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Deconvolution by Thresholding
In Mirror Wavelet Bases

Jérbme Kalifa, Stéphane Mallat, and Bernard Rougé

Abstract—The deconvolution of signals is studied with thresh- choice of the orthonormal basis and the values of thresholds.
olding estimators that decompose signals in an orthonormal basis To suppress additive Gaussian white noise on piecewise regular
and threshold the resulting coefficients. A general criterion is es- signals, Donoho and Johnstone [10] have proved that a thresh-

tablished to choose the orthonormal basis in order to minimize the Iding i let basi ¢ fficiently the sh t .
estimation risk. Wavelet bases are highly sub-optimal to restore sig- olding In a wavelet basis restores efliciently the sharp transi-

nals and images blurred by a low-pass filter whose transfer func- tions and produces a nearly minimax risk over large classes of
tion vanishes at high frequencies. A new orthonormal basis called signals. These results have been extended to specific deconvolu-
mirror wavelet basiss constructed to minimize the risk for such de-  tion problems [11]. However, wavelet bases are not always well
convolutions. An application to the restoration of satellite images  gqanted to construct efficient thresholding estimators for decon-
is shown. . - o
volution problems. We thus establish a general criterion to adapt
Index Terms—Deconvolution, inverse problem, thresholding, the choice of basis to the properties of the deconvolution kernel
wavelet packets. and minimize the resulting risk.
Section Il introduces thresholding estimators in the context
l. INTRODUCTION of deconvolution problems, for signals of arbitrary dimension.
. . . . . . Lower and upper bounds of the resulting risk are calculated. To
N MANY imaging devices, th? diffraction of the op_t!cs I minimize the estimation risk, it is shown that the basis vectors
ates a blur and the electronics produce an additive noi
When the blur is uniform over the image, it can be modeled
a low-pass filtering. Inverting this degradation is a well know
ill-posed deconvolution problem, which requires using prior i

Fould have an energy sufficiently concentrated in the frequency
@Bmain. Applied to wavelet bases, this general result gives the
articular class of “mild” deconvolution problems studied by

i . . - . "Donoho [11], where these bases yield efficient thresholding esti-
formation on the signal and the noise to optimize the eSt'mat'%tors. However, when a one-dimensional signal is blurred by a

{.1]' This p_roblerrr: Is equivalent totthe r'er;:oval cif a ctol_or]:ad St?ﬁw-pass filter having a zero at high frequencies, Section 11l ex-
lonary noIS€, wnose power Spectrum IS huge at certain Wequigily g 1t jt s necessary to use a basis of vectors having a better
cles. T_he_mam d|ff|cu_|ty IS to restore the s_harp transitions a quency resolution than wavelets. This leads to the construc-
edges In images, which often requires using nonlinear estima, of a new type of bases, calledrror wavelet basesThresh-

tors [2], [3]. A classical approach to deconvolution is to ertEIding estimators in mirror wavelet bases are studied, with an

the estimation as a minimization problem that incorporates a mphasis on fast algorithms and applications. We prove in [12]

delity tgrm to the c')bse.rved dgta and an a priori measure t t the risk of mirror wavelet thresholding estimators is asymp-
regularizes the estimation. This approach can also be caste

B : Gimati hich minimi terior distributi oﬁ?ﬁally minimax for bounded variation signals.
a bayesian estimation which minimizes a posterior diStbUlion y s o \yayelet thresholding estimators are extended in two

computed from the observed data and the joint prior diStrinTmensions for the restoration of images blurred by low-pass

Flon ct)f tTe dS|gnf1I datnd thehn0|se [4]'hA I%r}gt:' b0d¥1 OIfI l'tetr?tutrﬁlters. Algorithms and numerical results on satellite images are
IS entirely devolted fo such approaches that we shafl not tur rEJ‘;TEfasented in Section IV. A thresholding estimator in such a basis

develop [5}-[9]. has been selected by the French spatial agency (Centre National

Don<_)ho and ‘_Johnstone [10] have introduced a different C! Etudes Spatiales, CNES) for the deconvolution of images ob-
of nonlinear estimators that decompose the observed data i Red by a new generation of satellites. This decision was the

tohrt honorm?rll bas!s "’T”]E’ thret.f,holdhthel(jret)s qung coeff;mgr.]ts.t Bsult of an extensive numerical comparison between competing
IS case, the prior information should be incorporated in rE}%convolution procedures developed by different French labo-

ratories, including different types of energy based minimization
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and by an additive random noi$E[n], which is assumed to be A. Thresholding Risk Versus Minimax Risk

wide-sense stationary, and, thus, we measure The goal of this paper is to optimize the thresholding esti-
_ mator given some prior information on the sigrfadnd on the
Yin] = fxuln] + Wln]. (1) noiselV. A stochastic prior model considefsas the realization

In the following, we shall use capital letters for random vectof @ stochastic process whose probability distribution is known.
as opposed to deterministic vectors. For simplicity, we assuii@wever, itis rare that we know the probability distribution of
periodic boundary conditions, which means that the convolutiGRMPlex signals such as images. Weaker but often more realistic
is circular and that the noisé [n] is circular stationary. The co- Models define a prior s& that includesf, without specifying
variance ofi¥ is therefore diagonalized by the discrete Fourig} Probability distribution in®. The more prior information the
basis. The filters and the power spectrum & are supposed Smaller the se®. For example, for images that do not include
to be knowna priori, through a calibration procedure. All con-fractal textures may correspond to the set of images whose
volutions are assumed to be circular convolutions in the pap&dges have an average length bounded by a given constant. Such
A naive deconvolution would consist in inverting directly thét model can be formalized by imposing an upper bound on the
filtering by . Let 7i[k] be the d-dimensional discrete Fouriefotal variation of the signal [12].
transform ofu, wherek = (ky, ks, ..., kq) is a d-dimensional ~ The expected risk ovéd cannot be computed because we do
frequency index. The pseudo-inverse filter! is defined by ~ Not know the probability distribution of signals &. To control
the risk for anyf € ©, a minimax approach tries to minimize
PURT ALk if u[k] #£0 the maximum risk. LefDY be an estimator of computed by
u [kl = {5[ ) if 4[k] =0 @ applying an operatoD to the original datd”. The maximum
X risk over® is
Arpying g (D,6) = sup B{IDY  f|1}.
X=Yxut= fre[n]+ W xu"'[n] 3) ee
The minimax riskis the lower bound computed over all opera-
where the filtetc = u x u~! projectsf over frequencies where tors D

ulk] does not vanish ©) ( )
Tmin(©) = inf r(D, ©).
D

ok = { 1, ifalk]#0 @)
0, ifufk]=0" For the thresholding estimator (5) appliedXo= Y x u~?,
Si S . . sd'nceB is an orthonormal basis the risk can be written
inceW is wide-sense circular stationary, the deconvolve
noiseZ[n] = W x u~![n] is also circular stationary. Its power r(f) =E{||f — DX ||*}
spectrum is related to the power spectriim [k] of W by N
= > E{(f.9m) = pr. (X.0)P} ()

Pylk] = Pywl[k] [~ [K]]*.

m=1

In the neighborhood of frequencids where 7i[k] vanishes, and the maximum risk ove® is r,(©) = supsce (f). The
a~[k] is huge so the power spectruRy[k] is considerably Maindifficulty is to choose the threshold, and the basis so
amplified. thatr;(0©) is as close as possible to the minimax rigk;, (0).

A thresholding estimator attenuates the amplified ndise ~T0 choose the thresholds, , we first recall the lower bound
by decomposingt = Y « »~! in an orthonormal basi = of the riskr;( f) established by Donoho and Johnstone [10], and
{gm }1<mena OF CN*, and by thresholding the resulting cothen give values of thresholds to nearly reach this lower bound.
efficients. Let(X, g.,) be the inner product ok with g,,,. A The thresholding estimator (5) belongs to a classliagonal

thresholding estimataF of f in B is defined as estimators
N?—1

Fi= " dn((X.9m)) 9m
m=0

N4
F=DX=7Y pr, (X.9m)) gm (5)

m=1
. ) . whered,,, is a decision function that sets to zero the coefficient
wherepr is a hard thresholding function that sets to zero a C?X gm) OF keeps its value as is. Le, = E{[(Z, gm)|?} be

efficient whose amplitude is beloW the variance of the noise in the directiongf. If f is known

v i o> T then one_can verify that the decision that minimizes the risk
o) ={ 11127 © B{|f - L) is
) (Xogm) I 1(fgm)| > om
We shall compute the risk with the Euclidean nornCof dn ({(X, gm)) = {0 it |(f,gm)| > om ©)
Nd

with an expected value calculated with respect to the probability . —EIf - F,2) = min(o2 . [(£, gm)?).
distribution of the noiséV’. o(f) = BUS = Fall™} mZ::l (Om: [{F:9m)1")
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In practice, f is not know so one cannot compute tbeacle B. Basis Choice for Deconvolution
decision(9), but it provides a lower bound for the risk of the \yg fyrther study the choice of basis to optimize a thresh-
thresholding estimator (5), calculated in (8) olding estimator for a deconvolution, and give a condition to

N—1 adapt the basis to the noise power spectrum. Applied to wavelet
re(f) = ra(f) =Y min(oZ,, [(f,gm)?)- bases, this condition specifies a limited class of “mild” decon-
m=0 volution problems where a wavelet thresholding estimator is

nearly optimal.

The Karhunen-Loéve energy compaction theorem [16]
roves that the basis that diagonalizes the covarianZe®the

asis that best concentrates the expected energy of a random
vector Z over any specified number of basis vectors. Since
Z = W % u~ ! is circular stationary, the Karhunen-Loéve basis

T — o J2l0s N (10) that diagonalizes its covariance is the discrete Fourier basis.
me o Be 21 The variance of the noise coefficients 4fin the Fourier basis

For a deconvolutions,,, may become much larger than the maxlS given by the power spectrum for each frequency inklex
imum amplitude that a signal coefficient can reach, in which Pwlkl et £

case we should systematically set the corresponding coefficient o2 = Py[k] = { O if ufk] # .

to 0. For signals i®, the maximum coefficient amplitude in the if ulk] =0
direction ofg,, is known a priori:ss[m] = supcg [(f, gm)|-
The threshold;,, is thus modified accordingly

It results that;(©) > sup e ra(f) = 74(0).

To guarantee that the thresholding riskf) is not too much
above the lower bound,(f), Donoho and Johnstone [10] asg
well as Johnstone and Silverman [15] choose a threshgld
proportional to the noise standard deviation

The Fourier basis is therefore optimal to concentrate the noise
energy, but if the signaf includes sharp transitions as it is often

T {am \/W: if o, \/W < sg[m] the case in images, then the Fourier basis does not concentrate
" oo, otherwise ) efficiently the energy off over few coefficients. It is therefore
(11) necessary to choose a different bddis {g,,, }1<.m<xn«, Which
Setting 7,, = oo guarantees thapr, (Xs[m]) = 0 if still concentrates efficiently the noise energy. This means that

om\/2log, N© > sg[m]. With this threshold definition, if the noise variances i should remain of the same order as the
W(n] and henceZ[n] are Gaussian random vectors then usingower spectrum values. In the directiongf, the variance of
the results of Donoho and Johnstone [10], we prove in [12] thatis related to its power spectrum and to the Fourier transform

d gm k] by
re(0) <1 (©) < 4(log, N+ 1) rq(0). (12)
1 ~
This guarantees that(©) remains of the order of the oracle T = Nd Z (G [K1[* Pz [K]. (14)
decision riskry(0). k
Now that the thresholds are chosen, itremains to optimize tiie S,, is the frequency support ofg,.[k], since
basis. Since (12) shows that the thresholding risk is of the same 4 >k |Gm [k]1? = ||gml||?> = 1 we derive from (14) that

order as4(0©), we optimize the basi8 by minimizing

min Pz[k] < 0%, < max Pz[k]. (15)
kESm kESm

N-1
ra(f) =Y min(ol,, [(f.gm)]?) forfeo.  (13)

m=0

The inequalities (15) may also remain valid for aSgtsmaller
than the frequency support 9f,[k] if g..[k] has a fast decay
Since B is orthonormal, we have an energy conservatiofutside this frequency set so that the sum in (14) is dominated
equation by the values oz [k] in S,,. We shall then say that,, has an
energyessentially concentratad S,,,. If there exists a constant

= ) such that
112 =" [(F, gm)? such ftha
m=0

max Pz[k] < X2 krgisn Pz[k] for1<m < N  (16)
which applied to the noise gives o o
N1 N1 then (15) implies that the noise variangg is of the same;)rder
2 _ 27 _ 2 as the power spectrum values foe S,,,, up to the facton”. If
BilZI"y = mXZ:O B(Z,gm)l"} = mz::O"m' W is a white noise of varianeg’ then Py [k] = 02 so Pz [k] =
o? [a=1[k]|?. The condition (16) is then equivalent to
However, depending upaB the energy of| f||? andE{||Z||*}
may be spread over few coefficients of large amplitudes or di- max [a[k]| < A min |a[k]] for1 < m < N<. @an
luted over many basis coefficients of small amplitudes. To min- FESm
imize (13), we need to concentrate the huge en&gy~||>} Wavelet bases concentrate efficiently the energy of piecewise
over very few vectorg,,, which produce coefficients,, much regular signals over few coefficients and are thus a priori good
larger than(f, g...)|, and among the remaining vectgrscon- candidates to restore such signals. The condition (16) shows we
centrate the energlf||> over few large coefficient$(f,g,)| must also guarantee that;[k] has a small relative variation

that are above the noise levsg). of the frequency support of each wavelet. For one-dimensional
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signals, a discrete wavelet orthonormal basis is constructed |
translatingNV' periodic discrete waveletg;[n] for each scale A
2 <1 v [kl
L+1
$jqln] = Pj[ln — N27q] foro<g<27. jC
k
The support ofp;[n] is proportional to 2 whereas its Fourier 0 NI6  N/8 N/4 N2

transformi;[k] has an energy essentially concentrated in thFe 1A let, has a Fourier transford, [4] wh _ dal
- . . . . 1g. 1. wavelet); has a Fourler transtorm; | £ whose energy Is essentia

frequency bandk| € [2777!,277], as illustrated in Fig. 1. At .- 2194 thgimervalp,l?w]’for_JlogZ N<j <%’_’ Y

the largest scale’2= 1, the wavelet is constant; o[n] = 1.

With an appropriate design of the discrete wavelet:][16],

the resulting family{v; }, _._, . _o-s is an orthonormal
basis ofCN  with I, — —10g2JN.7 =1 Digital measuring devices include a low-pass filter which

limits the frequency band of the analog input signal to an in-
terval [-wyp, wp] and sample uniformly the output at intervals
A = 7/wp, to avoid any aliasing. However, system imperfec-
Pylk] for2i <1. tions often produce a transfer fgnctiﬁ(w) that differs signifi-
cantly from a perfect low-pass filter equal to 1 ey, wo] and
(18) ' 0 outside. To reduce the aliasirigfw) must vanish attw, but
To simplify notations, in the following we write[k] ~ 8[k]  7(«) is generally continuous atw, and decreases to zero like
if there exists two constant$ and B of the order of 1 such that (|w| = |wo|)* for somep > 1. This progressive decay to zero
attenuates the highest signal frequencies in the neighborhood
VEk , Aalk] < B[k] < Balk]. of wo, and thus produces a blur relatively to the ideal signal that
would be obtained with a perfect low-pass filter. On the resulting
For a deconvolution problem with a white noi#é, the condi- sampled signal, for a sampling distancgu, renormalized to
tion (16) is equivalent to (17) which can be rewritten 1, this blur is equivalent to a convolution with a discrete filter
' u[n] whose transfer functiofi[k] has a zero of order > 1 at
max [alk]| < A min : [ulk]| for2’” <1.  the highest frequencly = +N/2, which we write

I1l. HYPERBOLIC DECONVOLUTIONS

Since|1./7j_q[k]|' = |$j[k]| which is essentially nonzero for
|k| € [27777,277], the condition (16) can be rewritten

max Py[k] < A2 min
k|€2=9—1,277] kl€2=i—1,271]

|kle[2=9—+,277] |kle[2=9—*,273

(19) . 2k |7
If [a[k]| has a rational growth which means that there exists a |ulk]| ~ ‘ﬁ -1 (21)
real exponeny (positive or negative) such that
To restore the highest frequencies, it is equivalent to estimating
N the ideal digital signa| from
Vi< < N falk] ~ kP (20 N 'doatdigtal sgnafly

Y[n] = fxu[n] + W[n]

then (L9) is satisfied fok ~ 2!. A wavelet basis thus concen-yhere/[n] is the additive noise of the measuring device. To
trates efficiently the noise energy. simplify the explanations, in the following, we shall suppose
Donoho [11] and Johnstone and Silverman [15] have studigight 1 is a white noise of variance?. Hence the power spec-
deconvolution problems where the transfer function satisfiggim p,[k] of the deconvolved noisg = W x »~! has a hy-
(20), in which case wavelet bases are well adapted to perfog@rholic growth when the frequenéyis in the neighborhood of
the thresholding estimation. For example, computing the d@—Nﬂ
crete derivative of a signal in presence of white noise can be
interpreted as a deconvolution problem, whefe] is an inte- 1 102 2 1112 5 | 2k
grator that inverts the finite difference operatofr.]This integratc{:Z (] = P [K] [a="[K]|” = o™ [u™ {RI[" ~ 07 )
satisfies (20) fory = —1, and Donoho [11] proved the minimax (22)
optimality of the resulting wavelet thresholding estimator overhis deconvolution problem is calledrgyperbolic deconvolu-
different classe® of piecewise regular signals. Tomographidion of orderp.
image reconstructions can also be interpreted as a deconvoSection Ill-A shows that a wavelet basis does not have
lution problem where. satisfies a rational growth condition€nough frequency resolution to obtain an efficient estimator for
and where wavelet bases thus provide efficient thresho|dihgperb0|ic deconvolutions. A mirror wavelet basis is obtained
estimators [11]. by modifying the wavelet basis at high frequencies in order to
If the transfer functiorii[k] vanishes then the deconvolutioradapt it to hyperbolic deconvolutions. The implementation and
is much more unstable than for filters satisfying (20), becausgmerical performance of thresholding estimators in mirror
[a—'[k]| has a very fast relative variation in the frequencyavelet bases is described in Section IlI-B.
neighborhood of its zeros. Next section shows that in this case,
wavelet bases are not well adapted to perform the deconvolutfon
and must be replaced by bases having a better frequencspection II-B explains that wavelet bases are a priori a good
resolution. candidate for the deconvolution of piecewise regular signals

Mirror Wavelets
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because they efficiently approximate such signals with few
nonzero coefficients, but they must also be well adapted to the
noise spectrum. The resulting condition (19) implies that

max||e[2-i-1 2-] [u[k]|

& min g (2-i-1,2-4] [U[k]|

should remain of the order of 1 at all scaleé 2 1. For
the low-pass filter (21), this is valid as long as 2 2N L.
However, at the finest scale 2 2L = 2 N—1, the transfer
function|u[k]| varies by a huge factor on the highest frequency
interval [N/4, N/2—1], with A1 ~ (N/2)?. It implies that
the finest scale waveletgr. 11 , do not have enough frequency

A
u

[ulk]]

resolution to efficiently concentrate the noise energy as a Fourier _//
basis would do. -
We now explain how to modify the wavelet basis to construct x X K X DL

a basis that is well adapted to concentrate both the signal and N
the noise energy. At scales < 2N 1, the fact that); is

of the order of 1 indicates that the wavelgts, have enough Fig. 2. A mirror wavelet basis is computed with a wavelet packet filter bank
frequency resolution, so we keep them as is. Over the hightieg, where each branch corresponds to a convolution with the indicated filter

; . _followed by a subsampling by a factor 2. The resulting wavelets, and
frequency interval 1N/4’ N/Z]’ it is however necessary 10 re mirror wavelets); ,, have a Fourier transform shown below. The inverse filter

place the finest scale wavelefgr 1 4[1]}1<4<n/2 DY NEW  |[G-1[1]| has a hyperbolic growth but varies by a relatively small factor on
vectors having a better frequency resolution. Y&, ; be the the frequency support of each mirror wavelet. There exists a cut-off frequency

space generated W/’L+1 }0< <N/2 The new vectors must k. above which the variance of the deconvolved noise is too large and the
. 41 0=g<IN/2: thresholding sets all coefficients to zero.

also define an orthonormal basis ¥, and hence must resholding sets all coetlicients fo zero

have Fourier transforms that cover the highest frequency in- ) )

terval [N/4, N/2]. To guarantee thati[k]| ~ |(2k/N) — 1|7 Let us first recall that discrete orthonormal wavelgtgn|

does not vary by a factor larger thah @ver the frequency sup- &€ obtained with a cascade of circular convolutions of two fi-

port of each vector, this support should typically be included ft€ impulse response conjugate mirror filtefs] andg[n][16].

an interval of the form/2 — 277 N/2—279""for0 > j > Their discrete Fourier transforms are given by

L + 1. But we also want to construct new vectors that are still L2

well adap_ted to approximgte efficiently piece_wise regul_ar sig- 1/7:[k] = G271k H ﬁppk] with2=" = N.  (24)

nals f. This means producing few large amplitude coefficients »0

at the location of sharp transitions. The new vectors must there-

fore have a spatial support as small as possible and hence afi@- a periodic signalf[n], the discrete wavelet coefficients

guency support as large as possible. A solution is to build a néwlg] = (f, ;) are computed with a fast filter bank algorithm

basis ofW ., composed of vectors having a Fourier transforthat requires) (V) operations. We initially setz[n] = f[n]

whose energy is spread as much as possible over each inteavsl defineg[n] = g[—n] andh[n] = h[-n]. Then, for any
[N/2—-279 N/2—27""for0>j > L+1,asillustrated L < j <0
in Fig. 2. _
Mirror waveletsare defined from the original wavelets by aj1q] = a;j xh[2q] andd;ii[q] = a;jxg[2q]  (25)
1/7]-7q[n] = (=1)"""4h; 4[1 = n]. (23) andd;[0] = ao[0]. The wavelet coefficientg are calculated
~ N with (25) at all scaled > 2/ > N~! with O(V) operations.
Their Fourier transforms satisfy; ., [k]| = [¢;,4[N/2 - k]|, The signak;[n] provides an “approximation” of at a scale 2
and thus have an energy mostly concentrated My2[ — Let ¢;[n] be the signal whose Fourier transform is

277 N/2 — 277711 as we wanted. We shall prove that the
family of translated mirror wavelets

{Bialnl = (1" 11 = 1}

is an orthonormal basis oW, by relating these mirror One can verify thati;[q] = (f[n], $;[n .—.ijLq])-
wavelets to the finest scale wavelets , ; ., with a wavelet ~ The N/2 finest scale wavelet coefficientk. ,1[q] carry the

packet decomposition [17]. As a result, adding the largest scighest frequencies of[n] essentially concentrated in the in-
wavelets to this family terval [N/4, N/2]. Mirror wavelet coefficients are obtained by

~ applying a fast mirror wavelet transformdg ;1 [¢]. This trans-
B = {'l,//j,(p I/Jj,q} form associates to an arbitrary initial sigfal, 1 [¢] a family of
L + 1 discrete signal$d, } o< j<1.+2 defined recursively by
defines an orthonormal basis &, called a mirrorwavelet B
basis djt1lq] = a; * g[2q] anda;y1[g] = a; * h[2¢]. (27)

j—L—-1
pilkl =TI b2kl (26)
p=0

L+2<5<1,0<q<277

0<g<2=7, L+2<5<1
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If we setarialg] = drialg], sincegln] = (=1)'""h[l — creases. Since the supportiof,[k] is essentially concentrated

n], one can derive from (25), (27) and (23) that the resulting the interval IN/2—277 N/2—2"7"1, we derive from (14)
coefficients are the mirror wavelet coefficients fof and (22) that
N

djlql = (f:1j.q)- 5]2_ ~ Py {_ _ 2—]} ~ o2 |N2j|2p.
Mirror wavelets are thus obtained from the finest scale or- 2
thonormal wavelets with a cascade of filtering and subsamplipgt s; = supseo |(f, ,[/;j’m” be the maximum amplitude of
with conjugate mirror filters, and are thus a particular instanfirror wavelet coefficients for signals in a $t According to
of orthonormal wavelet packet basis [17]. General results o) the thresholds are defined by
conjugate mirror filters and wavelet packets guarantee that this N L
filter bank algorithm defines an orthonormal basis of the space 7, — { oj2log. N, ifoj/2log. N<s; (33
W1 generated by the finest scale wavelets. Fig. 2 illustrates 00 otherwise
the filter bank algorithm that computes all wavelet and mirrag;, .5
wavelet coefficients withD (V') operations.

The inverse mirror mirror wavelet transform is computed wit
the inverse wavelet packet algorithm. Let us denote

7

; increases quickly when the scale increases, wHen 2
js above a critical scale"2ve haveT; = oo which sets to zero

Il mirror wavelet coefficients at this scale. The corresponding
mirror wavelets have their frequency support above a cut-off
o = [%] . if niseven frequencyk., as shown in Fig. 2.
&[n] = {0_ if nis odd (28) " The risk produced by the mirror wavelet thresholding es-
/ timator (31) can be reduced with several procedures which

Foranyl, + 1 < j < 0, the coefficientsi;[q] are computed ¢ rently ack of theoretical foundations, but bring significant

with improvements.
;lq) = @41 % glg] + ng * h[q). (29) * The hard thresholding functiqp}p define_d in_ (6) can be
replaced by a soft thresholding function introduced by
This reconstructs the finest scale wavelet coefficiénts, [¢] = Donoho and Johnstone [10]:

ar+1[q]- Then the signaf is reconstructed with the fast inverse

wavelet transform algorithm z=T, Te>T

pr(z) = o+ T, fz<-T . (34)
a;lg) = a1 % hlg] + dj1 *glgl for L<j <0, (30) 0,  iflzl<T
This inverse transform thus reconstrugi)] = ao[n] with This guarantees with a high pr_obability that the thr_esh-
O(N) operations. olded cogfﬁment_s have an qmpl|tude below the am_plltude
of the original signal coefficients. Hence, the estimated
B. Thresholding in a Mirror Wavelet Basis signal F' is at least as regular as the original one.

Choosing thresholdd’; and JN’J having an amplitude

Thi tion d ibes the impl tati f a thresholding .
1S SECHon describes e Impiementation ot a thresnolding smaller than the theoretical values (32) and (33) can

estimator in a mirror wavelet basis and gives numerical results. q h timati sk Th threshold th
Following the general definition (5), the thresholding estimator reduce the estimation nsk. 1hese thresnholds are thus

decomposes the deconvolved sigiak= Y « u=" in a mirror multiplied by a factor3 < 1, and for a soft thresholding

wavelet basis and thresholds its coefficients we ty'plcally. ha\(eﬁ Vv 210& N = 2. . . .
e The time origin is set arbitrarily, yet it defines the location

- 1oz of wavelets and mirror wavelets that are centered at points
F=DX = Z Z pr; (X, ¥5.q)) ijm 27¢. To remove a stationary noise, Coifman and Donoho
j=L+2 ¢=0 [18] showed that a thresholding estimator is improved with
1277 N - a translation invariant procedure which avoids this grid ar-
+ >y > 7, (<X7 ’l/fj,q>) Yjim-  (31) tifact. Let D, be the thresholding operator in the mirror
j=L+2 =0 wavelet basis. ThéV periodic signalX[n] is translated

The thresholds are proportional to the noise variance, as long X:[n] = X[n — 1] for 0 <7 < N.We compute a thresh-
as this one is not above the largest possible signal coefficient. ©lding estimationD; X; of each translated signal and per-
The variancer? = E{|(Z, ,,,)|*} does not depend upon the form an averaging after an inverse translation

position indexg and following (11) we set o N

T; = 0j\/2log, N. (32) F=x ; De Xiln +1] (35)
Sincelu[k]| ~ |(2k/N) — 1|, one can verify with (14) that? In wavelet and wavelet packet bases, which are partially
remains of the order of the variang of the white noisé¥ . In translation invariant, Coifman and Donoho [18] give a fast

most applicationss* is not too large so that the resulting thresh-  translation-invariant filter bank algorithm which requires

oldsT; are indeed below the maximum amplitude of wavelet ~ O(N log V) operations to computg'.

coefficients. ~ « The errorF — f can be considered as a residual noise, after
On the opposite, the variangg = E{|(7,1; ,)|*} of mirror the mirror wavelet thresholding estimation. This noise has

wavelet coefficients becomes very large when the schi@a-2 a power spectrum which is nearly flat at high frequencies,
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17 19,
20 16.5/ Linear estimation (p=1) Linear estimation (p=2)
18]

Thresholding estimation (p=1) -

10 2o 14 16 8 3o 12 long)w
(a) (b) (c)

Fig. 3. (a): Piecewise regular signal. (b,c): For the signal (a) sampled at inte/\¥lsf N o2 remains constant, the risk of an optimized linear deconvolution is
nearly constant. For a thresholding deconvolution in a mirror wavelet Bagisy. (f) decays linearly as a function bfg, N, with a slope that depends on the
degreep of the zeros ofi[k] atk = +NN/2.

as opposed to the original deconvolved ndise X — f. If W is a Gaussian white noise, we prove in [12] that a thresh-
This residual noise can be further reduced by thresholdindging in a mirror wavelet basis has a maximum risk that is
the coefficients of” over the finest scale waveletsg ;1 ,. asymptotically of the same order as the minimax risk aver

The resulting thresholding estimator is calculated with and much below the maximum risk obtained by any linear esti-

hard thresholding functiopy, mation [19].
_ N To see the evolution of the risk as a function of the signal
Fy= > (F.jq size, we definef[n] = f(n/N) for0 < n < N, wheref(z)
i>L+1,m is a bounded variation function defined over [0, 1]. Fig. 3(a)
N/2-1 gives an example. Observe that modifyiNgdoes not change

+ Z o), ((ﬁ,z/;,;ﬂ,q)) Yr+1,4- (36) the total variation| f||:,. The noise variance? is normalized
q=0 so thatE{||W||?} = N o? remains constant. Fig. 3(b)-(c) gives

. . _ the riskr = ||F — f||? for two hyperbolic deconvolution prob-
This removes some oscillations produced by mirror Wavel%%s, where the transfer functionsk] have respectively — 1

in the neighborhood of singularities. A soft thresholding aa?nd — 2 zeros al — +N/2. The top curves in Fig. 3(b)-(c)
a p = = . .

oppostﬁq toTz harld th;iihoLd'ng tr\]/voulhd agd sn uncties;r %r‘r}e the values of the deconvolution risk obtained with linear
smoothing. The value of the hard threshildis chosen to be estimators that are optimized in order to minimize the max-

proportional to the standard deviation of the finest scale imum risk over®. Since® is translation invariant and the noise

wavelet coefficients{(F :I/’L+1,q>}0 <q<N/2 calculated for s stationary, these estimators are also translation invariant and
f=0. B are therefore convolutions. We prove in [12] that this minimum
In summary, the restoration algorithm is decomposed in thigear risk remains nearly constant whahincreases, itV 2
following steps: remains constant. On the contrary, it is proved in [12] that the
risk r; of a mirror wavelet thresholding is such theg, () de-
1)Deconvolution: X =V «u-L. creases whelmg.,-2 N increases, yvith a slope eq_ualm/(2p +
2) For all 0<I<N, let Xi[n]=X[n—1I 1). The' numenqal_results of Fig. 3(b)-(c) verify close'ly these
a) Decomposition of X, in the mirror theorgtlcal pl’eFJICtIOHS. Indegzd, we observe that the risk of op-
wavelet basis B with the filter bank al- tlma! linear estimators remain nearly constant Wheregs the risk
gorithm of Fig. 2 . of mirror wavelet thresholding estimators decrease with a slope
b) Computation of D,X; by soft thresh- of —0.32 = —1/(2p + 1) for p = 1, and a slope 0f-0.18 ~
olding the mirror wavelet coefficients of —1/(2p+ 1) forp = 2.
X;.
3) Computation of the translation-in- IV. IMAGE DEBLURRING
variant estimator F=Q1/N)Yr s D Xin +1). The diffraction of the optics of a camera produces a blur that
4)Hard thresholding of the finest scale is equivalent to a low-pass filter that attenuates the highestimage
wavelet coefficients of F with  (36) . frequencies. Moreover, the electronics of the photo-receptors
add a noise, so we measure
With a fast implementation of the translation invariant loop, _
the overall complexity of this algorithm i©(N log N) for a Yina, no] = fxulna, na] + Wing, no] (37)
signal of sizeN. whereW [n1,ny] is typically a white noise of variance?. In-
Piecewise regular signals can be modeled as signals wh@gfing this degradation is particularly important for satellite im-
total variations are bounded by a constant ages, to optimize their resolution. In a satellite observation, the
N_1 exposition time of the photo-receptors cannot be reduced too

0= {f[”] Al =Y IfI] = fln = 1] < C}. much because the light intensity reaching the satellite is small
o and must not be dominated by electronic noises. The satellite
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movement thus produces another blur that is combined with thet %, . [n1,n2] = ¢%[n1 — 2" Fq1, no — 277 "¢5] and
diffraction of the optics [20]. Calibration procedures can com{[n,ns] = 1/N. The separable wavelet family
pute the system transfer functianand the noise variancg’.
The image Fig. 5(b) is a simulated satellite image provided by {1/;?. Vi gran Vigraer Voara
the French spatial agency (CNES). It is calculated from an air- AT TG T
plane image shown in Fig. 5(a) with the impulse response cali- N
brated on a new observatory satellite. is an orthonormal basis @, with L = —log, N.

In the following, we shall concentrate on the particular case Section 1I-B shows in (17) that a basis concentrates the

where the impulse response is a separable low-pass filter noise energy nearly as well as the Fourier basis, if over the
frequency support of each of its vectors the amplitude of the

}L<J’S1-, 0<q1,q2<277

u[ny, na] = ui[ng] uz[ne] (38) transfer function
and suppose that the discrete Fourier transforms, aind us (Al kol ~ 2%k . 2k | P2
have respectively a zero of order andp, at +N/2 12 N N
0[] ~ 2k " nd @ lls] ~ 2%k | has a relative variation bounded by a constathat is of the
1 N 22 N order of 1. At scales”2> 211, the lower frequency wavelets

This assumption is valid for many satellite systems. B L0 gl " 3
Fork = (k1, ko), the pseudo-inverse filter is defined like in =0 — {‘/’17 341,927 V5,q1,42° j,ql,qz}LHQSLOSQ,@QA’J‘

(2) and the deconvolved noigén; , ns] = Wxu~t[n1,ns] has )
a power spectrum have a Fourier transform mostly concentrated in the lower
frequency squard—N/4, N/4])?, where |ilki, ko]| remains
Pzlk1, ko] =Py [k, ko] [0 [k, k2]|? nearly constant. On the opposite, the remairg® /4 finer
o2 scale wavelets
@[k ]? [ [ko] |2 .
2 2k 1 —2n 2ko 1 —2p2 39 {Il/}LJrl,ql,qz [n17n2] :(/’L+1-,(11 [nl],l/JL+1,(lz [nQ]
TN T N (39) V7 4100 [0 12] =041, [01] PLs1,g, [02]

. . . 3
Section IV-A applies the results of Section I1-B to construct @ ¥Z+1,q,,¢. (71 72] =¥r41,¢: [1] Y1410 [712]}0<q1 2
mirror wavelet basis well adapted to perform such a hyperbolic - (41)
deconvolution on images. Numerical implementations and ex-

amples are given in Section IV-B. have a Fourier transform concentrated over high frequency

squares where eithék;| € [N/4, N/2] or |ko| € [N/4,N/2].
In these domaingi(k+, ko]| varies by huge factors. It is there-
To minimize the risk of a thresholding estimator, Section ll-Bore necessary to replace these finest scale wavelets by other
explains that the basis must be composed of vectors whigéctors that have a smaller frequency support inside which
concentrate efficiently the noise and the signal energy ovelk,, k]| varies by a factor of the order of 1. This was first
few coefficients. Since the noise is stationary, the ideal basisgserved by Rougé [20] who proposed to use wavelet packets
the two-dimensional discrete Fourier basis which diagonalizfs the deconvolution of images.
its covariance. However, a Fourier basis does not provide ansinceiifky, k2] = iy [k1] Ua[k2], wheret, [k] andiis[k] have
efficient representation of typical images that include edgeszero at the highest frequenky= +N/2, we use the results
Wavelet bases are particularly efficient to construct spargeSection Ill-A to construct a separable mirror wavelet basis
representations of images, hence their use in the JPEG-20ffich segments the horizontal and vertical frequency axes
compression standard. Like in one-dimension, a thresholdifgo intervals where these transfer functions vary by relatively
algorithm in a wavelet basis gives disastrous results forsgall factors. LeW?, ; be the space generated by g2 /4

hyperbolic deconvolution because the finest scale wavelets h@iviest scale wavelets (41). To construct a mirror wavelet basis

a Fourier transform that are not sufficiently well localized. Wef W%+1 we shall use the one-dimensional mirror wavelets

thus replace these fine scale wavelets with separable mir{pij[n] constructed in (23). Let us remind from Section lI-A
wavelets. o . that for one-dimensional signals, the finest scale wavelets
A separable wavelet basis 6f"" is constructed with sepa- {¥111,4[n]}1<4<n/2 and the one-dimensional mirror wavelets

rable products of discrete periodic scaling sigr@glslefined in (9 q[n]}L pe 1 oen i AT€ tWO orthonormal bases of the
i i iodi i ’ +2<;<1,0<q<
(26) and the corresponding discrete periodic wavgjalefined same spaceTJWe m(f';\y thus perform an orthogonal change of

i J
in (24). At each scale’2there are three wavelets basis by replacing the one-dimensional finest scale wavelets
1 _ _ that appear in (41) by the corresponding family of mirror
1/)]2 1, m2] =@l ¥;lne] wavelets. To simplify notations, we shall write the one-dimen-
Pjln1, no] =1;[na] ¢;ne] sional low-frequency scaling signal; 1 4[n] = ¥r41,4[n].
fz/z;?[nhnz] =1;[n1]¥;[nal. This orthogonal change of basis defines a new orthonormal

A. Separable Mirror Wavelet Bases
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Fig.4. Aninversefiltetu [k, k2]| is the product ofa —*[k1]| by |&—* k]|

which have a hyperbolic growth as shown by the curves on the top and on the
left. The separable mirror wavelets (42) segments the frequency fiare)

into rectangles over whidhi [k, k.]| varies by a relatively small factor. The
lower frequencies are covered by separable wavelgts, , k;], and the higher

frequencies are covered by separable mirror wavea,INx;tls{kl] sz[kz]. The
grey squares correspond to critical frequencies beyond which the thresholding
sets all coefficients to zero.

basis ofW? ., composed 08N?/4 separable mirror wavelets
defined by

Bl:{lzjl#h [nl] ijfm [ng]}

L41<j1,j2<1,0<q1 <2791 ,0<qa <232
(J1,92)#(L+1,L+1)
(42)

The unionB = By U By of low frequency wavelets and high
frecluency mirror wavelets is therefore an orthonormal basis of
CN". This two-dimensional mirror wavelet basis segments the
Fourier plane into rectangles illustrated in Fig. 4. It is a partic-
ular instance of anisotropic wavelet packet basis as defined in
[21], because these mirror wavelets have a rectangular support
that is generally not square.

The decomposition of images in a separable mirror wavelet
basis is computed with a filter bank algorithm which requires
O(N?) operations for an image d@f? pixels. Let us denote the
wavelet and mirror coefficients

d? [q17 QI] = (fa ﬁq] ,q2> anddj1 \J2 [QIv ql] = <f7 1/’9'1 21 1p]'27¢12>'
(43)
Let us first compute the two-dimensional wavelet transform.
We write a separable product of filtdkg[n, n2] = h[ni] g[ns].
We initiatea,[n1,n2] = f[n1,n2] and forL < j < 0 the fast
wavelet transform computes

d}+1 (91, ¢2] =a; * hg[2q1, 2]

(d)

2 L Fig.5. (a)Original airplane image. (b) Simulation of a satellite image provided
dj+1[q17 (12] =aj *gh[2q1, 2(]2] by the CNES PSNR = 27.6 db). (c) Deconvolution with a translation
a3 —a: % Gd20: 2 44 invariant thresholding in a mirror wavelet basi®{NR = 30.6 db).

il a2l =a; % 99[2q1, 2q2] (44) (d) Deconvolution calculated with a circular convolution optimized for satellite

and

aj1qr, g2] = aj * hh[2q1,2g5].

images PSNR = 29.8 db).

the rows and columns of the images of finest scale wavelet

coefficientsd¢ ,; for « = 1,2,3. The fast mirror wavelet
The mirror wavelet coefficients are calculated by applyintyansform is the filter bank algorithm (27) that associates to any
the fast one-dimensional mirror wavelet transform alongne-dimensional signaly1[q] of size N/2 a family of L + 1
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one-dimensional discrete signa{lfij [q]Yo<j<r42 Of Sizes 27,
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above which the thresholding algorithm sets all coefficients to

Applying the one-dimensional mirror wavelet transform alongero, removing the corresponding image highest frequencies.

each column of the wavelet coefficient imagg_ g1, ¢]

Like in one dimension, the risk of the thresholding estimator

divides each column intd + 1 one-dimensional signals of js reduced with several procedures.

sizes Z72 for 0 < j, < L + 2. One can verify that aggregating

together theses signals along thg2 columns yieldsL + 1
images of mirror wavelet coefficient§d 1, bo<j,<r+2

of 2772 rows and N/2 columns. Similarly, applying the
one-dimensional mirror wavelet transform along each row

of the wavelet coefficient imagd%ﬂ[gl,qz] yields L + 1
images of mirror wavelet coefficient§d;, r+1}o<j,<r+2 Of

277 columns andN/2 rows. Let us now apply the one-di-
mensional mirror wavelet transform along each row of the

wavelet coefficient imagd%+1[q17 go]. Ityields L + 1 images
{d?I,L+1}0§j1§L+2 of 277 columns andV/2 rows. For each

j1, applying the one-dimensional mirror wavelet transform

along each column of the imagz@hLH[qhqz] yields L + 1
images of mirror wavelet coefficient$d;, ;, }o<j,<r+2, Of

277 columns and 27 rows. This algorithm computes all

mirror wavelet coefficients witl) (N?) operations.

The original image is reconstructed from its mirror wavelet
coefficients by first computing the finest scale wavelet coeffi-
cientsdg ,, for « = 1,2,3 by inverting each one-dimensiona
mirror wavelet transform using the inverse algorithm define
in (29). Once all wavelet coefficients are calculated, the ima
fIn1,m2] is recovered with the fast separable two-dimension

inverse wavelet transform [16], which also requi@$N?)
operations.

B. Thresholding for Image Restoration

The thresholding estimation in the separable mirror wavel& t
basis is a direct extension of the one-dimensional mirror waveft
thresholding algorithm in Section I1I-B. It decomposes the d&f Orderp1 = p2
convolved signalX = Y x ™' in a separable mirror wavelet

basis and thresholds its coefficients.

OvertheN?/4 lower frequency wavelets?’ . ,the noiseZ
has a variance that is independent on the position ingex)
and which remains of the order of

030 = E{(Z, 45

2 2
J:fI17‘I2>| :

These variances are typically much below the maximum amp$-
tude of the signal wavelet coefficients, so according to (11) trgﬁz

resulting thresholds are

T']'7(1 =0jaV 210g8 N2,

For mirror wavelets, the noise variance is

(45)

&le,jz = E{|<Z7 ’L/}jl,(llez,qz>|2}'
For any set ©_ of images, we
Sji1.j2 = SUPfeo |<f7 'I/Jj1,(11’l/}]'2,(12>|' According to (11)! the

thresholds are

i]N’jl i = {5j13j2 V 2108;9 N27 if 841,72 < gjlst V 210g9 N2

0, otherwise.
(46)

¢ The thresholding of mirror wavelet coefficients is per-
formed with the soft thresholding function (34).

¢ The amplitudes of the thresholds (45) and (46) are reduced
by multiplying them with a factop < 1.

« A translation invariant estimation is implemented
like in (35) by translating the deconvolved image
Xll’b[’l’bl,’l’bg] = X[’I’Ll — ll,ng — 12], Computing the
thresholding estimation, making an inverse translation and
averaging theV?2 estimates for all translation parameters.
A fast filter bank implementation of the translation in-
variant procedure [18] requiré3( N2 log N) operations.

« The mirror wavelet thresholding estimatiéhcan include
fine scale oscillations produced by mirror wavelets in
the neighborhood of edges. Such oscillations are atten-
uated by hard thresholding on the wavelet coefficients
(F. %414, atthe finest scale’2™, for all positions
(q1,92) anda = 1,2,3.

The thresholding algorithm in the separable mirror wavelet
l&asis thus follows the same steps as the algorithm described
in. Section 1lI-B for one dimensional signals. It requires

%E(N2 log N) with the fast filter bank implementation of the

ﬁanslation invariant procedure [18].

Fig. 5(a) shows a small part of an airplane image, selected
by the CNES for its tests because it includes edges, oscillatory
structures and regions with a uniform grey level. The simulated
elliteimage isin Fig. 5(b). It was calculated by the CNES with
w-pass filter calibrated on one of its satellite, which has a zero
= 1 in both horizontal and vertical directions.
The level of electronic noise in the satellite camera corresponds
tol < o < 2, forimage grey levels between 0 and 256. Fig. 5(c)
gives the results of a deconvolution estimator calculated with a
thresholding in the mirror wavelet basis. This can be compared
with the linear estimation in Fig. 5(d), calculated with a circular
convolution estimator, and optimized to minimize the risk over
satellite images. The linear deconvolution sharpens the image
ut leaves a visible noise in the regular parts of the image.
he thresholding algorithm removes completely the noise in
ese regions while improving the restoration of edges and
oscillatory parts. This thresholding algorithm was benchmarked
as superior to all competing algorithms by photo-interpreters
of the French spatial agency (CNES) for the deconvolution of
satelliteimages. Deconvolution procedures minimizing different
energies including a regularization term [5], [6], [13], [22] as
well as thresholding algorithms in wavelet bases [14] have

compute pheen tested.

To check that the parameters of the mirror wavelet restora-
tion algorithm were not optimized for a specific type of image
or distortion operator, Fig. 6 shows the result for a different
image. The image is degraded by a convolution with a different
low-pass filter, and by the addition of a Gaussian white noise

Sinceg, j, increases when’? and 2* increase, we shall have of variances = 1. Once again, edges and high frequency tex-
Tj, ;, = oo when 2' or 27 are above critical scales. This de4ures are restored. The PSNR of the degraded image is 26.6 dB
fines critical frequencies illustrated by the gray area of Fig. #yhereas the PSNR of the restored image is 31.2 dB. These nu-
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Fig. 6. (@) Original image. (b) Degraded image by a low-pass filter and théll]

addition of a Gaussian white nois®§ NR = 26.6 db). (c) Restored image
with a translation invariant thresholding in a mirror wavelet baflS VR =
31.2 db).

merical results are supported by a mathematical study in [12]
that considers a sé& of images having a bounded total vari- [14]
ation. The images in Figs. 5(a) and 6(a) belong to such a s
0. For a hyperbolic deconvolution with a Gaussian white noise
W, we prove in [12] that a thresholding estimator in a separable

mirror wavelet basis produces a maximum risk o@ethat is
asymptotically equivalent to the minimax risk.

V. CONCLUSION

In presence of a stationary additive noise, a deconvolutiofi°]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 4, APRIL 2003

imize the estimation risk of a thresholding estimator. We show
that the basis must concentrate the noise energy and concentrate
the signal energy over few basis coefficients.

Many digital measuring devices produce discrete signals
whose frequencies are attenuated by a low-pass filter that van-
ishes at the highest frequencies. In this case, wavelet bases do
not have enough frequency resolution to restore the signal high
frequencies. For one-dimensional signals and images, mirror
wavelet bases are designed to optimize such a deconvolution,
with an application to the restoration of satellite images.
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