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Abstract

We define maximum entropy models of non-Gaussian stationary random vectors

from covariances of non-linear representations. These representations are calculated

by multiplying the phase of Fourier or wavelet coe�cients with harmonic integers,

which amounts to compute a windowed Fourier transform along their phase. Rectifiers

in neural networks compute such phase windowing. The covariance of these harmonic

coe�cients capture dependencies of Fourier and wavelet coe�cients across frequencies,

by canceling their random phase. We introduce maximum entropy models conditioned

by such covariances over a graph of local interactions. These models are approximated

by transporting an initial maximum entropy measure with a gradient descent. The

precision of wavelet phase harmonic models is numerically evaluated over turbulent

flows and other non-Gaussian stationary processes.

Keywords— covariance, stationary process, phase, Fourier, wavelets, turbulence

1 Introduction

Many phenomena in physics, finance, signal processing and image analysis can be

modeled as realizations of a non-Gaussian stationary process X. We often observe a

single realization of dimension d from which the model must be estimated. Models of

stochastic processes may be defined as maximum entropy distributions conditioned by

a predefined family of moments [1, 2]. To estimate accurately these moments from a

single or few realizations, the number of moments should not be too large. The main

di�culty is to specify these moments so that the resulting maximum entropy model

approximates well the distribution of the original process. We will show that the phase

plays a crucial role to define moments that capture non-Gaussian properties.

⇤This work is supported by the ERC InvariantClass 320959
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We introduce maximum entropy models based on covariances of a representation

R(X) of X. Building a model amounts to choosing R and selecting a small subset of

covariance coe�cients, which are su�cient to compute an accurate maximum entropy

model. This is interpreted as a graph model where covariance coe�cients are kept

along the edges of the graph. To estimate covariances from a single realization of X

we use prior knowledge on symmetries of its probability distribution. If X is known to

be stationary, then the group of symmetries includes translations but it may be larger,

or may not include all translations if X is not stationary. The covariance is estimated

from a single realization with an empirical average along the orbit of the group action.

The number of covariance that must be estimated is typically reduced when the group

of symmetries increase. This number must be much smaller than the dimension d of

X to avoid introducing large estimation errors.

The central di�culty is to optimize the representation in order to build an accurate

maximum entropy model. We shall see that the model error, measured with a Kullback-

Leibler divergence, is equal to the excess of entropy of the maximum entropy model.

To reduce this error, we define R so that R(X) is sparse, which leads to lower entropy

models. We shall also impose that R is bi-Lipschitz continuous so that variations of

R(X) are of the same order of magnitude as variations of X, which limits the variance

of covariance estimations. Section 2 introduces bi-Lipschitz non-linear representations

R computed from harmonics of phases of Fourier coe�cients, to model non-Gaussian

stationary processes. We then concentrate on phase harmonics of wavelet coe�cients,

which provide sparse representations and hence more accurate models of large classes

of stationary processes.

To understand the importance of the phase, observe that if R(X) is the Fourier

transform of a stationary X then its covariance matrix is diagonal. Fourier coe�cients

are uncorrelated at di↵erent frequencies because of stationary phase fluctuations [3]. If

X is not Gaussian then Fourier coe�cients are typically not independent. We modify

R in order to capture this dependence. Section 2 explains that high order moments

capture non-Gaussian statistics across frequencies by canceling random phase fluctua-

tions. However, such high order moments have a large variance because zk amplifies the

variability of z if |z| is large and k > 1. To preserve phase cancellation properties while

avoiding large variance estimations, we replace zk = |z|k eik'(z) by phase harmonics

|z| eik'(z) introduced in [4]. Phase harmonics keep the modulus and are therefore Lips-

chitz continuous. We show that they are obtained with a windowed Fourier transform

along the phase. Section 2 studies the covariance of a Fourier phase harmonic operator

R.

Wavelet transforms of signals including singularities are often more sparse than

Fourier transforms, which reduce errors of maximum entropy models. High order mo-

ments of wavelet coe�cients have been used to characterize non-Gaussian multifractal

properties of random processes and turbulent flows [5, 6]. As in the Fourier case, we

replace these high order moments by phase harmonics, to define a Lipschitz continu-

ous representation R. Section 3 studies the covariance of this wavelet phase harmonic

operator.
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Wavelet phase harmonics are related to the pioneer work of Grossmann and Morlet

[7], who showed qualitatively that complex wavelet transforms have a phase whose

variations across scales provide important information on the geometry of transient

structures. In image processing, Portilla and Simoncelli [8] brought a new perspective

by showing that one can synthesize non-Gaussian image textures from the covariance

of the modulus of wavelet coe�cients and their phase at di↵erent scales. In an ap-

parently di↵erent context, remarkable image texture synthesis were obtained by [9],

by computing the covariance of output coe�cients of a one-layer convolutional neural

network, calculated with a rectifier. We show that these approaches correspond to

di↵erent instantiations of phase harmonic covariances.

Section 4 studies maximum entropy models conditioned by empirical estimators

of covariances. Sampling a maximum entropy distributions requires to use expensive

algorithms which iterate over Gibbs samplers [10], which is not feasible over large size

images. We thus rather use microcanonical models studied in [11], which transports an

initial maximum entropy measure with a gradient descent which adjusts its moments.

Section 5 defines low-dimensional foveal models of wavelet phase harmonics covariances.

We evaluate the numerical precision of these models, to approximate non-Gaussian

processes including turbulent flows. All calculations can be reproduced by a Python

software available at https://github.com/kymatio/phaseharmonics.

Notations: We write z⇤ the complex conjugate of z 2 C, Y ⇤ is the complex

transpose of a matrix Y and A
⇤ is the adjoint of an operator A. The covariance of two

random variables A and B is written Cov(A,B) = E(AB⇤) � E(A)E(B)⇤. An inner

product is written hx, yi =
R
x(u) y(u) du in L2(Rd) and hx, yi =

P
u
x(u) y(u) in Rd.

The cardinal of a set S is |S|.

2 Fourier Phase Harmonic Representation

Next section introduces the general properties of maximum entropy models conditioned

by covariance coe�cients of a non-linear representation R over a graph. Section 2.2

then shows that the Fourier coe�cients of a stationary process are uncorrelated because

of phase fluctuations. It motivates the use of higher order moments to define a repre-

sentation which can cancel random phase fluctuations and capture dependence across

frequencies. Section 2.3 reviews the properties of phase harmonics, which also cancel

the phase but defines a bi-Lipschitz representation as opposed to high order moments.

Section 2.4 studies the resulting Fourier phase harmonic operator R, whose covariance

matrix captures dependencies of non-Gaussian random vectors across frequencies.

2.1 Maximum Entropy Covariance Graph Models

We introduce maximum entropy models of a stationary random vector X, conditioned

by covariance coe�cients of a representation R(X) which is also a random vector:

KR = Cov(R(X),R(X)) = E
⇣
(R(X)�MR)(R(X)�MR)

⇤

⌘
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with MR = E(R(X)). We suppose that X(u) is defined for u in a cube ⇤d ⇢ Zr with

d grid points, for example in [1, d1/r]r. If r = 2 then each realization is an image of d

pixels. This section reviews general properties of maximum entropy models defined on

a graph, which take advantage of known symmetries of the distribution of X.

Maximum entropy on a graph with symmetries Let us write R(X) =

{Rv(X)}v2V where V is a finite set of vertices in a graph that we now define. We

introduce a maximum entropy model conditioned by the covariance between vertices

KR(v, v
0) = Cov(Rv(X),Rv0(X)),

where v0 is in a neighborhood Nv ⇢ V of v. We suppose that v 2 Nv. If v0 2 Nv then

v 2 Nv0 so it defines a reflexive and symmetric undirected graph (V,E), where the set

of edges relates all neighbors E = {(v, v0) : v 2 V , v0 2 Nv}. The edge weights are the

covariancesKR(v, v0) over E. In statistical physics, (Rv(x)�MR(v))(Rv0(x)�MR(v0))⇤

is called the interaction potential of (v, v0) 2 E, where the mean MR is considered here

as a predefined constant vector.

Let p be the probability density of X. We can reduce the constraints of the maxi-

mum entropy model if we also know a finite group G of symmetries of p. We consider

linear unitary symmetries g from Rd to Rd, which satisfy p(g.x) = p(x) for all x 2 Rd.

The stationarity of X in ⇤d means that p is invariant to periodic translations, that we

write g.x(u) = x(u � g), so G includes all translations. If p is invariant to rotations

then G also includes rotations. Since p is invariant to the action of G, its covariance is

also invariant to the action of any g 2 G

Cov(Rv(g.X),Rv0(g.X)) = Cov(Rv(X),Rv0(X)).

Let |G| be the total number of symmetries. These |G| conditions will be included in

the maximum entropy model.

The entropy of a density p̃ on Rd is

H(p̃) = �

Z
p̃(x) log p̃(x) dx.

A maximum entropy macrocanonical model eX conditioned by the covariance KR over

E and by the symmetry group G has a probability density p̃ which maximizes H(p̃)

and satisfies covariance moment conditions for all (v, v0, g) 2 E ⇥G
Z
(Rv(g.x)�MR(v)) (Rv0(g.x)�MR(v

0))⇤ p̃(x) dx = KR(v, v
0). (1)

If there exists a solution to this convex optimization with equality constraints then it

is a unique and it can then be written [2]

p̃(x) = Z�1 exp
⇣
�

1

|G|

X

(v,v0,g)2E⇥G

�v,v0 (Rv(g.x)�MR(v)) (Rv0(g.x)�MR(v
0))⇤

⌘
, (2)

where �v,v0 is the Lagrange multiplier associated to each equality condition (1) and

does not depend upon g. The sum in the exponential is the Gibbs energy, and Z is the
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partition function. Since KR(v, v0) = K⇤

R
(v0, v) we have �v,v0 = �⇤

v0,v. We verify that

for all g 2 G, p̃(g.x) = p̃(x) so G is also a group of symmetries of p̃. If G includes all

translations then p̃ is stationary.

In the particular case where all Rv(x) are linear operators then the Gibbs energy is

bilinear and p̃(x) is thus a Gaussian distribution. Appendix A shows that the Lagrange

multipliers can then be computed e�ciently [2]. If some of the Rv(x) are non-linear

then computing the Lagrange multipliers is computationally very expensive when the

dimension d of X and the total number |E| of moments is large.

Covariance estimation from symmetries The covariance estimation from a

single realization x̄ of X is calculated with an average over the symmetries of G. The

orbit of the action of G on x̄ is the set of {g.x̄}g2G. The empirical estimation of

MR(v) = E(Rv(X)) is computed as an empirical average over this orbit

fMR =
1

|G|

X

g2G

R(g.x̄). (3)

Similarly, KR is estimated with an average on the same orbit

eKRx̄ =
1

|G|

X

g2G

⇣
R(g.x̄)� fMR

⌘⇣
R(g.x̄)� fMR

⌘
⇤

. (4)

Summing over all transformations of x̄ by g 2 G is called “data augmentation” in

machine learning. The larger |G| the more accurate the estimation. The maximum

entropy model is estimated from a single realization x̄ by replacing the mean MR and

covariance KR in (1) by their estimation fMR and eKRx̄.

The existence of symmetries also reduces the number of covariances that must to be

estimated. We define EG as a minimum set of edges (v, v0) such that for any (v, v0) 2 E

there exists (v1, v01, g) 2 EG ⇥ G such that Rv(x) = Rv1(g.x) and Rv0(x) = Rv
0
1
(g.x).

Since p is invariant to the action of G, its covariance KR is also invariant:

KR(v, v
0) = Cov(Rv1(g.X),Rv

0
1
(g.X)) = KR(v1, v

0

1).

It is therefore su�cient to estimate covariance coe�cients indexed by EG to specify all

covariances indexed by E. The set EG is interpreted as a set of su�cient statistics.

Given a realization x̄ of dimension d, to control the overall covariance estimation errors

we must insure that |EG| ⌧ d.

Bi-Lipschitz continuity The estimation of covariance coe�cients may have a

large variance in the presence of rare outliers. These outliers induce a large variability

in the empirical sum (4) depending upon the realization x̄ of X. To avoid amplifying

these outliers, we impose that R is bi-Lipschitz, so that the variations of R(X) are of

the same order as the variations of X. It also insures that R is an invertible operator.

The representation R is bi-Lipschitz if there exists AR > 0 and BR such that for

all (x, x0) 2 R2d

AR kx� x0k2  kR(x)�R(x0)k2  BR kx� x0k2. (5)
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For any random vector Z, we write �2(Z) = E(kZ � E(Z)k2), which is the trace of its

covariance. The following proposition proves that the variance of R(X) and X have

the same order of magnitude.

Proposition 2.1. If R is bi-Lipschitz then

AR �
2(X)  �2(R(X))  BR �

2(X). (6)

Proof: If X 0 and X are two independent random vectors having same probability

distribution then the bi-Lipschitz bounds (5) of R imply that

AR E(kX �X 0
k
2)  E(kR(X)�R(X 0)k2)  BH E(kX �X 0

k
2). (7)

If Y and Y 0 are two i.i.d random variables then we verify that

E(|Y � Y 0
|
2) = 2E(|Y � E(Y )|2).

where the first expected value is taken relatively to the joint distribution of Y and Y 0.

It results that E(kX � E(X)k2) = 2�1 E(kX � X 0
k
2) and E(kR(X) � E(R(X))k2) =

2�1 E(kR(X)�R(X 0))k2). Inserting these equalities in (7) proves proves (6). ⇤

Maximum entropy reduction with sparsity Zhu, Wu and Mumford [12] have

proposed to optimize maximum entropy parameterized models by minimizing the re-

sulting maximum entropy. Indeed, if X has a probability density p then model error

can be evaluated with a Kullback-Leibler divergence

DKL(p||p̃) =

Z
p(x) log

p(x)

p̃(x)
dx.

We verify that
R
p(x) log p̃(x) dx =

R
p̃(x) log p̃(x) dx by inserting (2) and by using

the equalities (1). Since H(p) =
R
p(x) log p(x) dx, it results that the Kullback-Leibler

divergence is equal to the excess of entropy of the maximum entropy model:

DKL(p||p̃) = H(p̃)�H(p) � 0. (8)

We thus reduce the model error by reducing the maximum entropyH(p̃). The minimum

H(p̃) = H(p) is reached if and only if p̃ = p.

In our case, the model depends upon the choice of R and of the edges E ⇢ V 2

of the covariance graph. Optimizing R by calculating H(p̃) is computationally too

expensive. However, we explain below that we can minimize an upper bound of H(p̃)

by finding a representation such thatR(X) is as sparse as possible, which gives a partial

control on the maximum entropy. Let eX be a maximum entropy model of density p̃.

If R has a stable inverse, which we guarantee with the bi-Lipschitz condition, then

an upper bound of H(p̃) can be computed from the entropy of each marginal Rv( eX).

Such an entropy is small if Rv( eX) is sparse, because it then has a narrow probability

density centered at 0. To impose this sparsity we must find a representation R such

that Rv(X) is sparse. This sparsity must also be captured by diagonal covariance
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coe�cients KR(v, v) so that the maximum entropy model eX, conditioned by these

moments retains this sparsity. This is the case for Fourier and wavelet phase harmonic

representations studied in Sections 2.4 and 3.2. For non-Gaussian processes, it amounts

to represent “coherent structures” with as few non-zero coe�cients as possible.

Increasing the number |E| of moment conditions can further reduce H(p̃) but it also

increases the statistical error when estimating these moments from a single realization

of X. The choice of E is thus a trade-o↵ between the model error (bias) and the

estimation error (variance).

2.2 Fourier Phase and High Order Moments

The covariance of a stationary random vector is diagonalized by the discrete Fourier

transform, because of random phase fluctuations. This suggests defining a covari-

ance representation in a Fourier basis. For non-Gaussian processes, the dependence

of Fourier coe�cients is partly captured by high order moments which cancel random

phase fluctuations.

For R = Id, since X(u) for u 2 ⇤d is stationary, KR(u, u0) = Cov(X(u), X(u0))

only depends on u� u0. We write |u| the norm of u 2 ⇤d and u0.u the inner product.

A low-dimensional maximum entropy model is constructed on V = ⇤d by restricting

covariances to neighborhoods of fixed radius: Nv = {v0 : |v � v0|  c}. The radius c

is chosen to be large enough to capture long range correlations. Since X is stationary,

the symmetry group includes translations and we can thus define EG by setting v = 0.

The maximum entropy model then defines a Gauss-Markov random vector [2] specified

by covariances in a small neighborhood. This model does not capture non-Gaussian

properties. If ⇤d is an r-dimensional grid, then the model size is |EG| = O(cr). It may

be large if the process has long-range spatial correlations.

To better understand how to capture non-Gaussian properties, we study these co-

variance coe�cients in a Fourier basis. We write bx = Fux the discrete Fourier transform

of x over ⇤d:

bx(!) =
X

u2⇤d

x(u) e�i!.u for ! = 2⇡d�1/rm with m 2 ⇤d. (9)

The Fourier representation R = Fu is indexed by ! 2 V = 2⇡d�1/r⇤d. The covariance

for (!,!0) 2 V 2 is

KR(!,!
0) = Cov( bX(!) bX(!0)).

If ! 6= 0 then E( bX(!)) = 0. If ! 6= !0 then KR(!,!0) = 0 because of ran-

dom phase fluctuations. Indeed, translating X(u) by any ⌧ 2 Gq multiplies bX(!) by

e�i⌧.!. Since X is stationary, this translation is a symmetry which does not modify

Cov( bX(!), bX(!0)). It results that

Cov( bX(!), bX(!0)) = ei(!�!
0).⌧ Cov( bX(!), bX(!0)). (10)

Since this is true for any ⌧ 2 ⇤d it implies that

Cov( bX(!) bX(!0)) = 0 if ! 6= !0. (11)
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Since the discrete Fourier transform is periodic beyond [0, 2⇡]r, any equality or non-

equality between frequencies must be understood modulo 2⇡ along the r directions.

If X is Gaussian then bX is also Gaussian so this non-correlation implies that bX(!)

and bX(!0) are independent. However, if X is non-Gaussian then bX(!) and bX(!0) are

typically not independent.

Phase cancellation with higher order moments To capture the dependen-

cies of Fourier coe�cients across frequencies, one can use high order moments [13]. For

any k 2 Z, similarly to (10), translating X by ⌧ 2 ⇤d yields

Cov( bX(!)k, bX(!0)k
0
) = ei(k!�k

0
!
0).⌧ Cov( bX(!)k, bX(!0)k

0
). (12)

A high-order Fourier representation Rv(X) = bX(!)k is indexed by v = (!, k) 2 V with

0  k  kmax. It results from (12) that

KR(v, v
0) = Cov( bX(!)k, bX(!0)k

0
) = 0 if k! 6= k0!0 . (13)

If k! = k0!0 and X is not Gaussian then this covariance is typically non-zero because

the phase variations of bX(!0)k
0
⇤ cancel the phase variations of bX(!)k. This is also

the key idea behind the use of bi-spectrum moments [14]. By adjusting (k, k0) these

moments provide some dependency information between bX(!) and bX(!0) for ! 6= !0.

For example, let X(u) = x(u � S) be a random shift vector, where x(u) is a fixed

signal supported in ⇤d and S is a random periodic shift which is uniformly distributed

in ⇤d. It is a stationary process whose Fourier coe�cients have a random phase:
bX(!) = bx(!) e�iS!. In this case, if k! = k0!0 then

Cov( bX(!)k, bX(!0)k
0
) = bx(!)k bx(!0)⇤k.

It is non-zero at frequencies where bx does not vanish. This shows that covariances

of the high order Fourier exponents R(X) can capture the dependence of Fourier

coe�cients at di↵erent frequencies. However, this high order Fourier representation

is not Lipschitz. Indeed, when k > 1, the exponent k amplifies the variability of each

random variables bX(!), so estimators of covariance coe�cients have a large variance.

2.3 Phase Windowed Fourier Transform and Harmonics

By replacing high order exponents by an exponent on the phase only, we show the

resulting phase harmonic operator is bi-Lipschitz. These coe�cients are obtained by

applying a windowed Fourier transform along phases. We prove that rectifiers in neural

networks compute windowed transformations on phases.

For z = |z|ei'(z) 2 C, zk = |z|k eik'(z) exponentiates the modulus and phase to-

gether. It is the modulus exponentiation which amplifies the variance of a random

variable although it has little role in ensuring that correlation of Fourier coe�cients

are non-zero. We thus eliminate the modulus exponentiation and we replace it by the

phase harmonics introduced in [4]. A phase harmonic computes a power k 2 Z of the

phase only:

[z]k = |z| eik'(z) .
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It preserves the modulus: |[z]k| = |z|. We shall see that it is computed with a win-

dowed Fourier transform on the phase of z. This section reviews the properties of

this phase windowed Fourier transform introduced in [4]. Next section defines a new

representation R by applying it to Fourier coe�cients.

Phase windowed Fourier transform A windowed Fourier transform of a signal

x(u) is a linear operator which multiplies x(u) by a translated window along u and

computes a Fourier transform of the windowed signal along u. Because the phase '(z)

is a non-linear function of z 2 C, a windowed Fourier transform on the phase is a

non-linear operator.

The phase of z is translated by a variable ↵ 2 [0, 2⇡], and its support is limited by

a 2⇡ periodic window h(↵):

H(z) = {|z|h('(z) + ↵)}↵2[0,2⇡]. (14)

This phase windowing is non-linear. A phase windowed Fourier transform computes

the Fourier transform of H(z) relatively to ↵. Let us write bh = F↵(h) the Fourier

transform along phases:

bh(k) = 1

2⇡

Z 2⇡

0
h(↵) e�ik↵ d↵. (15)

Applying F↵ to (14) gives
bH(z) = {bh(k) [z]k}k2Z . (16)

It proves that a phase windowed Fourier transform bH = F↵H computes weighted phase

harmonics. The harmonic weights bh(k) amplify or eliminate di↵erent phase harmonics.

The more regular the phase window h the faster the decay of harmonic weights.

A rectifier ⇢(a) = max(a, 0) is an important example of non-linearity which acts as

a phase windowing. Indeed

⇢(Real(z)) = |z| ⇢(cos'(z)) ,

so

{⇢(Real(ei↵z))}↵2[0,2⇡] = H(z) with h(↵) = ⇢(cos↵). (17)

The rectifier phase window ⇢(cos↵) is positive and supported in [�⇡/2,⇡/2]. The

corresponding harmonic weights are computed in [4] with the Fourier integral (15):

bh(k) =

8
><

>:

�(i)k

⇡(k�1)(k+1) if k is even
1
4 if k = ±1

0 if |k| > 1 is odd

. (18)

Their decay is slow because h(↵) has discontinuous derivatives at ±⇡/2.
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Bi-Lipschitz continuity We mentioned that polynomial exponents amplify the

variability of random variables around their mean. Indeed if (z, z0) 2 C2 then |zk �

z0k|/|z � z0| may be arbitrarily large if k > 1. On the contrary, a phase harmonic

preserves the modulus which provides a bound on such amplification. It is proved in

[4] that it is Lipschitz continuous

8(z, z0) 2 C2 , |[z]k � [z0]k|  max(|k|, 1) |z � z0|. (19)

The distance |z � z0| is therefore amplified by at most |k|.

This Lipschitz continuity is extended to phase windowed Fourier transforms, which

are shown to be bi-Lipschitz. The Fourier transform preserves norms and distances.

Calculating the norm of (16) gives

kH(z)k = k bH(z)k = khk2 |z|2,

with khk2 =
P

k
|bh(k)|2. Following [4], we also derive from (19) that a phase windowed

Fourier transform is bi-Lipschitz over complex numbers (z, z0) 2 C2

AH |z � z0|2  k bH(z)� bH(z)0k2  BH |z � z0|2 , (20)

with AH = 2 |bh(1)|2 and BH = |bh(0)|2 +
P

k2Z k
2
|bh(k)|2. The upper bound BH is

derived from (19) and the lower bound is obtained isolating the terms corresponding

to k = ±1. For the rectifier filter (18), we get AH = 1/8 and BH = 1/4 + 1/⇡2. The

following theorem gives a tight upper Lipschitz constant for the rectifier filter, proved

in Appendix B.

Theorem 2.1. The rectifier phase window h(↵) = max(cos↵, 0) has a Lipschitz upper-

bound BH = 1/4.

2.4 Phase Harmonics of Fourier Coe�cients

Section 2.2 explains that if X is stationary then bX(!) and bX(!0) are not correlated

if ! 6= !0. Similarly to high order moments, we show that [ bX(!)]k and [ bX(!0)]k
0

may become correlated because of random phase cancellations, and it defines a sparse

covariance matrix.

Applying bH to each Fourier coe�cients gives

bH( bX(!)) =
n
bh(k) [ bX(!)]k

o

k2Z
.

It defines a non-linear representation R = bHFu indexed by v = (!, k). Since bH is bi-

Lipschitz and the Fourier transform is unitary up to a factor d, it results that R = bHFu

is bi-Lipschitz with Lipschitz constants AR = dAH and BR = dBH. Proposition 2.1

implies that

dAH �
2(X)  �2( bH(X))  dBH �

2(X). (21)
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Sparse phase harmonic covariance Phase harmonic covariance coe�cients are

K bHFu
(!, k,!0, k0) = bh(k)bh(k0)⇤Cov([ bX(!)]k , [ bX(!0)]k

0
).

If bh is compactly supported in [0, kmax], since X is of dimension d, the covariance K bHF

has (kmax + 1)2d2 coe�cients. The following proposition proves that coe�cients of

K bHF
are mostly zero and it is diagonal if X is Gaussian. Diagonal values are specified.

Theorem 2.2. If X is real stationary then

Cov([ bX(!)]k, [ bX(!0)]k
0
) = 0 if k! 6= k0!0. (22)

Along the diagonal, if ! 6= 0 and k 6= 0 or if ! = 0 and k is odd then

Cov([ bX(!)]k, [ bX(!)]k) = Cov( bX(!), bX(!)) . (23)

If ! = 0 and k is even then

Cov([ bX(0)]k, [ bX(0)]k) = Cov(| bX(0)|, | bX(0)|) . (24)

For all ! 6= 0
Cov(| bX(!)|, | bX(!)|)

Cov( bX(!), bX(!))
= 1�

E(| bX(!)|)2

E(| bX(!)|2)
. (25)

If X is Gaussian then K bHF
is diagonal and E(| bX(!)|)2/E(| bX(!)|2) = ⇡/4 if ! 6= 0.

The proof is in Appendix C. All equalities or non-equalities on frequencies must

be understood modulo 2⇡ in dimension r. Property (22) proves that K bHFu
is highly

sparse. If X is not Gaussian then o↵-diagonal coe�cients are typically not zero when

k! = k0!0. For k = k0 = 0, we get d2 modulus covariances Cov(| bX(!)|, | bX(!0)|) which

are a priori non-zero for all (!,!0). It provides no information on the phase of bX(!)

and bX(!0). Phase correlations are captured when k 6= 0. If ! 6= 0, it results from (22)

that Cov([ bX(!)]k, [ bX(!0)]k
0
) 6= 0 only if !0 is colinear with !. For a grid ⇤d of size

d, there are O(d1/r) such frequencies !0. The total number of non-zero o↵-diagonal

covariance coe�cients is thus at most d2 +O(d1+1/r).

For a non-Gaussian process, o↵-diagonal coe�cients with k! = k0!0 are typically

non-zero. This is illustrated with a random shift process X(u) = x(u� S) where S is

uniformly distributed in ⇤d. If k! = k0!0 then one can verify that

Cov( bX(!)k, bX(!0)k
0
) = [bx(!)]k [bx(!0)]�k

0
if ! 6= 0,!0

6= 0.

If x̂(!) does not vanish then all these coe�cients are non-zero.

Along the diagonal, (23) and (24) prove that all coe�cients are either equal to

Cov( bX(!), bX(!)) or to Cov(| bX(!)|, | bX(!)|). Property (25) also proves that the ratio

between these covariance values depend upon the ratio E(| bX(!)|)2/E(| bX(!)|2). Since

E(X(!)) = 0 for ! 6= 0, this last ratio measures the sparsity of the random value bX(!).

If it is smaller than the Gaussian ratio ⇡/4 then bX(!) has a high probability to be

relatively small and it has large amplitude outliers of low probability. The probability
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distribution of bX(!) is then highly peaked in zero with a long tail. The smaller this

ratio the lower the entropy of this marginal probability distribution.

We saw in (8) that a maximum entropy model eX introduces errors if its entropy is

much larger than the entropy of X. The entropy H(p̃) is bounded by the sum of the

entropy of each random variable bX(!), which is conditioned by Cov( bX(!), bX(!) and

Cov(| bX(!)|, | bX(!)|). It gives an upper bound on the entropy H(p̃), which decreases if

the sparsity of bX(!) increases. However, if X(u) has sharp localized transitions then

its Fourier coe�cients have typically a large amplitude across most frequencies and are

not sparse. On the contrary, wavelet coe�cients may be sparse. In this case, we shall

capture this sparsity and thus compute maximum entropy models of lower entropy, by

replacing the Fourier transform by a wavelet transform.

3 Wavelet Phase Harmonics

To model random vectors whose realizations include singularities and sharp transi-

tions, we replace the Fourier transform by a wavelet transform. Wavelet transform

can provide sparse representations of such signals, and wavelet coe�cients may have a

short range dependence allowing to define low-dimensional models. We concentrate on

two-dimensional image applications. Section 3.1 reviews the construction of complex

steerable wavelet frames and the properties of their covariance matrices. Section 3.2

studies the covariance of wavelet phase harmonics.

3.1 Steerable Wavelet Frame Covariance

Complex steerable wavelet frames were introduced in [15] and are further studied in

[16], to easily compute wavelet coe�cients of rotated images. For simplicity, we begin

by introducing wavelets as a localized functions  (u) for u 2 R2, with
R
 (u) du = 0.

Complex steerable wavelets have a Fourier b (!) concentrated over one-half of the

Fourier domain. We impose that  (�u) =  ⇤(u) so that b (!) is real. This Fourier

transform is centered at a frequency ⇠ 2 R2 and is non negligible for ! 2 R2 such that

|! � ⇠|  C 0
|⇠| for some C 0 > 0. Figure 1 gives an example of such a wavelet, which is

specified in Appendix D.

Let r` be a rotation by an angle 2`⇡/L. Multiscale steerable wavelets are derived

from  with dilations by 2j for j 2 Z, and rotations over L angles ✓ = 2`⇡/L for

0  ` < L

 �(u) = 2�j (2�jr�`u) ) b �(!) = 2j b (2jr`!) with � = 2�jr�` ⇠. (26)

Since b (!) is non negligible for |!� ⇠|  C|⇠| it results that b �(!) is centered at � and

non negligible for |!��|  C|�|. In space,  �(u) is non-negligible for |u|  C 0
|�|�1. We

limit the scale 2j to a maximum 2J . The lowest frequencies are captured by a wavelet

centered at � = 0. It is computed by dilating a function �(u) such that
R
�(u) du = 1:

 0(u) = 2�J�(2�Ju) ) b 0(!) = 2J b�(2J!). (27)

12
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Figure 1: (a): Real-part of steerable bump wavelet  (u). (b): Fourier transform b (!).

A wavelet frame is constructed by translating each  � for � 6= 0 by u = 2j�1n and

 0 by u = 2J�1n for all n 2 Z2. It introduces a factor 2 oversampling relatively to a

wavelet orthonormal basis [17], which creates some redundancy. The wavelet transform

of x 2 L2(R2) is defined by

Wx = {x ?  �(u)}(�,u)2�

where � is a frequency-space index set with (�, u) = (2�jr�`⇠, 2j�1n) for 1  j  J ,

0  ` < L, n 2 Z, or (�, u) = (0, 2J�1n).

Under appropriate conditions on  , the wavelet family { �(·�u)}(�,u)2� is a frame of

L2(R2) [16]. This means that there exists 0 < AW  BW such that for any x 2 L2(R2)

AW kxk2  kWxk2  BW kxk2 (28)

with kWxk2 =
P

(�,u)2� |x ?  �(u)|2.

The wavelet transform can be redefined over discrete images x of d pixels supported

in a two-dimensional square grid ⇤d, uniformly sampled at intervals 1 in [1, d1/2]2. It

requires to discretize and modify “boundary wavelets” whose supports intersect image

boundaries. This can be done over steerable wavelets [15, 16], while preserving the

frame constants AW and BW . The resulting wavelet  �(· � u) are supported in ⇤d.

They are still indexed by (�, u) 2 �. If � = r�`⇠ 6= 0 for 1  j  J , 0  ` < L thenP
u2⇤d

 �(u) = 0. If � = 0 then
P

u2⇤d
 0(u) = 2J . Since J  (log2 d)/2, there are at

most L(log2 d)/2+1 di↵erent frequency channels �. For � = r�`⇠ 6= 0,  � is translated

by u = 2j�1n 2 ⇤d which yields 2�j+1d wavelet coe�cients. The total number of

wavelets coe�cients is about 4Ld/3 if J = (log2 d)/2.

The mother wavelet  is chosen in order to obtain a sparse wavelet representation

of realizations of X, with few large amplitude wavelet coe�cients. This sparsity high-

lights non-Gaussian properties. Figure 2 displays the modulus and phase of wavelet

coe�cients of the vorticity field of a turbulent flow. This flow is obtained by running

the 2D Navier Stokes equation with periodic boundary conditions, initialized with a

random Gaussian field [18]. After a fixed time, it defines a stationary but non-Gaussian

random process. For each scale and orientation, large amplitude modulus coe�cients

are located at positions where the image has sharp transitions, and the phase depends

upon the position of these sharp transitions.
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(a) (b) (c) (d)

Figure 2: Top: turbulent velocity field. Bottom: Each image gives the modulus (above)

or the phase (below) of wavelet coe�cients x ?  �(u) for di↵erent frequency channels � =

2�jr�`⇠. Large modulus coe�cients are shown in black. The columns correspond to di↵erent

scales and angles (j, `). (a): (j, `) = (1, 0). (b): (j, `) = (2, 0). (c): (j, `) = (1, L/4). (d):

(j, `) = (2, L/4).
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Wavelet covariance A wavelet transform defines a linear representation R = W

indexed by v = (�, u). Similarly to Fourier coe�cients, we show that wavelet coe�-

cients have a covariance which nearly vanish at di↵erent frequencies.

Similarly to Fourier coe�cients, wavelet coe�cients have a zero mean at non-zero

frequencies. If � 6= 0 then E(X ?  �(u)) = 0 because
P

u
 �(u) = 0. If � = 0 thenP

u
 0(u) = 2J so E(X ?  0(u)) = 2JE(X(u)). The covariance at v = (�, u) and

v0 = (�0, u0) is

KW(v, v0) = Cov(X ?  �(u) , X ?  �0(u0)) .

It depends on u � u0 because X is stationary. Let b �(!) be the discrete Fourier

transform of  �(u) defined in (9). Since wavelet coe�cients are convolutions, covariance

values can be rewritten from the power spectrum bK(!) = 1
d
Cov( bX(!), bX(!)) of X

KW(v, v0) =
X

!2⇤d

bK(!) b �0(!) b ⇤

�
(!) ei(u�u

0).!. (29)

It results that KW(v, v0) = 0 if b �(!) b �0(!) = 0 for all !. Since b �(!) is non-negligible

only if |! � �|  C|�|, the covariance KW(v, v0) is non-negligible for � 6= �0 only if

|�� �0|

|�|+ |�0|
 C . (30)

It shows that similarly to Fourier coe�cients, wavelet covariances are negligible across

frequencies which are su�ciently far apart.

Maximum entropy wavelet graph model A maximum entropy model con-

ditioned by wavelet covariances is Gaussian because the wavelet transform is linear.

Figure 3(a) gives a realization of a stationary turbulent flow X. A low-dimensional

maximum entropy model is defined on a graph of covariance coe�cients KW(v, v0) for

v0 = (�0, u0) in a small neighborhood of v = (�, u). Since wavelet coe�cients are nearly

decorrelated across frequencies, at each scale 2j , the neighborhood of v = (�, u) is

defined as the set of v0 = (u0,�0) such that �0 = � and |u� u0|  2j�1� for a fixed �.

Covariances are thus specified over a spatial range proportional to the scale. This is a

foveal neighborhood which is su�cient to approximate the covariances of large classes of

random processes such as fractional Brownian motions [19]. Since (u, u0) = 2j�1(n, n0),

the neighborhoods of all v have the same size, which is smaller than (2�+ 1)2.

Since X is stationary, its probability distribution is invariant to the group G of

translations. The number of covariance coe�cients that must be estimated is equal to

the number |EG| of edges in the graph modulo translations. It is equal to the number

of wavelet frequencies � multiplied by the size of each neighborhood, and thus bounded

by (JL+1)(2�+1)2 = O(log2 d). This model size is much smaller than the image size

d when d is large.

Figure 3(b) shows a realization of the maximum entropy Gaussian model eX. It

is conditioned by wavelet covariances on a foveal graph with � = 2. The wavelet

transform is computed with a bump wavelet specified in Appendix D, with J = 5,

L = 16 and d = 2562. In this case |EG|/d = 3.6 10�2. The covariances are estimated
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Figure 3: (a): Realization of a stationary turbulent vorticity field X. (b): Realization of

a Gaussian maximum entropy model eX calculated from wavelet covariances estimated on a

foveal graph. (c): The full line and dashed lines are the logarithms of the power spectrum

of X and of the power spectrum of eX respectively as a function of the radial frequency |!|.

from a single realization of X. The calculation of the Lagrange multipliers in (2) is

explained in Appendix A. To measure the accuracy of this model we compare the power

spectrum of X and the Gaussian model eX. Both processes are isotropic so Figure 3(c)

gives the radial log power spectrum of X and eX as a function of |!|. These power

spectrum are nearly the same, which means that the wavelet covariance graph gives

an accurate estimation of the second order moments of X from a single realization.

The realization of the Gaussian model in Figure 3(b) has a geometry which is very

di↵erent from the turbulence flow X in Figure 3(a). It shows that X is highly non-

Gaussian, which also appears in Figure 2. The wavelet coe�cients of a stationary

process X are not correlated at di↵erent scales and angles, which would imply that

they are independent if X was Gaussian. On the contrary, Figure 2 shows that the

the modulus and phases of wavelet coe�cients of X are strongly dependent across

scales and angles. High amplitude modulus coe�cients are located in the same spatial

neighborhoods because they are produced by the same sharp transitions of the flow.

Next section explains how to capture this dependence with phase harmonics.

3.2 Wavelet Phase Harmonic Covariance

As in the Fourier case, phase harmonics create correlations between wavelet coe�cients

across di↵erent frequency bands. We study the properties of the resulting covariance

matrix, and the role of sparsity.

Wavelet phase harmonics To specify the dependence across frequencies, we ap-

ply a phase harmonic operator to wavelet coe�cients:

bH(Wx) =
n
bh(k) [x ?  �(u)]

k

o

(�,u)2�,k2Z
.
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The coe�cients of R = bHW are indexed by v = (�, k, u). The covariance coe�cients

of bH(WX) are

K bHW
(v, v0) = bh(k)bh(k0)⇤Cov([X ?  �(u)]

k , [X ?  �0(u0)]k
0
).

Since X is stationary, it only depends on u � u0. Wavelet harmonic covariances only

need to be calculated for k � 0 and k0 � 0. Indeed, since X is real and  (�u) =  ⇤(u)

one can verify thatK bHW
(v, v0) does not change its value if (�, k) becomes (��,�k) or if

(k, k0) becomes (�k,�k0). Such wavelet harmonic covariances have first been computed

by Portilla and Simoncelli [8] to characterize the statistics of image textures. Their

representation correspond to (k, k0) equal to (0, 0), (1, 1), (1, 2), which amounts to

choosing ĥ(k) = 1[0,2](k).

Since bH and W are bi-Lipschitz the operator bHW is also bi-Lipschitz, with lower

and upper bounds AH AW and BHBW . Proposition 2.1 implies that

AHAW �2(X)  �2( bH(WX))  BHBW �2(X), (31)

which controls the variance of wavelet harmonic coe�cients.

Rectified neural network coe�cients Ustyuzhaninov et. al. in [9] have shown

that one can get good texture synthesis from the covariance of a one-layer convolutional

neural network, computed with a rectifier. In the following we show that these statistics

are equivalent to phase harmonic covariances, computed with a rectifier phase window

h(↵).

Section 2.3 proves that bH = F↵H, where H computes a phase windowing of wavelet

coe�cients

H(Wx) =
n
|x ?  �(u)|h('(x ?  �(u)) + ↵)}(�,u)2�,↵2[0,2⇡].

The covariance of bH(WX) andH(WX) thus satisfyK bHW
= F↵KHW F

�1
↵ . The follow-

ing proposition proves that KHW gives the covariance of rectified wavelet coe�cients

if h is a rectifier phase window.

Proposition 3.1. Let v = (�,↵, u) and v0 = (�0,↵0, u0). For a rectifier phase window

h(↵) = ⇢(cos↵)

KHW(v, v0) = Cov
⇣
⇢(X ?  �,↵(u)) , ⇢(X ?  �0,↵0(u0))

⌘
(32)

with  �,↵(u) = Real(e�i↵ �(u)).

Proof: We proved in (17) that if h(↵) = ⇢(cos↵) then

H(z) = {⇢(Real(ei↵z))}↵2[0,2⇡].

It results that

KHW(v, v0) = Cov(⇢(Real(ei↵X ?  �(u))), ⇢(Real(e
i↵

0
X ?  �0(u0)))i,
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Figure 4: Power spectrum of [X ?  �(u)]k for a fixed �, for the turbulent vorticity flow at

the top of Figure 5(a), and di↵erent k. The power spectrum is shown in log base 10. (a):

k = 0. (b): k = 1. (c): k = 2.

which proves (32). ⇤
Rectified wavelet coe�cients ⇢(X ?  �,↵(u)) can be interpreted as one-layer convo-

lutional network coe�cients, computed with wavelet filters  �,↵ of di↵erent frequencies

� and phases ↵. The di↵erence with the statistics used by Ustyuzhaninov et. al. in [9]

relies in the choice of network filters. They use local cosine or random filters in their

network as opposed to steerable wavelets.

Sparse harmonic covariance Proposition 2.2 specifies the properties of a Fourier

phase harmonic covariance. We qualitatively explain, without proof, why Cov([X ?

 �(u)]k, [X ?  �0(u0)]k
0
) has similar sparsity properties.

For a fixed � and k, [X ? �(u)]k is a stationary random vector in u. The covariance

of [X ?  �(u)]k and [X ?  �0(u0)]k
0
is non-zero only if their power-spectrum have a

support which overlap. We give a necessary condition by approximating these spectrum

supports.

For k = 1, the spectrum of X ?  �(u) has an energy concentrated at frequencies

where the Fourier transform of b � is concentrated, which is included in a ball centered

at � of radius C|�|. For |k| > 1, [4] explains that the Fourier transform of [X ? �(u)]k

and hence its power spectrum is concentrated in a ball centered at k� of radius |k|C|�|.

If k = 0 then the spectrum of |X ?  �(u)| is concentrated in a ball centered at the 0

frequency, of radius C|�|. This is illustrated numerically in Figure 4 which displays the

power spectrum of [X ?  �(u)]k for k = 0, 1, 2. In this case, X is a stationary vorticity

field shown at the top of Figure 3(a). These power spectrum are estimated for a fixed

� from 100 independent realizations of X. For k = 1, the power spectrum is supported

over the Fourier support of b �. For k = 2 its support is approximately dilated by 2,

whereas for k = 0 it is centered at the zero frequency.

It results that the spectrum of [X ? �(u)]k and [X ? �0(u0)]k
0
have a support which

overlap only if

|k�� k0�0|  C(max(|k|, 1) |�|+max(|k0|, 1) |�0|) . (33)
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Similarly to the Fourier case, if k = k0 = 0 then this condition is satisfied for any pair

of frequencies (�,�0). It corresponds to covariances of modulus coe�cients Cov(|X ?

 �(u)| , |X ?  �0(u0)|), which are typically non-zero when the process is non-Gaussian.

If k 6= 0 and k0 6= 0 then non-negligible values of Cov([X ?  �(u)]k, [X ?  �0(u0)]k
0
)

occur for k� ⇡ k0�0. This is similar to the vanishing property (22) of Fourier harmonic

coe�cients, at frequencies which are colinear. Since � = 2�jr�`⇠ and �0 = 2�j
0
r�`0⇠,

it requires that 2j�j
0
⇡ |k0|/|k| and that ` ⇡ `0.

Diagonal covariance coe�cients have similar properties as Fourier coe�cients. They

are specified by Cov(|X ? �(u)|, |X ? �(u)|) and Cov(X ? �(u), X ? �(u)), which do

not depend upon u. Moreover when � 6= 0,

Cov(|X ?  �(u)|, |X ?  �(u)|)

Cov(X ?  �(u), X ?  �(u))
= 1�

E(|X ?  �(u)|)2

E(|X ?  �(u)|2)
.

The ratio E(|X ?  �(u)|)2/E(|X ?  �(u)|2) measures the sparsity of wavelet coe�cients

X ?  �(u). If X is Gaussian then X ?  �(u) is a complex Gaussian random variable

and this ratio is ⇡

4 for all �. A ratio smaller than ⇡

4 implies that wavelet coe�cients

X ?  �(u) are sparse and hence that X is non-Gaussian.

To increase the accuracy of a maximum entropy model eX, the Kullback-Leibler

divergence (8) shows that we must minimize its entropy. As in the Fourier case, an

upper bound of the entropy is obtained as a sum of the entropy of the marginals of

wavelet coe�cients. The marginal entropies get smaller by reducing the sparsity ratio

E(|X ?  �(u)|)2/E(|X ?  �(u)|2). To minimize this upper bound of the model entropy,

this suggests by finding a mother wavelet  which yields sparse coe�cients.

Gaussianity test Even though  � and  �0 may have disjoint Fourier supports,

the previous analysis showed that one can find k and k0 such that the spectrum of

[X ?  �(u)]k and [X ?  �0(u0)]k
0
overlap, for example with k = k0 = 0. A priori,

the covariance K bHW
(v, v0) is then non-zero, unless X is Gaussian in which case these

coe�cients vanish, as proved by the following theorem.

Proposition 3.2. Let (�,�0) be such that b �
b �0 = 0. If X is Gaussian and stationary

then K bHW
(v, v0) = 0 if v = (�, k, u) and v0 = (�0, k0, u0), for any (k, u, k0, u0).

Proof: If X is Gaussian then X ? �(u) and X ? �0(u0) are jointly Gaussian random

variables. Equation (29) proves that if b �
b �0 = 0 then Cov(X ?  �(u), X ?  �0(u0)) =

0. These Gaussian random variables are uncorrelated and therefore independent. It

results that [X ?  �(u)]k and [X ?  �0(u0)]k
0
are also independent and thus have a

covariance which is zero.⇤
This proposition gives a test of Gaussianity by considering two frequencies � and

�0 where |�� �0| is su�ciently large so that the support of b � and b �0 do not overlap.

If k� ⇡ k0�0 then wavelet harmonic covariances are zero if X is Gaussian but it is

typically non-zero if X is not Gaussian.
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4 Microcanonical Models

Section 2.1 introduces macrocanonical maximum entropy models conditioned by co-

variance coe�cients of a representation R(X). The resulting maximum entropy distri-

bution p̃ depend upon Lagrange coe�cients which are computationally very expensive

to calculate, despite the development of e�cient algorithms [20]. Section 4.1 reviews

maximum entropy microcanonical models which avoid computing these Lagrange mul-

tipliers. Section 4.2 gives an alternative microcanonical model which is calculated with

a faster algorithm, which transports a maximum entropy measure by gradient descent.

4.1 Maximum Entropy Microcanonical Models

Microcanonical models avoid the calculation of Lagrange multipliers and are guaranteed

to exist as opposed to macrocanonical models. We first specify covariance estimators

and then briefly review the properties of these microcanonical models.

Microcanonical models rely on an ergodicity property which insures that covariance

estimations concentrate near the true covariance KR when d is su�ciently large. Let

G be a known group of linear unitary symmetries of the density p of X. It includes

translations because X is stationary. An estimation of the covariance KR over the edge

set EG is computed in (4) from a single realization x̄ of X, by transforming x̄ with all

g 2 G. To di↵erentiate realizations of X from other x 2 Rd, we associate a similar

covariance estimation to any x 2 Rd. This covariance is centered on the empirical

mean fMR computed in (3) and defined by

eKRx(v, v
0) =

1

|G|

X

g2G

⇣
Rv(g.x)� fMR(v)

⌘⇣
Rv0(g.x)� fMR(v

0)
⌘
⇤

. (34)

It is invariant to the action of any g 2 G on x.

We denote kKRk
2
EG

=
P

(v,v0)2EG
|KR(v, v0)|2. We shall suppose that X satisfies

the following covariance ergodicity property over EG:

8✏ > 0, lim
d!1

Prob(k eKRX �KRkEG  ✏) = 1. (35)

To satisfy this property the number |EG| of covariance moments must be small com-

pared to the dimension d of X. The ergodicity hypothesis implies that when d is

su�ciently large, with high probability, the empirical covariance eKRx̄ of a realization

x̄ of X is close to the true covariance KR over EG.

Given a realization x̄ of X, a microcanonical set of width ✏ is the set of all x 2 Rd

which have nearly the same covariance estimations as x̄:

⌦✏ = {x 2 Rd : k eKRx �
eKRx̄kEG  ✏}. (36)

A maximum entropy microcanonical model has a probability distribution of maximum

entropy supported in ⌦✏. The set ⌦✏ is bounded. Indeed, if x 2 ⌦✏ then k eKRxkEG 

k eKRx̄kEG + ✏. Since EG includes all diagonal coe�cients (v, v) for v 2 V , one can

derive an upper bound for kRxk. Since R is bi-Lipschitz, we also obtain an upper
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bound for kxk. Since ⌦✏ is compact, the maximum entropy distribution is uniform in

⌦✏ relatively to the Lebesgue measure. A major issue in statistical physics is to find

su�cient conditions to prove the Boltzmann equivalence principle which guarantees

the convergence of microcanonical and macrocanonical models towards the same Gibbs

measures when d goes to 1 [21]. This involves the proof of a large deviation principle

which expresses concentration properties of the covariance of R(X). If R is continuous

and bounded so that the interaction potential (R�MR)(R�MR)⇤ is also continuous

and bounded, and if there is no phase transition, which means that the limit is a

unique Gibbs measure, then one can prove that microcanonical and macrocanonical

measures converge to the same limit for an appropriate topology [22, 23]. The bounded

hypothesis is not necessary and may not be satisfied.

The ergodicity property (35) guarantees that X concentrates in ⌦✏ with a high

probability when d is su�ciently large. The microcanonical set ⌦✏ may however be

much larger than the set where X concentrates, which means that the maximum en-

tropy microcanonical distribution may have a much larger entropy than the entropy of

X. As in the macrocanonical case, the representation R must be optimized in order

to reduce the maximum entropy, which motives the use of sparse representations.

4.2 Gradient-Descent Microcanonical Models

Sampling a maximum entropy microcanonical set requires to use Monte Carlo algo-

rithms. They are computationally very expensive when the number of moments |EG|

and the dimension d are large, because their mixing time become prohibitive [24].

Following the approach in [11], we approximate these microcanonical models with a

gradient descent algorithm.

Gradient-descent microcanonical models are computed by transporting an initial

Gaussian white noise measure into the microcanonical set ⌦✏. This transport is calcu-

lated with a gradient descent which progressively minimizes

f(x) = k eKRx �
eKRx̄k

2
EG

, (37)

with a su�ciently large number of iterations so that f(x) < ✏ and hence x 2 ⌦✏.

The initial Gaussian white noise is a maximum entropy distribution conditioned

by a variance �2. This variance is chosen to be an upper bound of the empirical

variance of x̄(u) along u, calculated from diagonal coe�cients of eKRx̄. It guarantees

that the resulting white noise has an entropy larger than the microcanonical model.

The gradient descent progressively reduces this entropy while transporting the measure

towards ⌦✏. Entropy reduction bounds are computed in [11].

The initial x0 is Gaussian white noise. For all t � 0, the gradient descent iteratively

computes

xt+1 = xt � ⌘rf(xt) .

This operation transports the probability measure µt of xt into a measure µt+1 of xt+1.

We stop the algorithm at a time t = T which is large enough so that f(xT ) < ✏ with a

high probability. Since f(x) is not convex, there is no guarantee that f(xT ) < ✏ even
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for large T . In numerical calculations in Section 5, we may use several initializations,

typically 10, to evaluate the model.

The empirical covariance eKRx is computed in (34) with an average over all sym-

metries of a known group G of linear unitary operators in Rd. The following theorem

proves that G is also a group of symmetries of the probability measures obtained by

gradient descent.

Theorem 4.1. For any t � 0, the probability measure µt of xt is invariant to the

action of G.

The proof is in Appendix E. It is a minor modification of the proof in [11]. We

replace the gradient descent method by L-BFGS algorithm with line search [25]. It

has a faster and more accurate numerical convergence. Since G includes translations,

this theorem implies that each xt is stationary. It is shown in [11] that the transported

density µT supported in ⌦✏ may be di↵erent from the maximum entropy density in ⌦✏

because the gradient descent reduces too much the entropy. In general, the precision

of these microcanonical gradient descent models are not well understood. However,

this theorem proves that the gradient descent preserves all known symmetries of the

distribution of X, which is also true for a maximum entropy measure,

The gradient descent may converge faster by preconditioning f(x). This is done by

replacing estimated covariances eKRx(v, v0) by normalized correlation coe�cients

eKRx(v, v0)
eKRx̄(v, v)1/2 eKRx̄(v0, v0)1/2

. (38)

Any g 2 G is a symmetry of eKRx and is therefore a symmetry of normalized correlation

coe�cients, so Theorem 4.1 remains valid with this preconditioning.

5 Foveal Wavelet Harmonic Covariance Models

We study microcanonical models conditioned by wavelet harmonic covariances, com-

puted with di↵erent symmetry groups G, and di↵erent su�cient statistics set EG.

Section 5.2 introduces foveal models which limit the multiscale spatial range of coef-

ficients in EG. Section 5.3 gives a methodology to evaluate the precision of di↵erent

foveal models, with numerical results.

5.1 Rotation and Reflection Symmetries

The covariance KR is estimated from a single realization of X, by taking advantage of

a known group of symmetries G of the the probability distribution of X. For a wavelet

phase harmonic representation R = bHW, we specify the properties of KR when G

includes sign changes, reflections and rotations.

The following proposition proves that some covariance coe�cients vanish when

symmetries include a sign change or a central reflection. These covariances thus do not

need to be included in the su�cient statistics set EG. The proof is in Appendix F.
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Proposition 5.1. Let v = (�, k, u) and v0 = (�0, k0, u0).

(i) If the sign change g.x = �x is a symmetry of the probability distribution of X then

K bHW
(v, v0) = eK bHWx

(v, v0) = 0 if k + k0 is odd.

(ii) If the central reflection g.x(u) = x(�u) is a symmetry of the probability distribution

of X and bh is real then K bHW
(v, v0), and eK bHWx

(v, v0) are real.

Isotropic models An isotropic random process X has a probability distribution

which is invariant by rotations. The group G then includes all translations and ro-

tations. We show that K bHW
becomes sparse after applying a Fourier transform on

rotation angles.

If g = r⌘ is a rotation by 2⇡⌘/L for 0  ⌘ < L then (r⌘.x) ?  �(u) = x ?  r⌘�(r�⌘u)

where r⌘� = 2�jr⌘�`⇠ is the rotation of � = 2�jr�`⇠. To eliminate the e↵ect of

the change of position r�⌘u on covariance coe�cients, we only keep wavelet harmonic

covariances at a same spatial position. This means that v0 = (�0, k0, u0) is a neighbor of

v = (�, k, u) in the covariance graph model only if u = u0. It implies that (v, v0) 2 EG

only if v and v0 have the same spatial position.

Isotropy is a form of stationarity along rotations angles. To diagonalize angular

covariance matrices, we use a discrete Fourier transform along rotations written F`.

The discrete Fourier transform of y(`) for 0  ` < L at a frequency 0  m < L is

(F`y)(m) =
L�1X

`=0

y(`) e�i2m⇡`/L.

The representation R(X) = F`
bH(WX) computes F`([X ?  �(u)]k) for � = 2�jr�`⇠

with (j, u, k) fixed and ` varying. It is indexed by v = (j,m, k, u). The covariance

matrix of R(X) is

KR = F`K bHW
F

�1
`

.

We consider the restriction of KR to EG. The next theorem proves that if X

is isotropic then KR has diagonal angular Fourier matrices. Isotropic processes X

may also have a probability distribution which are invariant to line reflections. A

line reflection of orientation ⌘ computes g.x(u) = x(u⌘), where u⌘ is symmetric to u

relatively to a line going through the origin in R2, with an orientation ⌘ 2 [0, 2⇡]. If X

is isotropic and invariant to a line reflection for an angle ⌘ then it is invariant to line

reflections for any ⌘ 2 [0, 2⇡]. The following theorem applies to the bump steerable

wavelets used in numerical experiments.

Theorem 5.1. Let v = (j,m, k, u), v0 = (j0,m0, k0, u) and u = (u1, u2). If the proba-

bility distribution of X stationary and isotropic and R = F`
bHW then

KR(v, v
0) = eKRx(v, v

0) = 0 if m 6= m0. (39)

Furthermore, if the distribution of X is invariant to line reflections and if the wavelet

satisfies  (u1,�u2) =  (u1, u2) and �(u1,�u2) = �(u1, u2) then KR(v, v0) and eKRx(v, v0)

are real if m = m0.
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The proof is in Appendix G. This theorem proves that the su�cient statistics set

can be reduced to diagonal angular coe�cients (v, v0) 2 EG with m = m0. It reduces

its size by a factor L. Invariance to line reflections implies that it is su�cient to

keep the real part of these diagonal values. The rotation invariance strictly applies

to the process defined on a continuous variable u 2 R2. On discrete images it is not

valid at the finest scale because of the square sampling grid, and it is not valid at the

largest scale because of their square support. For preconditioning, the covariance of

the isotropic model is also normalized with (38) and the Fourier transform F` is then

applied on the normalized coe�cients.

5.2 Foveal Wavelet Harmonic Covariance

A wavelet harmonic covariance model is defined by the choice of the harmonic weights

ĥ, by the symmetry group G and neighborhood relations which defines the edge set

E. In the following we shall impose that ĥ(k) = 1[kmin,kmax](k), which limits harmonic

exponents in the range [kmin, kmax]. We define several foveal models which capture

di↵erent properties.

Foveal models Wavelet harmonic coe�cients are indexed by v = (�, k, u), with � =

2�jr�`⇠ and u = 2j�1n. The covariance graph model is specified by the neighborhoods

Nv. A foveal model defines neighborhoods whose size doe not depend upon v. The

range of spatial, scale and angular parameters is limited by three parameters �n, �j

and �`. A vertex v0 = (�0, k0, u0) with �0 = 2�j
0
r�`0⇠ and u0 = 2j

0
�1n0 is a neighbor of

v = (�, k, u) only if

|n� n0
|  �n , |j � j0|  �j , |`� `0|  �` , (k, k0) 2 [kmin, kmax]

2 .

A foveal model has a spatial range proportional to the scale. Long range spatialcorre-

lations are partly captured because |u � u0| = |n2j�1
� n02j

0
�1

| become large at large

scales. It provides high frequency correlations between close points and low-frequency

correlations between far away points. It is similar to a visual fovea [26]. Such foveal

models have been used by Portilla and Simoncelli [8] to synthesize image textures.

Because of translation invariance, the su�cient statistics EG can be defined by

setting n = 0. Since there are L angles ` and at most (log2 d)/2 scales j, the size of

EG is at most

|EG| = O(L�`(kmax � kmin + 1)2(2�n + 1)2�j log2 d).

Increasing the values of kmax,�j ,�`,�n dereases the model bias but it also increases

the size |EG| and hence the variance of the estimation. To ensure the bi-Lipschitz

continuity of R = bHW, we impose that kmin  1  kmax. In the following we describe

several models of di↵erent sizes, which capture di↵erent properties of X. Each realiza-

tion x̄ is an image of d = 2562 pixels. We use the bump steerable wavelets of Appendix

D, computed on J = 5 scales and L = 16 angles. The maximum scale 2J depends on

the integral scale of X, which is the distance beyond which all coe�cients are nearly
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independent. A large number of angles L gives a finer angular resolution. We specify

4 models corresponding to di↵erent choices of neighborhood parameters. For the first

three models, the symmetry group G is reduced to translations where as the last model

is also invariant to rotations.

• Model A with kmin = kmax = 1. It corresponds to a Gaussian maximum entropy

wavelet model of Section 3.1. The covariance of wavelet coe�cients is neglected across

scales and angles by setting �j = 0, �` = 0 and �n = 2. The relative dimension of

this model is |EA

G
|/d = 3.6 10�2.

• Model B with kmin = 0 and kmax = 1. It includes the covariance of the modulus

of wavelet coe�cients across angles. Covariance across angles at most distant by ⇡/4

are computed for k, k0 2 {0, 1} by setting �` = L/4. We set �j = 0 and �n = 2,

and thus only incorporate covariance across spatial positions. Compared to Model A,

spatial correlations are included for k = k0 = 1 but also for k = k0 = 0. The relative

model size is |EB

G
|/d = 1.1 10�1.

• Model C with kmin = 0 and kmax = 2. It incorporates covariances of the modulus

and phase of wavelet coe�cients across scales and angles. Neighborhoods are limited

by �j = 1, �` = L/4 and �n = 2. Compared to Model B, it incorporates j0 = j + 1

to capture scale interactions. The phases of wavelet coe�cients at a scale 2j and

2j
0
= 2j+1 are correlated with the harmonic exponents (k, k0) = (1, 2). The set of

(k, k0) are restricted to k0 = 0, 1, 2 when k = 0, and k0 = 1, 2 when k = 1. We use the

same spatial correlation range as Model B. The relative model size is |EC

G
|/d = 1.7 10�1.

• Model D with kmin = 0 and kmax = 2 is a rotation invariant version of Model C,

with the same �j , �` and (k, k0). This model sets �n = 0 and thus does not capture

spatial correlations explicitly. The symmetry group G is composed of translations

and L rotations by 2⇡⌘/L. This rotation invariance is represented by computing a

Fourier transform along angles and setting to zero the covariance coe�cients according

to Theorem 5.1. The model size is therefore much smaller with |ED

G
|/d = 1.2 10�2.

Theorem 4.1 proves that the resulting gradient descent microcanonical distribution is

invariant to these L rotations.

Visual evaluation The quality of di↵erent microcanonical models is first evaluated

visually. Among 10 synthesis of each model, we retain the one which yields the smallest

loss in (37). The top row of Figure 5 shows a realization x̄ of di↵erent stationary

processesX. The first and second columns display isotropic and non-istotropic vorticity

fields of two-dimensional turbulent flows, with a factor 2 zoom on the central part of

each image. The third and fourth columns show an image of bubbles and a realization

of Multifractal Random Walk [27]. An MRW is a self-similar random process with long

range dependencies. We model the increments of MRW, which is a stationary process

and limit its maximum correlation scale to 25. The next rows give realizations of the

microcanonical models A, B, C and D computed from the same realization x̄ shown

at the top.

As in Figure 3, the foveal Gaussian model A looses most geometric structures. On

the contrary the models B,C,D recover most of this geometry. The model B captures
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Figure 5: The first row shows a realization x̄ of X. The second to fifth row give realizations

of microcanonical models A, B, C, D computed from x̄. Each column corresponds to a

di↵erent X. First column: Isotropic turbulent vorticity field. Second column: Non-isotropic

turbulent vorticity field. Third column: Bubbles. Fourth column: Multifractal Random

Walk.
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the correlations of modulus coe�cients across angles whereas the model C also impose

covariance conditions on phases. There are little visual di↵erences on turbulent flows

but it is more apparent on bubble images. Model B does not reproduce closed bubbles

whereas model C recovers bubbles having a better geometry. The model D is an

isotropic version of model C. Its realizations are therefore isotropic. When X is

isotropic then it is visually as precise as C but the variance reduction is not visible. If

X is not isotropic, as in the turbulence of the second column, then model D does not

reproduce the angular anisotropy.

5.3 Evaluations of Foveal Covariance Models

A microcanonical model eX is conditioned by values of the covariance of Rv(X) on

a graph whose edges E relate neighbor vertices (v, v0). We di↵erentiate two types

of model errors. Type I errors result from the use of graph neighborhoods which

are too small. In this case, the covariance of R(X) and R( eX) may be di↵erent for

(v, v0) 2 V 2
� E. Type II errors are due to the choice of the representation R. Such

errors are evaluated by comparing high order moments of X and eX, which are not

calculated by R. These comparisons are performed for R = bHW.

Wavelet harmonic covariance error Comparisons are performed over corre-

lation matrices, which normalizes covariance values. Type I errors are calculated by

comparing the correlation values of X and eX over a neighborhood which is much larger

than the ones used by the di↵erent models. This paragraph considers the case where

this neighborhood includes all scales and angles, but over a limited spatial range.

We compute correlation coe�cients (38) by normalizing KR with its diagonal:

CR = D�1/2
R

KRD�1/2
R

where DR = diag(KR). (40)

We estimate KR with an empirical average over 100 realizations of X. This gives

an accurate estimation of both DR and CR. An empirical estimator eCRx̄ of CR is

computed from a single realization x̄ of X, with the same normalization

eCRx̄ = D�1/2
R

eKRx̄D
�1/2
R

.

It is calculated on V 2
0 where V0 ⇢ V is a foveal subset of all vertices. It incorporates

correlations between all scales and angles, across a limited spatial range.

Let kCRkop,V 2
0
be the operator norm and hence the largest eigenvalue of the symmet-

ric matrix CR restricted to V 2
0 . The following empirical error measures the estimator

error of CR from one realization x̄

✏emp =
kCR � eCRx̄kop,V0

kCRkop,V0

. (41)

It is a variance term due to variabilities of realizations x̄ of X.

This empirical error is compared to the estimation error of CR computed from the

di↵erent microcanonical models. Let Kmodel

Rx̄
be the covariance matrix of wavelet har-

monic coe�cients of a microcanonical model X̃ instead of X. This matrix is estimated
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Isotropic Non Isotropic

✏emp 0.58 (0.05) 0.68 (0.09)

✏A 0.82 (0.01) 0.80 (0.01)

✏B 0.29 (0.02) 0.30 (0.02)

✏C 0.24 (0.02) 0.25 (0.03)

✏D 0.25 (0.02) 1.6 (0.09)

Table 1: Covariance errors (42) models A,B,C,D compared to the empirical error (41), for

the isotropic and non-isotropic vorticity fields.

from 10 realizations of X̃. We compare Kmodel

Rx̄
with eKRx̄ by using the same normal-

ization. We define Cmodel

Rx̄
by normalizing the Kmodel

Rx̄
with DR as in (40). The relative

error of the model is defined by

✏model =
kCR � Cmodel

Rx̄
kop,V0

kCRkop,V0

. (42)

This error has a variance term because the microcanonical model depends upon a

particular realization x̄ of X. It has also a bias term because the model is calculated

from covariances over a limited set EG ⇢ V 2
0 . Optimizing EG is a trade-o↵ between

the variance and bias terms. If the su�cient statistic set EG ⇢ V 2
0 is too small and is

unable to reproduce the correlations CR in V 2
0 �EG then ✏model is larger than ✏emp. If

EG = V 2
0 then the variance term dominates and ✏model = ✏emp.

We define V0 with kmin = 0, kmax = 4, a maximum range of scales �j = J and a

maximum range of angles �` = L/2, but a small translation range �n = 2. Its size

is |V0| = 8025, so errors are evaluated over 8025 ⇥ 8025 correlation values. Table 1

compares the empirical error ✏emp in (41) with the model error ✏model in (42), for models

A,B,C,D. We report the mean of these estimated errors by averaging the operator

norms over 10 realizations x̄ of X. The standard deviation is given in brackets. These

error values are consistent with visual evaluations.

Table 1 show that the Gaussian model A gives a larger error than ✏emp, because it

captures no dependence across scales and angles. It introduces a large model bias. For

models B and C, ✏model < ✏emp. The increase of EG dramatically reduces the model

bias, which clearly appears visually. These models are only conditioned by wavelet

harmonic covariances over neighbor scales, but the microcanonical model propagates

these constraints across all scales. It provides a good approximations of covariance

values between far away scales, evaluated in V 2
0 . The error of model C is smaller than

model B, suggesting that scale correlations through phase also play an important role.

This also appears in the visual quality of synthesized bubble images. The model D has

a similar error as model C for the isotropic turbulence although it has a lower variance

because estimators are averaged across L angular directions. This indicates that the

error is dominated by the model bias term and hence that a better model would be

obtained by further increasing EG. This is verified on model D by increasing �j = J
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and kmax = 4, which yields a smaller covariance error 0.20 (0.02) on the isotropic

turbulence. On the contrary, the model D has an error which is much larger than

model C on the non-isotropic turbulence, which also appears visually.

Long-range spatial correlations Our microcanonical models are computed with

foveal su�cient statistics sets, which are conditioned over relatively small spatial neigh-

borhood at each scale 2j . Such models can therefore introduce an important error if

there exists long range spatial correlations between wavelet harmonic coe�cients. This

paragraph evaluates such errors.

We compare CR(v, v0) and Cmodel

Rx̄
(v, v0) for v = (�, k, u) and v0 = (�0, k0, u0) with

� = �0, k = k0 and for large |u � u0|. We estimate an average value Cmodel

R
of Cmodel

Rx̄

over 10 realizations x̄. The di↵erence between Cmodel

R
and CR corresponds to a bias

error term. For � = 2�jr�`⇠ we define CR(k, j, a) and C
model

R (k, j, a) as the maximum

values of CR(v, v0) and Cmodel

R
(v, v0) over all ` and all (u, u0) at a distance |u�u0| = 2ja,

for k and j fixed.

Figure 6 compares the correlation values CR(k, j, a) and C
model

R (k, j, a) as a function

of the normalized distance a, for k = 0, 1 and j = 1, 2, 3. The notion of short and long

range correlations is defined relatively to each scale 2j through the parameter a. For

k = 1, it corresponds to correlations of wavelet coe�cients, which have a fast decay

when the distance a increases. At all scales 2j the long range correlations of wavelet

coe�cients for models A and D are close to the correlations obtained with the original

turbulence and MRW processes.

For k = 0, Figure 6 gives the long range correlation of the modulus of wavelet

coe�cients. It still has a fast decay for the turbulence field but a slow decay for

the MRW. The model D gives a much better approximation of long range spatial

correlations of turbulence than model A. However there is a residual error at the finest

scale j = 1 because these foveal models do not capture long range correlations at fine

scales. The error is more dramatic for the MRW process where the modulus of wavelet

coe�cients are correlated over much longer ranges at fine scales. As expected, this

evaluation shows that long range correlations at di↵erent scales are not fully captured

by foveal models which are constrained on a correlation range of the order of 2j�n at

each scale 2j . One could incorporate these long range spatial covariances by increasing

�n but it would increase considerably the model size which is proportional to (2�n +

1)2.

High order moments Moments of multiple order q can be measured with struc-

ture functions at di↵erent scale 2j [28, 29]. We compute the maximum moment of

order q of increments between points (u, u0) such that |u� u0| = 2j�1

S(j, q) = max
|u�u0|=2j�1

E(|X(u)�X(u0)|q).
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Figure 6: Each graph shows correlation values CR(k, j, a) in full line, as a function of the

normalized distance a for a fixed scale 2j and k. The values of C
model

R
(k, j, a) are shown

with circles for model A and dashed lines for model D. The value of k and j is given at the

top of each graph. The graphs in (a) are computed for isotropic turbulences and in (b) for

increments of a Multifractal Random Walk.

It is compared with the structure function Smodel

Rx̄
(j, q) calculated for each microcanon-

ical model X̃, with an error

✏st(j, q) =
|S(j, q)� Smodel

Rx̄
(j, q)|

|S(j, q)|
.

Table 2 reports the mean and standard deviation (in brackets) of ✏st(j, q) for the model

A and model D, at two di↵erent scales 2j , for the isotropic turbulence. They are

estimated over 10 independent realizations x̄. As expected, the errors increase with

the order q because foveal covariance model only imposes moments of order q = 1 and

q = 2. The model D creates no significant error on these high-order moments, since the

estimated average error is comparable to the estimator standard deviation. It indicates

that in this case the covariance terms across scales are su�cient to capture high order

moments. On the contrary, the model A has significant errors for q 6= 2 because it

includes no covariance terms across scales and angles. Table 3 reports the value of

these errors for the MRW. The errors of model D remain below the errors of model A

but are significant in this case. This is probably due to the fact that the model D does

not capture well the long range spatial correlations of the MRW, as shown in Figure

6(b). It introduces an important model error which appears in higher order moments.

This analysis shows that microcanonical models computed from phase harmonic

covariances in foveal neighborhoods capture important non-Gaussian properties. It

gives accurate models of large classes of processes such as the turbulence examples.
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q 1 2 3 4 5

✏A
st
(1, q) 0.04 (0.01) 0.02 (0.02) 0.05 (0.03) 0.14 (0.04) 0.24 (0.04)

✏D
st
(1, q) 0.01 (0.01) 0.02 (0.03) 0.04 (0.05) 0.06 (0.07) 0.10 (0.10)

✏A
st
(2, q) 0.03 (0.01) 0.02 (0.02) 0.04 (0.02) 0.08 (0.05) 0.14 (0.06)

✏D
st
(2, q) 0.01 (0.01) 0.03 (0.03) 0.04 (0.05) 0.06 (0.07) 0.08 (0.09)

Table 2: The structure function error ✏st(j, q) of model A,D for the isotropic turbulent

vorticity field as a function of q, for j = 1, 2, 3.

q 1 2 3 4 5

✏A
st
(1, q) 0.06 (0.02) 0.04 (0.03) 0.16 (0.06) 0.38 (0.05) 0.60 (0.04)

✏D
st
(1, q) 0.02 (0.01) 0.04 (0.03) 0.05 (0.05) 0.13 (0.08) 0.28 (0.09)

Table 3: The structure function error ✏st(j, q) of model A,D for the increment of MRW

process as a function of q, for j = 1.

The evaluation methodology with moments is also able to detect model errors. It shows

that long range correlations of wavelet harmonic coe�cients are not well captured by

foveal models. To circumvent this issue without increasing too much the model size,

one can capture these long range correlations with another wavelet transform at each

scale, which defines a scattering transform [30].

A Maximum Entropy Wavelet Covariance model

We explain how to compute the Lagrangian multiples of a maximum entropy stationary

Gaussian random vector specified by wavelet covariance values, which is used for the

model A.

To solve the maximum entropy problem, we follow [2] and derive a dual problem

to minimize the entropy with respect to the Lagrangian multiples. To simplify the

deviation, we assume thatX is a zero-mean stationary process, and we consider only the

translation group G. The wavelet transform is indexed by v = (�, u). The maximum-

entropy wavelet covariance model can be written

p̃(x) =
1

Z
exp

⇣
�

1

2

X

(v,v0)2E

�v,v0
X

g2G

x ?  �(u� g)x ?  ⇤

�0(u0 � g)
⌘
.

The sum over E is real-valued because �v,v0 = �⇤
v0,v.

With the Parseval formula, the sum over translations in G can be written in the

Fourier domain as a sum over frequencies

p̃(x) =
1

Z
exp

⇣
�

1

2d

X

(v,v0)2E

�v,v0
X

!

|bx(!)|2 b �(!) b ⇤

�0(!) e�i!.(u�u
0)
⌘
.
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The power spectrum eP (!) of p̃ is

eP (!) =
1

d

Z
|x̂(!)|2p̃(x)dx =

⇣ X

(v,v0)2E

�v,v0 b �(!) b ⇤

�0(!)e�i!.(u�u
0)
⌘
�1

.

To find the optimal Lagrange multipliers, we minimize the entropy of p̃ with respect

to all the dual variables �v,v0 . The entropy has a closed form,

H(p̃) =
1

2

X

(v,v0)2E

�v,v0
X

!

eP (!) b �(!) b �0(!)⇤e�i!.(u�u
0) + log(Z). (43)

The partition function Z also has a closed form,

log(Z) =
1

2

X

!

log eP (!) +
d

2
log(2⇡).

Note that the �v,v0 should be constrained so that eP (!) > 0, 8!. This constrained

optimization problem is addressed by setting the entropy loss to infinity if any condition

is violated. The derivative of H(p̃) with respect to �v,v0 is calculated from (43). We

can thus use an unconstrained optimization solver L-BFGS to solve this problem from

the real and imaginary parts of �v,v0 and �v0,v. The optimal solution gives the power

spectrum eP (!) of the Gaussian model A. Samples of model A are obtained by sampling

a stationary Gaussian random vector whose power spectrum is eP (!).

B Proof of Theorem 2.1

We show that for the rectifier ⇢(a) = max(a, 0),

k bH(z)� bH(z0)k2 
1

4
|z � z0|2, 8(z, z0) 2 C2. (44)

By definition, H(z) = {⇢(Real(ei↵z))}↵2[0,2⇡]. Since k bH(z) � bH(z0)k2 = kH(z) �

H(z0)k2, we do the proof on kH(z)�H(z0)k2. We prove the theorem by first showing

that for a rectifier ⇢(a) = max(a, 0) and any (a, a0) 2 R2

|⇢(a)� ⇢(a0)|+ |⇢(�a)� ⇢(�a0)| = |a� a0|.

Indeed ⇢(a) = a and ⇢(�a) = 0 or ⇢(a) = 0 and ⇢(�a) = �a . The equality is verified

by considering separately the cases where a and a0 have same or di↵erent signs. For

a0 = 0 we get

|⇢(a)|2 + |⇢(�a)|2 = |a|2 (45)

and for any a0 2 R

1

2
|a� a0|2  |⇢(a)� ⇢(a0)|2 + |⇢(�a)� ⇢(�a0)|2  |a� a0|2. (46)
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For any z 2 C, Real(ei(↵+⇡)z) = Real(�ei↵z) and Real(ei(↵+⇡/2)z) = Imag(ei↵z), so

(45) and (46) imply that

3X

n=0

|⇢(Real(ei(↵+n⇡/2)z))|2 = |z|2.

and

1

2
|z � z0|2 

3X

n=0

|⇢(Real(ei(↵+n⇡/2)z))� ⇢(Real(ei(↵+n⇡/2)z0))|2  |z � z0|2.

Integrating both of these double inequalities over ↵ 2 [0,⇡/2] gives

1

2⇡

Z 2⇡

0
|⇢(Real(ei↵z))|2d↵ =

1

4
|z|2,

and
1

8
|z � z0|2 

1

2⇡

Z 2⇡

0
|⇢(Real(ei↵z))� ⇢(Real(ei↵z0))|2d↵ 

1

4
|z � z0|2,

which proves (44).

C Proof of Theorem 2.2

Property (22) is proved similarly to (13) by translatingX by ⌧ 2 ⇤d and by using its sta-

tionarity to verify that Cov([ bX(!)]k, [ bX(!0)]k
0
) = ei(k!�k

0
!
0).⌧ Cov([ bX(!)]k, [ bX(!0)]k

0
)

so both terms vanish if k! 6= k0!0.

Property (25) is verified for ! 6= 0 by decomposing nominator and denominator

with Cov(A,B) = E(AB⇤)� E(A)E(B⇤). Property (23) uses the same decomposition

and the fact that E( bX(!)) = 0 and

E([ bX(!)]k) = 0 if k! 6= 0 .

This is proved again by translatingX by ⌧ 2 ⇤d, which transforms bX(!) into e�i⌧.! bX(!).

Since X is stationary, it does not modify this expected value and hence E([ bX(!)]k) =

e�ik⌧.!E([ bX(!)]k). Since this is valid for any ⌧ 2 ⇤d, E([ bX(!)]k) = 0 if k! 6= 0 modulo

2⇡ in dimension r.

Property (23) for ! = 0 and property (24) are also proved by decomposing Cov(A,B) =

E(AB⇤)� E(A)E(B⇤) and showing that

E([ bX(0)]2k) = E(| bX(0)|) , E([ bX(0)]2k+1) = E( bX(0)) = dE(X(u)) . (47)

This results from the fact that bX(0) =
P

u2⇤d
X(u) is real so [ bX(0)]2k = | bX(0)| and

[ bX(0)]2k+1 = bX(0).

If X is Gaussian then bX(!) and bX(!0) are independent if ! 6= !0 because they

are Gaussian random variables with a zero covariance. It results that [ bX(!)]k and

[ bX(!0)]k
0
are also independent for any (k, k0) 2 Z2 and hence have a zero covariance
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if ! 6= !0. If ! = !0 and k 6= k0 then (22) proves that their covariance remains

zero. It results that Cov([ bX(!)]k, [ bX(!0)]k
0
) 6= 0 only if (!, k) = (!0, k0) and hence

that the covariance is diagonalized. If ! 6= 0 then bX(!) is a zero-mean complex

Gaussian random variable whose real and imaginary parts are not correlated. As a

result E(| bX(!)|)2/E(| bX(!)|2) = ⇡/4.

D Bump Steerable wavelet

We review the bump steerable wavelet introduced in [4]. It is illustrated in Figure

1 and provides a sparse representation of images with oriented structures. A general

way of constructing steerable wavelets is to use the polar coordinate in the Fourier

frequency domain [16].

We specify the bump steerable wavelet along the radius |!| and angle arg(!) for

! = |!|ei·arg(!). We assume that the number of angles L is even and its central

frequency is � = (⇠0, 0). Its formula is

b (!) = c · exp
⇣

�(|!|� ⇠0)2

⇠20 � (|!|� ⇠0)2

⌘
1[0,2⇠0](|!|) · cos

L/2�1(arg(!))1arg(!)<⇡
2
,

where c is a normalization constant. The radial function along |!| is a bump function

which is a compact-support approximation of a Gaussian window. The same angular

window function along arg(!) is used in [15].

As in [4], the father wavelet � is an isotropic Gaussian window function,

b�(!) = exp
⇣
�

|!|2

2�2

⌘
.

We choose ⇠0 = 1.7⇡, � = 0.248⇥2�0.55⇠0 and c = 1.29�12
L
2 �1 (L2 �1)!q

(L2 )(L�2)!
. These hyper-

parameters are also used in [4]. For the wavelet transform Wx with oversampling, we

obtain numerically the frame constants AW = 2.0 and BW = 4.6 for d = 1282, J = 5

and L = 16. It is therefore a complete and stable representation. These mother and

father wavelets also satisfy  (u1,�u2) =  (u1, u2) and �(u1,�u2) = �(u1, u2).

E Proof of Theorem 4.1

Observe first that µ0 is invariant to the action of any g 2 G. Indeed, the probability

measure µ0 of a Gaussian white noise is uniform on an ball of Rd centered in 0. As a

result µ0 is invariant to the action of any linear unitary operator and hence invariant

to the action of any g 2 G which is linear and unitary. Since µ0 is invariant to the

action of g, if the gradient descent is covariant to the action of g then the derivations

of Theorem 3.4 in [11] prove that the probability measure µt of xt is invariant to g for

t � 0.

We thus need to show that the L-BFGS gradient-descent algorithm is covariant to

the action g 2 G at each iteration (before stopped by line-search conditions). Let x̃t
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and xt be two sequences generated by the gradient descent from the initial conditions

x̃0 and x0. The covariance to the action of g means that if x̃0 = g.x0 then x̃t = g.xt
for any t � 0. Although invariant properties of a gradient-based algorithm are well

studied in the optimization literature [25, 31], we give below a prove for completeness.

L-BFGS is a variant of the quasi-Newton method BFGS. It estimates the inverse

Hessian matrix of the objective function f based on

st = xt+1 � xt and yt = rf(xt+1)�rf(xt).

Assume there is a limited memory size m to compute an approximation Hm
t of the

Hessian, from st�a and yt�a for 1  a  m. At each iteration t, the algorithm chooses

an appropriate step-size ↵t satisfying strong Wolfe conditions [25] and updates xt with

xt+1 = xt � ↵tH
m

t rf(xt).

Since f(x) = k eKRx�
eKRx̄k

2
EG

and eK bHWg.x
= eK bHWx

, it results that f(g.x) = f(x).

It implies that

rf(g.x) = g.rf(x). (48)

We prove the covariance property by induction. We suppose that x̃t0 = g.xt0 for

t0  t in order to prove that x̃t+1 = g.xt+1. By definition,

x̃t+1 = x̃t � ↵̃tH̃
m

t rf(x̃t).

The induction assumption implies that s̃t0 = g.st0 and ỹt0 = g.yt0 for t0  t. It is

therefore su�cient to verify that

H̃m

t = g.Hm

t .gT , ↵̃t = ↵t, 8t � 0

Each Hm
t is defined recursively by

Ha

t = V T

t+a�m�1H
a�1
t

Vt+a�m�1 + ⇢t+a�m�1st+a�m�1s
T

t+a�m�1,

for 1  a  m and for all t � 0

Vt = Id� ⇢t st y
T

t and ⇢t = (sTt yt)
�1.

We thus have Ṽt = g.Vt.gT . By convention, H0
0 = Id and H0

t = (sT
t�1 yt�1)�1Id for

t � 1. We thus conclude that H̃m
t = gHm

t gT . Note that if t  m, the index t+a�m�1

is negative, and in this case Vt+a�m�1 = Id and ⇢t+a�m�1 = 0.

To verify that ↵̃t = ↵t, we observe that the strong Wolfe-line search conditions are

invariant to any linear unitary g 2 G. Indeed these conditions are invariant to any

a�ne operator [25].
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F Proof of Proposition 5.1

If p is invariant to an action of G then M bHW
and K bHW

are not modified if X is

transformed into g.X. Similarly, we verify from (3) and (4) that fM bHW
and eK bHW

are

not modified if x̄ is transformed into g.x̄. The proposition results are obtained by

relating [g.x ?  �]k with [x ?  �(u)]k and applying this relation to x = X and x = x̄.

(i). If g.x = �x then

[g.x ?  �(u)]
k = (�1)k[x ?  �(u)]

k. (49)

For v = (�, k, u) we thus derive that M bHW
(v) = (�1)kM bHW

(v) and fM bHW
(v) =

(�1)kfM bHW
(v) and thus vanish if k is odd. Similarly, for v0 = (�0, k0, u0) we verify that

K bHW
(v, v0) = (�1)k+k

0
K bHW

(v, v0) and eK bHWx̄
(v, v0) = (�1)k+k

0 eK bHWx̄
(v, v0) which

vanishes if k + k0 is odd.

(ii) If g.x(u) = x(�u) then

[g.x ?  �(u)]
k = [x ?  �(u)]

k⇤ (50)

because  �(�u) =  ⇤

�
(u) and x is real. Since bh(k) is real, M bHW

(v) = bh(k)E([X ?

 �(u)]k)⇤ = M bHW
(v)⇤ is real. The same property applies to fM bHW

(v). Applying (50)

to K bHW
(v, v0) and eK bHWx̄

(v, v0) also proves that they are real.

G Proof of Theorem 5.1

Since � = 2�jr�`⇠ the index of R = bHW can be written v = (j, `, k, u). We compute

the covariance K bHW
(v, v0) for v0 = (j0, `0, k0, u0) with u0 = u. Since the distribution is

stationary the covariance value remains the same if we set u = u0 = 0.

To prove the theorem we first observe that if g.x = r⌘x then

[g.x ?  �(0)]
k = [x ?  r⌘�(0)]

k. (51)

If X is isotropic then K bHW
(v, v0) and eK bHWx̄

(v, v0) are invariant by rotations. The

covariance property (51) thus implies that they are a function of the di↵erence of

angles `� `0. It is therefore a periodic convolution kernel along angles. It results that

the angular dependence is diagonalized by a Fourier transform along the angle variable,

which proves (39) for R = F`
bHW.

A central reflection is a rotation by ⇡. Since the distribution of X is invariant to

all rotations it is invariant to a central reflection. Property (ii) of Proposition (5.1)

implies that K bHW
is real.

Let us consider the line reflection g relatively to the horizontal axis. Since  (u1,�u2) =

 (u1, u2) and �(u1,�u2) = �(u1, u2) we verify that for any � = 2�jr�`⇠ and �0 =

2�jr`⇠ we have

 �(u1, u2) =  �0(u1,�u2). (52)

As a result, if � = 2�jr�`⇠ then

[(g.x) ?  �(0)]
k = [x ?  �0(0)]k with �0 = 2�jr`⇠. (53)
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If K bHW
is invariant to line reflections then (53) implies that K bHW

is not modified

when (`, `0) is transformed into (�`,�`0). Since K bHW
is real and invariant to a change

of sign of (`, `0) it results that the Fourier coe�cients of K
F`

bHW
are also real.
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