is a power of 2
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Fig. 2. (&) Music signaf. (b) Noisy signak’ = z + €. (c) Penalized macrotile estimatidry, (7) calculated with (21). (d) Representation of the time-frequency
macrotiles ofP, (7). The darkest macrotiles correspond to high energy coefficients.

has no asymptotic effect on the performance of the macrotilz Denoising With Fast Model Search

averaging and allows one to optimize this segmentation with &g now study the application of local cosine macrotiles to
fast CART algorithm [14]. A macrotile modelt is specified 5ise removal with a fastimplementation using the tree structure
by the indices of the local cosine ba#ils = {5]} }1<i< and ot |ocal cosine dictionaries. Given a noisy sigiiak= « + ¢,
the adaptive segmentatich for eachi; a best local cosine model is selected according to (13). Since
log, V# =~ log, N, this amounts to computing
M={j,p, Sihi<i<r (20) N
M = arg min {—||Pm(2)[]> + Cp 0” log Ndim(M)} .
Fig. 1 displays the representation &f\(z) for one such MeF (21)
macrotile model. This macrotile model is just an example andrig. 2 jllustrates this macrotile denoising for the music
is not optimal in any sense with respect to this signal. The grainal with four notes, which is shown in Fig. 1(a). Fig. 2(b)
level of each macrotile indicates the amplitude of the averageine signal contaminated by a white noise for an SNR of 0
inner product corresponding to a particular grouping of locgh, Fig. 2(c) gives the macrotile estimatidty, (7) calculated
cosine tiles. For a local cosine tree of depthe log, V, one yijth the macrotile denoising algorithm. The resulting SNR is 7
can verify that the toztal number of different macrotile modelgy, which corresponds to a gain of 7 db. Fig. 2(d) displays the
M is larger than 2/, but all these models are constructeghacrotiles in the time—frequency plane. The harmonics appear
from only a numbed’# of macrotiles, which satisfies as darker and more narrow macrotiles; the time—frequency
structures of the signal are clearly preserved. Two other experi-
(2J —1) N < V# < 2J N. ments were performed with the same original signal and other
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white noises corresponding to SNR of 6.5 db angl db; the Bgzﬁl located at the children nodes in the binary tree. Using
gains were, respectively, 6 and 8 db. The audio quality of tiiee additivity property (22) we easily verify that we have (23),
signal is considerably improved by this macrotile denoisinghown at the bottom of the page. At the leaves of a local co-
yet this example is only an illustration, and further refinementsne tree of deptly, the only possible choice 'LMI',{ = M]{*

in the models are needed to optimize the noise removal fsinceB]{ is the only basis available fdf}{. Using the aggrega-
music signals. It is shown in [7] that as for the asymptotic petion relation (23), the optimal model is computed by going up
formance, the macrotile denoising is equivalent to thresholditige tree along each branch, unt|I the root whep= CV. The

in the best basis. However, the macrotile denoising offers maessulting optimal model ig19 = M and is the model that min-

flexibility since it averages the coefficients instead of replacingnizes the cost ovet” . The overall computational complexity

the small ones with 0. of the algorithm is driven by the number of operations to com-
When the family of models is constructed from dictionariesute the models\t7* = (BJ, SJ) at all nodes of the tree.

of orthonormal bases having a tree structure, like a local cosineFor this purpose, we first compute theV local cosine co-
dictionary, the best penalized model is computed with a fast dyfficients of the noisy signaaig;[q] = (7, 9p,q,;) for all local
namic programming algorithm similar to the one of Coifmagosine vectorg; , ,, in the tree. With a fast lapped cosine trans-
and Wickerhauser [15], which takes advantage of the additivilyrm [12], this requireD(J N log, N) operations. Then, for
property of the penalization cost for partial models. A parti@ach; andp, we compute the segmentatng’j which yields a
model M is characterized by an orthonormal basSisf a sub- model M7* of minimum cost for local cosine famili. The

spaceV of CV, as opposed to a basis of the whole space, ang@st is calculated fromthy 27 Coeﬁ|c|ents{a1 [q]}
segmentatior$ of 5. The cost of this model is defined by associated wittB/
7.

~ . The optimal segmentatiorS? can be computed with
Cos{M) = —||Pu(2)||> + C, a2 log N dim(M , P

W) IPs@l p? 08 (M) O(277'N) operations with a CART algorithm [14]. In the
where||Pr((Z)||? is calculated with (17) by summing only thefollowing, we write CostS) as the cost of a partial macrotile
coefficients restricted to the bad#sof V. Let M; = (B, S;) model corresponding to a segmentatfof 53]. By definition,
andM, = (B, , S,) be two partial models whei®, andB3, are SJ is the segmentation that minimizes this cost To compute it,
two orthogonal families of vectors. One can define a new modA,‘B use a segmentation tree, which subdecomposes any segmen-
M = (B1UBy, S;US,), whereS; U S, is the segmentation of tation in partial segmentations whose cost are summed. At the
B = B; U B, obtained by segmenting; with S; andB, with levell of this segmentation tree, each node of index £ < 2!

1<q<N277

Ss. Clearly corresponds to segmentations of the groupNet™ = ? co-
efficients ai [q] for kN27'77 < ¢ < (k+ 1)N27'77. Let
Cos({M) = Cos{M;) + CostMy) . (22) Sk be the optlmal segmentation of this group, which yields

a partial model of minimum cost, which we write C@S).
Using this additive property in a tree dictionary, one can NOW o possible candidate is the segmentatiiii, where all

identify the model that minimizes the cost with the fast botto, efficients of the group are averaged into one macrotile whose
up strategy of Coifman and Wickerhauser [15]. average value is

To any node of the local cosine tree is associated a family

of Ioca[ cosine vector§g, which generates a vector spd@g}. L (k+1)N271=7
Let M be the optimal model oV} that minimizes Cogt\) a[k] = NI=I=7 Z a7 lql.
among all models\ defined by B, S), whereB is a local co- q=kN2—1=i+1

sine basis oVJ. One possible candidate is the moddg

(B2, S9), where the segmentatloﬁ; is adjusted to minimize
the cost associated with the ba§§ However, other models 'S
can also be considered by building other base‘s’pfrom the Cos(SF*) = — N 2717 | [k]?| + C, log N.

local cosine vectors located in the descendant nodes. The space

V;, can be decomposed into two orthogonal SUbSpabﬁgl Asin (23), using the additivity property of the cost function, one
andvg;rjl generated by the two local cosine familléﬁH and can verify that we have (24), shown at the bottom of the page. At

The cost of the partial model associated with this segmentation

i = LM _ if Cost(M}*) < Cos{M3,™) + CostMy, ) 23)
P MPFLU ML if CostMI*) > Cos(ME) + CostMi T )).
st 1S5 if Cost(S}") < Cos{(Sy;") + Cost Sy ) (24)
P SEuShL,, if Cost(SE) > CostSE) + CostSyL).
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the maximum deptti. = log, N — j of this tree, the only pos- their eigenvalues are constant over each macréiite} .cr, -
sible segmentation iS% = SE* because there is only one coeflet Py, be the orthogonal projection onto the vector spsige
ficient in each group. Using (24), a bottom-up strategy requirésapplies to signals it”. The orthogonal projectioﬁM(f) on
O(277 N) operations to comput§{, which is the optimal seg- the operator spac#1 is an operator that can be decomposed as
mentation associated to all coeﬁicier{‘@{,[q]}lqﬁvzﬁ, and alinear combination of the projectofs,, on each eigenspace

henceS;,' = SY. This segmentation definestZ*, and by defi- V. One can verify that the multiplicative factors are averages

nition of the diagonal coefficients df in the direction of vectors in
, V.
Cos{MJ*) = Cos(Sy). K
. . =y 4 ™b b
Since MJ* is computed withO(27/N) operations, the Pam(T) = kZ 7 < ZI <F9m79m>> Py, (26)
=1"k mely

optimal modelM model is obtained withO(.JJ N') operations
using (23). SinceJ < log, N, the penalization algorithm op- and since{ Py, }1<x<x is an orthonormal family of operators
timizing the model over adaptive segmentations thus requires

K
O(N (log, N)2?) operations. Note that the computational X 1 =~ 2
(N (log; N)°)  opera putaf 1Ps(O =3 7 | 3 aloat)
k=1

(27)

complexity of a thresholding estimator in a best local cosine
basis is of the same order because it is driven by the number
of operations to compute all the local cosine coefficients in thésing (3), we verify that each diagonal coefficient of the
dictionary [13]. empirical covariance matrix is calculated from the realizations

{¥r }1<r<r Of 7 with

mel;

[V. ESTIMATION OF COVARIANCE OF LOCALLY | B
STATIONARY PROCESSES ~b by L ~ b2
The study of the additive noise removal problem in Section Il| r=1

provides important ideas and algorithmic tools to apply the pe-The main difficulty is now to evaluate the resulting rigk —
nalized macrotile procedure to covariance estimation. The next, (T')|| depending on the properties of the procgisg. If the
section shows that a dictionary of macrotile models can also fictors{ ¢ 1,.,,,<x of B, are discrete Fourier vectors multi-
constructed with a segmentation of orthonormal bases, in whigfied by square windows that localize them over subintervals of
case, the search for a best macrotile model can be interpreteghasyy ‘then (28) can be interpreted as a simple periodogram.
a simultaneous estimation of an approximate Karhunen—Lo&ygction IV-B studies the application of local cosine bases com-
basis as well as the diagonal covariance coefficients in this bagjgted with smooth windows to estimate the spectrum of locally
The consistency and numerical performance of this estimatogigtionary processes.

studied for locally stationary processes. Let B; be the orthonormal basis corresponding to the selected

penalized modeM. The estimator’~ (') of T" is an operator

thatis diagonal ifB;; and whose eigenvalues have been averaged

To S_stlrr][ateltzhe covarlandté c:;abprotc es@[?] OJ S'ZEZ\( " in dim(ﬂ/l\) groups. The best basi$: can thus be interpreted
according to (12), we compute the best penalized mode as an approximate Karhunen—-Loéve basi§ ofvhich is opti-

2} mized to reduce the riskl" — PAAA(f)H. Within this basis, the
5

A. Macrotile Estimation of Covariance

— N A2 2
M = arg Al}llg}{— 1P (F)||2+CPE (10g V#) dim(M) segmentation is adapted to estimate the diagonal coefficients of
(25) TI' with an appropriate averaging of the empirical diagonal co-
whereP,, is an orthogonal projection in a spagé of opera- €fficients ofI'. Several approaches have already been studied
tors, and\ is an upper bound of the largest eigenvalu€ tiat to estimate covariance matrices by searching for an approxi-
we suppose knowa priori. We study the calculation and prop-mate Karhunen-Loéve basis [3], [4]. The macrotile algorithm
erties of such an estimator for a family of macrotile modgls improves over these approaches by simultaneously estimating
constructed from a dictionary of orthonormal bages: {3}, the basis and the diagonal covariance coefficients in this basis.
that are segmented with a strategy similar to the one used in SE@is provides better numerical estimations and leads to math-
tion 11I-A for the noise-removal problem. ematical consistency results, which could not be obtained with
A segmentatior = {I; }1<x<x makes a partition of [1V] the previous approaches. In the following, we evaluate both nu-
in K disjointinteger sets;, each of which has a cardinal writtenmerically and mathematically the efficiency of the macrotile pe-
]jf_ The segmentatiofi applied to the basiB;, associates with nalized estimator in the context of locally stationary processes.
eachl;, a 1-D macrotile spac®V, of operators. It is defined as ) )
the 1-D space of operators, which are diagonalizeijrand B- Locally Stationary Covariances
whose eigenvalues are the same fof{af}, },.<;, and equal to Intuitively, a locally stationary process can be locally approx-
zero for all other vectors df;. imated by stationary processes. Many different mathematical
Let us denote by, the subspace otV generated by the modeling of such processes have been proposed [3], [6], [16],
vectors{g®, }.ner, - A macrotile modelM = @k Wy isa [17], [19], but the derivation of consistent estimators of the
space of operators of dimensidh whose eigenspaces are theesulting covariance is still an open issue. A zero-mean process
{Vi}i<k<k. The basid3, diagonalizes the operatorsi and y[n| for n € Z is wide-sense stationary if its covariance
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v[n, m] = E{gy[n]y[m]} satisfiesy[n,m] = ¢[n — m]. The spectrumP[n,w] is a uniformly smooth function ab. An ap-
corresponding covariance operalors a convolution operator, propriate estimator of the power spectrum (eigenvalues) is thus
diagonalized in the Fourier basis, and whose eigenvalugistained by averaging uniformly in frequency the sample-mean

(power spectrum) are given by estimator of the diagonal covariance coefficients in a local co-
, sine basis. This corresponds to a particular family of admissible
P(w) = Z clrle™*T. segmentations of vectors in a local cosine basis.
T We saw in (19) that a local cosine basis can be written
If the process is not strictly stationary, we can still write th&, = {Bj}; }1<i<z, where eachB] regroups 2’N cosine
covariance vectors whose support (27 N —n, (p +1)277 N + 7).
Among these vectors, we choose segmentations that perform a
cln, 7] =~[n,n —7].. uniform averaging in frequency. This means that local cosine

. . . cqefficients in this interval are averaged along frequencies in
Priestley [6] and Martin and Flandrin [19] have proposed S'everc"jlgnsecutive groups of Zoefficients, where 2is a fixed length

deflr_utlons of locally statlonary processes by introducing atlm%;ith 1 < 2° < 277 N. Observe that this family of segmen-
varying power spectrum defined by

tations is more restrictive than the segmentations used in the
Pln,w] = Z cfn, 7] e local cosine macr(_)tile fgmily defined in Section III-B, which
were not necessarily uniform. The number of macrotile models

) ] is therefore smaller, but the total numbg of macrotiles
Itcan also be rewritten as the expected value of the Wigner-Villg mpined to construct these models is the same in both cases,

TEL

distribution of the procesg: andlog, V¥# is nearly equal tdog, N. .
B . Following (25), the best local cosine macrotild is calcu-
Pn,w]=E {Z ynlyn + 7] e‘“”} . lated by minimizing
TEZ

2

If the process is locally stationary, then one can expect thatost M) = —|| P (T)|> + C, A (logN)Zdim(M). (29)
P[n,w] has slow variations as a function of the position param- R
etern. If y also has a fast decorrelation, which meansdhatr]  £ach modelM is specified by a local cosine bad® and its
decays quickly when increases, theR[n, w] is a smooth func- segmentation. The norﬂhPM(lA“)H? is computed from the de-
tion along the frequency variahle This time-varying spectrum composition coefficients of each realizatigpin the basisB,
has been further studied in [16] and [17], as well as in [3], whe{gih (27) and (28). The minimization of this cost in a local co-
itis observed that if’[n, w] is nearly constant over the time—fre-sine dictionary is implemented with minor modifications of the
quency Heisenberg rectangle of a local cosine vector, then thst aigorithm described in Section I1I-C because it has the same
vector is nearly an eigenvector of the covariance opergtor additivity properties.
More precisely, if°[n, w] is approximatively equal to aconstant  The hest model is constructed from partial optimal models
b, 4 over the Heisenberg rectandle,, a,11] x [g7/l, , (¢ + M associated with the local cosine spad&salong the tree
1)m/l,] of alocal cosine vectay, ,[n] defined in (18), then  qdes, using the aggregation property (23). The only difficulty

is to construct the modeM/* where the segmentatiofy/ is

g, ~ P, . . L p . ; .
9p.qln] ».a Ip.a[1] adjusted to minimize the cost associated with the b&sis

In this case, the eigenvectors of the covariance can be apFor each realizatiofy, of the process, we first compute the
proximated by local cosine vectors and the eigenvalues akéV coefficients(y., g, 4,;) corresponding to all local cosine
given by the time-varying power spectrum. This shows th¥gctorsy; , , inthe tree depthy. With a fast lapped cosine trans-
the Karhunen—Loéve basis of a locally stationary process d@fim [12], for 12 realizations, we requir®(R J N log, N) op-
be approximated by an appropriate local cosine basis, wh@sations. Following (28), we then compute
vectors have a time—frequency localization adapted to the
variations of the time-varying power spectrum [3]. ) ~ R

ynap P Sl a;)[(I] = <F9p,q-,j ) 9p,q,j> = % Z |@\r79p,q,j>|2
C. Local Cosine Approximate Karhunen-Loeve r=1

Since the Karhunen-Loeve basis of a locally stationagith O(R .7 N') operations.

process can be approximated by a local cosine basis, one cafy, compute the Segmentatiag’ which minimizes the cost
estimate its covariance with a penalized macrotile algorithgysociated with the basy, is a much simpler operation than
that searches for a best macrotile model in a famfilycon- iy section I1I-C. Indeed, we are restricted to uniform segmen-
structed with a dictionary of local cosine bases. A fast algorithftions that average the 2N coefficientsa? [¢] by intervals of

P

is describgd to compute the re;ulting cova_riance estimator. 5 me size 2 for any1 < 2° < 277 N. The resulting averaged
To specify a family of macrotiles, we still need to choose .. tficients are

the set of all possible segmentations for each basis. This section

concentrates on locally stationary processes having a fast decor- (k+1)2°

relation, which means tha{n, 7| has a fast decay as a func- a k] = — Z az];[q] foro <k < (2—s—jN —1).

S

tion of 7, uniformly in n. In this case, the time-varying power q=k2e+1
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Fig. 3. (a) Diagonal coefficients of the covariaricén the ideal local cosine basis. (b) Macrotiles calculated by the penalized estimataRfeerf realizations.

With a standard dyadic averaging cascade by groups of 2, thiizs a smaller energy. Fig. 4(a) shows an example of unvoiced
calculated forald < s < log, N—jwithO(277 N) operations. speech recording including a succession of five sounds. When
The cost associated with the only modell, of dimensionk” =  listening to this signal, the intervals of stationarity are approx-
2 %N is imatively [0,800], [800,2800], [2800,5000], [5000,7300], and
[7300,8192]. Observe that the penalized macrotile estimation
K selects time windows that correspond approximatively to these
CostM,) = —2° Z | [K]]* + Cp (log N)?—. intervals. In particular, the twfe] sounds (phonetic writing)
k=1 are represented by similar macrotiles. Transient sounds such as
[p] are represented by macrotiles having a poor frequency local-
) Z ) , ization. Despite the relatively good performance of such an esti-
quiresO(2 V') operations. The total number of operations tg. i the fast decorrelation model is too restrictive for voiced
compute all models\;” in the tree is thUQ(Z\N)' With the speech signals which can include narrow frequency tones. This
aggregation property (23), the optimal modet is then also sgye is further addressed in Section IV-D.
computed withO(.J N') operations. The overall complexity of - The consistency of this macrotile estimation procedure has
the penalization algorithm is therefore dominated by the numhggen proved using a formal definition of locally stationary pro-
of operations to compute the local cosine coefficients of all rgasses that imposes conditions directly on the covarignce]
alizations, which i9)(R N (log, N)?), sinceJ < log, N. [4] as opposed to its time varying power-spectrum. The fact that
Fig. 3 illustrates this macrotiles covariance estimation with@,, -] does not vary too much along the time variablis im-
synthetic example. A locally stationary process is constructgésed by supposing theft:, 7] has a uniformly bounded varia-
by aggregating independent stationary processes over the infgfy whenn varies. This condition is satisfieddfn, 7] has reg-
vals [0,240], [240 340], [340740], [740970], [970,1024]. Le}jar variations as a function of or few isolated brutal transi-
I';; be the diagonal operator in a local cosine b#bishose di- tions. The fast decorrelation property of these processes imposes
agonal coefficients are equal to the diagonal coefficients.of 3 minimum decay rate ¢#[n, 7]| as a function of-. If 7 is a lo-
The ideal cosine basis is the one whgfgs — I'[| is minimum.  c4ly stationary Gaussian process that satisfies these conditions,

No macrotile averaging of coefficients was performed. The re-

sulting minimum error ig|T" — T'*/[|T[|> = 0.09. Fig. 3(b) Risknin= inf _{[lz — Pao¢()]|*+C) A* (logy N)* dim(M) }

represents the penalized macrotile estimﬁ}@{(l“) computed MeF

from R = 5 realizations of the procegs The risk is only twice can be bounded by [8]

above the ideal minimum riskT' — T ¢, [|3/|IT[| = 0.19. _ B
Speech signals are typical realizations of locally stationary RisKnin < Dy NTY

processes, and unvoiced speech signals have a fast decorrela- N Ry

tion. Their covariance can thus be estimated with the pena”Z\ﬁHereDl isa constant, and the expon@n} 2/5 depends On|y
macrotile algorithm. The problem is particularly difficult sincqpon the decay rate ofn, 7] as a function of-. Moreover, if
we have onlylz = 1 realization and do not use any parametrighe penalization constaft, is sufficiently large, independently

model. Before computing the macrotiles, a preprocessing ngf-N | then there exist®), > 0 and3 < 3 such that
malizes the average signal energy over intervals of 500 samples.

This improves the estimation in time domains where the signal T — PAA/I(IA“)H2 < Dy (log N)? Riskyin

==

Finding the modeMg;* that minimizes this cost overthus re-

(30)
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Fig. 4. (a) Unvoiced speech signal composefpdf[oe], [s], [ee], and[ch] sampled at 11 kHz. (b) Penalized macrotile estimator of the signal above calculated
with C,, = 5107*.

with a probability that tends to 1 wheN goes toco. When the optimal adaptive segmentation. The resulting fast algorithm
N increases, the rate of convergence given by (30) is alwagsjuiresO(N (log, N)?) operations to calculat8n.
better than what can be obtained with a linear estimator thatFig. 5 shows numerical results with a process constructed
does not adapt the basis to the specific process [8]. This lindgr aggregating independent stationary processes over the
strategy is most often implemented in a local cosine basis intervals [0,80], [80 180], [180430], [430 830], [830930], and
with a window Fourier transform, which decomposesig,in  [930,1024]. On each interval, the process is the sum of two
intervals of same size, chosen independently from the realihladependent stationary processes: one whose spectrum includes
tions of the process [20]. a narrow frequency spike and one whose spectrum is uniformly
regular. Fig. 5(a) shows one realization of this spliced process.
D. Estimation of Long-Range Locally Stationary Covariancefig. 5(b) shows the diagonal coefficientslofn the ideal local

The previous section has studied locally stationar rocesgé)?"?e basisB, wherel is best approx imated by a diagonal
P y yp trix T's: [T — T'5]]?/|IT|*> = 0.10. Fig. 5(d) represents the

that have a relatively fast decorrelation and whose time-varyi ) - ) ;

spectrum is therefore uniformly smooth as a function nallzed macrotile eSt'matdaﬂ(F) computed with (31):
frequency. The macrotile models of Section IV-B perform & — T'|I*/IIT> = 0.23. Note that the frequency spikes
uniform averaging in frequency, which is consistent with thigbserved in Fig. 5(b) are retrieved in Fig. 5(d); this is possible
smoothness. Some locally stationary processes may not satifgause the adaptive smoothing allows for macrotiles of very
this fast decorrelation property. This means the macrotiifferent sizes in the same time interval. At fixed timethe
segmentations of Section IV-B, which correspond to a uniforfiacrotile model produces a piecewise-constant approximation
averaging in frequency, must be replaced by more flexibf the true spectrum. Fig. 5(e) and (f) show that the frequency
segmentations, which allow nonuniform frequency averagifikes and the smoother parts are well approximated, given the
within each time interval. This is exactly what is performed b§mall number of realizations. To illustrate the importance of
the family of macrotile models of Section I1I-B, which are use¢he penalization, Fig. 5(c) represents the macrotile estimator

for noise removal in sounds P (I') computed from the sam& = 5 realizations for a
" 0 .. . . .
The macrotile covariance estimator is calculated by corReénalization constart,, = 0, which means that the choice of
puting the best model model is not penalized by its dimension. As a result, a model

of maximum dimension is chosen, namely many intervals of

— ) o 2 2 stationary and no averaging in frequency. The corresponding
M= arg}}g}{—HPM(F)H +0 5 (IOgN) dm(M)}' risk is much larger{T' — P (D)|3,/|[T ||} = 0.45.

(31) This penalized macrotile %Igorithm has also been tested on a
In this case, the family of local cosine macrotile mod€lsn-  voiced-speech recording shown in Fig. 6, which is composed of
cludes adaptive piecewise-constant segmentations in each tfive vowels. The number of realizations is, of course= 1.
interval. Therefore, the fast algorithm of Section 1V-B has to bEhe corresponding macrotile penalized estimator is shown in
modified when computing the optimal segmentati?@of the Fig. 6(b). The stationarity intervals can be distinguished and the
partial modelsM;* at each node of the local cosine tree. Sindearmonics are clearly retrieved. Small intervals at the borders
the dictionary is formally identical as the one used for the def different sounds in Fig. 6(b) are due to the dyadic nature of
noising problem, the same CART tree algorithm is used to firmimissible segmentations.
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Fig. 5. Piecewise stationary process of SKe= 1024. (a) One realization of the process. (b) Ideal diagonal covariance. (c) Macrotile estl?ﬁg\gocomputed

from R = 5 realizations with no penalizatior{, = 0). (d) Macrotile estimatofﬁ/1 computed with a penalization. (e), (f) Spectrum of the spliced process at
n = 300 andn = 700 are superimposed with the piecewise-constant estimations of the macrotile model in (d). The true spectrum is approximated by an estimator

using a very large number of realizations.
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Fig. 6. (a) Voiced speech signal composeddadf [ec], [i], [0], and[y] (phonetic writing), sampled at 5.5 kHz. (b) Penalized macrotile estimator of the signal
above calculated witl', = 105,

V. CONCLUSION so that

This paper introduces adaptive macrotile models to estimate =~ | 1 &
IVIVEDY < > lIPy, (@«)IIQ) Py,.

covariances of nonstationary processes. These models are = E R —
sele(_:ted with a per_1al|z§1t|on algorithm. Macrotile estlmauorwe use the orthogonality of the spadégs and the independence
provide general estimation procedures that apply to other pro

lems such as the removal of additive noise. For noise remova I,theR realizationsy,, r = 1., It to show that since =

macrotile estimations can be interpreted as a best basis denoising R

algorithm. This simpler problem is thus used as an introduction E{||Prm(@)*} =E{IPm(T) — Paa(D)|1*}

to better understand the properties of macrotile estimations. 1 &g B

An application to noise removal in sounds is presented with =% > I—#VW(HPW @7 (33)

macrotiles constructed with the local cosine dictionary. These k=1"k

macrotiles define a coarse pavement of the time—frequency plaffBerey is a Gaussian vector whose covariance matradmits

which is adapted to the signal time—frequency properties. A as a largest eigenvalue. For edche [1, K], Pv, () is a
The main result of the paper concerns the covariance &aussian random vector of dimensigfi. The eigenvalues of

timation of locally stationary processes. A fast algorithm i§s covariance are clearly smaller than or equal t&ewriting

presented to compute the penalized macrotile estimator witfin the Karhunen—Loeve basis of its covariance gives

O(N (log N)?) operations. For processes with a fast decorrela- I*

tion, the statistical consistency of this estimator has beeq proved 1Py, @) = Z 11 @7

[8], but not for complex processes whose spectrum include =1

narrow frequency spikes. Although the numerical experime%ere{@l}quf are independent Gaussian random variables

are encouraging, the proof of statistical consistency remainsc?fq/ariance 1, andu| < A for eachl. Therefore

open problem in this case. ’ . ' .
Ik Ik

APPENDIX Var(|| Py, @)I1*) = |ml* Var(@i) =2 > |m|* < 2\ I}
=1

=1
A. Proof of (8) (34)

We saw in (26) that

Combining (33) and (34) proves (8).
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