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Abstract (range scanning [Levoy et al. 2000], reconstruction from pho-
tographs [Slabaugh et al. 2001], etc) and remeshing of the 3D model
This paper describes the construction of second generation bandelefsee e.qg. [Alliez et al. 2003]). A wavelet transform can then be ap-
bases and their application to 3D geometry compression. This newplied on the discrete samples to obtain a multiresolution represen-

coding scheme is orthogonal and the corresponding basis functionstation of the original data [Alliez and Gotsman 2005].

are regular. In our method, surfaces are decomposed in a bandelegegmetry is Multiscale  The geometry of surfaces is naturally
basis with a fast bandeletization algorithm that removes the geo- yjiiscale, as one can see it directly on various surfaces. On finely
metric redundancy of orthogonal wavelet coefficients. The result- gcanned models (acquired for artistic studies [Levoy et al. 2000]
ing transform coding scheme has an error decay that is asymptoti-, for reverse engineering [Hoppe et al. 1994]), sharp featuees a
cally optimal for geometrically regular surfaces. We then use these often ocated on a width of a few vertices. For such surfaces, the
bandelet bases to perform geometry image and normal map COM-geometry is not a collection of discontinuities, but rather areas of
pression. Numerical tests show that for complex surfaces bandeletsigh curvature. Locating these geometric features is an ill-posed
bring an improvement of 1.5dB to 2dB over state of the art com- problem [Ohtake et al. 2004], and we will explain in this paper how
pression schemes. to recast it into aregularity direction estimation, which is well-
posed and optimal for the purpose of surface compression.

Image-based Surface Processing The use of regular grids for
surface representation and compression is a unifying framework for
most 3D surface data. We will use it to propose a common func-
tional model for geometric surfaces, formulate the coding problem,
and provide an algorithmic tool to solve the problem. By fixing
the parameterization of the 3D model we are able to use classical
techniques from harmonic analysis such as orthogonal projections

. N and best basis algorithms. Although the final distortion we want
The geometry of natural surfaces is complex and intrinsically mul- 4 minimize is geometric (e.g. Hausdorff distance), we will target

tispale [Danaetal. 1999]. The diﬁerent techniques used to Qescribethe L2 norm for stating the main theorem, and exploit the degree of

this geometry must account for a variety of structures at different feedom in bit allocation to optimize the geometric error.

levels of detail: macro structures (the traditional 3D mesh repre- 14 main image-based representations for surfaces include:

se_ntatlon), mesostructures (bump map or dlspla_cement m_ap). and. Geometry images [Gu et al, 2002]: the 3D geometry is resam-

micro-scale material structures (reflectance function). In this paper y g . . : g y -
pled on a regular grid, and is compactly encoded as an RGB im-

we will focus on the problem ofompressiorof these geometric .
structures and provide a new representation caitmnd genera- age. Itis mostly used to represent large scale features of the mesh
(overall shape and deep creases).

tion bandelets ) )
e Normal map [Peercy et al. 1997]: to model fine scale details of

CR Categories. 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surface and object representations

Keywords: Bandelets, discrete multiscale geometry, geometry im-
age, normal map, compression.

1 Discrete Multiscale Geometry

Geometry Drives Creation and Computation The geometric

features of a surface are at the heart of the design process, both fo
artists and for CAD editing: human perception is mainly sensitive
to lines of curvature which create most lighting effects. In the pro-

cessing steps, most algorithms take special care of these geometric

features, both for efficiency (anisotropy in meshing [Alliez et al.
2003]) and aesthetic considerations (non-photorealistic rendering
[Hertzmann and Zorin 2000]).

Geometry is Discrete Working with digital data means work-

the geometry, the normals are encoded with a high sampling rate
in an RGB image. On recent hardware, per-pixel bump-mapping
can be done in real time with normal maps.
Other maps: one can cite texture mapping, displacement map
[Wang et al. 2003], environnement mapping [Agarwal et al.
2003], volumetric textures [Owada et al. 2004], etc.

In this paper, we will focus on the compression of geometry im-
ages and normal maps. However, as soon as some geometric regu-
larity exists in a map (e.g. creases in displacement map) our ban-

ing in a discrete setting. Even if the underlying functional model ygjet scheme will provide similar enhancement as well.

is continuous, the first step before any processing of the surface is

a sampling stage which can model various acquisition processes
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2 Geometric Compression of Surfaces

Surface Functional Model In this paper, we model a function
f: [0, 1]2 — R with geometric regularity as%regular outside a set
of edges which are themselve&-@gular curves. In the continuous
setting, we consider a function frof@, 1> to R® which can model
either a geometry image or a normal map. We treat each component
of this 3D-valued function independently, and assume each has a
geometric regularity.

However, natural surfaces often do not have sharp discontinu-
ities, so the model also includes some smoothing by an unknown
kernel. The resulting functions can be written as a convolution



f = f xhwheref is a function with sharp features (regular outside 1998], some effective greedy solutions exist, such as [Hoppe 1996;

a set of edges) ardis the unknown smoothing kernel. We will call
this class of functions &geometrically regular functionsFigure

Garland and Heckbert 1997; Lindstrom and Turk 1998], and more
global error-driven methods [Cohen-Steiner et al. 2004] are jgrom

1, (a), shows such a function that has a sharp feature that smoothlying. The problem is even more complicated for semi-sharp features,
vanishes (the size of the kernel is progressively increasing along thebecause the aspect ratio of each triangle has to be tuned adaptively
edge).

depending on the unknown smoothing kerésee figure 1, (b)).

In order to have a well-posed problem (with polynomial com-
plexity), one must fix a scale for the geometry and build an approx-
imation for this scale. In computer graphics, the problem of sharp
features detection is well studied [Ohtake et al. 2004], and involves
some smoothing to fix the scale of the salient structures. For the
bandelet scheme, with coding efficiency in mind, we will follow
this paradigm and show that working at a fixed scdléc®nstruct-
ing a different geometry for each scale) is equivalent to regularizing
the geometry (allowing error in location up td)2which in turn
makes the optimization tractable in nearly linear time complexity.

In the image analysis community, some recent constructions are
able to capture this geometric regularity. Most notably are the
curvelets [Canés and Donoho 1999], contourlets [Do and Vetterli

In graphics, uniformly regular surfaces were the first functional 2005], wedgeprints [Wakin et al. 2005] and non-linear subdivision
model proposed for 3D surfaces, such as NURBS in CAD model- schemes [Matei and Cohen 2002]. However, none of these schemes
ing [Farin 1993]. Later, the introduction of subdivision surfaces for is able to construct orthogonal bases of regular functions which is
modeling [Biermann et al. 2000] and reconstruction [Hoppe et al. highly desirable for compression.

1994] enabled the description of complex piecewise smooth sur-

faces. The geometrically regular functional model we propose in

this paper allows us to replace sharp discontinuities with semi-sharp3 The Bandelet Approach

creases. This model has already been used successfully focehara
ter modeling and animation [DeRose et al. 1998].

Classical Isotropic Surface Compression Many methods
have been proposed to solve the problem of 3D geometry compres-
sion, see the recent survey of [Alliez and Gotsman 2005]. In order
to perform such compression, one often relies on a semi-regular
remeshing of the original model. The first construction of wavelets
on triangulations was built by encoding the differences with re-
spect to a subdivision scheme [Eck et al. 1995]. The lifting scheme
[Schroder and Sweldens 1995] extends this construction and pro- then performing a 1D wavelet transform.
vides a useful tool for surface analysis. In fact, best known sder
include the normal multiresolution construction of [Khodakovsky Wavelet Algorithms Both 1D and 2D wavelet transforms are
and Guskov 2003]. All these schemes are closely related to classi-explained in [Mallat 1998], and we will just recall some basic facts
cal wavelet bases on regular grids, and few theoretical results existin the 2D setting. ] ]
for these surface-based constructions (except for the 2D case, se  The wavelet transform of a functioh: R? — R is the decom-
[Daubechies et al. 2004]). position of f on an orthogonal basis composed of translates and
For images and geometry images compression, currently the dilates of three mother wavelegg™, ¢V, P} (for the horizontal,
most efficient algorithms are transform codes that decompose theVertical and diagonal directions). More formally, it is the set of dot
signal in an orthonormal (or nearly orthonormal) basis and quan- Products
tize the resulting coefficients. JPEG and JPEG2000 are examples
of such algorithms. Using regular basis functions is also necessary
to avoid introducing blocking artifacts in the compressed signal. ,
When one considers the class of-Geometrically regular sur-  The functionyf, is supported near the pointr2on a square of
faces with sharp or semi-sharp features, represented with a geomewidth ~ 21. In the discrete setting, the wavelet transform takes an
try image f and a normal mapg, the best wavelet transform codes image ofN pixels and computes the setMfdot products

fr andgr with R bits satisfies s _J _j _j
, 32,32 , . (f, g5, for 277 <27 < \/JN, and 0< ny,np <271,
[f—frl< < CR™*“log*“(R) and [g—grl|<CR *log(R), (f, @3n) for 0< ng,ny <279,

whereC is a constant that depends only én This difference is where the projection o, functions produces a coarse approxi-
due to the fact that geometry images only have discontinuities of mation at scale2 This scale 2 represents the level at which we
tangents whereas normal maps have step discontinuities. These apstop the wavelet transform (one could go all the way dowh=c).
proximation rates are not optimal. In order to exploit the regularity These values can be conveniently stored in an array pikels as
that exists along sharp or semi-sharp transitions, one has to buildshown on figure 2 (b). Note that the square in the upper left corner
elongated functions that are adapted to the geometry of the surfaceof the transformed image contains the dot products with the func-
In this paper we construct a new class of orthogonal bases that ex-tions { ¢y} (coarse scale approximation).

(a) Original Surface (b) Triangulation (c) Wavelets

Figure 1. Approximation of a surface with a fading-away edge.
Only the support of the underlying basis functions are depicted.

The bandelet approximation scheme, introduced in [Le Pennec and
Mallat 2004], takes advantage of geometric image regularity by re-
moving the redundancy of a warped wavelet transform by perform-
ing abandeletizationUnfortunately, the resulting transform is non
orthogonal and the warping introduces boundary artifacts. Instead,
our second generation bandelet transform is constructed over a stan-
dard orthogonal wavelet transform. It is thus simpler, orthogonal,
and without border effect. We implement this second generation
bandeletization first by reordering the 2D wavelet coefficients and

S . se{H,V,D},jeZ,neZz, '
(f. Wip) with { S0 =232 Ixa—ng, 27 Ix — ).

jn

hibits the optimaR 2 IogZ(R) transform coding rates for geometry
images and normal maps.

Surface Approximation and Anisotropy Geometric approx-

Transform coding in a wavelet basis performs an adaptive ap-
proximation using functions with square supports of various sizes,
as shown in figure 1 (c).

imation problems have been well studied, and although the con- 2D Wavelet Transform Working in the wavelet domain allows

struction of an optimal triangulation is NP-hard [Agarwal and Suri

us to treat each scale of the transform independently. For our dis-
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Figure 2:Discrete reordering of the sampling points.

cussion, we will use a fixed scalé,avhich is equivalent to select-  to their numbering along the ax@". The point¥; is thus theith
ing the three sub-images in the wavelet transform containing the point alongd. We get a new 1D discrete signfy defined by
coefficients(f, tpjsn) for se {V,H,D}. Also, we denotef a C>- Vi, fqli] = f(x)
geometrically regular function as previously defined. 7 d . ) N
A wavelet transform is able to compress the regular parts of the Note that the only thing that matters is the relative position of the
surface well. On figure 2 (b), one can see that the only non-zero sampling locations, and the resulting signal is considered as if it
wavelet coefficients are close to the singularity. To achieve a better Was regularly sampled.
compression of the original surface, we focus on these high coeffi- 1D Wavelet Transform (bandeletization, step 2) We use
cients at scale’2and re-transform them to obtain a great number of a 1D wavelet transform to compress the 1D discrete sifinatee
values that are close to zero. [Mallat 1998]. This transform also provides an effective way to
This bandeletization removes the correlation that exists betweendiscriminate between good and bad reorderings. To that end, the
wavelet coefficients near the singularity. In order to remove this re- user provides a threshold that is the only input parameter of our
dundancy, we must find some regularity in the wavelet transform of bandelet algorithm and controls its compression rate. Bandelet co-
the surface and construct an adapted approximation scheme. Therefficients bellowT will be discarded, so that highar gives rise to

are in fact two sources for this regularity that we can use: a more agressive compression.
 Regularity due to the wavelet: dot products with a set of trans- For each squar§ and directiond, we are able to compute a
lated functions can be computed usingamvolution reordering that shuffles the points insilend produces a 1D signal

; ; ; fq. We are then left with two questions:
Sy S(M2i N2l S(x) = L yS(—o-1 d a
(s W) = T gp(m2!,np27) where gr7(x) = 5 y>(=270), e What should be the size of the squ&®

andse {V,H,D}. As aresult, although the original function can ¢ What should be the directiahin each square?

bfe smgul.lar at %d?e 'O?artf'g’“f)' the v(;/al;/ elet coelffl_men:]s are Sfamlp"n"°1—|opefully, the 1D wavelet transform provides a simple way to dis-
ora r.egu arllze unctio i obtained by convq ving t € orlg!na criminate between the possibeandd. Our goal is to find a re-
function f with the “blurring” kernel s} of width ~ 2!. This ordering, or equivalently a size of squaB@nd a directiord, that
blurring ensures a regularity in the direction orthogonal to the produces as few as possible 1D wavelet coefficients greatefthan

geometry. This is important because it allows us to make some  Figure 3 shows how this 1D wavelet transform is able to choose
errors in the localization of the exact geometry without too much both an admissible orientation and the right size of the square. On

impact on the approximation. top row one can see various squaBextracted around a singularity

e Regularity along the geometry: the functionf is regular in the in wavelet space. On middle row the discrete sighals shown
direction of the geometry. Indeed, when one moves parallel to (only the central part is depicted). On bottom row on can see the
the geometric curve, the transformed functioays? is smoothly magnitude of the 1D wavelet coefficients ff
varying. We use this regularity to compress the remaining non- (a) The square is too small, since extending aSitoes not pro-
zero wavelet coefficients. duce additional wavelet coefficiertg such thagby| > T.

These two sources of regularity work hand in hand to make the (b) The square is too big, there is too much coefficidptabove

compression algorithm fast. Indeed, the first regularity allows us T. This is because the real geometry has some curvature and

to make small mistakes which enables us to extract the geometric  the directiond deviates too much fromit.

regularity quickly, but still precisely. (c) The square has the correct size, and the 1D sifnial smooth.

Reordering of the Grid Points (bandeletization, step 1) Note that there are much mdogsatisfying|by| < T than orig-

Until the end of the section, we select a squ&ref width L in inal coefficientsfqli] with | fq[i]| <T.

the wavelet domain at some scaleahd orientatiors € {H,V,D}. (d) The directiond deviates too much from the real geometry.

Our goal is to clear the anisotropic redundancy that has not beenNote that this choice o andd is relative to the precisioi, and

removed by the 2D wavelet transform. We want to find a correct squares that are correct for a laf§gagressive compression) can

numbering of the grid points so that the 1D discrete signal obtained be too big for a smallef since more precision is needed.

from this reordering is smooth. The bestd is the once that leads to the best compressed repre-
This reordering must be described in a simple manner, more for- sentation after the bandeletization. If there is no preferential orien-

mally it should be parameterized by a small number of parame- tation in the squar&then it is better not to perform any bandeleti-

ters. To recover the geometric regularity that exists around sharpzation. In this case the bandelet transform is a standard 2D wavelet

features, our scheme is based on directional projections. The re-transform, and we set= NULL.

ordering will be described by a single directidnthat should be We are still stuck with the problem of designing the exact parti-

as parallel as possible to the real geometry. As shown on figure tion into squares of the wavelet domain at scale What we are

2 (c), we select each sampling locatirmf the regular grid, and  |ooking for is the partition that gives rise to the best compression of

project it orthogonally onto the lind* to get a new poink. To the surface. We will see in sections 4 and 5 how our algorithm can

construct a discrete 1D signal we now order the pairdscording perform this construction in a provably optimal manner.
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Figure 3:Influence of the size of S and of the direction d.

4 Bandelet Approximation Algorithm

We will now explain in details the different steps of the bandelet ap-
proximation algorithm, see also figure 4. A Matlab implementation
of this algorithm is freely available [Peyand Mallat 2005a].

(1) Input of the algorithm. The user provides a surface (or

normal map), stored as an 3-channels image using any geometry

image method. He also provides a thresh®ldhat controls the
compression rate of the algorithm.

(2) 2D wavelet transform. We first compute the 2D wavelet
transform of the original imagé. This transform can be either

orthogonal or biorthogonal, and is applied to each of the 3 channels
of the image. This results into a collection of 3-tupple of images whe

(fJ-H7 fJV7 fJD). The new images?$, for each scale 2and orientation
se {V,H,D}, are stored in a single image of the same size as the

original imagef, see also figure 2 (b). The following steps (3)-(7)

implement the bandeletization, which is repeated for each scale and

orientation.

(3) Selecting each dyadic square. A dyadic square is by defi-
nition a square obtained by recursively splitting the original wavelet
transformed imagefjS into four sub-squares of equal size. We re-

strict ourselves to squares of widthpixels with 4< L < 271/2,
The following steps (4)-(7) are repeated for each dyadic sdbiate
a given scale Rand orientatiors of the wavelet transform.

(4) Selecting each geometry. There are as many possible 1D
reordering of the grid points as directiodgoining pairs of points

in the squares of width L. The number of potential directions is
less than R2. The following steps (5)-(7) are repeated for each of
these potential directiorts

(5) Projection of the sampling locations. We now perform
the 1D discrete reordering of the sampling location explained in the
previous section. This is done by projecting the sampling location
alongd and sorting the resulting 1D points from left to right.

(6) 1D resulting signal. This 1D numbering of the sampling
points defines a 1D discrete sigriglas explained in the previous
section

(7) 1D wavelet transform. We perform a 1D discrete wavelet
transform offy.

(8) Selection of the best geometry (not shown). Foragiven

thresholdT, we have to choose the directi@hwhich generates
the less approximation error. In the following, we denote{by}
the coefficients of the 1D wavelet transform ff, and byRg the
number of bits needed to code the quantized coefficig@igby) }.
We use a nearly uniform quantizer

Qri) =0 if ]x<T,
{m(x>:sigr<x><q+1/2>T it qT<|x|<(g+DT.

To select the best geometry, we must choose the diredtithrat
minimizes the Lagrangian

Z(fg,R) = ||fq — farl|> + AT?(Rs + Ra),

re fyr is the signal recovered from the quantized coefficients
{Q1(bk)} using the inverse 1D wavelet transform, aRd is the
number of bits needed to code the geometric paranteteth an
entropy coder. We uské = 3/28, see [Le Pennec and Mallat 2004]
for a justification of this value.

(9) Output of the transform.  The resulting 1D wavelet coef-
ficients{by} corresponding to the best geometirgan be stored in
a 2D image of the same size &@sWe use a zig-zag scanning order,
so that low-scale wavelet coefficiertigare stored in the upper-left
corner of the output square. The fact that high coefficients usually
correspond to these scales can be exploited in the arithmetic coder
that codes bandelet coefficients. When comparing the images in
steps (3) and (9), we can notice that the anisotropic redundancy has
almost disappeared.
(10) Build the quadtree (not shown). Once we have com-
puted the approximation over each dyadic square, we must choose
the best layout of squares. This is explained in the next section.
What Do Bandelets Look like? A second generation bandelet
transform is a 2D wavelet transform followed by a bandeletization.
The transformation of a functioh using this algorithm is equiva-
lent to a decomposition of on a bandelet basi®. The bandelet
functionsby, are specified byt = (], S k,m) where
¢ 2! is the scale of the 2D wavelet transform,
¢ Sis a dyadic square of width pixels, with 1< L <27/,
eke{0,...,2logy(L)} andme {1,...,2X} are the scale and index

in the 1D wavelet transform.
The continuous underlying bandelet functions are roughly con-
tained in a band of widthi2. and of height 27K, but the functions



(1) Input: (2) 2D Wavelet (3) Extraction of a ) Sampling of the
Geometry image transform sub-square geometry directions

(5) Projection of (6) Resulting 1D
the sampling points function

(9) Output:

(7) 1D wavelet transform bandelet coefficients

Figure 4:Overview of the algorithm.

overlap each other. This is because the bandelet transform can be&sin the quadtree. This bandelet transform is an orthogonal (resp.
written as the succession of two transforms (2D wavelet and 1D biorthogonal) transform since the 1D and 2D wavelet transforms
wavelet along the geometry). This leads to several important re- are orthogonal (resp. biorthogonal).

marks: Once we have chosen a segmentation for each séaa®an
e The bandelet functions are esgular as the underlying wavelet  approximate geometry directiahinside each square, we have the
functions. associated bandelet bas# = {by },,, whereu is some parame-

e Although each quadtree segments the space in non-overlappingt€r indexing the vectors of the_ basis. 'I_'he be_lnd_elet transform com-
squares, the bandelet reconstruction does not suffer from blockingPutes the projection of a functiohon this basis, i.e. the set of dot
artifact. This is because the block-reconstruction in wavelet space products{(f, by) } 4, using the algorithm described in the previous

is filtered through the wavelet transform. section. A complete bandelet representation is thus composed of:
e Working at fixed scale regularizes the geometry and the corre- ¢ A quadtree segmentation for each scale 2
sponding reconstruction e For each scalel2and each dyadic square in the quadtree:

— the directiord,

—the bandelet coefficien{§f, by)}.
Note that there might exist some dyadic squares in which we do not
have a geometry because the square does not contains any geomet-
ric singularity. In those cases we simply keep the original wavelet
coefficients.

Think in Terms of Number of Bits We denote byRthe num-
ber of bits needed to both specify a bandelet basis {by };, and
code the coefficients of in this basis. It can be decomposed into
R=73Rj =75 (Ris+Rjc +Rjs), where, for each scale 2
e Rjs is the number of bits needed to encode the dyadic segmenta-

tion. To code the quadtree we use 1 bit for each split.
¢ Rjc is the number of bits that code the optimal directibin each
5 Construction of the Quadtree square of widtH. using an arithmetic coder.

e Rjp is the number of bits needed to encode the quantized bandelet

In the previous section, we have presented the first part of the coefficientsQr ((f, by)) using an arithmetic coder.
bandelet algorithm that computes a bandelet transform over eachye function restored from its quantized bandelet coefficients is
dyadic square at each scalé id the wavelet domain. This is
of course a redundant transform, and we must choose a layout of fr=Y Qr((f,by))by with distortion ||f — fg]2.
squares that forms the best segmentation of each scale. Such a seg- H
mentation is conveniently represented as a quadtree. The secondo find the best basi& for a given quantization step, we min-
part of the transform builds the best quadtree in a provably optimal imize a LagrangianZ that can be shown to approximate the La-
manner, using a Lagrangian optimization on the quantized geome-grangian of the true distortion rate (see [Le Pennec and Mallat
try and bandelet coefficients. 2004)):
Specification of a Bandelet Basis Figure 6 (bottom) shows —If — foll2 2. . . .
two different quadtrees for the finest scale ®nce a quadtree is (LR ) =T~ TRIT+AT™S} (Rsj+Roj + Rej)
chosen, the complete bandelet transform discards the transformedlThe Quadtree Optimization Thanks to the additivity of the
coefficients, produced by step (8), that do not belong to squaresLagrangian and the quadtree structure, the minimizatia®’ afan

Figure 5: Graphical display of continuous bandelet functions for
various scale®!.
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Figure 6: Two examples of quadtree segmentations of the wavelet space. Gautnsation leads to a different bandelet bases.

be performed using a fast bottom-up algorithm, this is the last step multi-chart geometry images is possible but out of the scope of this

(10) of the bandelet transform algorithm.

Recall that in the previous steps (1)-(9), see figure 4, we have

recorded, for each dyadic squ&ef size less than'2i/2) the value

Z(9) = Z(f,R %) of the Lagrangian restricted & together with

the best quantized directiah Then, for each scalé 2we compute

the quadtree structure:

e Initialize the quadtree: each smallest squ&ref width L = 4
pixels is a leaf, record the corresponding optimal geomdtry
and initialize %y, the cumulative Lagrangian of the sub-tree, to
(S =Z(9).

o Start with squareS of sizeL = 8 pixels.

e For each squar§, we denote byS;, S, S, %) its 4 sub-squares,

and .Z/(S) = % (S1) + Z(S) + Lo(Ss) + Zo(Su) +A T2

is the Lagrangian of the sub-tree (the additioAdl? is due to
the split costRg = 1 bit). The sub-squares should be merged if
28 < Z'(9. If so, declareS as a leaf, record the optimal
geometryd. Update%y(S) = min(.Z(S),-£(9)).

e While L < 271/2, doL « 2L and repeat the previous step.

This algorithm explore each dyadic square up to a sizé2 A
progressive refinement to search for the optich@an avoid test-
ing every possible direction, and leads to an overall complexity of
O(N5/4) for an image oN pixels.
Mathematical Result Replacing the 1D wavelet transform by
a 1D Alpert multiwavelet transform [Alpert 1992] allows to prove
the following result exposed in [Peyand Mallat 2005b]. It is an
extension of the results on the optimality of bandelet approximation
[Le Pennec and Mallat 2005].

Given f a C2-geometrically regular function, the transform cod-
ing fr with R bits in the bandelet basi® minimizing Z(f,R, %),
with R= Rs+ Rg + Rg, satisfies

If - frl* < CR 2 log?(R),

with C a constant that depends only on the functfoiWe note the
following important points:
e The bandelet approximation exponen® is optimal for G-

geometrically regular functions.
e The reconstructed function is as regular as the original function.
e There is no blocking artifact due to the segmentation.

6 Application to Geometry Image and Nor-
mal Map Compression

Geometry Images Compression Geometry images [Gu et al.

2002] perform a completely regular remeshing of a 3D model so
that it can be stored in an RGB image. The main issue with this ap-
proach is the large distortion induced by the planar mapping. How-

paper.

The simplest way to compress a geometry image is to use an im-
age transform (e.g. wavelets) with special boundary conditions (see
[Hoppe and Praun 2003]). This is natural and follows the theoret-
ical construction proposed in [Dahmen and Schneider 2000]. We
measure the reconstruction error between a mgsand its recon-
struction withR bits .#r using

PSNR.#, ./r) = 20log,o( peak/dy (A, .#R)),

wherepeakis the bounding box diagonal a is the RMS sym-
metric Hausdorff distance, computed using [Cignoni et al. 1998].

The main difference between thé horm and the geometric dis-
tancedy is that the latter is insensitive to warpings in parameter
space, which do not change the shape of the surface. To remove
this bias in coding, we use a simple fix by first performing a lo-
cal change of coordinates (estimated using coarse scale approxi-
mation), and then allocating more bits (3x) for the details in the
normal direction rather than in the tangential direction. This has
proven useful in other compression schemes [Hoppe and Praun
2003; Guskov et al. 2000], but further theoretical studies remain
to be done.

Figure 9 shows the Hausdorff distortion curves. Note that even
for geometry images with blurred features (Gargoyle), there is still
a PSNR improvement of over 1.4dB. On these geometry images,
large distorsion is caused by the spherical mapping, which adds
some artificial anisotropy. Figure 8 shows the Hausdorff distortion
on small patches extracted from various surfaces. These geometry
images are not corrupted with artificial geometry, but we still notice
a PSNR improvement of over 1.5dB.

Normal Maps Compression A normal map is a color texture
that encodes the normals of the surface on a regular grid. One usu-
ally renders a coarse mesh and adds the high-frequency geometric
details of the surface using a normal map. In our tests we use nor-
mal maps that are either created by hand (see figure 1 and 9 for the
generator models) or by using the methodology of spherical geom-
etry images (see figure 9 for the other normal maps).

In our tests we encode the maps as RGB images, one channel
per spacial axis, and we re-normalize the normal map after com-
pression. The reconstruction error is measured using the traditional
PSNR

PSNRf, fr) = 20logyo(|f [l /[ f — frll2)-

Figure 9 shows the 4 distortion curves, with a typical PSNR
enhancement oft+2dB for normal maps with strong geometri-
cal features (Generator), ardl.3dB for normal maps with more
smoothed features (Armadillo and Tira). These results clearly show
the strength of our approach for normal map compression, which is
more agressive than for geometry image compression. Some argu-
ments can explain this fact:

ever, multi-chart and spherical geometry images have been intro-® Wavelets perform reasonably well for geometry images, which

duced to overcome this difficulty [Sander et al. 2003; Hoppe and

only have discontinuities of tangents (decay exponent3)2).

Praun 2003]. We have chosen to use spherical geometry images® A normal map has strong fine scale geometric content where our
which limits our tests to genus-0 closed surfaces. The extension to bandelet transform performs well.



7 Conclusion

In this paper we have described a surface functional model that

Eck, M., DEROSE, T., DUucHAMP, T., HOPPE H., LOUNSBERY, M.,
AND STUETZLE, W. 1995. Multiresolution Analysis of Arbitrary
Meshes.Computer Graphics 2Annual Conference Series, 173-182.

takes into account most geometric features present in CAD and FARIN, G. 1993. Curves and Surfaces for Computer Aided Geometric

scanned 3D surfaces. In this setting, the compression problem is

Design 3. ed. Academic Press, Boston.

well understood, and can be solved using harmonic analysis con-GARLAND, M., AND HECKBERT, P. 1997. Surface simplification using
struction. We introduced second generation orthogonal bandelets  auadric error metricsProc. of SIGGRAPH 199209-215.

that have several desirable properties for compression

e The construction i®rthogonalwhich is important for compres-
sion.

e Basis functions areegular and hence introduce no blocking arti-
facts.

o |t provides amultiscalerepresentation of the geometry. This cor-

Gu, X., GORTLER, S.,AND HOPPE H. 2002. Geometry ImagePBroc. of
SIGGRAPH 2002355-361.

GuskoyV, I., VIDIMCE, K., SWELDENS, W., AND SCHRODER, P. 2000.
Normal meshes. IRroc. of SIGGRAPH 20Q@omputer Graphics Pro-
ceedings, Annual Conference Series, 95-102.

HERTZMANN, A., AND ZORIN, D. 2000. lllustrating smooth surfaces. In
SIGGRAPH '00: Proceedings of the 27th annual conference om-C

responds to the nature of most surfaces, and eases theoretical puter graphics and interactive techniquésCM Press/Addison-Wesley

analysis.
e The transform coding rate is asymptotically optimal for thfe L
norm on G-geometrically regular functions.

Our numerical results show that bandelet bases provide a signif-
icant improvement over state of the art compression schemes for

geometrically regular surfaces.
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Figure 8: Hausdorff distortion results for geometry images patches compression.

o

4 AN

A ER\e i .-

80 -

----- Wavelets
—— Bandelets

1T 12 14 16 bpp

afetasas e Wavelets
WA

4 —— Bandelets
» 0.2 0.4 0.6 0.8

PSNR for L norm

1T 12 14 16 bpp

SN
Original Normal Map Original (zoom)

Wavelets at 0.2bit/pixel Bandelets at 0.2bit/pixel

Figure 9: L2 distortion results for normal maps compression.



