Figure 5(a): time-frequency energy distribution of the m = 76 coherent
structures of the noisy speech signal shown in Fig.3(a).
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Figure 5(b): time-frequency energy distribution of the m = 76 coherent
structures of the noisy speech signal shown in Fig. 3. (b): signal recon-
structed from the 76 coherent structures shown in (a). The white noise has
been removed.
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Figure 4(a): signal obtained by adding a Gaussian white noise to the speech
recording shown in Fig.2(a). The signal to noise ratio is 1.5db.

Figure 4(b): time-frequency energy distribution of the noisy speech sig-
nal. The energy distribution of the white noise is spread across the whole
time-frequency plane.
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Figure 3(a): The top and bottom curves gives respectively the decay of
log, % for a non-orthogonal and an orthogonal matching pursuit, applied
to the signal in Fig. 1(a).
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Figure 3(b): A(R"f) as a function of the number of iterations n, for the
signal in Fig. 1(a).
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such high dimensional spaces. We are currently studying the problem of
adapting the dictionary to specific signal properties.
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The ability to find the coherent structures of a signal can be used to
remove noise from signals. In this approach, the noise is entirely defined
by the choice of the dictionary and corresponds to the invariant measure of
the matching pursuit map. For a Gabor dictionary, the dictionary noise is
white and stationary, but this is not necessarily true for other dictionaries.
The dictionary must be chosen so that its elements correlate as closely as
possible the signal inner structures, but so that they avoid high correlations
with realizations of the noise to be removed. During the matching pursuit
decomposition, we test the correlation ratio (68) and stop when condition
(69) is true, i.e. when we have selected all coherent structures. Fig. 4(a)
shows a signal obtained by adding a Gaussian white noise to the speech
recording given in Fig. 2(a), with a signal to noise ratio of 1.5 dB. Fig.
4(b) is the time-frequency energy distribution of this noisy signal. The
white noise generates time-frequency atoms spread across the whole time-
frequency plane, but we can still distinguish the time-frequency structures
of the original signal because their energy is better concentrated in this
plane. This signal contains m = 76 coherent structures which are displayed
in the time-frequency energy distribution of Fig. 5(a). Fig. 5(b) is the
signal reconstructed from these coherent time-frequency atoms. The SNR
of the reconstructed signal is 6.8 dB. The white noise has been removed and
the recovered signal has a good auditory quality because the main time-
frequency structures of the original speech signal have been retained.

8 Conclusion

Matching pursuits provide extremely flexible signal representations since the
choice of dictionaries is not limited. For information processing or compact
signal coding, it is important to have strategies to adapt the dictionary to
the class of signal that is decomposed. Time-frequency dictionaries include
vectors that are spread between the Fourier and Dirac bases. They are
regularly distributed on the unit sphere of the signal space and are thus well
adapted to decomposing signals for which we have little prior information.
When enough prior information is available, one can adapt the dictionary
to the probability distribution of the signal class within the signal space H.
Learning a dictionary is equivalent to finding the important inner structures
of the signals that are decomposed. Classical algorithms for the optimization
of code books, such as LBG [7], do not converge to satisfying solutions in
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[4].
An important measure of the flatness of the signal f with respect to a
dictionary is the correlation ratio

/\(f)zsup |<f7g’)/>|

S (67)

The correlation ratio is the fraction of the signal energy which will be re-
moved by one iteration of a matching pursuit when the optimality ratio
a = 1. Signals which possess structures closely resembling dictionary el-
ements will have large values of A(f). As the matching pursuit proceeds,
these structures are removed, and A(R*f) decreases. When signal residues
are as flat as realization of a dictionary noise, the convergence rate of the
pursuit is near a minimum. It is often not worth continuing the matching
pursuit iterations since the signal includes no structures that strongly corre-
late to dictionary elements. Let A, be the expected value of the correlation
ratio for the dictionary noise. This constant is computed through numerical
experiments over many iterations of the map. We call the coherent struc-
tures of a signal f the first m vectors (gwn)0§n<m that correlate with the
residue better than the average correlation ratio A,,. For 0 < n < m we
have

AE™F) > Moo (68)

and for m we have

A(R™[) € Ao (69)

The decay rate of the energy of the residues depends only upon the
correlation ratio. If we set the optimality factor @ = 1, then (11) implies

e R+ )
(1B

Fig. 3(b) displays the correlation ratio of the residues A?( R" f) for the signal
in Fig. 1(a). After 180 iterations, A(R" f) fluctuates around the mean A.,. It
is at that same point that the decay rate of the orthogonal pursuit residues,
shown in Fig. 3(a), becomes faster than the decay rate of the non-orthogonal
pursuit. This indicates that the orthogonal pursuit converges significantly
faster than the non-orthogonal pursuit only when the residues are already
close to the realization of a dictionary noise. For information processing
applications, it is often not useful to continue the decomposition beyond
this point, so for such applications the orthogonal pursuit does not offer
much advantage over the non-orthogonal pursuit.
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to a 1-dimensional map, which we prove is topologically equivalent to a left-
shift map. Thus, renormalized matching pursuit in this case is a chaotic
map whose properties are completely understood.

Numerical experiments with several types of dictionaries, including Ga-
bor dictionaries, provide evidence that the renormalized matching pursuit
map possesses an invariant measure and that it is mixing. The mixing
property means that if we start with a collection of test signals, then af-
ter suflicient iterations of renormalized matching pursuit, the density of the
residues in the signal space will be close to the invariant density function. To
express this result in another way, consider a random process which yields
signals with a probability measure on the signal space given by our invariant
measure. Then the mixing property implies that after sufficient iterations
of the map, the residues will look like realizations of this process.

The renormalized matching pursuit map continually sets to zero the
largest of the dictionary components of the current residue, and redistributes
the energy from this removed component over the remainder of the residue.
We expect this system to be near equilibrium when all dictionary compo-
nents of the residue have roughly the same magnitude-when this is so, the
operations of setting the largest component to zero and of redistributing the
energy have little effect. The residues converge to realizations of a random
process for which the distribution of the dictionary components is flat. This
invariant process can be interpreted as a generic noise with respect to our
dictionary, which we call dictionary noise.

For a Gabor dictionary we observe that after several iterations the residues
have statistical properties that are close to realizations of a white station-
ary process. To better understand this phenomenon, we first note that the
Gabor dictionary is invariant under translation and frequency modulation,
which means that for any g, (¢) € D, and (u,£) € R?, there exists a ¢ € R
such that e®eitlg (¢t — u) € D. One can prove [4] that for a translation
and modulation invariant dictionary, if there exists an invariant measure,
then this measure is invariant with respect to operators that translate sig-
nals in time or frequency. This invariant measure therefore corresponds to a
white stationary process. A detailed analysis of the invariant measure was
performed performed for a dictionary composed of a discrete Dirac basis
plus a discrete Fourier basis. This dictionary is clearly invariant by trans-
lations and frequency modulations. We constructed a stochastic differential
equation model of the evolution of the renormalized residues and solved
the corresponding Fokker-Planck equation to compute the properties of the
invariant measure. We obtained excellent agreement with numerical data
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residue

- R”f
R'f=—. (60)
1271l
Renormalized matching pursuit is the map defined by
M(R"f) = R"™ f. (61)
Since
|R* L2 = [R"FI? = [ < R" [, g > 1%, (62)

we obtain that ~ _
_R"f— <R[, 9y, > G

Vi-1< Bfig, >

At each iteration the renormalized matching pursuit map removes the

M(R™f) (63)

largest dictionary component of the residue and renormalizes it. This action
is much like that of a left-shift operator acting on a base-N decimal num-
ber: the shift operator removes the most significant (leftmost) digit of the
expansion and then “renormalizes” the expansion by multiplying by N. Let
3 n be the set of all base N decimals. The left-shift map Ly : Xy — Xy is
formally defined by

LN(O.Sl.SQSg .. ) = 0.828384 ceen (64)

where 0.s13 .. . is the base-N decimal 3772 ;| 3. The left shift map is known
to be a chaotic map, which suggests that renormalized matching pursuits
share this property.

Additional evidence that renormalized matching pursuits are chaotic can
be found in the fact that the map has “sensitive dependence” on the initial

signal f when f is close to a dictionary element. Consider two signals f;

and fy defined by

i=(1-eg+eh (65)
and

fa=(1—€)g+ehy (66)
where g is the closest dictionary element to f; and fy, |hi]| = |he| = 1,

and < hy,g >=< hg,g >= 0. Then |f; — f2| = €|h1 — h2| can be made
arbitrarily small, while |Rf; — Rfa| = |h1 — hs| is of order 1. The map thus
separates points near dictionary elements.

We examined the renormalized matching pursuit map for a dictionary
in 3 dimensions [4]. Through symmetry operations this map can be reduced
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Figure 2(a): speech recording of the word “greasy”, sampled at 16 kHz.

Figure 2(b): time-frequency energy distribution of the speech recording
shown in (a). We see the low-frequency component of the “g”, the quick
burst transition to the “ea” and the harmonics of the “ea”. The “s” has
energy spread over high frequencies.
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Figure 1(a): Signal of 512 samples built by adding chirps, truncated sinu-
soidal waves and waveforms of different time-frequency localizations.

|

Figure 1(b):

shown in (a).

Time-frequency energy distribution FE f(t,w) of the signal
The horizontal axis is time. The vertical axis is frequency.

The highest frequencies are on the top. The darkness of this time-frequency
image increases with the value £ f({,w).
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a high-frequency interval. Most of the signal energy is characterized by a
few time-frequency atoms. For n = 250 atoms, % = .169, although the
signal has 5782 samples, and the sound recovered from these atoms is of
excellent quality.

Let us now compare the decay rate of the residues for non-orthogonal
matching pursuits versus orthogonal matching pursuits. The top curve in
Fig. 3(a) gives the decay of log;, "T;"f" as a function of the number of
iterations n, for a non-orthogonal matching pursuit. For n > 130, the decay
rate is almost constant. This confirms the exponential decay proved by
Theorem 2. The bottom curve in Fig. 3(a) gives the decay of logy, W
as a function of the number of iterations n, for an orthogonal matching
pursuit. For the first 180 iterations we cannot distinguish the two curves,
which means that the decay of the residues for the two algorithms is nearly
identical. This indicates that the atoms selected by the non-orthogonal
pursuit are nearly orthogonal. After this point, we see that the residues of
the orthogonal pursuit decay much faster and for n = N = 512, the number
of samples of the signal, the residue is zero. The next section analyzes more
precisely this divergence of the convergence rates of the orthogonal and non-
orthogonal pursuits. The point of separation of the rates corresponds to a
stage at which the residues have no more “coherent” structures. At this

stage, the residue R™f has statistical properties that are very close to a

the realization of a stationary white noise. For many information processing
applications, we stop the decomposition when these coherent structures have
disappeared, so for such applications the orthogonal pursuit does not offer
much advantage.

7 Chaos in Matching Pursuit and Noise Removal

A non-orthogonal matching pursuit can require an infinite number of iter-
ations to converge, even in finite dimensions. We know already that the
norms of these residues converge to zero; we now examine in more detail the
asymptotic behavior of the residues. Numerical experiments suggest that
matching pursuits are chaotic maps, and we can prove this for a particu-
lar dictionary. Experiments also show that these matching pursuits possess
invariant measures, and we use this property to develop a noise removal
algorithm.

To study the asymptotic properties of the residues, we first renormalize
them to prevent their convergence to zero. We define the renormalized
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The Wigner distribution also satisfies

+oo +co
/ Wy(t,w)dt dw = [g]* = 1, (56)

— 00 — 00

so the energy conservation equation (18) implies

+oo +co
[ Ereed s = 1012 (57)

We can thus interpret F f({,w) as an energy density of f in the time-
frequency plane (¢,w). Unlike the Wigner and the Cohen class distributions,
it does not include cross terms.

If g(¢) is the Gaussian window

g(t) = 2"/4e=m", (58)

then
Wy(t,w) = 2e 27 HGR)), (59)

so & f(1,w) remains positive. The time-frequency atoms g-() are then called
Gabor functions. The time-frequency energy distribution £ f(¢,w) is a sum
of Gaussian blobs whose locations and variances along the time and fre-
quency axes depend upon the parameters (s, un,&,).

Fig. 1(a) is a signal f of 512 samples that is built by adding chirps,
truncated sinusoidal waves and waveforms of different time-frequency lo-
calizations. No Gabor functions have been used to construct this signal.
Fig. 1(b) shows the time-frequency energy distribution £ f(¢,w). Since
Ef(t,w) = Ef(t,—w), we only display its values for w > 0. Each Gabor
time-frequency atom selected by the matching pursuit is an elongated Gaus-
sian blob in the time-frequency plane. We clearly see appearing two chirps
that cross each other, with a localized time-frequency waveform on the top
of their crossing point. We can also detect closely spaced Diracs and trun-
cated sinusoidal waves having close frequencies. Several isolated localized
time-frequency components also appear in this energy distribution.

Fig. 2(a) is the graph of a speech recording corresponding to the word
“greasy”, sampled at 16 kHz. From the time-frequency energy displayed in
Fig. 2(b), we can see the low-frequency component of the “g” and the quick
burst transition to the “ea”. The “ea” has many harmonics that are lined
up but we can also see localized high-frequency impulses that correspond
to the pitch. The “s” component has a time-frequency energy spread over
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where v, = (S, up, &) and

1 L= Un . e s
Gy (1) = f—sng(T)e : (50)
These atoms are chosen to best match the residues of f.

We derive a new time-frequency energy distribution from the decompo-
sition of any f(¢) within a time-frequency dictionary, by adding the Wigner
distribution of each selected atom. Recall that the cross Wigner distribution
of two functions f(t) and h(?) is defined by

WU Aw) = o [ S DR Dy (1)
, W) =5 » 5 5)e T.
The Wigner distribution of f(¢) is W f(t,w) = W]/, fl(t,w). Since the
Wigner distribution is quadratic, we derive from the atomic decomposition

(49) of f(¢) that

+oo
Wftw) = Y |<R'f gy, >*Wg,,(t,w) (52)

n=0
+oo +co
+ > Y <R".9y, > <R[, g0, >W[Gy, 04,) (1, w).

n=0m=0,m#n

The double sum corresponds to the cross terms of the Wigner distribution.
It contains the terms that one usually tries to remove in order to obtain a
clear picture of the energy distribution of f(¢) in the time-frequency plane.
We therefore keep only the first sum and define

+ oo
Ef(t,w) =Y |< R"f, 9y, > "Wy, (1,0). (53)
n=0
A similar decomposition algorithm over time-frequency atoms was derived
independently by Qian and Chen [12] in order to define this energy dis-
tribution in the time-frequency plane. From the well known dilation and
translation properties of the Wigner distribution and the expression (50) of
a time-frequency atom, we derive that for v = (s, &, u)

Won (1) = Wo(——, s(e - ©)) (54)
and hence
+o0 _
Ef(tw) =3 |< B f.g0, >[PWo(' =" sp(w =€), (55)
n=0 n

13



If the inner product of any two elements in D is calculated in O([) oper-
ations, the (bgn)o<k<n are obtained in O(nl + n?) operations. We then
compute the inner _pr:)duct of the new residue R"*! f with any g, € D, from
the orthogonal updating formula (31)

<R f gy >=<R"f,gy> = < R'f,gy, > < tUn.gy>. (47
Since
n
< Up, 5 Gy >= Zbk,n < Gy > 9~ >, (48)
k=0

computing (< R"*1 f, g, >)er requires O(nl Z) operations. The total num-
ber of operations to compute P orthogonal matching pursuit iterations is
therefore O(P> + P%*IZ) operations. For a dictionary of discrete Gabor
signals with signals of size N, since I =1, Z = N, and P < N, the num-
ber of operations is O(N P?). It also requires O(N log N + P?) memory to
store the inner products (< R"f,g, >),er and the expansion coefficients
(0k,p)o<k p<n-

For P iterations, the non-orthogonal matching pursuit algorithm is P
times faster than the orthogonal one. When P is large, which is the case
in many signal processing applications, the orthogonal pursuit algorithm is
much slower than the non-orthogonal one, and requires much more memory.
When P remains small, the orthogonal pursuit is more advantageous because
it converges faster.

6 Matching Pursuit With Time-Frequency Dic-
tionaries

For dictionaries of time-frequency atoms, a matching pursuit yields an adap-
tive time-frequency transform. It decomposes any function f(¢) € L*(R)
into the sum of complex time-frequency atoms that best match its residues.
This section describes the properties of this particular matching pursuit de-
composition. We derive a new type of time-frequency energy distribution
by summing the Wigner distributions of the time-frequency atoms.

Since a time-frequency atom dictionary is complete, Theorem 2 proves
that a matching pursuit decomposes any function f € L%(R) into

+co
/= Z <R[, 9y, > Gy (49)

n=0
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so that the first step is to find g., such that

| <R"f, gy, >|=sup| < R"f,gy > |.
~el

If all the inner products are stored in an open hash table, finding this supre-
mum requires on average O(1) operations. Otherwise, one needs to search
across the whole set of inner products.

For a non-orthogonal matching pursuit, once the vector g,, is selected,
we compute the inner product of the new residue R"*!f with all g, € D,
with an updating formula derived from equation (10)

<R g, >=<R"f,gy> — < R"[,gy, > < gonr 9y > . (43)

Since we previously stored < R"f, g, > and < R"f,g,, >, this update re-
quires only the computation of < g.,, ¢, >. Dictionaries are generally built
so that few of these inner products are non-zero, and non-zero inner products
are computed with a small number of operations. Let us suppose that such
inner product computations are done in O(I) operations and that there are
O(Z) non-zero inner products for any g.,,. Computing {< R"T'f, g, >}oel
thus requires O(/Z) operations. Hence, the total numerical complexity of
computing P matching pursuit iterations is O( PIZ). An efficient implemen-
tation of a discrete Gabor dictionary [10] has I = 1 and Z = N, so that P
iterations require O(N P) operations. Since the dictionary has O(N log NV)
vectors, the total memory needed for the algorithm is O(N log V).

For an orthogonal matching pursuit algorithm, once the vector g¢,, is
selected, we must compute the orthogonal vector w,, with the Gram-Schmidt
formula (28). We suppose that for p < n, we have already computed the
expansion coefficient of each u, in (g, Jo<k<p,

P
Up = E Ok pGry. (44)
k=0
From )
e
L Gy s Up >
Up = g’Yn — Z Wum (45)
p=0 P

we can compute the expansion

= 3 bt (46)
k=0

11



The coefficients b, ,, can be calculated while computing the orthogonal match-
ing pursuit, as explained in section 5. Inserting expression (39) into (36)
yields

< R"f, gy,
/= Z [t ﬁ; Ebpvngﬁp (40)

0<n<M

One could naively try to rearrange the terms of this double summation to

obtain RS
< >
Z ng Z bpvn ||u7ﬁ;n . (41)
0<p<M  p<n<M "

However, when M = 400 the infinite sum over n that defines each coefficient
3, may not converge. Such a situation arises when the family (g., )o<n<m
is not a Riesz basis of the closed space Vs that it generates. For such a
case, we cannot obtain an expansion of the form (38) from the orthogonal
matching pursuit. If the signal space H has a finite dimension N, then M
is finite, so we can always invert the two sums of (40) to obtain (41). The
basis (g, Joxn<m may, however, be very badly conditioned in which case we
can have numerical instabilities:

Y 1B >> 1A% (42)

0<n<M

The residues of orthogonal matching pursuits in general decrease faster
than the residues of non-orthogonal matching pursuits. However, this or-
thogonal procedure can yield unstable expansions and requires much more
numerical computation because of the Gram-Schmidt orthogonalization.
The implementation and computational complexity of these two algorithms
is compared in the next section.

5 Numerical Implementations of Matching Pur-
suits

We describe fast implementations of non-orthogonal and orthogonal match-
ing pursuits in finite dimensional spaces, and compare their performance.
Software implementing matching pursuits for time-frequency dictionaries is
available through anonymous ftp at the address cs.nyu.edu . Instructions
are in the file README of the directory /pub/wave/software.

At stage n of the pursuit, we suppose that the inner products (< R" f, g, >
)yer have already been computed. We choose the optimality factor a = 1,

10



An orthogonal pursuit guarantees that the selected vectors (g%)oéném
are linearly independent, and computes the best possible approximation of
J from these vectors. Since R°f = f, we derive from equations (31) and
(32) that for any m > 0

< Rnf?.g’Yn > m
= Z W“n‘}'R e (33)
0<n<m n
and | ; |2
< R"f gy, > m
0<n<m n

The derivations are similar to those for equations (13) and (14). The next
theorem is similar to Theorem 2 and guarantees the convergence of the
orthogonal pursuit [4].

Theorem 3 Let f € H. Let N be the dimension of H (N may be infinite).
The orthogonal matching pursuit converges in M < N iterations (M may
be infinite if N is infinite). The residue R™f defined inductively by equation
(31) salisfies

lim [R" ] =0, (35)
< Rnf? g’Yn >
/= E W“m (36)
0<n<M n
" <R Lo, > P
< R"f gy, >
I717= > T ””2 : (37)
0<n<M n

If H is of finite dimension, the orthogonal pursuit converges within a finite
number of iterations.

Our primary objective is not to expand f over (uy)o<n<ps but rather
over (g, Jo<n<m- We want coefficients (3, )o<n<n such that

f= E By - (38)

0<n<M

Since u, € V, and (gwp)0<p<n is a basis of V,,, we can decompose u,, into

Un = Z by nGryp- (39)
p=0



Let us explain by induction how to compute the orthogonal residue
R f from R™f. We suppose that we have already selected n vectors
(9, Jo<p<n that are linearly independent and that we computed the corre-
sponding Gram-Schmidt orthogonal basis (u,)o<p<n. Both (g.,)o<p<n and
(up)o<p<n are bases of the space V,, and

R'f=f-Py_f. (26)
We choose a vector g,, € D which satisfies

|< R"[, 9y, >| > asup|< R"[, g, >|. (27)
~el
If < R"f, gy, ># 0, then the vector g,, cannot belong to the space V,,
since R™f is orthogonal to V,,. Hence the vectors (g.,)o<p<n are linearly
independent . The next vector u,, of the Gram-Schmidt basis is obtained by
subtracting from g, its projection on the space V,,

n—1
L Gy Up >
=gy, -3 St 2, 28)
p=0 P

The family (up)Oépén is an orthogonal basis of V,,;1. The residue R"*! f is
defined by

" < fou, >
RHf=f-Py, f=[- Z —— ", (29)
24 Tl
This can also be rewritten
pritf = grp o SH > (30)

—— " " u,.

lunl2
Since R"f is orthogonal to the vectors (g.,)o<p<n, equation (28) implies
that < R" f,u,, >=< R"f,g,, > and thus

RTL
AR T ||1{’|g|—§" “u,. (31)

This equation is similar to the residue updating equation (10) of a match-
ing pursuit, but instead of subtracting a vector in the direction of g¢,,, we
subtract a component in a direction orthogonal to all vectors previously
selected. Since R™!f and u, are orthogonal,

[l |2

IR 711 = [|R™f||* - (32)



is called a back-projection. Instead of storing the inner products < R" f, g, >
in the structure book, we store < R" f, g,,, > +z,, in order to recover Py, _f
with (20). In this case, the approximation error

Pw, f=/f-Pv,f (22)

is the orthogonal projection of f on the space W, the orthogonal comple-
ment of V,,, in H. The calculation of the coefficients (wn)05n<m requires
that we solve the following linear system. For any ¢,,, 0 <k < m,

m—1
<Py, R"f gy, >=< R"™[,gy, >= > @n < gopr Gy > - (23)
n=0
Let us denote X = (2,)o<n<m and Y = (< R™f, gy, >)o<k<m- Let G =
(< Gryps G >)0§k<m,0§n<m be the Gram matrix of the family of selected
vectors. The linear system of equations (23) can be written ¥ = GX. A
solution of this system is computed efficiently with a conjugate gradient
algorithm [10]. If H is of finite dimension N, there are many classes of
dictionaries for which any collection of N distinct dictionary vectors is a
basis of H. This is the case for the Gabor dictionary used for time-frequency
decompositions. Hence, after selecting N different vectors with a matching
pursuit, the back-projection reduces to 0 the remaining residue.

Instead of recovering the orthogonal projection Py, f at the end of the
matching pursuit, one can modify the pursuit algorithm by computing this
orthogonal projection when selecting each new vector of the dictionary. It is
more efficient to orthogonalize the family of selected vectors with a Gram-
Schmidt algorithm than to perform a back projection. This type of algo-
rithm was first introduced for control applications [1] and also also studied
independently from this work by Pati et al. [11]. It has the advantage of
providing better approximations than the matching pursuit algorithm, but
it requires much more computation and can introduce numerical instabilities
into the expansions. We describe by induction this orthogonal pursuit.

For n = 0, we set R°f = f. Like in a matching pursuit, we define a
supremum factor a, with 0 < a <1, and choose g, € D which satisfies

| < figyo >| > asup|< f,g, > (24)
~el

The space V; is generated by the single vector g,,. The first vector ug of
the Gram-Schmidt basis is g.,. The next residue is defined by

Rf:f_Pvlf:f_ <fvg’)/o >g’Yo' (25)



Theorem 2 Let f € H. The residue R™ [ defined by the inductlion equation
(10) salisfies
lim |R"f] = 0. (16)

Hence
+ oo

f = Z < Rnfvgwl > Gy s (17)

n=0
and
+oo
1712 =" 1< R*f, 9y, >[%. (18)
n=0

When H is of finite dimension, ||R™ f|| decays exponentially to zero.

This theorem proves that any vector f is characterized by the double
sequence (< R"f, gy, >,7n)neN, called a structure book, which specifies
the expansion coefficients and the index of each chosen vector within the
dictionary.

4 Back-projection and Orthogonal Pursuit

After m iterations, a matching pursuit decomposes a signal f into

m—1

f=72 <R'f.gy, > gy, + R"J. (19)
n=0

If we stop the algorithm at this stage and only record the partial structure
book (< R" [, g, >, 7n)0<n<m, the summation of equation (19) recovers an
approximation of f with error R™f. However, this sum is not the linear
expansion of the vectors (g, Jo<n<m Which best approximates f. Let V,,
be the space generated by (g%)o_<n<m and Py be the orthogonal projector
onto V,,. Forany f € H, Pvmf_is the closest vector to f that can be written
as linear expansion of the m vectors (g, Jo<n<m. We derive from (19) that

m—1

Py, f=Y <R'f.gy, > gy, +Py, R"[. (20)

n=0

If the family of vectors (g, Jo<n<m is not orthogonal, which is generally the
case, then Py R™f # 0. The computation of

m—1

Py R"™f = Z Tn G (21)

n=0



Let us explain by induction how the matching pursuit is carried further.
Let R°f = f. We suppose that we have computed the n'" order residue
R™f,for n > 0. We choose with the choice function C' an element g¢,, € D
which closely matches the residue R™f

| < R”f,g%>lzasu¥|< R"f, gy >|. (9)
YE

The residue R™f is sub-decomposed into
R"f=<R"f,g,, > g, + RS, (10)

which defines the residue at the order n+1. Since R"T!f is orthogonal to
g, , we have

|R"fI* = |< R"f, 95, >1* + [R"TF[%. (11)
Let us carry this decomposition up to the order m. We decompose f into
the telescoping sum

m—1

F=3 (B"f— R™'[) + R, (12)

n=0
Equation (10) yields

m—1

f=> <R'f.gy, > gy, +R"[. (13)

n=0
Similarly, we write | f]? as a telescoping sum

m—1

1717 =3 (1B 12 = 1B 1) + R 1) (14)

n=0
which we combine with (11) to obtain an energy conservation equation

m—1

1712 =D [< R gy > 12+ R FI (15)
n=0

Thus, the original vector f is decomposed into a sum of dictionary elements
which are chosen to best match its residues. Although this decomposition is
non-linear, we maintain an energy conservation as though it were a linear,
orthogonal decomposition. An important issue is to understand the behavior
of the residue R™ [ when m increases. By transposing a result proved by
Jones [9] for projection pursuit algorithms [5], one can prove [10] that the
matching pursuit algorithm converges, even in infinite dimensional spaces.



This instability can be avoided by imposing the constraint that the approx-
imation must satisfy
Yo 18P < KA1 (5)
0<n<M
for some fixed K > 1. Omne can prove that there always exist such e-
approximations.

When ¢ is modified, the dictionary vectors that appear in the optimal
approximation can change completely, which prevents us from computing
optimal approximations using progressive refinement. This instability of
the optimal approximations, together with the computational intractibil-
ity of computing them, leads us to use greedy sub-optimal algorithms that
progressively refine the functional approximation by choosing appropriate
dictionary vectors.

3 Matching Pursuit

Let f € H. We want to compute a linear expansion of f over a set of
vectors selected from D which best matches the inner structures of f. A
matching pursuit is a greedy algorithm which successively approximates f
with orthogonal projections onto elements of D. Let g, € D. The vector f
can be decomposed into

f:< fvg’)’o >gWo‘|’Rf7 (6)

where Rf is the residual vector after approximating f in the direction of
g~,- Clearly g, is orthogonal to Rf, hence

712 =1< J.g20 > 1"+ IRTI™ (7)

To minimize |Rf|, we must choose g,, € D such that | < f,g,, > | is
maximal. In some cases, it is only possible to find a vector g, that is close
to the maximum in the sense that

| < figyo >| > asup |< f,gy >, (8)
~el

where o € (0, 1] is an optimality factor.

We sub-decompose the residue Rf by projecting it onto the vector of D
that best matches Rf, as was done for f. This projection of Rf generates
a second residue, R%f, which we again decompose to obtain a third residue,
and so on.



best adapted to expand a given f(¢). A first issue is to define a notion of
“optimal” approximation within a given dictionary.

Definition 1 Let e > 0. An e-approzimation of f € H is a linear expansion
of dictionary vectors

JZ: Z ﬁng%”
0<n<M
for which .
I/ = fll <e (3)

f is an optimal e-approximation if M is the minimum integer for which (3)
1s satisfied.

To determine the computational complexity of obtaining these optimal
solutions, we consider a space H of finite dimension and dictionaries D of size
O(N*) for some k > 0. We encode all quantities with O(NP?) bits for some
positive p. We say that an algorithm solves the optimal e-approximation
problem if, for any given f € H, any D of size O(Nk), and any € > 0, we
can find an optimal e-approximation for f. The following result shows that
this problem is computationally intractable.

Theorem 1 The optimal e-approximation problem is NP-hard.

In large dimensional spaces, it is therefore not feasible to compute opti-
mal e-approximations. Theorem 1 is proved by showing that any instance
of the Exact Cover by 3-Sets problem [6] can be transformed in polynomial
time into an optimal e-approximation problem. Thus, an algorithm which
solves the e-approximation problem can solve the NP-complete Exact Cover
by 3-Sets problem. The intractability of the approximation problem is due
to the coupling between terms in the function expansions when the dictio-
nary elements are not orthogonal. We map the overlapping sets in the Ex-
act Cover by 3-Sets problem to a set of coupled, non-orthogonal dictionary
vectors. When the dictionary vectors are orthogonal, this coupling-induced
complexity vanishes. We can solve the problem in O(N log N ) by sorting the
inner products {| < f,gy > |*},er and finding the minimum M for which
the sum of the M largest terms satisfies || f||? = XM, | < f,¢9,, > |? < e

In addition to the computational complexity, an important issue is that
this optimization criteria can lead to numerically unstable expansions. We
can construct examples where the 12 norm of the expansion coefficients is
arbitrarily larger than || f]|?, i.e.

Yo 1Bl >> I (4)

0<n<M



From this asymptotic behavior, we derive an algorithm that selects coher-
ent signal structures from noisy signals. We describe an application to noise
removal in speech recordings.

2 Optimal Adaptive Approximations in Dictio-
naries

We expand functions from a Hilbert space H into linear combinations of
vectors from a large collection D = (g4(t)),cp, With [|gy[| = 1, called
a dictionary. The dictionary is constructed so that linear combinations of
dictionary vectors are dense in H. The smallest possible dictionary is a basis
of H, but in practice a dictionary is a very redundant set. The redundancy
gives an increased degree of freedom in constructing function expansions,
and this freedom is used in order to obtain improved convergence properties
of the expansions.

For signal processing applications, we study the properties of dictionar-
ies composed of waveforms that are well concentrated both in time and
frequency. Our signal space is L?(R) and we construct such a dictionary by
scaling, translating and modulating a single window function g(¢) € L%(R).
We suppose that g(¢) is real and centered at 0. We also impose that |g| = 1,
that the integral of g(¢) is non-zero and g(0) # 0. For any scale s > 0, fre-
quency modulation £ and translation u, we denote v = (s, u,£) and define

0a(1) = =LYyttt (1)

Vs s

1
The index 7 is an element of the set I' = Rt xR2. The factor — normalizes
S

to 1 the norm of g,(¢). The function g.(¢) is centered at the abscissa u and
its energy is concentrated in a neighborhood of u, whose size is proportional
to s. Let g(w) be the Fourier transform of ¢g(¢). Equation (1) yields

Gr(w) = VEg(s(w — £))e O, (2)

Since |g(w)| is even, |§(w)| is centered at the frequency w = . Its energy is
concentrated in a neighborhood of £, whose size is proportional to 1/s. The
dictionary of time-frequency atoms D = (gv(t))wer is a very redundant
set of functions in L?(R) that includes window Fourier frames and wavelet
frames [3]. Instead of expanding the signal on such a frame that is chosen
a priori, we want to choose within D the time-frequency atoms that are



1 Introduction

In this paper we focus on the problem of approximating functions using
linear combinations of a small number waveforms. To obtain a compact ex-
pansion of a function which contains complex structures, we must adapt our
expansion to the various components of the function. Examples of such a lin-
ear expansions include triangular mesh approximations to surfaces, used in
scientific computing applications. These mesh expansions can be adapted to
obtain low approximation error with a small number of triangles by varying
the size and shape of the triangles according to the approximated surface’s
local properties. Adaptive linear expansions can be used to extract informa-
tion from signals. We obtain an adaptive time-frequency decomposition of a
signal by expanding the signal into a sum of waveforms whose localizations
in time and frequency match those of the different signal structures. Such
adaptive time-frequency representations are important in signal processing
applications such as speech analysis.

The waveforms which we use for our expansions are drawn from a large
and redundant collection, called a dictionary. In section 2 we examine the
computational complexity of optimally approximating a function with a
linear combination of vectors from a dictionary. We prove that in a fi-
nite dimensional space, computing the optimal solution is an NP-complete
problem, which motivates the use of sub-optimal greedy algorithms. We
introduce the matching pursuit algorithm, a greedy algorithm which com-
putes function expansions by iteratively selecting dictionary vectors which
best correlate to signal structures. An orthogonal version of the matching
pursuit algorithm is also described and compared with the non-orthogonal
algorithm. An application of matching pursuits to finding adaptive time-
frequency decompositions is explained in section 6. A signal is decomposed
into waveforms selected from a dictionary of time-frequency atoms, a collec-
tion of dilations, translations, and modulations of a single window function.
We construct a time-frequency energy distribution by summing the Wigner
distributions of the selected time-frequency atoms. Unlike the Wigner dis-
tribution or Cohen’s class distributions, this energy distribution does not
include interference terms and thus provides a clear picture of the time-
frequency plane.

Matching pursuits have chaotic properties which are analyzed for par-
ticular dictionaries. As the number of iterations of a matching pursuit
increases, the approximation error converges to the realization of a noise
process whose energy is uniformly spread across all the dictionary vectors.
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Abstract

Computing the optimal expansion of a signal in a redundant dictionary of
waveforms is an NP-complete problem. We introduce a greedy algorithm
called a matching pursuit which computes a sub-optimal expansion. The
dictionary waveforms which best match a signal’s structures are chosen iter-
atively. An orthogonalized version of the matching pursuit is also developed.
Matching pursuits are general procedures for computing adaptive signal rep-
resentations. With a dictionary of Gabor functions, a matching pursuit
defines an adaptive time-frequency transform. We derive a signal energy
distribution in the time-frequency plane which does not contain interference
terms, unlike the Wigner and Cohen class distributions. A matching pursuit
is a chaotic map whose asymptotic properties are studied. We describe an
algorithm which isolates the coherent structures of a signal and show an
application to pattern extraction from noisy signals.
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