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Sparse Geometric Image Representations
With Bandelets

Erwan Le Pennec and Stéphane Mallat, Fellow, IEEE

Abstract—This paper introduces a new class of bases, called ban-
delet bases, which decompose the image along multiscale vectors
that are elongated in the direction of a geometric flow. This geo-
metric flow indicates directions in which the image gray levels have
regular variations. The image decomposition in a bandelet basis
is implemented with a fast subband-filtering algorithm. Bandelet
bases lead to optimal approximation rates for geometrically reg-
ular images. For image compression and noise removal applica-
tions, the geometric flow is optimized with fast algorithms so that
the resulting bandelet basis produces minimum distortion. Com-
parisons are made with wavelet image compression and noise-re-
moval algorithms.

Index Terms—Nonlinear filtering and enhancement (2-NFLT),
still image coding (1-STIL), wavelets and multiresolution pro-
cessing (2-WAVP).

I. INTRODUCTION

IMAGE representation in separable orthonormal bases, such
as wavelets, local cosine, or Fourier, cannot take advantage

of the geometrical regularity of image structures. Sharp image
transitions such as edges are expensive to represent, although
one could reduce their cost by taking into account the fact that
they often have a piecewise regular evolution across the image
support. Integrating the geometric regularity in the image repre-
sentation is, therefore, a key challenge to improve state of the art
applications to image compression, denoising, or inverse prob-
lems. By reviewing previous approaches, Section II-B explains
the difficulties to create stable and efficient geometric represen-
tations.

This paper introduces a new class of bases, with elongated
multiscale bandelet vectors, which are adapted to the image ge-
ometry. A bandelet basis is constructed from a geometric flow of
vectors, which indicate the local directions in which the image
gray levels have regular variations. In applications, this geo-
metric flow must be optimized to build bandelet bases that take
advantage of the image geometric regularity. To compress an
image with a transform code in a bandelet basis, we describe a
fast algorithm that computes the geometric flow by minimizing
the Lagrangian of the distortion rate. Thresholding estimator in
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bandelet bases are also studied for noise removal. A penalized
best basis search approach is used to optimize the geometric
flow with a fast algorithm.

Bandelet bases are obtained with a bandeletization of warped
wavelet bases, which takes advantage of the image regularity
along the geometric flow. Section III explains how to construct
such bases together with their geometric flow and Section IV
gives a fast subband filtering algorithm to decompose an image
in a discrete bandelet basis. Section V studies applications to
image compression and noise removal. In both cases, the geo-
metric flow is optimized with a fast algorithm, that requires

operations for an image of pixels. Numer-
ical results show that optimized bandelet bases improve signif-
icantly image compression and denoising results obtained with
wavelet bases. This paper concentrates on algorithms and ap-
plications, but mathematical proofs of asymptotic results can be
found in [1] and [2].

II. SPARSE IMAGE REPRESENTATIONS

Orthonormal bases are particularly convenient to construct
sparse signal approximations for applications such as image
compression or noise removal with thresholding estimators. An
image can be approximated in an orthonormal basis

by the partial sum

where is the index set of the largest inner products whose
amplitude are above a threshold

The resulting approximation error is

(1)

For compression applications, the inner products are not just
thresholded but quantized and coded. Yet, it has been shown in
[3] that for a uniform quantization of step , at high compres-
sion rates, the quadratic distortion is proportional to

and the total bit budget is proportional to . The dis-
tortion rate , thus, has an asymptotic decay that is the same
as the approximation error as a function of . The
efficiency of thresholding estimators that remove additive white
noises by representing the signal in the basis also depends
upon this approximation error [4]. For both applications, given
some prior information on the properties of , we, thus, want to
find a basis where converges quickly to zero when
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increases. This is the case if there exists a small constant
and a large exponent with

(2)

A. Nonlinear Image Approximations With Wavelets

Wavelet bases are particularly efficient to approximate im-
ages. A separable wavelet basis is constructed from a one-di-
mensional (1-D) wavelet and a scaling function

and

The resulting family of separable wavelets

(3)

is an orthonormal basis of [5], [6]. To construct a
basis over a subset of , one must keep the wavelets whose
support are inside and modify appropriately the ones whose
supports intersect the boundary of . Several approaches have
been developed to do so [7]–[9]. The orthogonality of the basis
is obtained with an orthogonalization procedure introduced by
Jaffard and Meyer [8]. With a slight abuse of notation, we shall
still write , , and

the modified wavelets at the boundary
even if they do not have this tensorial structure. The resulting
basis of can be written as follows:

(4)

where is an index set that depends upon the geometry of the
boundary of .

If the image is uniformly regular, which is mea-
sured by the fact that it is ( times continuously differen-
tiable) and if the wavelet has vanishing moments, then
one can prove [10] that there exists a constant such that the
approximation from wavelets satisfies

(5)

This decay exponent is optimal in the sense that no other ap-
proximation scheme can increase its value over the set of func-
tions that are [10]. However, wavelet bases are not the
only bases to achieve the optimal rate (5).

If is ( ) everywhere outside curves of finite length
along which it is discontinuous, then the discontinuities create
many fine scale wavelet coefficients of large amplitude. As a
result, the error decay (5) does not hold. However, one can still
prove that there exists a constant such that

(6)

This result extends to all bounded variation images, which are
characterized by the fact that their level set have a finite average
length [11]. Moreover, wavelet bases are optimal for bounded
variation images in the sense that there exists no basis that leads

Fig. 1. (a) Image which is C inside and outside a domain 
. (b) Adapted
triangulation that covers the boundary with narrow triangles.

to an approximation error (2) with a decay exponent over
all such functions [11].

Yet, this optimality result can be improved by observing that
the level sets of many images not only have a finite average
length but define regular geometric curves. Exploiting this
geometric regularity can improve the representation, as shown
by the following example. Let be a subset of whose
boundary is a piecewise curve, with a finite number
of corners, as illustrated in Fig. 1(a). Suppose that
is a function inside and outside , which is discontinuous
along . Let us construct a triangulation adapted to the image
geometry, as illustrated in Fig. 1(b). The boundary is cov-
ered with narrow triangles whose widths are , and the
inside and outside of are covered by large triangles so that
the total number of triangles is . One can define a piecewise
linear approximation over these triangles which satisfies
[12]

(7)

The decay rate exponent is better than the exponent
obtained in (6) with wavelets and is the same as the

optimal exponent (5) obtained for an image which is over
its whole support. Hence, the existence of discontinuities does
not degrade the asymptotic decay of this approximation.

This simple example shows that exploiting the geometric
image regularity can lead to much smaller approximation errors
for a fixed number of approximation elements . However,
adaptive triangulations are extremely hard to construct for
natural images which generally have a complex geometry [12].
Moreover, one would like to extend this result for regularity
indexes . If the boundary is a curve and if is
inside and outside then one would like to find a geometric
approximation from elements such that

(8)

We shall see that bandelet bases are able to achieve this optimal
decay rate.

B. Geometric Image Representations

The construction of geometric image representations is a very
active research area where many beautiful and innovative ideas
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have been tested. Summarizing the different approaches will
help understand the major difficulties.

In the computer vision community, Carlsson [13] proposed
in 1988 an edge-based image representation which measures
the image jumps across curves in the images, called edges. An
image approximation is then calculated by imposing the same
jumps along the edge and by computing values between edges
with a diffusion process. Many edge-based image representa-
tions have then been elaborated along similar ideas [14], [15],
with different edge-detection procedures and image approxi-
mations using jump models along these edges. To refine these
models, multiscale edge representations using wavelet maxima
[16] or an edge-adapted multiresolution [17] have also been
studied. Edge-based image representations with noncomplete
orthonormal families of foveal wavelets [18] or foot prints [19]
have been introduced and studied to reconstruct the main image
edge structures. To stabilize the edge detection, global opti-
mization procedures have also been elaborated by Donoho [20],
Shukla et al. [21] and Wakin et al. [22]. The optimal config-
uration of edges is then calculated with an image segmenta-
tion over dyadic squares using fast dynamic programming al-
gorithms over quad trees.

A major difficulty that faces all edge-based approaches is that
sharp image transitions often do not correspond to discontin-
uous jumps along edge curves. On one hand, the optical diffrac-
tion produces an averaging effect which blurs the gray-level
discontinuities along occlusion boundaries, and on the other
hand many sharp transitions are produced by texture variations
that are not aggregated along geometric curves. Currently, edge-
based algorithms do not seem to outperform separable orthog-
onal wavelet approximations on complex images such as Lena,
over the range of approximation errors where these algorithms
are used in applications.

All the approaches previously described are adaptive in the
sense that the representation is adapted to a geometry calculated
from the image. Surprisingly, a remarkable result of Candès and
Donoho [23] shows that one can construct a nonadaptive rep-
resentation that takes advantage of the image geometric regu-
larity by decomposing it in a fixed basis or frames of curvelets.
Curvelet families are composed of multiscale elongated and ro-
tated functions that defines bases or frames of . Candès
and Donoho [23] proved that that an approximation with
curvelets of an image having discontinuities (blurred or not)
along curves produces an error that satisfies

(9)

By comparing this to (8), we see that this approximation result
is nearly asymptotically optimal up to the factor. Do
and Vetterli [24] used similar ideas to construct contourlets that
can be computed with a perfect reconstruction filter bank proce-
dure. However, the beautiful simplicity due to the nonadaptivity
of curvelets has a cost: curvelet approximations loose their near
optimal properties when the image is composed of edges which
are not exactly piecewise . If edges are along irregular curves
of finite length (bounded variation functions), then curvelets ap-
proximations are not as precise as wavelet approximations. If
the edges are along curves whose regularity is with

then the approximation decay rate exponent remains 2 and does
not reach the optimal value .

In image processing applications, we generally do not know
in advance the geometric image regularity. It is, therefore, nec-
essary to find approximation schemes that can adapt themselves
to varying degrees of regularity. Our goal is, thus, to construct
an adaptive image approximation of , with parameters,
which satisfies an optimal decay rate

The parameter is a priori unknown and specifies the geometric
image regularity.

III. BANDELETS ALONG GEOMETRIC FLOWS

Instead of describing the image geometry through edges,
which are most often ill defined, we characterize the image
geometry with a geometric flow of vectors. These vectors give
the local directions in which the image has regular variations.
Orthogonal bandelet bases are constructed by dividing the
image support in regions inside which the geometric flow is
parallel. Section III-B relates the optimization of the geometric
flow to the precision of bandelet image approximations.

A. Block Bandelet Basis

This section describes the construction of a bandelet basis
from a wavelet basis that is warped along the geometric flow,
to take advantage of the image regularity along this flow. Con-
ditions are imposed on the geometric flow to obtain orthonormal
bandelet bases.

In a region , a geometric flow is a vector field
which gives a direction in which has regular variations in
the neighborhood of each . If the image inten-
sity is uniformly regular in the neighborhood of a point, then
this direction is not uniquely defined. Some form of global regu-
larity is, therefore, imposed on the flow to specify it uniquely. To
construct orthogonal bases with the resulting flow, a first regu-
larity condition imposes that the flow is either parallel vertically,
which means that , or parallel horizontally
and, hence, . To maintain enough flexibility,
this parallel condition is imposed within subregions of the
image support. The image support is, thus, partitioned into
regions , and within each the flow is either par-
allel horizontally or vertically. Fig. 2(a) shows an example of a
vertically parallel geometric flow in a region of a real image. If
the image intensity is uniformly regular over a whole region

then a geometric flow is meaningless and is, therefore, not
defined.

Fig. 2(b) gives an example where the image is partitioned into
square regions that are small enough so that each region in-
cludes at most one contour. As a result, the size of the squares
becomes smaller in the neighborhood of corners and junctions,
up to a minimum size. In a region that does not include any
contour, the image intensity is uniformly regular and the flow
is, therefore, not defined. In each region including a contour
piece, the flow is chosen to be parallel to the tangents of the
contour curve, so that the contour corresponds to a line of flow.
Bandelets are constructed in these regions by warping separable
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Fig. 2. (a) Example of flow in a region. Each arrow is a flow vector ~�(x ; x ). (b) Example of an adapted dyadic squares segmentation of an image and its
geometric flow.

wavelet bases so that they follow the lines of flow, and by ap-
plying a bandeletization procedure that takes advantage of the
image regularity along the geometric flow. The next section ex-
plains how to optimize this image segmentation and compute
the flow over each region.

If there is no geometric flow over a region , which indicates
that the image restriction to has an isotropic regularity, then
this restriction is approximated in the separable wavelet basis (4)
of . If a geometric flow is calculated in , this wavelet
basis is replaced by a bandelet basis. We first explain how to
construct the bandelet basis when the flow is parallel in the ver-
tical direction: . We normalize the flow vec-
tors so that it can be written . Let

. A flow line is defined as an integral curve
of the flow, whose tangents are parallel to . Since the flow
is parallel vertically, a flow line associated to a fixed translation
parameter is a set of point for
varying, with

By construction of the flow, the image gray level has regular
variations along these flow lines, and hence the warped image

is regular along the horizontal lines for fixed and varying.
As a consequence, if is a wavelet having several
vanishing moments along for each fixed, then the inner
product

(10)

has a small amplitude. The warping operator is an orthogonal
operator since its adjoint is equal to its inverse

Let us write . Since
, (10) suggests decomposing over a family of

warped wavelets obtained by applying to each wavelet of
an orthonormal basis of

(11)

Since is orthogonal, this yields a warped wavelet or-
thonormal basis of

(12)

As explained, the regularity of along the flow lines
implies that a warped wavelet coefficient is
small if has vanishing moments along for each

. This is valid for and
also for because the 1-D
wavelet has several vanishing moments, but not for

because the scaling function
has no vanishing moment. It is, therefore, necessary to re-

place the family of orthogonal scaling functions
by an equivalent family of orthonormal functions, that have
vanishing moments.

We know that the collection of scaling function
is an orthonormal basis of a multiresolution

space which also admits an orthonormal basis of wavelets
[5]. This suggests replacing the orthog-

onal family by the family
which generates the same

space. This is called a bandeletization. We shall see that it is
implemented with a simple discrete wavelet transform. The
functions are called bandelets because
their support is parallel to the flow lines and is more elongated
( ) in the direction of the geometric flow. Inserting these
bandelets in the warped wavelet basis (12) yields a bandelet
orthonormal basis of

(13)

If the geometric flow in is parallel in the horizontal direc-
tion, meaning that

then the same construction applies by inverting the roles of the
variables and . Let and

. A warped wavelet basis is constructed
from a wavelet basis of
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Fig. 3. Example of dyadic square image segmentation. Each leaf of the corresponding quad tree corresponds to a square region having the same index number.

and is defined by

(14)

The bandeletization replaces each family of scaling functions
by a family of orthonormal wavelets that gen-

erates the same space. The resulting bandelet orthonormal basis
of is

(15)

Given a partition of the image support with the
corresponding geometric flow, this strategy defines a bandelet or
wavelet (if there is no flow) orthonormal basis in each .
The union of these bases is a block orthonormal basis of
[2]. The orthogonality of the wavelet and bandelet bases can also
be relaxed. If the 1-D wavelet and the scaling function yield
a biorthogonal wavelet basis [25] then the same construction
defines a biorthogonal bandelet basis of each [1].

B. Optimized Geometry for Approximations

A major difficulty is to compute an appropriate image geom-
etry. For image approximation, the best geometry is the one that
leads to an approximation from parameters that mini-
mizes the approximation error . In a bandelet represen-
tation, the parameters include the bandelet coefficients that
are used to compute as well as the parameters that specify
the image partition and the geometric flow in each region.

To represent the image partition with few parameters, and to
be able to compute an optimal partition with a fast algorithm,
we restrict ourselves to partitions in squares of varying dyadic
sizes. A dyadic square image segmentation is obtained by suc-
cessive subdivisions of square regions into four squares of twice
smaller width. For a square image support of width , a square
region of width is represented by a node at the depth of
a quad tree. A square subdivided into four smaller squares cor-
responds to a node having four children in the quad tree. Fig. 3
gives an example of a dyadic square image segmentation with
the corresponding quad tree.

In each region, of the segmentation, one must decide if
there should be a geometric flow, if this flow should be parallel
in the horizontal or in the vertical direction, and the exact value
of this flow. The flow can be written if

it is parallel in the vertical direction and
if it is parallel in the horizontal direction. To represent such
flows with few parameters, is calculated as an expansion
over translated B-spline functions dilated by a scale factor .
A B-spline of degree is obtained by convolving the indi-
cator function with itself times [26]. Over a square

of width , the flow at a scale is characterized by co-
efficients

(16)

The scale parameter is adjusted through a global optimization
of the geometry.

Let be the total number of geometric parameters that
specify an image partition and a B-spline flow in
each region . These parameters define a block bandelet
basis constructed over this partition. For a threshold , a ban-
delet approximation is reconstructed from the bandelet
coefficients above , and the total number of parameters is

Optimizing this approximation means finding a bandelet basis
that minimizes for a fixed number of parameters

. Similarly to the strategy used by Donoho [27], we
find a best bandelet basis that minimizes the Lagrangian

(17)
The Lagrangian multiplier is because at the threshold level
the squared amplitude of a bandelet coefficient should in-
crease the Lagrangian by the same amount as an increase by 1
of the number of bandelet coefficients.

Suppose that the image has contours that are curves
which meet at corners or junctions, and that is away from
these curves. Although is an unknown parameter, this pro-
cedure leads to a bandelet approximation that has an optimal
asymptotic error decay rate

(18)

This result still holds if the contours of are blurred by an un-
known regular smoothing kernel. The proof can be found in
[1] and [2] with several variations on the construction of ban-
delets and on the optimization procedure that minimizes the La-
grangian (17). The best bandelet search adjusts the number of
parameters describing the geometric flow in each region, so that
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it follows the contours with enough precision. There should typ-
ically be a flow line which remains at a distance from
the contour in each region.

For image compression, the bandelet coefficients and the
B-spline coefficients of the flow (16) are quantized and binary
encoded, and the image segmentation quadtree is coded. If
has contours which are curves and is away from these
curves then [1] proves that for a total of bits, the image
reconstructed from the quantized bandelet coefficients has a
distortion

This distortion-rate decay is close to the Kolmogorov lower
bound which is for functions that are over their
whole support. We now concentrate on discrete fast algorithms.
Numerical applications to image compression and noise re-
moval are described in the following sections.

IV. FAST DISCRETE BANDELET TRANSFORM

Bandelets in a region are computed by applying a ban-
deletization to warped wavelets, which are separable along a
fixed direction (horizontal or vertical) and along the flow lines
as long as they remain away from the boundary of . A fast
discrete bandelet transform can, therefore, be computed from a
fast separable wavelet transform along this fixed direction and
along the image flow lines. The block bandelet basis of Sec-
tion III-A is constructed with a warped wavelet basis inside
each region. When modifying bandelet coefficients in image
processing applications, discontinuities appear along the region
boundaries. To avoid these boundary effects, we define a dis-
crete warped wavelet transform which goes across the region
boundaries while keeping perfect reconstruction properties and
two vanishing moments. No condition is imposed on the shapes
of the regions.

The fast discrete bandelet transform associated to an image
partition includes three steps:

1) a resampling, that computes the image sample values
along the flow lines in each region of the partition;

2) a warped wavelet transform with a subband filtering along
the flow lines, which goes across the region boundaries;

3) a bandeletization that transforms the warped wavelet co-
efficient to compute bandelet coefficients along the flow
lines.

The fast inverse bandelet transform includes the three inverse
steps:

1) an inverse bandeletization that recovers the warped
wavelet coefficient along the flow lines;

2) an inverse warped wavelet transform with an inverse sub-
band filtering;

3) an inverse resampling which computes the image samples
along the original grid from the samples along the flow
lines in each region

The following three sections describe fast algorithms that im-
plement these three steps, with operations for an image
of pixels.

A. Resampling Along the Geometric Flow

The first step of the discrete bandelet transform computes the
image sample values along the flow lines, in each region of
the partition. We describe its implementation together with the
inverse resampling.

In a discrete framework, the geometric flow in a region is
a vector field defined over the image sampling grid.
If the flow is parallel vertically then

(19)

where measures an average relative displacement of the
image gray levels in along the line with respect to the
line . A discretized flow line in is a set of points of
coordinates for a fixed integer and a
varying integer , with

(20)

and . The coordinates of flow lines
are stored in a sampling grid array defined for each

by

and , otherwise.
If the geometric flow is parallel horizontally in , then

. Each flow line is defined by
for a fixed and varying , where is

still defined by (20) with . The
coordinates of these flow lines are stored in

and , otherwise.
Given the original image sample values , at each

grid point , the resampling computes an interpolated
image value that is written . For a flow parallel
vertically, the grid points are obtained
with 1-D translations along of the integer sampling grid

. If the flow is parallel horizontally, then the 1-D
translation is along the direction.

A 1-D translation by of a discrete signal
for is implemented by an operator which

performs an interpolation. This interpolation can be written

(21)

where each has a support in with
and if is an integer. In all numerical exper-
iments, this interpolation operator is implemented with cubic
splines, using the recursive filtering procedure of Blu et al. [26].

For flow parallel vertically, for each fixed, the grid points
are obtained by translating

the points in the integer grid column by a sub-
pixel shift . The interpo-
lated image values are, thus, obtained by applying the
translation operator to each segment of the image column

in . If the flow is parallel horizontally, we fix
and the grid points are
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obtained by translating the points by
. The values are then

computed by applying to each segment of the image line
in .

The inverse discrete bandelet transform computes the image
values on the original integer sampling grid from the
sample values along the flow lines in each . This
requires to invert the discrete translation operator . However,
unless the interpolation functions are periodized sinc func-
tions over the interval, the inverse of is an unstable op-
erator which amplifies the highest signal frequencies. We, thus
, rather approximate by . Using this stable approxi-
mation, the image columns or rows in are calculated by ap-
plying with appropriate values of to the rows or columns
of .

Since is approximated by , the inverse resampling
does not recover the original image values. The error depends
upon the choice of the interpolation functions in (21). Fol-
lowing the analysis of Blu et al. [26], cubic splines are chosen
because they introduce small errors and produce hardly visible
Gibbs-type oscillatory artifacts.

B. Discrete Warped Wavelet and Wavelet Packet Transform

This section explains how to adapt the fast wavelet transform
algorithm to compute a warped wavelet transform with a geo-
metric flow computed over a partition of the image support. To
avoid creating boundary effects, warped wavelet coefficients are
calculated with a subband filtering that goes across the bound-
aries of the image partition, with an adapted lifting scheme in-
troduced by Bernard [28]. At the boundaries, warped wavelets
still have two vanishing moments.

The wavelet coefficients of a discrete image are
computed with a filter bank that convolves the image rows and
columns with a pair of perfect reconstruction filters
together with a subsampling [29]. These wavelet coefficients are
inner products of with a basis of discrete separable
wavelets

(22)

In the following, we consider the more general case of biorthog-
onal wavelet bases, where the inverse transform is implemented
with a dual pair of filters [29]. All filters are sup-
posed to have a finite impulse response, and we choose the 7–9
CDF filters [25] in all numerical examples.

A warped wavelet transform decomposes the image in a
family of warped wavelets in each region . Let be an
integral curve of the flow in , as defined in (20). If the flow
is parallel vertically then the warped wavelets in can be
written

(23)

Fig. 4. Warped wavelet transform filters and subsamples by the lines and
columns of input values fV [k ; k ]g , with a lifting scheme that is adapted
to the flow sampling grids fG [k ; k ]g . The same computational block is
applied to the output fV ;G g of the low-pass filter h.

If the flow is parallel horizontally, then the warped wavelets in
are

(24)

Suppose that the flow is parallel horizontally. Since

the image coefficients in the warped wavelet basis (24) are ob-
tained by decomposing the translated image values
at the locations in the sepa-
rable wavelet basis (22). These wavelet coefficients are, thus,
computed by applying the separable wavelet filter bank algo-
rithm along the “lines” and “columns” of the resampled images

. The same applies to a flow parallel vertically.
In the following, we concentrate on the elementary com-

putational block corresponding to a 1-D warped filtering and
subsampling using the filters together with its inverse
transform. Depending upon the filter bank that cascades these
1-D subband filterings, one can compute a warped wavelet
transform or a more general warped wavelet packet transform
by using the corresponding wavelet packet filter bank [29],
[30]. Fig. 4 illustrates the elementary computational block of
a wavelet transform, which performs a subband filtering and
subsampling along the lines and columns with . A wavelet
transform filtering tree applies the same computational block
to the output of the filtering by the low-pass filter along the
lines and columns.

Let us concentrate on a filtering and subsampling along the
horizontal lines, indexed by varying integers for fixed. The
same procedure applies to a subband filtering in the vertical di-
rection by exchanging the roles of the horizontal variable and
the vertical variable . The input of the 1-D subband filtering is
a family of sampling grids and their sample values

, as illustrated in Fig. 4. The output includes two
sets of subsampled grids and that
are called respectively even and odd grids, and are defined by

and
(25)

We now explain the calculation of the corresponding subband
sample values and .
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Let us first consider an “inside” point of a grid
such that the supports of and centered at this point are en-
tirely included in this same grid. This means that

for all such that or . The hor-
izontal subband filtering of at this location is computed with
a standard convolution and subsampling formula along the vari-
able

(26)

and

(27)

These inside coefficients are recovered from the subband coef-
ficients with the dual filters

(28)
The main difficulty is to implement a phase-aligned warped sub-
band filtering that computes the inside coefficients with (26) and
(27) and which adapts the filtering across the boundaries of sam-
pling grids, while remaining invertible and stable. The bandpass
filtering corresponding to (27) should also keep its vanishing
moments [29] so that regular signals produce wavelet coeffi-
cients of small amplitude. This is achieved with a lifting scheme
which is adapted at the boundary of each region.

Let us first consider the case of inside points within each grid.
Daubechies and Sweldens [31] have proved that the subband fil-
terings (26) and (27) can be factored into a sequence of lifting
steps and a scaling A lifting is computed with predicting and up-
dating operations that involve the two neighbors of each point.
In the horizontal direction, the left and right neighbors of an
even grid point are odd grid points defined by

and
(29)

The left and right neighbors of an odd grid point are
even grid points defined by

and
(30)

Let us consider sample values and associ-
ated to the subsampled grids and . The left
and right neighborhood values are calculated according (29)

and according to (30)

A symmetric predicting operator of parameter computes
defined by

(31)

Its inverse is . A symmetric updating operator of
parameter computes defined by

(32)

Its inverse is . A scaling operator of parameter
computes defined by

and

Its inverse is . The lifting is initiated by a grid
splitting with

and

The inverse is computed by .
For 7–9 CDF filters, Daubechies and Sweldens have proved

[31] that the subband filtering formula (26) and (27) are imple-
mented by the following lifting steps:

(33)

with , , , ,
and . The inverse of the lifting steps (33) that imple-
ments the subband reconstruction (28) is

(34)

For points near the border of each sampling grid , the sub-
band filtering is calculated with a modified lifting scheme that
goes across the boundaries of different grids. This requires to
establish a neighborhood relation between sampling points of
different grids. To build warped wavelets across regions bound-
aries that have two vanishing moments, we impose that the left
and right neighbors of a point are aligned with this point.

We concentrate on left and right neighbors of even grid
points . The left and right neighbors of odd grid
point are computed with the same procedure, by
exchanging by the roles of even and odd grid points. The
left and right neighbors of a point inside the same
grid of index are defined by (29). Suppose that
has a right neighbor in the same grid, which means that

, but no left neighbor in
this grid because . The left neighbor

must, therefore, be defined outside this grid, and
we shall impose that is collinear
and has the same direction as . It is
calculated as a weighted average of two odd grid points

(35)

where and are two
points which are on the left and as close as possible to

. The factor is adjusted so that the triplet
is aligned. This is

illustrated by Fig. 5. The corresponding left neighbor value is

(36)
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Fig. 5. Crosses and circles correspond, respectively, to even and odd grid
points G [k ; k ] and G [k ; k ]. Left and right neighbors are indicated by
arrows. Across the boundary of a region, the left neighbor LG [k ; k ] of an
even grid point G [k ; k ] is shown as a triangle. The point LG [k ; k ] is
aligned with G [k ; k ] and its right neighbor RG [k ; k ], and it is on a line
between two odd grid points of another region, shown as circles.

Similarly, suppose that has a left neighbor of posi-
tion but no right neighbor in
the same grid. The right neighbor is calculated so
that is collinear and has the same di-
rection as . It is obtained as a weighted
average of two odd grid points that are on the right of

(37)

where is adjusted so that the triplet
is aligned. The

corresponding value is

(38)

Observe that if the value is an affine function of its
position then and are also
affine functions of their positions.

If has a no left and no right neighbor in the grid
of index , then these left and right neighbors are computed
as weighted averages of odd grid points with (35) and (37),
and each factor is calculated by imposing that

and are horizontal vec-
tors (in the case of a horizontal filtering).

With these left and right neighborhood relations, using the
predicting operator and updating operators defined by (31) and
(32), the lifting (33) implements a subband filtering across the
grid boundaries, whose restriction inside each grid is a stan-
dard subband filtering. The inverse operator is still given by
(34). However, across the boundary of each region, the resulting
linear operator that computes the bandpass coefficients has only
one vanishing moment, because the predicting and updating pa-
rameters do not take into account the fact that the distance may
vary between neighbors in different regions. To maintain two
vanishing moments across the boundaries of different regions,
we use the lifting scheme of Bernard [28], which modifies the
predicting and updating parameters and , according to the
distance between the sampling points. We denote by
the Euclidean distance between two points in . According to
[28], the prediction (31) is replaced by

(39)

with

Similarly, the update (32) is replaced by

(40)

with

The total number of operations to implement a warped wavelet
transform with this modified lifting scheme is at most twice
larger then the number of operations to compute a standard sep-
arable wavelet transform with a lifting scheme. It, thus, requires

operations for an image of pixels.
We are now going to show that this modified lifting

scheme implements a discrete warped wavelet transform
which has two vanishing moments, also at the boundary of
regions, if the geometric flow has a fixed direction in each
region. If the direction of the geometric flow remains con-
stant in each region, but may vary from region to region,
our construction of left and right neighbors implies that all
triplets of points
and are aligned
in the plane. To prove that the warped wavelet transform
has two vanishing moments, we must verify that a signal
whose sample values are an affine functions of their po-
sitions (irregularly sampled) produces warped wavelet co-
efficients that are zeros. If and are
linear functions of their positions and ,
since the and

are aligned and
the corresponding values are affine functions of these po-
sitions, the prediction and updating operators (39) and
(40) compute and

. The output values of
the prediction and update operators are, thus, independent from
the position of the left and right neighbors and is, therefore, the
same when all sample values are on a uniform grid. When all
samples are on a uniform grid, a lifting implementing a 7–9
wavelet transform produces wavelets coefficients that are zeros
when the image is affine, because these wavelets have two
vanishing moments. For irregularly sampled values, this result,
thus, remains valid since the prediction and update operator
outputs the same values when the image is affine.

Inside each region, a warped wavelet transform performs a
1-D wavelet transform along the lines of flow. Since the 7–9
wavelets have four vanishing moments, inside each region, the
warped wavelet transform has four vanishing moments with re-
spect to the geometric flow lines. In most cases, the direction
of the geometric flow is discontinuous when going from one re-
gion to another, and the resulting warped wavelets across such
a boundary are not differentiable. Yet, numerical experiments
show that it creates hardly visible boundary artifacts when mod-
ifying the corresponding warped wavelet coefficients. In par-
ticular, we do not see boundary artifacts in compressed images
such as the one shown in Fig. 9.
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C. Bandeletization

To take advantage of the image regularity along the geometric
flow, the bandeletization modifies a warped wavelet basis by
transforming 1-D scaling functions into 1-D wavelets. The re-
sulting bandelet coefficients are computed from warped wavelet
coefficients with a 1-D discrete wavelet transform along the geo-
metric flow lines.

Let us consider a region in which the geometric flow is par-
allel vertically. The bandeletization is applied only to the warped
wavelet coefficients with a scaling function along

because the scaling function cannot take advantage of
the geometric image regularity. The bandeletization performs
a change of basis with a 1-D discrete wavelet transform along
the parameter , which computes inner products with discrete
bandelets at scales

This 1-D wavelet transform is calculated with a wavelet filter
bank [5], [29], with the filters applied to along
the variable , for each fixed.

If the geometric flow is parameterized vertically in then
the bandeletization is applied to the warped wavelet coefficients

to compute the bandelet coefficients at scales

These bandelet coefficients are obtained with a one dimensional
discrete wavelet transform of along the variable ,
for each .

A bandeletization is computed within each region , and
not across the boundaries. Indeed, the geometric image regu-
larity is established within each region, not across regions. Com-
puting a bandeletization separately within each region does
not create boundary effects when processing these coefficients,
because this transform is not applied on the image but on warped
wavelet coefficients. The bandeletization transforms a biorthog-
onal warped wavelet basis into a biorthogonal bandelet basis [1].

The bandeletization can also be applied to any warped
wavelet packet basis, to take advantage of the regularity of
coefficients along the geometric flow. In a region whose geo-
metric flow is horizontal, the bandeletization should be applied
to coefficients that are inner products with separable wavelet
packets including the low-pass scaling signals along
the horizontal direction, to transform these scaling signals into
wavelets for . If the geometric flow is vertical,
bandeletization is performed on inner products with separable
wavelet packets including the low-pass scaling signals
along the vertical direction, to produce wavelets for

.

V. FAST GEOMETRIC OPTIMIZATION

A major difficulty of geometric representations is to adapt the
geometry to local image structures. For a bandelet transform,
the geometry is defined by the image partition in regions

and by the geometric flow within each region. This segmented
geometric flow is optimized for image compression and noise
removal applications.

A. Image Compression

A bandelet transform code is implemented with a scalar quan-
tization and an entropy coding of all coefficients. The geometry
is computed by optimizing the resulting distortion rate, with a
fast algorithm that requires operations for an
image of pixels. Numerical comparisons are made with a
similar transform code in a wavelet basis.

Let be the dictionary of all possible biorthog-
onal bandelet bases, where is a parameter that specifies the
geometry of the basis. Finding the best geometry for image
compression can be interpreted as a search for a best ban-
delet basis in the dictionary . Each bandelet basis is written

and its biorthogonal basis is written
.

The transform code is implemented with a nearly uniform
scalar quantizer with bins of size , having a twice larger
zero bin: if and
if for . The restored image from
quantized coefficients is

and the resulting distortion is . The total number
of bits to code is equal to the number of bits to code
the quantized coefficients plus the
number of bits to code the geometry of the basis. The distortion

, thus, depends upon through the value of and through
the choice of the geometry.

In a discrete framework, the geometric flow in a region is
a vector field defined over the image sampling grid.
If the flow is parallel vertically, then

. As in (16), in a square of size , this displacement
is parameterized by its decomposition coefficients over a
family of translated B-splines, which are dilated by a scale factor

(41)

In our calculations, we use a linear B-spline:
if and if . The coefficients are
uniformly quantized. The quantization step adjusts the precision
of the geometric displacement . It is set to be of the order
of 1/8 of a pixel.

To optimize the overall coder, similarly to Section III-B, we
use the Lagrangian approach also proposed by Ramchandran
and Vetterli [32]. It finds the best basis that minimizes

, where is a Lagrange multiplier. If is convex, which
is usually the case, by letting vary we are guaranteed to min-
imize for a fixed . If is not convex, then this
strategy leads to a that is at most a factor of 2 larger than
the minimum. A new explicit formula is provided to relate to
the quantization parameter .
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For a given image and parameter , we want to find the image
segmentation and the geometric flows in all
which define a bandelet basis that minimizes . Let
us associate each bandelet vector to a single region where
its support is mostly located. This distortion rate can be decom-
posed into

(42)

where is the Euclidean norm restricted to
a region of the image partition, and is the number of
bits needed to code the bandelet coefficients and the geometry
associated to . It can be decomposed into

(43)

where is the number of bits to code the square , to
code the geometric flow in , and to code the quantized
bandelet coefficients in . We now explain how to implement
these coding procedures.

The image partition into dyadic squares is represented by a
quad tree. Each leaf of the tree corresponds to a region of
the image partition. The position of each leaf in the quad tree is
coded with bits, using a tree coding algorithm which codes
each leaf with a binary word whose length increases with the
depth of the leaf.

To code geometric flow in with bits, we first code
a variable which indicates if there is a flow and if it is parallel
horizontally or vertically. If the geometric flow exists, it is spec-
ified by the coefficients in (41), where is the width
of the square . The adapted scale parameter in (41) and the
quantized coefficients are coded with fixed length codes.

Quantized bandelet coefficients are globally coded over the
whole image with an adaptive arithmetic code. In a wavelet
basis, as well as in a block cosine basis, it has been shown nu-
merically and theoretically [3] that for most images the total
number of bits to code the quantized coefficients is nearly pro-
portional to the number of nonzero quantized coefficients. This
remains valid for bandelet coefficients and we, thus, estimate
the number of bits associated to each region by

(44)

where is the number of nonzero quantized coefficients in
and .

The quantization step is related to by observing that if
is minimum then

(45)

Let be the total number of nonzero quantized
bandelet coefficients of the whole image. Since depends upon

through the , with (44), we verify that

(46)

When varies, since all quantization bins are uniform outside
the zero bin which is twice larger, one can also verify that the
variation of with depends essentially upon the variation of
the number of coefficients which are not quantized to zero. A

coefficient of amplitude is quantized to , which pro-
duces a quadratic error of . If the quantization bin in-
creases, this same coefficient will be quantized to 0 which in-
creases the quadratic error to , and adds to the distor-
tion . As a result

Inserting this in (45) together with (46) gives

This relation specifies the Lagrange multiplier as a function
of that now remains the only parameter.

To minimize , we first compute
the geometric flow which minimizes in each dyadic
square included in the image support. We shall then use a
fast algorithm to find the best segmentation of which
minimizes the overall distortion-rate sum. Let us first consider
a square of width . The distortion rate may be mini-
mized by a horizontally or vertically parallel flow or by no flow
at all. Each possibility is tested. If the flow exists, it depends
upon the scale parameter in (41) which must also be opti-
mized. Since , the parameter takes possible
values. For a fixed value of , one can verify that minimizing

is equivalent to finding a flow that minimizes the dis-
tortion for a given number of nonzero quantized bandelet
coefficients. This is achieved by finding a flow that follows the
directions of geometric image regularity in to produce a max-
imum number of small amplitude bandelet coefficients that are
quantized to zero.

If the flow is parallel vertically, then it is defined by
, where is the relative displace-

ment of the image gray levels in along the line with
respect to the line . Instead of finding the flow that
exactly minimizes , we compute a flow that is nearly
optimal by minimizing the quadratic variation of the image
along the flow

(47)
with . The regularization filter

is a separable Gaussian which reduces the effect of the
image noise. This minimization is performed with the Lucas and
Kanade [33] gradient descent algorithm on the warping param-
eters . Although the minimization of (47) does not exactly
minimizes the distortion , it is proved in [2] that for
images having a piecewise regular geometry, the resulting flow
remains nearly optimal. If the geometric flow is parallel horizon-
tally in then the flow can be written
and this flow vector is calculated with a similar procedure by ex-
changing the roles of the horizontal variable and the vertical
variable . Whether the flow is parallel horizontally or verti-
cally, with a fixed number of iterations in the Lucas and Kanade
[33] gradient descent algorithm, the flow in a square of
pixels is computed with operations.

It now remains to find the best scale of the flow in each
square of size . The image is segmented into squares of
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Fig. 6. (a) Geometric flow segmentation obtained for Barbara and R = :44 bits/pixel. (b) The bandelet reconstruction with a PSNR of 31.3 dB.

Fig. 7. Distortion in PSNR of the bandelet coder (full lines) and of the wavelet coder (dashed lines), for the Lena and Barbara images, as a function of the bit rate
per pixel R=N . Over all bit rates, the bandelet coder reduces the distortion by approximatively .4 dB for Lena and by 1.4 dB for Barbara.

constant size . For a fixed , computing the best flow over
each of these square requires operations. This
segmentation and the corresponding flows define a bandelet
basis. The fast bandelet transform computes resulting image
bandelet coefficients with operations. The quantization
and coding procedure yields a value for each square

. By repeating this operation for the possible values of
the scale parameter , for horizontally and vertically parallel
flows, we get the configuration of the geometric flow which
minimizes . This minimum value is finally compared
with the value obtained when there is no flow, and the smallest
of the two is retained. The distortion rate when there
is no flow is calculated over each square from the corresponding
image coefficients in a separable wavelet basis. Repeating these
operations, for all square width , yields an optimal
geometric flow that minimizes for each dyadic
square, with a total of operations.

We now find the partition which minimizes
with a fast bottom up algorithm along the

branches of the segmentation quad tree, as in [20]–[22], [32].
For any square , a partition into smaller squares
gives a better distortion rate if

We begin at a maximum depth of the quad tree corresponding
to regions of width typically equal to 4. At the

next depth , we compare the distortion rate of each re-
gion of size and the sum of the distortion rate of their
four subregions, and keep the configuration corresponding to
the minimum distortion rate. Again, at the next depth ,
we compare the distortion rate of each region of size
and the sum of the minimum distortion rates for their four sub-
regions, and keep the minimum value together with the optimal
configuration. Continuing this aggregation procedure until the
top of the tree leads to an optimal partition of the image support

into dyadic regions which minimize the overall distor-
tion rate .

The geometric flow segmentation shown in Fig. 6(a) was ob-
tained when optimizing the compression of the Barbara image
for . As expected, the optimization adjusts the dyadic
squares so that the parallel geometric flow can follow the geo-
metric directions of the image structures. Fig. 6(b) shows the
bandelet compressed image: No blocking artifact can be seen in
the reconstruction.

Compression in a bandelet basis is compared with a compres-
sion in the 7/9 CDF wavelet basis [25], using the same quan-
tization and adaptive arithmetic coding procedures. We do not
incorporate the bit-plane strategy and the contextual coding pro-
cedure of JPEG-2000 to compare more easily the performance
of the bandelet and wavelet bases themselves. Similar bit plane
and contextual coding procedures can also be applied to ban-
delet coefficients. Fig. 7 compares distortion rate of the
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Fig. 8. Comparison of image compression with (left) bandelet and (right) wavelet bases, with R = :13 bits/pixel. The bandelet reconstruction has a PSNR of
30.8 dB and the wavelet reconstruction has a PSNR of 30.3 dB.

bandelet compression algorithm with a wavelet compression for
the Lena and Barbara images. For each value of , the opti-
mization algorithm allocates about 10% of the bits to code the
segmented geometric flow and about 90% to code the quantized
bandelet coefficients. This proportion may vary from image to
image and across bit rates but happens to remain nearly constant
over all bit rates for these two images.

The bandelet coder outperforms the wavelet coder by about
.5 dB for Lena and 1.5 dB for Barbara. It is important to ob-
serve that this remains valid for a bit rate going from .1
bits/pixel to 1 bits/pixel, which covers the whole range of prac-
tical applications. From a visual quality point of view, the differ-
ence of performance appears clearly in Figs. 8 and 9. Although
the bandelet coder introduces errors, the restored images have
a regular geometry along the direction of the computed flow,
and the resulting error is less visible. On the contrary, wavelets
introduce visible ringing effects that are distributed the square
grids of the wavelet sampling, which partly destroys the geo-
metric regularity. As a result, the bandelet compressed images
have a better visual quality than their wavelet counterparts. For
Barbara, the improvements of bandelets over wavelets is larger
than for Lena, because of the presence of textures having reg-
ular geometric structures. For images having no geometric regu-
larity, the bandelet basis is essentially similar to a wavelet basis
and the distortion rate is, therefore, the same.

B. Noise Removal

Thresholding estimators in an orthonormal basis are partic-
ularly efficient to remove additive noises if the basis is able to
approximate the original signal with few nonzero coefficients
[4]. For bandelet bases, this requires to estimate and optimize
the geometric flow in presence of additive noise. A penalized
estimation finds the “best” bandelet basis which minimizes an
empirical risk that is penalized by the complexity of the geo-
metric flow.

We want to estimate a signal from the noisy data

(48)

where is a Gaussian white noise of variance . A thresh-
olding estimator in a bandelet basis can be
written

(49)

where is a hard thresholding at : .
The noise variance is estimated with a robust median estimator
in a wavelet basis [4], and according to Donoho and Johnstone
[34] the threshold is set to where is a
constant that is adjusted.

The expected quadratic risk depends upon
and on the choice of basis. The “best” bandelet basis is the one
that minimizes this risk among all possible bandelet bases. In
practice, we cannot find this “best” basis because is unknown,
but we can try to estimate a basis which produces a risk that is
nearly as small. This requires to optimize the geometric flow of
the bandelet basis in presence of noise.

The thresholding estimator (49) can be rewritten as an orthog-
onal projection on a space generated by the
vectors such that . Finding the best thresh-
olding estimator, thus, means finding the best “model” space

to perform the projection. Model selection procedures have
been developed with penalization approaches that introduce a
cost that depends upon the “complexity” of the model [35]–[37].
When the noisy data is obtained by the addition of a Gaussian
white noise as in (48), nearly minimax “best” bases are found
by minimizing appropriate penalized cost functions [34], [38].
Moulin [39] shows that such thresholding penalized estimators
can be obtained by minimizing the Lagrangian of a distortion
rate

(50)

where measures the complexity of the model as the
number of bits needed to code the selected basis and the
quantized coefficients of in , for a quantization step equal to
the threshold . We are, thus, facing a distortion rate minimiza-
tion as in the previous section. An analytical calculation of the
asymptotic risk obtained for appropriate values of the Lagrange
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Fig. 9. Middle column shows different zooms compressed with bandelets using respectively with R = :22 bits/pixel for Lena andR = :40 bits/pixel for Barbara.
Wavelet compression at the same rate are shown on the right column. The left column displays the optimized geometric flow of the bandelet compression.

Fig. 10. Risk in PSNR of (full lines) the bandelet thresholding estimator and of (dashed lines) the wavelet thresholding estimator for the Lena and Barbara images
as a function of the PSNR of the original noisy signal. The bandelet estimator reduces the risk by approximatively 1 dB for Lena and by 1.8 dB for Barbara.

multiplier can be found in [2]. A minimum description length
penalization corresponds to [39]. In our numerical
experiments, we chose a constant that is twice smaller.

The best bandelet basis which minimizes (50) is obtained
by optimizing the image segmentation in dyadic squares to-
gether with their geometric flows. The corresponding bit budget

is calculated in (43). In the context of image compression,
given an image segmentation, the flow in each region is cal-
culated by minimizing the quadratic image variation along the
flow (47). The signal is regularized by a Gaussian filter and
the displacement parameters is parameterized in a family
of B-splines dilated by . To estimate the flow in presence of
noise, the variance of the Gaussian filter is adjusted to the
scale in order to filter the noise according to the reso-
lution of the geometric flow. Modulo this modification, the min-
imization of the distortion rate (50) is achieved by the fast algo-
rithm described in Section V-A for image compression. It re-

quires operations to optimize the image seg-
mentation and the geometric flow in each region and compute
the corresponding thresholding estimator.

Thresholding estimators are improved by translation invariant
procedures which perform a thresholding estimation on each
translated version of the image and averages all these estima-
tions after an inverse translation [40]. The following numerical
experiments compare the PSNR obtained with a translation in-
variant thresholding in a 7/9 wavelet basis and a translation in-
variant thresholding in an optimized bandelet basis, depending
upon the value of the noise variance . We do not include more
sophisticated estimation procedure as in [41], to concentrate on
the properties of the bases.

Fig. 10 gives the PSNR of bandelet and wavelet thresholded
images for Lena and Barbara, as a function of the PSNR of the
original noisy image . The bandelet estimator out-
performs the wavelet estimator by about 1 dB for Lena and 1.8
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Fig. 11. Comparison of thresholding estimation with (left) bandelet bases and (right) wavelet bases, from noisy Lena images having a PSNR = 20:2 dB. The
PSNR of the bandelet and the wavelet estimations are respectively 30.3 and 29.2 dB.

Fig. 12. Left columns gives zooms of noisy images having a PSNR = 20:19 dB. The middle and left columns are obtained, respectively, with bandelet and
wavelet estimators.

dB for Barbara, for nearly all PSNR. As for image compres-
sion, the difference of performance between the two estimators
appears clearly in Figs. 11 and 12, because the image geometry
is better restored.

VI. CONCLUSION

A central idea in the construction of bandelets is to define the
geometry as a vector field, as opposed to a set of edge curves.
This vector field plays the same role as motion vectors in video
image sequences. It indicates the direction of displacement of
gray-level values, not in time but in space. Like in video image
coding, this geometry is simplified by an image segmentation in
squares, whose sizes are adapted to the local image structures.

The geometry of bandelet bases is not calculated a priori but
by optimizing the resulting application, whether it is image com-
pression or noise removal, with a fast best basis search algo-
rithm. As a result, bandelet bases clearly improve the image
compression and noise removal results obtained with wavelet
bases. For video image sequences, a three-dimensional time-
space geometric flow should be defined to construct bandelet
bases that are adapted to the space-time geometry of the se-
quence. This is a possible approach to improve the current video
compression standard.
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