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Deconvolution by Thresholding
in Mirror Wavelet Bases
Jérôme Kalifa, Stéphane Mallat, and Bernard Rougé

Abstract—The deconvolution of signals is studied with thresh-
olding estimators that decompose signals in an orthonormal basis
and threshold the resulting coefficients. A general criterion is es-
tablished to choose the orthonormal basis in order to minimize the
estimation risk. Wavelet bases are highly sub-optimal to restore sig-
nals and images blurred by a low-pass filter whose transfer func-
tion vanishes at high frequencies. A new orthonormal basis called
mirror wavelet basisis constructed to minimize the risk for such de-
convolutions. An application to the restoration of satellite images
is shown.

Index Terms—Deconvolution, inverse problem, thresholding,
wavelet packets.

I. INTRODUCTION

I N MANY imaging devices, the diffraction of the optics cre-
ates a blur and the electronics produce an additive noise.

When the blur is uniform over the image, it can be modeled as
a low-pass filtering. Inverting this degradation is a well known
ill-posed deconvolution problem, which requires using prior in-
formation on the signal and the noise to optimize the estimation
[1]. This problem is equivalent to the removal of a colored sta-
tionary noise, whose power spectrum is huge at certain frequen-
cies. The main difficulty is to restore the sharp transitions and
edges in images, which often requires using nonlinear estima-
tors [2], [3]. A classical approach to deconvolution is to write
the estimation as a minimization problem that incorporates a fi-
delity term to the observed data and an a priori measure that
regularizes the estimation. This approach can also be casted as
a Bayesian estimation which minimizes a posterior distribution
computed from the observed data and the joint prior distribu-
tion of the signal and the noise [4]. A large body of literature
is entirely devoted to such approaches that we shall not further
develop [5]–[9].

Donoho and Johnstone [10] have introduced a different class
of nonlinear estimators that decompose the observed data in an
orthonormal basis and threshold the resulting coefficients. In
this case, the prior information should be incorporated in the
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choice of the orthonormal basis and the values of thresholds.
To suppress additive Gaussian white noise on piecewise regular
signals, Donoho and Johnstone [10] have proved that a thresh-
olding in a wavelet basis restores efficiently the sharp transi-
tions and produces a nearly minimax risk over large classes of
signals. These results have been extended to specific deconvolu-
tion problems [11]. However, wavelet bases are not always well
adapted to construct efficient thresholding estimators for decon-
volution problems. We thus establish a general criterion to adapt
the choice of basis to the properties of the deconvolution kernel
and minimize the resulting risk.

Section II introduces thresholding estimators in the context
of deconvolution problems, for signals of arbitrary dimension.
Lower and upper bounds of the resulting risk are calculated. To
minimize the estimation risk, it is shown that the basis vectors
should have an energy sufficiently concentrated in the frequency
domain. Applied to wavelet bases, this general result gives the
particular class of “mild” deconvolution problems studied by
Donoho [11], where these bases yield efficient thresholding esti-
mators. However, when a one-dimensional signal is blurred by a
low-pass filter having a zero at high frequencies, Section III ex-
plains that it is necessary to use a basis of vectors having a better
frequency resolution than wavelets. This leads to the construc-
tion of a new type of bases, calledmirror wavelet bases. Thresh-
olding estimators in mirror wavelet bases are studied, with an
emphasis on fast algorithms and applications. We prove in [12]
that the risk of mirror wavelet thresholding estimators is asymp-
totically minimax for bounded variation signals.

Mirror wavelet thresholding estimators are extended in two
dimensions for the restoration of images blurred by low-pass
filters. Algorithms and numerical results on satellite images are
presented in Section IV. A thresholding estimator in such a basis
has been selected by the French spatial agency (Centre National
d’Études Spatiales, CNES) for the deconvolution of images ob-
tained by a new generation of satellites. This decision was the
result of an extensive numerical comparison between competing
deconvolution procedures developed by different French labo-
ratories, including different types of energy based minimization
approaches [5], [6], [13] and thresholding algorithms in wavelet
bases [14].

II. THRESHOLDINGESTIMATORS FORDECONVOLUTION

This section reviews the properties of thresholding estimators
for the deconvolution of signals, and finds conditions to build
estimators that are close to minimax. The analysis applies to
-dimensional signals , with , of size

. The signal is degraded by a convolution with a filter
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and by an additive random noise , which is assumed to be
wide-sense stationary, and, thus, we measure

(1)

In the following, we shall use capital letters for random vectors
as opposed to deterministic vectors. For simplicity, we assume
periodic boundary conditions, which means that the convolution
is circular and that the noise is circular stationary. The co-
variance of is therefore diagonalized by the discrete Fourier
basis. The filter and the power spectrum of are supposed
to be knowna priori, through a calibration procedure. All con-
volutions are assumed to be circular convolutions in the paper.

A naive deconvolution would consist in inverting directly the
filtering by . Let be the d-dimensional discrete Fourier
transform of , where is a d-dimensional
frequency index. The pseudo-inverse filter is defined by

if

if
(2)

Applying gives

(3)

where the filter projects over frequencies where
does not vanish

if
if

(4)

Since is wide-sense circular stationary, the deconvolved
noise is also circular stationary. Its power
spectrum is related to the power spectrum of by

In the neighborhood of frequencies where vanishes,
is huge so the power spectrum is considerably

amplified.
A thresholding estimator attenuates the amplified noise

by decomposing in an orthonormal basis
of , and by thresholding the resulting co-

efficients. Let be the inner product of with . A
thresholding estimator of in is defined as

(5)

where is a hard thresholding function that sets to zero a co-
efficient whose amplitude is below

if
if

(6)

We shall compute the risk with the Euclidean norm of

(7)

with an expected value calculated with respect to the probability
distribution of the noise .

A. Thresholding Risk Versus Minimax Risk

The goal of this paper is to optimize the thresholding esti-
mator given some prior information on the signaland on the
noise . A stochastic prior model considersas the realization
of a stochastic process whose probability distribution is known.
However, it is rare that we know the probability distribution of
complex signals such as images. Weaker but often more realistic
models define a prior set that includes , without specifying
a probability distribution in . The more prior information the
smaller the set . For example, for images that do not include
fractal textures, may correspond to the set of images whose
edges have an average length bounded by a given constant. Such
a model can be formalized by imposing an upper bound on the
total variation of the signal [12].

The expected risk over cannot be computed because we do
not know the probability distribution of signals in. To control
the risk for any , a minimax approach tries to minimize
the maximum risk. Let be an estimator of computed by
applying an operator to the original data . The maximum
risk over is

Theminimax riskis the lower bound computed over all opera-
tors

For the thresholding estimator (5) applied to ,
since is an orthonormal basis the risk can be written

(8)

and the maximum risk over is . The
main difficulty is to choose the thresholds and the basis so
that is as close as possible to the minimax risk .

To choose the thresholds , we first recall the lower bound
of the risk established by Donoho and Johnstone [10], and
then give values of thresholds to nearly reach this lower bound.
The thresholding estimator (5) belongs to a class ofdiagonal
estimators

where is a decision function that sets to zero the coefficient
or keeps its value as is. Let be

the variance of the noise in the direction of . If is known
then one can verify that the decision that minimizes the risk

is

if
if

(9)

in which case



448 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 4, APRIL 2003

In practice, is not know so one cannot compute theoracle
decision(9), but it provides a lower bound for the risk of the
thresholding estimator (5), calculated in (8)

It results that .
To guarantee that the thresholding risk is not too much

above the lower bound , Donoho and Johnstone [10] as
well as Johnstone and Silverman [15] choose a threshold
proportional to the noise standard deviation

(10)

For a deconvolution, may become much larger than the max-
imum amplitude that a signal coefficient can reach, in which
case we should systematically set the corresponding coefficient
to 0. For signals in , the maximum coefficient amplitude in the
direction of is known a priori: .
The threshold is thus modified accordingly

if
otherwise

(11)
Setting guarantees that if

. With this threshold definition, if
and hence are Gaussian random vectors then using

the results of Donoho and Johnstone [10], we prove in [12] that

(12)

This guarantees that remains of the order of the oracle
decision risk .

Now that the thresholds are chosen, it remains to optimize the
basis. Since (12) shows that the thresholding risk is of the same
order as , we optimize the basis by minimizing

for (13)

Since is orthonormal, we have an energy conservation
equation

which applied to the noise gives

However, depending upon the energy of and
may be spread over few coefficients of large amplitudes or di-
luted over many basis coefficients of small amplitudes. To min-
imize (13), we need to concentrate the huge energy
over very few vectors which produce coefficients much
larger than , and among the remaining vectorscon-
centrate the energy over few large coefficients
that are above the noise level.

B. Basis Choice for Deconvolution

We further study the choice of basis to optimize a thresh-
olding estimator for a deconvolution, and give a condition to
adapt the basis to the noise power spectrum. Applied to wavelet
bases, this condition specifies a limited class of “mild” decon-
volution problems where a wavelet thresholding estimator is
nearly optimal.

The Karhunen-Loëve energy compaction theorem [16]
proves that the basis that diagonalizes the covariance ofis the
basis that best concentrates the expected energy of a random
vector over any specified number of basis vectors. Since

is circular stationary, the Karhunen-Loëve basis
that diagonalizes its covariance is the discrete Fourier basis.
The variance of the noise coefficients ofin the Fourier basis
is given by the power spectrum for each frequency index

if

if

The Fourier basis is therefore optimal to concentrate the noise
energy, but if the signal includes sharp transitions as it is often
the case in images, then the Fourier basis does not concentrate
efficiently the energy of over few coefficients. It is therefore
necessary to choose a different basis , which
still concentrates efficiently the noise energy. This means that
the noise variances in should remain of the same order as the
power spectrum values. In the direction of , the variance of

is related to its power spectrum and to the Fourier transform
by

(14)

If is the frequency support of , since
we derive from (14) that

(15)

The inequalities (15) may also remain valid for a setsmaller
than the frequency support of if has a fast decay
outside this frequency set so that the sum in (14) is dominated
by the values of in . We shall then say that has an
energyessentially concentratedin . If there exists a constant

such that

for (16)

then (15) implies that the noise variance is of the same order
as the power spectrum values for , up to the factor . If

is a white noise of variance then so
. The condition (16) is then equivalent to

for (17)

Wavelet bases concentrate efficiently the energy of piecewise
regular signals over few coefficients and are thus a priori good
candidates to restore such signals. The condition (16) shows we
must also guarantee that has a small relative variation
of the frequency support of each wavelet. For one-dimensional
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signals, a discrete wavelet orthonormal basis is constructed by
translating periodic discrete wavelets for each scale
2

for

The support of is proportional to 2 whereas its Fourier
transform has an energy essentially concentrated in the
frequency band 2 2 , as illustrated in Fig. 1. At
the largest scale 2 , the wavelet is constant .
With an appropriate design of the discrete wavelets [16],
the resulting family 2 is an orthonormal

basis of , with .
Since which is essentially nonzero for

2 2 , the condition (16) can be rewritten

for

(18)
To simplify notations, in the following we write

if there exists two constants and of the order of 1 such that

For a deconvolution problem with a white noise, the condi-
tion (16) is equivalent to (17) which can be rewritten

for

(19)
If has a rational growth which means that there exists a
real exponent (positive or negative) such that

(20)

then (19) is satisfied for 2 . A wavelet basis thus concen-
trates efficiently the noise energy.

Donoho [11] and Johnstone and Silverman [15] have studied
deconvolution problems where the transfer function satisfies
(20), in which case wavelet bases are well adapted to perform
the thresholding estimation. For example, computing the dis-
crete derivative of a signal in presence of white noise can be
interpreted as a deconvolution problem, where is an inte-
grator that inverts the finite difference operator. This integrator
satisfies (20) for , and Donoho [11] proved the minimax
optimality of the resulting wavelet thresholding estimator over
different classes of piecewise regular signals. Tomographic
image reconstructions can also be interpreted as a deconvo-
lution problem where satisfies a rational growth condition
and where wavelet bases thus provide efficient thresholding
estimators [11].

If the transfer function vanishes then the deconvolution
is much more unstable than for filters satisfying (20), because

has a very fast relative variation in the frequency
neighborhood of its zeros. Next section shows that in this case,
wavelet bases are not well adapted to perform the deconvolution
and must be replaced by bases having a better frequency
resolution.

Fig. 1. A wavelet has a Fourier transform [k] whose energy is essentially
concentrated in the interval [2 ; 2 ], for � log N < j < 0.

III. H YPERBOLIC DECONVOLUTIONS

Digital measuring devices include a low-pass filter which
limits the frequency band of the analog input signal to an in-
terval [ ] and sample uniformly the output at intervals

, to avoid any aliasing. However, system imperfec-
tions often produce a transfer function that differs signifi-
cantly from a perfect low-pass filter equal to 1 on [ ] and
0 outside. To reduce the aliasing, must vanish at but

is generally continuous at and decreases to zero like
for some . This progressive decay to zero

attenuates the highest signal frequencies in the neighborhood
of , and thus produces a blur relatively to the ideal signal that
would be obtained with a perfect low-pass filter. On the resulting
sampled signal, for a sampling distance renormalized to
1, this blur is equivalent to a convolution with a discrete filter

whose transfer function has a zero of order at
the highest frequency , which we write

(21)

To restore the highest frequencies, it is equivalent to estimating
the ideal digital signal from

where is the additive noise of the measuring device. To
simplify the explanations, in the following, we shall suppose
that is a white noise of variance . Hence the power spec-
trum of the deconvolved noise has a hy-
perbolic growth when the frequencyis in the neighborhood of

(22)
This deconvolution problem is called ahyperbolic deconvolu-
tion of order .

Section III-A shows that a wavelet basis does not have
enough frequency resolution to obtain an efficient estimator for
hyperbolic deconvolutions. A mirror wavelet basis is obtained
by modifying the wavelet basis at high frequencies in order to
adapt it to hyperbolic deconvolutions. The implementation and
numerical performance of thresholding estimators in mirror
wavelet bases is described in Section III-B.

A. Mirror Wavelets

Section II-B explains that wavelet bases are a priori a good
candidate for the deconvolution of piecewise regular signals
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because they efficiently approximate such signals with few
nonzero coefficients, but they must also be well adapted to the
noise spectrum. The resulting condition (19) implies that

should remain of the order of 1 at all scales 2 . For
the low-pass filter (21), this is valid as long as 2 .
However, at the finest scale 2 2 , the transfer
function varies by a huge factor on the highest frequency
interval [ ], with . It implies that
the finest scale wavelets do not have enough frequency
resolution to efficiently concentrate the noise energy as a Fourier
basis would do.

We now explain how to modify the wavelet basis to construct
a basis that is well adapted to concentrate both the signal and
the noise energy. At scales 2 , the fact that is
of the order of 1 indicates that the wavelets have enough
frequency resolution, so we keep them as is. Over the highest
frequency interval [ ], it is however necessary to re-
place the finest scale wavelets by new
vectors having a better frequency resolution. Let be the
space generated by . The new vectors must
also define an orthonormal basis of and hence must
have Fourier transforms that cover the highest frequency in-
terval [ ]. To guarantee that
does not vary by a factor larger than 2over the frequency sup-
port of each vector, this support should typically be included in
an interval of the form [ 2 2 ] for

. But we also want to construct new vectors that are still
well adapted to approximate efficiently piecewise regular sig-
nals . This means producing few large amplitude coefficients
at the location of sharp transitions. The new vectors must there-
fore have a spatial support as small as possible and hence a fre-
quency support as large as possible. A solution is to build a new
basis of composed of vectors having a Fourier transform
whose energy is spread as much as possible over each interval
[ 2 2 ] for , as illustrated
in Fig. 2.

Mirror waveletsare defined from the original wavelets by

(23)

Their Fourier transforms satisfy ,
and thus have an energy mostly concentrated in [
2 2 ] as we wanted. We shall prove that the
family of translated mirror wavelets

is an orthonormal basis of by relating these mirror
wavelets to the finest scale wavelets , with a wavelet
packet decomposition [17]. As a result, adding the largest scale
wavelets to this family

defines an orthonormal basis of , called a mirrorwavelet
basis.

Fig. 2. A mirror wavelet basis is computed with a wavelet packet filter bank
tree, where each branch corresponds to a convolution with the indicated filter
followed by a subsampling by a factor 2. The resulting wavelets and
mirror wavelets have a Fourier transform shown below. The inverse filter
ju [k]j has a hyperbolic growth but varies by a relatively small factor on
the frequency support of each mirror wavelet. There exists a cut-off frequency
k above which the variance of the deconvolved noise is too large and the
thresholding sets all coefficients to zero.

Let us first recall that discrete orthonormal wavelets
are obtained with a cascade of circular convolutions of two fi-
nite impulse response conjugate mirror filters and [16].
Their discrete Fourier transforms are given by

with (24)

For a periodic signal , the discrete wavelet coefficients
are computed with a fast filter bank algorithm

that requires operations. We initially set
and define and . Then, for any

and (25)

and . The wavelet coefficients are calculated
with (25) at all scales 2 with operations.
The signal provides an “approximation” of at a scale 2.
Let be the signal whose Fourier transform is

(26)

One can verify that 2 .
The finest scale wavelet coefficients carry the

highest frequencies of essentially concentrated in the in-
terval [ ]. Mirror wavelet coefficients are obtained by
applying a fast mirror wavelet transform to . This trans-
form associates to an arbitrary initial signal a family of

discrete signals defined recursively by

and (27)



KALIFA et al.: DECONVOLUTION BY THRESHOLDING IN MIRROR WAVELET BASES 451

If we set , since
, one can derive from (25), (27) and (23) that the resulting

coefficients are the mirror wavelet coefficients of

Mirror wavelets are thus obtained from the finest scale or-
thonormal wavelets with a cascade of filtering and subsampling
with conjugate mirror filters, and are thus a particular instance
of orthonormal wavelet packet basis [17]. General results on
conjugate mirror filters and wavelet packets guarantee that this
filter bank algorithm defines an orthonormal basis of the space

generated by the finest scale wavelets. Fig. 2 illustrates
the filter bank algorithm that computes all wavelet and mirror
wavelet coefficients with operations.

The inverse mirror mirror wavelet transform is computed with
the inverse wavelet packet algorithm. Let us denote

if is even
if is odd

(28)

For any , the coefficients are computed
with

(29)

This reconstructs the finest scale wavelet coefficients
. Then the signal is reconstructed with the fast inverse

wavelet transform algorithm

for (30)

This inverse transform thus reconstructs with
operations.

B. Thresholding in a Mirror Wavelet Basis

This section describes the implementation of a thresholding
estimator in a mirror wavelet basis and gives numerical results.
Following the general definition (5), the thresholding estimator
decomposes the deconvolved signal in a mirror
wavelet basis and thresholds its coefficients

(31)

The thresholds are proportional to the noise variance, as long
as this one is not above the largest possible signal coefficient.
The variance does not depend upon the
position index and following (11) we set

(32)

Since , one can verify with (14) that
remains of the order of the variance of the white noise . In
most applications, is not too large so that the resulting thresh-
olds are indeed below the maximum amplitude of wavelet
coefficients.

On the opposite, the variance of mirror
wavelet coefficients becomes very large when the scale 2in-

creases. Since the support of is essentially concentrated
in the interval [ 2 2 ], we derive from (14)
and (22) that

Let be the maximum amplitude of
mirror wavelet coefficients for signals in a set. According to
(11) the thresholds are defined by

if
otherwise

(33)

Since increases quickly when the scale increases, when 2
is above a critical scale 2we have which sets to zero
all mirror wavelet coefficients at this scale. The corresponding
mirror wavelets have their frequency support above a cut-off
frequency , as shown in Fig. 2.

The risk produced by the mirror wavelet thresholding es-
timator (31) can be reduced with several procedures which
currently lack of theoretical foundations, but bring significant
improvements.

• The hard thresholding function defined in (6) can be
replaced by a soft thresholding function introduced by
Donoho and Johnstone [10]:

if
if
if

(34)

This guarantees with a high probability that the thresh-
olded coefficients have an amplitude below the amplitude
of the original signal coefficients. Hence, the estimated
signal is at least as regular as the original one.

• Choosing thresholds and having an amplitude
smaller than the theoretical values (32) and (33) can
reduce the estimation risk. These thresholds are thus
multiplied by a factor , and for a soft thresholding
we typically have .

• The time origin is set arbitrarily, yet it defines the location
of wavelets and mirror wavelets that are centered at points
2 . To remove a stationary noise, Coifman and Donoho
[18] showed that a thresholding estimator is improved with
a translation invariant procedure which avoids this grid ar-
tifact. Let be the thresholding operator in the mirror
wavelet basis. The periodic signal is translated

for . We compute a thresh-
olding estimation of each translated signal and per-
form an averaging after an inverse translation

(35)

In wavelet and wavelet packet bases, which are partially
translation invariant, Coifman and Donoho [18] give a fast
translation-invariant filter bank algorithm which requires

operations to compute.
• The error can be considered as a residual noise, after

the mirror wavelet thresholding estimation. This noise has
a power spectrum which is nearly flat at high frequencies,
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Fig. 3. (a): Piecewise regular signal. (b,c): For the signal (a) sampled at intervals1=N , if N� remains constant, the risk of an optimized linear deconvolution is
nearly constant. For a thresholding deconvolution in a mirror wavelet basis,log r (f) decays linearly as a function oflog N , with a slope that depends on the
degreep of the zeros ofu[k] at k = �N=2.

as opposed to the original deconvolved noise .
This residual noise can be further reduced by thresholding
the coefficients of over the finest scale wavelets .
The resulting thresholding estimator is calculated with a
hard thresholding function

(36)

This removes some oscillations produced by mirror wavelets
in the neighborhood of singularities. A soft thresholding as
opposed to a hard thresholding would add an undesirable
smoothing. The value of the hard thresholdis chosen to be
proportional to the standard deviation of the finest scale
wavelet coefficients calculated for

.
In summary, the restoration algorithm is decomposed in the

following steps:

1)Deconvolution: .
2) For all , let

a) Decomposition of in the mirror
wavelet basis with the filter bank al-
gorithm of Fig. 2 .

b) Computation of by soft thresh-
olding the mirror wavelet coefficients of

.
3) Computation of the translation-in-
variant estimator .
4)Hard thresholding of the finest scale
wavelet coefficients of with (36) .

With a fast implementation of the translation invariant loop,
the overall complexity of this algorithm is for a
signal of size .

Piecewise regular signals can be modeled as signals whose
total variations are bounded by a constant:

If is a Gaussian white noise, we prove in [12] that a thresh-
olding in a mirror wavelet basis has a maximum risk that is
asymptotically of the same order as the minimax risk over,
and much below the maximum risk obtained by any linear esti-
mation [19].

To see the evolution of the risk as a function of the signal
size, we define for , where
is a bounded variation function defined over [0, 1]. Fig. 3(a)
gives an example. Observe that modifyingdoes not change
the total variation . The noise variance is normalized
so that remains constant. Fig. 3(b)-(c) gives
the risk for two hyperbolic deconvolution prob-
lems, where the transfer functions have respectively
and zeros at . The top curves in Fig. 3(b)-(c)
give the values of the deconvolution risk obtained with linear
estimators that are optimized in order to minimize the max-
imum risk over . Since is translation invariant and the noise
is stationary, these estimators are also translation invariant and
are therefore convolutions. We prove in [12] that this minimum
linear risk remains nearly constant whenincreases, if
remains constant. On the contrary, it is proved in [12] that the
risk of a mirror wavelet thresholding is such that de-
creases when increases, with a slope equal to

. The numerical results of Fig. 3(b)-(c) verify closely these
theoretical predictions. Indeed, we observe that the risk of op-
timal linear estimators remain nearly constant whereas the risk
of mirror wavelet thresholding estimators decrease with a slope
of for , and a slope of

for .

IV. I MAGE DEBLURRING

The diffraction of the optics of a camera produces a blur that
is equivalent to a low-pass filter that attenuates the highest image
frequencies. Moreover, the electronics of the photo-receptors
add a noise, so we measure

(37)

where is typically a white noise of variance . In-
verting this degradation is particularly important for satellite im-
ages, to optimize their resolution. In a satellite observation, the
exposition time of the photo-receptors cannot be reduced too
much because the light intensity reaching the satellite is small
and must not be dominated by electronic noises. The satellite
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movement thus produces another blur that is combined with the
diffraction of the optics [20]. Calibration procedures can com-
pute the system transfer functionand the noise variance .
The image Fig. 5(b) is a simulated satellite image provided by
the French spatial agency (CNES). It is calculated from an air-
plane image shown in Fig. 5(a) with the impulse response cali-
brated on a new observatory satellite.

In the following, we shall concentrate on the particular case
where the impulse response is a separable low-pass filter

(38)

and suppose that the discrete Fourier transforms ofand
have respectively a zero of order and at

and

This assumption is valid for many satellite systems.
For , the pseudo-inverse filter is defined like in

(2) and the deconvolved noise has
a power spectrum

(39)

Section IV-A applies the results of Section II-B to construct a
mirror wavelet basis well adapted to perform such a hyperbolic
deconvolution on images. Numerical implementations and ex-
amples are given in Section IV-B.

A. Separable Mirror Wavelet Bases

To minimize the risk of a thresholding estimator, Section II-B
explains that the basis must be composed of vectors which
concentrate efficiently the noise and the signal energy over
few coefficients. Since the noise is stationary, the ideal basis is
the two-dimensional discrete Fourier basis which diagonalizes
its covariance. However, a Fourier basis does not provide an
efficient representation of typical images that include edges.
Wavelet bases are particularly efficient to construct sparse
representations of images, hence their use in the JPEG-2000
compression standard. Like in one-dimension, a thresholding
algorithm in a wavelet basis gives disastrous results for a
hyperbolic deconvolution because the finest scale wavelets have
a Fourier transform that are not sufficiently well localized. We
thus replace these fine scale wavelets with separable mirror
wavelets.

A separable wavelet basis of is constructed with sepa-
rable products of discrete periodic scaling signalsdefined in
(26) and the corresponding discrete periodic waveletdefined
in (24). At each scale 2, there are three wavelets

Let 2 2 and
. The separable wavelet family

is an orthonormal basis of , with .
Section II-B shows in (17) that a basis concentrates the

noise energy nearly as well as the Fourier basis, if over the
frequency support of each of its vectors the amplitude of the
transfer function

has a relative variation bounded by a constantthat is of the
order of 1. At scales 2 2 , the lower frequency wavelets

(40)
have a Fourier transform mostly concentrated in the lower
frequency square , where remains
nearly constant. On the opposite, the remaining finer
scale wavelets

(41)

have a Fourier transform concentrated over high frequency
squares where either or .
In these domains varies by huge factors. It is there-
fore necessary to replace these finest scale wavelets by other
vectors that have a smaller frequency support inside which

varies by a factor of the order of 1. This was first
observed by Rougé [20] who proposed to use wavelet packets
for the deconvolution of images.

Since , where and have
a zero at the highest frequency , we use the results
of Section III-A to construct a separable mirror wavelet basis
which segments the horizontal and vertical frequency axes
into intervals where these transfer functions vary by relatively
small factors. Let be the space generated by the
finest scale wavelets (41). To construct a mirror wavelet basis
of we shall use the one-dimensional mirror wavelets

constructed in (23). Let us remind from Section III-A
that for one-dimensional signals, the finest scale wavelets

and the one-dimensional mirror wavelets

2 are two orthonormal bases of the
same space. We may thus perform an orthogonal change of
basis by replacing the one-dimensional finest scale wavelets
that appear in (41) by the corresponding family of mirror
wavelets. To simplify notations, we shall write the one-dimen-
sional low-frequency scaling signal .
This orthogonal change of basis defines a new orthonormal
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Fig. 4. An inverse filterju [k ; k ]j is the product ofju [k ]j by ju [k ]j
which have a hyperbolic growth as shown by the curves on the top and on the
left. The separable mirror wavelets (42) segments the frequency plane (k ; k )
into rectangles over whichju [k ; k ]j varies by a relatively small factor. The
lower frequencies are covered by separable wavelets [k ; k ], and the higher

frequencies are covered by separable mirror wavelets [k ] [k ]. The
grey squares correspond to critical frequencies beyond which the thresholding
sets all coefficients to zero.

basis of composed of separable mirror wavelets
defined by

(42)
The union of low frequency wavelets and high
frequency mirror wavelets is therefore an orthonormal basis of

. This two-dimensional mirror wavelet basis segments the
Fourier plane into rectangles illustrated in Fig. 4. It is a partic-
ular instance of anisotropic wavelet packet basis as defined in
[21], because these mirror wavelets have a rectangular support
that is generally not square.

The decomposition of images in a separable mirror wavelet
basis is computed with a filter bank algorithm which requires

operations for an image of pixels. Let us denote the
wavelet and mirror coefficients

and
(43)

Let us first compute the two-dimensional wavelet transform.
We write a separable product of filters .
We initiate and for the fast
wavelet transform computes

(44)

and

The mirror wavelet coefficients are calculated by applying
the fast one-dimensional mirror wavelet transform along

(a)

(b)

(c)

(d)

Fig. 5. (a) Original airplane image. (b) Simulation of a satellite image provided
by the CNES (PSNR = 27:6 db). (c) Deconvolution with a translation
invariant thresholding in a mirror wavelet basis (PSNR = 30:6 db).
(d) Deconvolution calculated with a circular convolution optimized for satellite
images (PSNR = 29:8 db).

the rows and columns of the images of finest scale wavelet
coefficients for ,2,3. The fast mirror wavelet
transform is the filter bank algorithm (27) that associates to any
one-dimensional signal of size a family of
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one-dimensional discrete signals of sizes 2 .
Applying the one-dimensional mirror wavelet transform along
each column of the wavelet coefficient image
divides each column into one-dimensional signals of
sizes 2 for . One can verify that aggregating
together theses signals along the columns yields
images of mirror wavelet coefficients
of 2 rows and columns. Similarly, applying the
one-dimensional mirror wavelet transform along each row
of the wavelet coefficient image yields
images of mirror wavelet coefficients of
2 columns and rows. Let us now apply the one-di-
mensional mirror wavelet transform along each row of the
wavelet coefficient image . It yields images

of 2 columns and rows. For each
, applying the one-dimensional mirror wavelet transform

along each column of the image yields

images of mirror wavelet coefficients , of
2 columns and 2 rows. This algorithm computes all
mirror wavelet coefficients with operations.

The original image is reconstructed from its mirror wavelet
coefficients by first computing the finest scale wavelet coeffi-
cients for ,2,3 by inverting each one-dimensional
mirror wavelet transform using the inverse algorithm defined
in (29). Once all wavelet coefficients are calculated, the image

is recovered with the fast separable two-dimensional
inverse wavelet transform [16], which also requires
operations.

B. Thresholding for Image Restoration

The thresholding estimation in the separable mirror wavelet
basis is a direct extension of the one-dimensional mirror wavelet
thresholding algorithm in Section III-B. It decomposes the de-
convolved signal in a separable mirror wavelet
basis and thresholds its coefficients.

Over the lower frequency wavelets , the noise
has a variance that is independent on the position index ()
and which remains of the order of

These variances are typically much below the maximum ampli-
tude of the signal wavelet coefficients, so according to (11) the
resulting thresholds are

(45)

For mirror wavelets, the noise variance is

For any set of images, we compute
. According to (11), the

thresholds are

if
otherwise.

(46)
Since increases when 2and 2 increase, we shall have

when 2 or 2 are above critical scales. This de-
fines critical frequencies illustrated by the gray area of Fig. 4,

above which the thresholding algorithm sets all coefficients to
zero, removing the corresponding image highest frequencies.

Like in one dimension, the risk of the thresholding estimator
is reduced with several procedures.

• The thresholding of mirror wavelet coefficients is per-
formed with the soft thresholding function (34).

• The amplitudes of the thresholds (45) and (46) are reduced
by multiplying them with a factor .

• A translation invariant estimation is implemented
like in (35) by translating the deconvolved image

, computing the
thresholding estimation, making an inverse translation and
averaging the estimates for all translation parameters.
A fast filter bank implementation of the translation in-
variant procedure [18] requires operations.

• The mirror wavelet thresholding estimationcan include
fine scale oscillations produced by mirror wavelets in
the neighborhood of edges. Such oscillations are atten-
uated by hard thresholding on the wavelet coefficients

at the finest scale 2 , for all positions
( ) and ,2,3.

The thresholding algorithm in the separable mirror wavelet
basis thus follows the same steps as the algorithm described
in Section III-B for one dimensional signals. It requires

with the fast filter bank implementation of the
translation invariant procedure [18].

Fig. 5(a) shows a small part of an airplane image, selected
by the CNES for its tests because it includes edges, oscillatory
structures and regions with a uniform grey level. The simulated
satellite image is in Fig. 5(b). It was calculated by the CNES with
a low-pass filter calibrated on one of its satellite, which has a zero
of order in both horizontal and vertical directions.
The level of electronic noise in the satellite camera corresponds
to , for image grey levels between 0 and 256. Fig. 5(c)
gives the results of a deconvolution estimator calculated with a
thresholding in the mirror wavelet basis. This can be compared
with the linear estimation in Fig. 5(d), calculated with a circular
convolution estimator, and optimized to minimize the risk over
satellite images. The linear deconvolution sharpens the image
but leaves a visible noise in the regular parts of the image.
The thresholding algorithm removes completely the noise in
these regions while improving the restoration of edges and
oscillatory parts. This thresholding algorithm was benchmarked
as superior to all competing algorithms by photo-interpreters
of the French spatial agency (CNES) for the deconvolution of
satellite images. Deconvolution proceduresminimizing different
energies including a regularization term [5], [6], [13], [22] as
well as thresholding algorithms in wavelet bases [14] have
been tested.

To check that the parameters of the mirror wavelet restora-
tion algorithm were not optimized for a specific type of image
or distortion operator, Fig. 6 shows the result for a different
image. The image is degraded by a convolution with a different
low-pass filter, and by the addition of a Gaussian white noise
of variance . Once again, edges and high frequency tex-
tures are restored. The PSNR of the degraded image is 26.6 dB
whereas the PSNR of the restored image is 31.2 dB. These nu-
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(a)

(b)

(c)

Fig. 6. (a) Original image. (b) Degraded image by a low-pass filter and the
addition of a Gaussian white noise (PSNR = 26:6 db). (c) Restored image
with a translation invariant thresholding in a mirror wavelet basis (PSNR =

31:2 db).

merical results are supported by a mathematical study in [12]
that considers a set of images having a bounded total vari-
ation. The images in Figs. 5(a) and 6(a) belong to such a set

. For a hyperbolic deconvolution with a Gaussian white noise
, we prove in [12] that a thresholding estimator in a separable

mirror wavelet basis produces a maximum risk overthat is
asymptotically equivalent to the minimax risk.

V. CONCLUSION

In presence of a stationary additive noise, a deconvolution
problem is equivalent to the removal of a colored stationary
noise whose power spectrum may be very large at certain fre-
quencies. Thresholding estimators decompose the noisy signal
in an orthonormal basis and threshold the resulting coefficients.
This paper studies the optimization of the basis in order to min-

imize the estimation risk of a thresholding estimator. We show
that the basis must concentrate the noise energy and concentrate
the signal energy over few basis coefficients.

Many digital measuring devices produce discrete signals
whose frequencies are attenuated by a low-pass filter that van-
ishes at the highest frequencies. In this case, wavelet bases do
not have enough frequency resolution to restore the signal high
frequencies. For one-dimensional signals and images, mirror
wavelet bases are designed to optimize such a deconvolution,
with an application to the restoration of satellite images.

ACKNOWLEDGMENT

The authors would like to thank J. Fraleu for helping them
implementing some of the algorithms.

REFERENCES

[1] M. Bertero, “Linear inverse and ill-posed problems,” inAdvances in
Electronics and Electron Physics. New York: Academic, 1989.

[2] D. Geman and G. Reynolds, “Constrained restoration and the recovery
of discontinuities,”IEEE Trans. Pattern Recognit. Machine Intell., vol.
14, pp. 367–383, Mar. 1992.

[3] C. A. Bouman and K. D. Sauer, “A generalized Gaussian image
model for edge-preserving,”IEEE Trans. Image Processing, vol. 2, pp.
296–310, July 1993.

[4] F. O’Sullivan, “A statistical perspective on ill-posed inverse problems,”
Statist. Sci., pp. 502–527, 1986.

[5] A. Chambolle and P. L. Lions, “Image recovery via total variation
minimization and related problems,”Numer. Math., vol. 76, no. 2, pp.
167–188, 1997.

[6] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deter-
ministic edge-preserving regularization in computed imaging,”IEEE
Trans. Image Processing, vol. 6, pp. 298–311, Feb. 1997.

[7] G. Demoment, “Image reconstruction and restoration: Overview of
common estimation structure and problems,”IEEE Trans. Acoust.,
Speech, Signal Processing, pp. 2024–2036, 1989.

[8] J. Idier, “Convex half-quadratic criteria and interacting auxilary vari-
ables for image restoration,”IEEE Trans. Image Processing, vol. 10,
pp. 1001–1009, July 2001.

[9] A. K. Katsaggelos, Ed.,Digital Image Restoration. New York:
Springer-Verlag, 1991.

[10] D. Donoho and I. Johnstone, “Ideal spatial adaptation via wavelet
shrinkage,”Biometrika, vol. 81, pp. 425–455, Dec. 1994.

[11] D. Donoho, “Nonlinear solution of linear inverse problems by wavelet-
vaguelette decompositions,”J. Appl. Comput. Harmon. Anal., vol. 2, no.
2, pp. 101–126, 1995.

[12] J. Kalifa and S. Mallat, “Thresholding estimators for linear inverse prob-
lems and deconvolutions,” Ann. Statist., 2002, to be published.

[13] C. Heinrich and G. Demoment, “Minimization of strictly convex func-
tions: An improved optimality test based on fenchel duality,”Inv. Probl.,
vol. 16, pp. 795–810, 2000.

[14] J. L. Starck and A. Bijaoui, “Filtering and deconvolution by the wavelet
transform,”Signal Process., vol. 35, pp. 195–211, 1994.

[15] I. M. Johnstone and B. W. Silverman,Wavelet Threshold Estimators for
Data With Correlated Noise. Stanford, CA: Dept. Statistics, Stanford
Univ., 1995.

[16] S. Mallat,A Wavelet Tour of Signal Processing, 2nd ed. New York:
Academic, 1999.

[17] R. R. Coifmanet al., “Wavelet analysis and signal processing,” in
Wavelets and their Applications, B. R. Ruskaiet al., Eds. Boston,
MA: Jones and Barlett, 1992, pp. 153–178.

[18] R. R. Coifman and D. Donoho, “Translation invariant denoising,” in
Wavelets and Statistics. New York: Springer-Verlag, 1995, p. 125.

[19] J. Kalifa, S. Mallat, and B. Rougé, “Minimax solution of inverse prob-
lems and deconvolution,”Proc. SPIE, pp. 42–57, July 1999.

[20] B. Rougé, “Théorie de la Chaine Image Optique et Restauration,” Ph.D.,
Université Paris-Dauphine, Paris, France, 1997.

[21] M. V. Wickerhauser,Adapted Wavelet Analysis from Theory to Soft-
ware. New York: Peters, 1994.

[22] L. Rudin and S. Osher, “Total variation based image restoration with free
local constraints,” inProc. IEEE ICIP, Nov 1994, pp. 31–35.



KALIFA et al.: DECONVOLUTION BY THRESHOLDING IN MIRROR WAVELET BASES 457

Jérôme Kalifa was born in Paris, France. He gradu-
ated from Université Dauphine, Paris, in 1995 and re-
ceived the Ph.D. in applied mathematics from Ecole
Polytechnique, Paris, in 1999.

He joined the Department of Biomedical Engi-
neering at Columbia University, New York, in 1999,
as a Postdoctoral Fellow. In 2001, he co-founded and
joined Let It Wave, a startup company based in Paris
and specialized in geometrical image processing.
His research interests include harmonic analysis,
inverse problems and nonparametric estimation in

signal processing, as well as medical and spatial image processing.

Stéphane Mallat was born in Paris, France. He
graduated from Ecole Polytechnique in 1984 and
from Ecole Nationale Supérieure des Télécommu-
nications, Paris, in 1985. He received the Ph.D.
degree in electrical engineering from the University
of Pennsylvania, Philadelphia, in 1988.

In 1988, he joined the Computer Science Depart-
ment of the Courant Institute of Mathematical Sci-
ences at New York University, became Associate Pro-
fessor in 1993, and is now a Research Professor. In
the fall of 1994, he was a Visiting Professor in the

Electrical Engineering Department at the Massachusetts Institute of Technology,
Cambridge, and in the spring of 1994 in the Applied Mathematics Department
at the University of Tel Aviv, Israel. Since 1995, he has been a Professor in the
Applied Mathematics Department at Ecole Polytechnique, Paris. His research
interest include computer vision, signal processing, and diverse applications of
wavelet transforms. He is the author of the bookA Wavelet Tour of Signal Pro-
cessing(New York: Academic, 1998).

Dr. Mallat received the 1990 IEEE Signal Processing Society’s paper award,
the 1993 Alfred Sloan fellowship in Mathematics, the 1997 Outstanding
Achievement Award from the SPIE Optical Engineering Society, and the 1997
Blaise Pascal Prize in applied mathematics, from the French Academy of
Sciences.

Bernard Rougé is a Researcher with CMLA, ENS
Cachan, Paris, France, and Centre National d’Etudes
Spatiales (French Space Agency). He works on
the acquisition chain of satellite images, which
includes problems such as sampling, restoration and
image matching. He leads a team of researchers and
engineers working on the design of future optical
instruments for European satellites.

Mr. Rougé is a member of GRETSI, ESIPCO, and
PSIP.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


